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Abstract

Artificial spiking neural networks are gaining increasing prominence due to their

potential advantages over traditional, time-static artificial neural networks. Cus-

tom hardware implementations of spiking neural networks present many advan-

tages over other implementation mediums. Two main topics are the focus of this

work. Firstly, digital hardware implementations of spiking neurons and neuromor-

phic hardware are explored and presented. These implementations include novel

implementations for lowered digital hardware requirements and reduced power

consumption.

The second section of this work proposes a novel method for selectively adding

sparsity to a spiking neural network based on training set images for pattern

recognition applications, thereby greatly reducing the inference time required in a

digital hardware implementation.
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Chapter 1

Introduction

Artificial Intelligence (AI) is currently an active and exciting field with ever-

expanding applications and relevance. Software and hardware AI systems have

seen widespread use in various applications.

AI systems draw inspiration from naturally occurring biological neural systems

[1]. The basic elements of biological neural systems are neurons and synapses.

Neurons receive stimulus in the form of electric current and transmit information

through spikes in their membrane potential [2]. The information is encoded in

the timing and the rate of these spikes through mechanisms such as rate coding,

although other methods have been proposed [3]. Neurons are connected to each

other through synapses and the strength of the connection is called the synaptic

weight.

Traditional Artificial Neural Networks (ANNs) use a time-static approach in which

the spiking rate of the neuron is modelled by a transfer function that returns a

value that is a percentage of what the spiking rate of a spiking neuron would

be. Sigmoidal or linear transfer functions are common in traditional ANNs, but

not obligatory [1]. Although this approach is useful, it is not a true emulation of

biological systems since neurons are not linear nor time-invariant. Spiking Neural

1
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Networks (SNNs) offer a more complete replication of biological neural systems

with extended applications compared to traditional ANNs.

1.1 Elements of Spiking Neural Networks

1.1.1 Spiking Neuron Models

The spiking behaviours of biological neurons are quite diverse and many mathe-

matical models with varying description levels have been proposed to model their

behaviours. nearly all models are composed of differential equation(s) of the neu-

ron’s membrane potential.

Among the most biologically detailed models are the Hodgkin-Huxley neuron

model [4] and the Morris-Lecar model [5]. Low-level, high detail models offer more

accurate and meaningful descriptions of natural neurological systems. In the case

of the Hodgkin-Huxley neuron model [4], all of the behavioural parameters used

in the model have physiological meaning which makes the model very descriptive.

Furthermore, the Hodgkin-Huxley neuron was the first conductance-based neu-

ron model and is the basis of conductance-based neuron modeling [6]. However,

the primary drawback of detailed models is their typically high computational

intensity. In the case of the Hodgkin-Huxley neuron model, there are four inter-

dependent differential equations with six parameters that depend on the state of

the membrane potential. The complexity of this level of neuron model elongates

software simulation and complicates potential hardware implementations.

Other models offer a less detailed description but are still able to capture all of the

neuron’s behaviours. These models include the Izhikevich model [7], the Adaptive-

Exponential Integrate-and-Fire model [8], and the Wilson Model [9]. Models of this

level of biological detail tend to be a compromise between complexity and biological

parallelism. They are able to replicate the behaviours found in biological neurons,
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but their modeling parameters do not necessarily directly model a physiological

characteristic of a neuron.

A simpler, phenomenological description of neuronal behaviour can be found in

the Leaky Integrate-and-Fire (LIF) Neuron Model [10]. This model was originally

proposed in 1907 and offers a very simple explanation of the spiking behaviours

observed in neurons.

Each level of biological detail clearly has advantages and drawbacks and model

selection should be heavily influenced by the target application. Applications

and neuron model fitness for a given application will be elaborated further subse-

quently.

1.1.2 Synapses and Learning

Many learning mechanisms have been proposed to model and explain biological

learning, but among the most prominent learning mechanisms is Spike-Timing-

Dependent Plasticity (STDP) [11]. STDP is a positive feedback-based learning

mechanism in which the timing of the spikes in the membrane potentials of a

given pre-synaptic and post-synaptic neuron pair is compared. If the pre-synaptic

neuron spikes before the post-synaptic neuron, then the strength of the synaptic

connection, that is, the synaptic weight, increases. In contrast, if the post-synaptic

neuron spikes before the pre-synaptic neuron, then the synaptic weight decreases.

Furthermore, recent explorations have found that traditional ANNs can be trained

using well defined methods, such as stochastic gradient descent, and the trained

weights can be transferred to SNNs of analogous structure [12], and more com-

plicated network structures may only require weight adjustment [13, 14]. This

methodology has been used with significant success in hardware implementations

of SNNs [15].
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1.2 Motivation

1.2.1 Neuron Implementations

Since the fundamental unit of a neural network is the neuron, the design of a neuron

in hardware is critical. To emulate biology, the neuron must be energy-efficient and

require minimal hardware resources. Additionally, the neuron model selected for

a network is an important consideration. Some applications, such as neurological

disease modeling require high biological parallelism from the neuron [16], while

other applications may not require a high level of biological detail.

Thus, two neuron model implementations are presented in Chapters 2 and 3 with

different levels of biological detail and varying accuracy/resource trade-offs as they

are presented with different intended applications.

1.2.2 Spiking Neural Network Implementations

Software-based AI solutions have excelled in many applications and have seen

widespread use [17]. However, when compared to custom hardware solutions

and/or programmable logic such as Field Programmable Gate Array (FPGA) so-

lutions, software solutions are far slower and consume a great deal more power

[17,18]. Given the incredible amounts of data generated and processed in modern

machine learning and AI systems, speed and power consumption are increasingly

important considerations.

Unlike traditional ANNs, SNNs are time dynamic and have extended applications

in real-time control problems [19] and neuronal disease modelling [20], among other

fields. Additionally, the spike-based temporally sparse operation of SNNs may lend

itself to reduced power consumption in hardware implementations [12, 18,21].
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Within the realm of hardware implementation many options exist. Analog Application-

Specific Integrated Circuit (ASIC) implementations typically offer the lowest power

consumption and excellent speed, but require extensive design overhead, are often

very inflexible after the design phase, and are typically more susceptible to error

and noise [22]. Moreover, digital ASIC is more robust to noise, but again suffers

from large design time and limited flexibility after fabrication. FPGA solutions

offer high flexibility and rapid prototyping as well as many of the speed and power

benefits of ASIC to a lesser degree.

Thus, given the potential benefits of hardware implementations of SNNs, an FPGA

implementation of an SNN is a logical target. Many hardware SNNs have been

proposed in academic literature [15,23,24] with various advantages and drawbacks.

Many proposals focus on implementing STDP learning in hardware [25, 26], but

this imposes limitations on the complexity of the problem the system can solve

since these approaches, even in software require an extensive number of synapses

[27,28].

Therefore, for practical applications, pre-trained SNN hardware provides an effi-

cient solution to practical applications that require on-edge inference. The work of

the second part of this dissertation presents the development of digital hardware

implementations of SNNs for edge inference in pattern recognition. Simple archi-

tectures are employed and novel methods for network size reduction compared to

a baseline fully-connected architecture are explored and presented and the results

are compared with the baseline implementation.

1.3 Objectives

This dissertation has two main objectives. The first is the evaluation of hardware

implementation methods and novel implementation techniques for neuromorphic

hardware. The second is the development of novel methods by which the size of
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SNNs can be reduced to result in faster inferences and lower silicon area require-

ments in digital hardware.

1.4 Dissertation structure

The dissertation is divided into two main parts. The first part, comprised of

Chapters 2 - 4 presents works that firstly target improvements to FPGA hardware

implementations of spiking neurons. Several neuron models are investigated, and

results are presented and discussed. Subsequently, the second part, comprised of

Chapters 5 and 6 present novel methods for digital hardware resource reductions

in the implementation of SNNs for on-edge inference in image pattern recognition

problems and corresponding hardware implementations.

Chapter 2 presents mathematical modifications to the Izhikevich neuron model

[7] that simplify the digital hardware requirements for implementation.

Chapter 3 presents an implementation of the Hodgkin-Huxley neuron model [4],

one of the most biologically meaningful neuron models, using the Co-Ordinate

Rotational DIgital Computer (CORDIC) algorithm to reduce the complexity of a

digital hardware implementation.

Chapter 4 presents a sampling-based hardware implementation methodology by

which the power consumption of a biologically detailed digital neuron can be

reduced.

Chapter 5 presents the concept of input sparsity applied to SNNs and its signifi-

cance in reducing the hardware requirements of digital on-edge inference networks.

The novel Selective Input Sparsity (SIS) method is introduced and used to imple-

ment a digital SNN.

Chapter 6 presents Field-Programmable Gate Array (FPGA) digital hardware

implementations of the networks described in Chapter 5.
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Chapter 7 summarizes and broadly discusses the work to form a conclusion and

suggest possible future extensions and continuations.



Chapter 2

An Efficient Spiking Neuron

Hardware System Based on the

Hardware-Oriented Modified

Izhikevich Neuron (HOMIN)

Model

The basic element of a neural network is a neuron, which uses voltage spikes to

transmit information, and the information is transmitted primarily in the timing

of these spikes [3]. Biologically accurate neuron behavioural models, most notably

the Izhikevich [7] and Adaptive-Exponential Integrate-and-Fire (AdEx) [8] neu-

ron models successfully capture the natural spiking phenomena exhibited by real

neurons. However, biological neurons and accurate mathematical models are nei-

ther time-invariant nor linear, making hardware realizations of these models chal-

lenging. Many hardware implementations of Spiking Neurons in analog [31–33],

digital [34–38], and mixed signal [39, 40] systems have been proposed. However,

8
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implementations with high accuracy to the mathematical neuron model are com-

putationally expensive. Furthermore, digital hardware realizations of a biologically

accurate neuron model in its presented form would be computationally intensive,

making large networks of highly accurate neurons not feasible on a single Inte-

grated Circuit die.

Thus, it is evident that compromises must be made between the accuracy of the

neuron to biological behaviour and the computational requirements of the imple-

mented hardware system to make the neuron a practical candidate for use in a

spiking ANN. The model must have a low computational cost while simultaneously

maintaining a sufficient level of accuracy and performance.

Spiking Neural Networks (SNNs) are more accurate to the function of biological

neural networks than conventional ANNs, implying the potential applications of

SNNs is far more diverse as they show potential not only in pattern recognition but

also in biomedical applications [41].Therefore, exploration into viable hardware for

improved SNNs is significant.

Many previous digital hardware implementations of spiking neurons are able to

successfully replicate complex neuron behaviours [35,36]. However, to achieve their

performance, they have very high resource requirements, and few optimizations

are performed to lower hardware costs. Additionally, many system parameters

must be externally set to change the neuron’s behaviours. All these drawbacks are

restrictive of the size of a potential network of such neurons.

Furthermore, biological neurons use rate coding and temporal coding, methods

by which information is transmitted in the neuron’s firing rate and the timing

of the firings [1, 3, 41]. This implies that the firing rate and timing are of higher

significance than the shape of the neuron’s membrane voltage in the time domain.

To fulfill the required compromises, a variation of the Izhikevich Neuron Model [7]

for a computationally low-cost digital hardware realization has been developed.
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This Hardware-Oriented Modified Izhikevich Neuron (HOMIN) spiking neuron

model modifies the original Izhikevich model, which results in an imperfect match

to the Izhikevich model that still shows all cortical neuron behaviours, to greatly

reduce hardware costs and required resources while simultaneously allowing for

reduced projected interconnection requirements within a spiking neural network.

The formulation of the model is presented in detail, along with mathematical

justification. Subsequently a hardware implementation of this new spiking neuron

model is detailed, and comparisons are made.

2.1 Mathematical Preparations for Hardware Im-

plementation

2.1.1 Formulation of the Hardware-Oriented Modified Izhike-

vich Neuron (HOMIN) Model

The original spiking neuron model proposed by Izhikevich in 2003 [7] is a math-

ematically simple approximation of biological reality that is able to reproduce a

large variety of spiking patterns exhibited in real neural systems.

The model is a system of two interdependent differential equations with an auxil-

iary reset condition. The system is characterized by the following two equations

and reset condition:
dv

dt
= 0.04v2 + 5v + 140− u+ I (2.1)

du

dt
= a(bv − u) (2.2)

ifv ≥ 30mV, then

v → c

u→ u+ d

(2.3)
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(a) Izhikevich Model for I=0 and regular spiking behaviour (a=0.02,
b=0.2, c=-65, d=8).
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(b) HOMIN Model for I=0 and regular spiking behaviour (d=6).

Figure 2.1: Phase portraits for the original Izhikevich model and the HOMIN
model for zero input current. In both phase portraits, the black line shows the
nullcline of dv

dt , the green line shows the nullcline of du
dt , and trajectories are

shown in blue.

where v is the membrane potential of the neuron, u is the membrane recovery

variable, and I is the input current to the neuron. The parameters a, b, c, and

d describe the recovery variable time scale, sensitivity of the recovery variable,

after-spike reset value of the membrane potential, and the after-spike reset of the

recovery variable respectively.

Figure 2.1a shows the phase of the original Izhikevich Model. The neuron ap-

proaches firing when the value of u is below the curve defined by the nullcline of

Equation 2.1 and to the right of the value of the membrane potential c.
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To achieve different spiking behaviours, a and b experience the smallest amount

of change in the Izhikevich model. Parameter c is varied to adjust the position of

the reset potential on the phase portrait relative to the nullcline of Equation 2.1

and d is varied to effect the behaviour of the system when a spike and subsequent

reset occurs. For spiking patterns in which spikes must occur in quick secession, c

is positioned at a steeper section of the nullcline of Equation 2.1.

The proposed HOMIN model simplifies the modifications necessary to generate

varying spiking patterns by holding parameters a, b, and c constant and using a

relatively less steep nullcline of dv
dt

for the system to increase the influence of param-

eter d on the type of spiking behaviour exhibited by the system. Since parameter d

directly affects the reset position of the system, a less steep nullcline implies that

parameter d becomes far more influential to the system’s post-spike behaviour.

Thus, it was found that if parameter d is set sufficiently, it can solely determine

the post-spike system state such that it can determine if the system returns to a

position of trajectory tending toward an eminent spike or a delayed spike. Con-

sequently, the HOMIN model can exhibit all excitatory neuron behaviours while

only varying parameter d to adjust the behaviour of the system at the time of

an after-spike reset. The relative steepness of the dv
dt

nullcline was decreased by

lowering the value of the coefficient of the v2 term. Since the HOMIN model is

formulated with the goal of a simple digital hardware implementation, the scaled

value was selected as a power of 2, meaning it will translate into a simple arith-

metic shift in fixed point operations. This reduces multiplication operations in a

digital hardware implementation, making the system significantly faster and less

resource intensive. Figure 2.1b shows the phase portrait of the HOMIN model.

Since it is only parameter d that changes in the HOMIN model, it is noted that the

phase plane of the HOMIN model, unlike the Izhikevich model, does not change

depending on the firing mode since parameter d only alters the post-spike reset po-

sition of the system. It is evident from Figure 2.1 that the HOMIN model exhibits

a much steeper dv
dt

nullcline than the original Izhikevich Model.
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To reduce the required representation range in digital hardware, the HOMIN model

uses a scaled range for the operation of the system. All variables in the HOMIN

model are scaled down by a factor of 10 compared to the Izhikevich model. Since

v2, for a scaled v, will cause reduction by a factor of 100, the coefficient of this term

must be scaled up by a factor of 10 to compensate, causing this to change from

0.04 to 0.4 in the original Izhikevich model. This coefficient was then modified to

0.25 = 2−2, which causes a sufficient decline in steepness in the system’s nullcline.

Furthermore, parameters a and b were approximated by fixed powers of 2 such

that they result in shifts in digital hardware and do not require loading circuitry.

After all modifications, the HOMIN model can be described by:

dv

dt
= (2−2)v2 + (22)v + v + 14− u+ I (2.4)

du

dt
= (2−6)((2−2)v − u) (2.5)

ifv ≥ 3mV, then

v → c

u→ u+ d

(2.6)

where any multiplication by a power of 2 translates into a simple arithmetic shift

in a digital hardware implementation. Not only does this model greatly reduce the

hardware requirements by reducing the number of multiplications, it also reduces

the required loading circuitry since parameters a, b, and c are system constants

instead of variable parameters as in the original Izhikevich model.

2.1.2 Discretization of the HOMIN Model

To be implemented into digital hardware, the HOMIN model was discretized using

Euler’s method and the time step dt was selected as dt = 0.03125 = 2−5 for

convenience in a digital hardware implementation. The final form of the discretized
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HOMIN model is:

v[n+ 1] = v[n] + 2−5(2−2v2 + 22v[n] + v[n] + 14− u[n] + I[n]) (2.7)

u[n+ 1] = u[n] + 2−11(2−2v[n]− u[n]) (2.8)

Figure 2.2 shows MATLAB simulations of voltage traces of the HOMIN model

when varying only parameter d for a constant applied input current.

Figure 2.3 shows raster plots for both the Izhikevich Neuron and the HOMIN neu-

ron for 1000 randomly connected excitatory neurons. It is noted from this figure

that the HOMIN model exhibits a higher firing activity level at the time points

in which the firing is clustered as well as between clusters. This can be attributed

to a higher input sensitivity for the HOMIN model. Additionally, there is a small

error in the timing of the spiking clusters between the two models. However, in a

network both discrepancies could be remedied by appropriate synaptic weights.

From Figure 2.2, it is evident that the four spiking phenomena shown can be

produced exclusively through variations of the value of d within a resolution that

can be achieved using an 6-bit unsigned digital fixed-point value in which there

are 3 integer bits and 3 fractional bits. This implies that, in a network of HOMIN

neurons, the behavioural characteristics of each neuron can be controlled using

only a 6-bit parameter, which is a major reduction in interconnection requirements

in comparison to the original Izhikevich neuron’s interconnection requirements to

achieve the same spiking patterns.

Since information is encoded in the timing of the spikes in a spiking neural network

[2], timing comparison was performed. Following the error analysis performed in

[34], the Mean Relative Error (MRE) was used to analyse the timing performance

of the HOMIN model. MRE is defined as:

MRE% =

∑n
i=1

tHOMIN−tIzh
tIzh

n
100% (2.9)
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(a) Izhikevich RS (b) HOMIN RS (d=6)

(c) Izhikevich IB (d) HOMIN IB (d=4)

(e) Izhikevich CH (f) HOMIN CH (d=0.5)

(g) Izhikevich LTS (h) HOMIN LTS (d=0.375)

Figure 2.2: MATLAB simulations of the membrane potential as a function of
time. (A), (C), (E), (G) show the Izhikevich model for a constant input current
of I=150 and (B), (D), (F), (H) show the HOMIN model for a corresponding
scaled constant input of I=15. Input was applied at t = 0.1ms. The values of
the parameter d that correspond to the spiking patterns for the HOMIN model
are labelled. Regular Spiking (RS), Initial Bursting (IB), Chattering (CH), and

Low-Threshold Spiking (LTS) behaviours are shown.
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(a) (b)

Figure 2.3: Raster Plots of 1000 randomly connected excitatory neurons for
(a) an Izhikevich Neuron and (b) The HOMIN Neuron

Table 2.1: Error Measures of the HOMIN Model for MATLAB simulations
conducted at I =15

Spiking Behaviour MRE (%)
Regular Spiking 2.087
Initial Bursting 2.192

Table 2.1 shows these error quantities. It is noted that an MRE for tonic spiking

of 4.09% was reported in [36] and 1.21% in [34] , implying that the error observed

in the HOMIN model compared to the Izhikevich model is sufficiently small given

the presented hardware resource savings.

Figure 2.4 shows a MATLAB simulation of a network of three HOMIN neurons

in which the output membrane potential of Neurons 1 and 2 are used to generate

the input current for Neuron 3. Initially Neuron 1 causes Neuron 3 to spike, but

Neuron 2 does not. After a period of associative, unsupervised learning where

Neurons 1 and 2 are stimulated together, Neuron 2 is able to cause Neuron 3 to

spike after the learning period. This serves as a simple example to show that the

HOMIN model is a viable candidate for unsupervised learning in a network.

2.2 FPGA Implementation

The HOMIN neuron model was realized in digital hardware. Verilog HDL was

used to implement the design on a simple Altera DE0 Cyclone III FPGA board.
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Figure 2.4: A simulation of three HOMIN Neurons showing the membrane
potential and corresponding input current for each neuron. After the associative
learning period, spikes from Neuron 2 are able to cause spikes from Neuron 3.

A fixed point implementation was selected with a 16-bit data path of which 1 bit

is a sign bit, 6 bits represent the integer part, and 9 bits represent the fractional

part. The bits were selected to best represent the relevant information for the

spiking behaviour.

Since no relevant information from the neuron’s behaviour is present in the low

negative values of the membrane voltage, the membrane state variable was clamped

to stay above -8 to prevent overflow in the multiplication involved in generating the

v2 term. With the clamp in place, the multiplication was designed such that the

upper bits of the product are not evaluated, and the lower bits are approximated

using a rounding constant, resulting in an approximation of the product with a

far lower resource usage and no full multiplier.

The parameter d was taken as an 8-bit input value to the system where 5 bits

are integer part, and 3 bits are fractional part. Although MATLAB simulations

showed that the value of d could be represented within the range of a 6-bit fixed

point number, an increased system sensitivity to lower values in parameter d was
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(a) Regular Spiking (d=8)

(b) Initial Bursting (d=5)

(c) Chattering (d=1.125)

(d) Low-Threshold Spiking (d=0.375)

Figure 2.5: Quartus ModelSim simulations of the implemented digital hard-
ware system.

anticipated in the selected fixed point implementation, thus it was made wider to

compensate.

Figure 2.5 shows simulations of the digital hardware system using Quartus Model-

Sim. Each of the four behaviours shown in MATLAB simulations were successfully

recreated in the digital hardware system.

Following successful simulations of the design, the hardware was synthesized on the

FPGA board. Figure 2.6 shows images of output captured on an oscilloscope. The

digital output was viewed in analog form with 4-bit resolution on the oscilloscope

by converting 4-bits of the membrane potential to analog using the RGB connector

of the DE0 board. Before conversion, the membrane potential was translated to a
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Table 2.2: FPGA Resource Usage Comparisons Between the Implemented
HOMIN Neuron and Previously Proposed FPGA Hardware Systems Based on

the Izhikevich Neuron Model

Resource HOMIN MNIN [34] Izhikevich [34]
Logic Elements 356 490 857

Flip Flops 41 408 551
4-input LUTs 346 459 1268

I/O Pins 26 34 34
8*18 MULT 0 0 1

positive value domain. Any observed noise in the signal is clearly attributable to

the low-resolution conversion to analog. Again, the desired spiking patterns were

successfully recreated.

It was expected and observed that the implemented hardware system was less

sensitive to input stimulus than the simulated MATLAB model. Additionally, it

was found that the values of parameter d to achieve each of the spiking patterns

were different in the hardware implementation as expected. This is due to the use

of fixed point arithmetic to implement the hardware system.

2.2.1 Hardware Resource Usage

As anticipated, the FPGA implementation of the HOMIN model required far

fewer digital hardware resources than previously proposed hardware based on the

Izhikevich neuron model. Table 2.2 shows comparisons with previously reported

Izhikevich neuron model implementations. The information is taken from [34],

where the reported hardware usage is based on the XILINX Vertex II Pro FPGA

board. To form a reasonable comparison, a reported slice in [34] was considered

equivalent to a logic element in the Altera DE0 board used to implement the

HOMIN model. Additionally, a Slice Flip Flop on the XILINX Vertex II Pro was

considered equivalent to a flip flop. All of the metrics are shown in Table 2.2.
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(a) Regular Spiking (d=6)

 

(b) Chattering (d=0.75)

 

(c) Low-Threshold Spiking (d=0.125)

Figure 2.6: Oscilloscope window captures of the implemented neuron for dif-
ferent spiking patterns for varying values of parameter d at a constant input

current of I = 28mA.
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As is evident from Table 2.2, the HOMIN model has substantially lower digi-

tal hardware resource requirements than the original Izhikevich model and other

previously proposed Izhikevich Neuron approximations. Additionally, since this

implementation simply serves to prove the advantages of the HOMIN model, the

implementation does not include substantial hardware optimization.

2.3 Conclusion

In conclusion, modifications to the Izhikevich spiking neuron model [7] were made

to create the proposed HOMIN spiking neuron model which results in a simpler

digital hardware implementation while simultaneously reducing the number of re-

quired interconnections for use in an artificial neural network since the spiking

behaviour of an implemented HOMIN neuron can be modified with a single pa-

rameter in contrast to the four parameter changes required by the original Izhike-

vich neuron. The hardware savings and connection savings allow for a larger and

far more parallel neural network implementation on an FPGA as few hardware re-

sources are used per neuron and for parameter connections. A clear extension from

the proposed neuron model and implementation is the realization of a network of

digital spiking neurons.



Chapter 3

A Resource-Efficient and

High-Accuracy CORDIC-Based

Digital Implementation of the

Hodgkin-Huxley Neuron

3.1 Introduction

Real biological neural systems are among the most intricate systems that natu-

rally exist in humans. Biological neurons exhibit many diverse spiking behaviours,

through which information is transmitted in a neural system. While traditional

Artificial Neural Networks (ANNs) are bio-inspired systems that use a time-static

methodology for computation, Spiking Neural Networks (SNNs) more closely em-

ulate real biological systems through dynamic time behaviour. Given their closer

replication of biological behaviour, SNNs, like traditional ANNs, have shown suc-

cess in image classification and speech recognition [42] and also have further po-

tential applications such as neuronal function and disease modelling [41]. Thus,

22
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they are a topic of great research interest.

Neuromorphic engineering is a highly active field of research which includes the

implementation of spiking neurons in electrical hardware with the goal of amalga-

mation into a spiking neural network. Since basic unit of a biological neural system

is the neuron, an accurate description of the behaviour of a neuron is of great im-

portance. Mathematical characterizations of these spiking behaviours have been

proposed in many models [4, 5, 7–10], with each proposed characterization pre-

senting advantages and drawbacks. Some models, such as the Hodgkin-Huxley

Neuron Model [4] and the Morris-Lecar Model [5], are highly detailed and have

true biological meaning [6] where all parameters used in the differential equation

model directly represent a physical parameter observed in the neuron. Other neu-

ron models offer a higher-level behaviour description and require fewer differential

equations and model parameters, but still capture the essence of neuronal be-

haviour such as the Izhikevich Model, [7], the Adaptive-Exponential Integrate and

Fire (AdEx) Model [8], and the Wilson Model [9], even though their parameters

do not directly represent biological qualities. An even simpler description neuronal

behaviour exists in the Leaky Integrate-and-Fire Neuron Model [10].

Given its relatively complex nature in comparison to the Leaky Integrate-and-Fire

or Izhikevich Neuron Model due to its large array of differential equations and ac-

companying parameters, the Hodgkin-Huxley Neuron Model has seen limited pro-

posed hardware implementations [20, 43–50]. However, the biological significance

of the model due to its foundation on physical biological parameters makes it an

excellent candidate for use in the creation of a neuromorphic system of high paral-

lelism to a real biological neural system. Its faithful accuracy and correspondence

to biological reality gives the model substantial potential for specific effectiveness

in the previously mentioned application of modelling real neural systems. [20, 41]

Specifically, these applications include modeling real neurological systems with the

intent of expanded understanding of the progression of neurological disease [16].

Although software simulations can be done, custom hardware-based systems are
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generally much faster that software [15], meaning that many different conditions

and outcomes can be assessed quickly to expedite the collection of information.

Conductance-based models, such as the Hodgkin-Huxley model, are well-suited to

neural system modeling [51].

Field-Programmable Gate Array (FPGA) is an excellent medium for spiking neu-

ron implementation due to its flexibility in comparison to Application-Specific

Integrated Circuit (ASIC) digital designs. Furthermore, although analog designs

typically present lower power and area consumption, they are typically less robust

and more susceptible to noise and error than FPGA designs [22]. Additionally,

FPGA implementations of neural networks present a major speed advantage com-

pared to software implementations [15] at the expense of flexibility. For these

reasons, the FPGA platform presents an excellent compromise between speed,

performance, and flexibility [52–55].

Among the limited existing FPGA hardware proposals are several different meth-

ods. Firstly, relatively direct implementations of the Hodgkin-Huxley Neuron

have been proposed [20]. The clear drawback to this approach is the exceedingly

large hardware resource requirements, making large networks impractical. Other

methods have proposed partial use of the COordinate Rotation DIgital Computer

(CORDIC) Algorithm with Look-Up Tables (LUTs) to implement exponential

terms [47]. However, aside from this improvement, the hardware requirements are

still very high due to the remaining multiplication and division terms.

Moreover, some methods propose modifications to the original equations of the

Hodgkin-Huxley Neuron’s alpha and beta parameters [43, 44]. Although many

of these proposals prove effective in reducing hardware resource requirements,

error and input current limitations are often introduced compared to the original

model. In [43], an accurate implementation of the Hodgkin-Huxley neuron is

proposed with fixed parameters. However, the hardware resource utilization has

been improved in a newer implementation [44] and the fixed parameters limit the
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Figure 3.1: nRMSE of the CORDIC algorithm applied to multiplication, di-
vision, and the exponential function for 10000 trials at each CORDIC iter-
ation number from 1 to 20. The input operands were normally distributed
random numbers in the typical operand range for each operation as found in

the Hodgkin-Huxley neuron model.

flexibility of the implementation in biomedical applications. Furthermore, in [44]

an implementation with relatively low hardware requirements is proposed, again

with fixed parameters but with an error accuracy. The elevated error and fixed

parameters again may limit its efficacy in biomedical applications. It is important

to emphasize again that all of the parameters of the Hodgkin-Huxley neuron have

physiological significance and may change depending on the type of neuron cell of

interest [56,57].

An FPGA digital hardware implementation of the Hodgkin-Huxley Neuron Model

is proposed using the COordinate Rotation DIgital Computer (CORDIC) Algo-

rithm for all non-linear terms to substantially reduce the hardware resource re-

quirements of the system while maintaining a high level of accuracy to the neuron

model. Since the CORDIC Algorithm uses iterative shift and add operations, the

hardware resources required to implement these terms are greatly reduced through

use of this computation method. The proposed implementation shows substantial

hardware resource savings compared to previously implementations.

Background information on the Hodgkin-Huxley Neuron Model and CORDIC Al-

gorithm is presented, the iteration number determination is explained, an FPGA
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(g) CORDIC HH n=20
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Figure 3.2: Software simulations of the membrane potential as a function of
time of (A) and (B) the original Hodgkin-Huxley Neuron and (C), (E), (G) and
(D), (F), (H) the CORDIC Hodgkin-Huxley Neuron for two different parameter
and current operational points. (A), (C), (E), (G) show operation for Parameter
Set 1 for a current of I = 500µA, while (B), (D), (F), (H) show operation for
Parameter Set 2 for a current of I = 20µA. Between 16 and 20 iterations using
the CORDIC algorithm, qualitative changes in the neuron’s behaviour are not
observed. Thus, an upper bound on the necessary iterations of the CORDIC

algorithm exists.
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hardware implementation is detailed, and the achieved results are compared with

the theoretical expectations from the model behaviour and with previously pro-

posed designs.

3.2 Background

3.2.1 The Hodgkin-Huxley Neuron Model

The Hodgkin-Huxley Neuron Model was proposed by Hodgkin and Huxley [4]. As

the first conductance-based mathematical model of biological neuronal behaviour,

it is one of the most significant neuron models in computational neuroscience

because it has served as the basis for many conductance-based neuronal model de-

scriptions that have followed [6]. The model consists of four differential equations,

given as:

I = Cm
dV

dt
+ gKn

4(V − VK) + gNam
3h(V − VNa) + gl(V − Vl) (3.1)

dn

dt
= αn(1− n)− βnn (3.2)

dm

dt
= αm(1−m)− βmm (3.3)

dh

dt
= αh(1− h)− βhh (3.4)

where:

αn =
0.01(V + 50)

1− e−(0.1V+5)
(3.5)

αm =
0.1(V + 35)

1− e−(0.1V+3.5)
(3.6)

αh = 0.07e
−(V +60)

20 (3.7)

βn = 0.125e
−(V +60)

80 (3.8)
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βm = 4e
−(V +60)

18 (3.9)

βh =
1

e−(0.1V+3) + 1
(3.10)

where V is the membrane potential, I is the input synaptic current, and the

remaining parameters are fixed for a given operation point and defined as:

Cm : membrane capacitance per area

VNa : sodium equilibrium potential

VK : potassium equilibrium potential

Vl : potential at which leakage current due to other ions is zero

gNa : conductance to sodium

gK : conductance to potassium

gl : leakage conductance due to other ions

It is important to note that the above expressions for α and β in Equations 3.5 -

3.10 in this work are the same in mathematical structure as the original neuron

proposed by Hodgkin Huxley in [4], but use different constants. The constants used

come from adjustments proposed to the Hodgkin-Huxley neuron to explain type

3 excitability in squid giant axons [56]. Experimental data was used to derive the

original constants, and the constants depend on the type of neuron being studied

which makes this minor difference irrelevant [57], and methods for deriving these

constants for a desired behaviour have been proposed [58].

Adjustments in the parameters will affect the spiking behaviour of the neuron and

result in the generation of different neuronal behaviours. The Hodgkin-Huxley

model gives a detailed description of a real neuron’s behaviour since all parameters

have biological meaning through their direct representation of a physical quantity

in a neuron [6].
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Given the large number of non-linear terms in the model, the error associated

with approximations of these terms for hardware implementation can impair the

neuron’s behaviour quickly. Thus, maintaining a relatively high level of accuracy

when computing these terms is highly important for preserving the biologically

significant behaviour of the model. A high-accuracy computation method in dig-

ital hardware, such as the method described subsequently would be an excellent

candidate for use in implementation.

3.2.2 COordinate Rotation DIgital Computer (CORDIC)

Algorithm

The COordinate Rotation DIgital Computer (CORDIC) Algorithm [29] is a rotation-

based, iterative algorithm used to simplify digital hardware requirements when

implementing more complicated functions such as the cosine function or expo-

nential function. The algorithm involves iterative rotation of the input by angles

that result from the inverse tangent of a power of 2, meaning the rotation can be

performed using a simple shift operation, where the shift direction is determine

through comparison of the target rotation angle and the current cumulative ro-

tation. Since the algorithm employs only shift and add operations, the CORDIC

Algorithm can be used to implement many complex functions with relatively sim-

ple hardware, while the accuracy of the implementation is determined by the

number of iterations performed. Thus, a compromise between computation speed

and accuracy must be made.

A CORDIC implementation of the exponential function is given by Algorithm 1.

Euler’s number is e, x is the exponent of e, xfrac and xint are the fractional and

integer parts of x respectively, z is the result, i is the number of iterations, and k

is the CORDIC iteration number. a(i) is the ith value of e2
−i

in radians.
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Table 3.1: Hodgkin-Huxley neuron parameter sets used for testing

Cm = 1µF/cm2 Cm = 1µF/cm2

VNa = 55.12mV VNa = 50mV
VK = -72.14mV VK = -100mV

Parameter Vl = -49.42mV Parameter Vl = -85mV
Set 1 gNa = 120mS Set 2 gNa = 50mS

gK = 36mS gK = 5mS
gl =0.3mS gl = 0.1mS

Algorithm 1: The CORDIC exponential algorithm.

1 for i← −k to −1 do
// iterate n=k times

2 if xfrac(i) > 2−i then
3 xfrac(i+ 1) = xfrac(i)− 2−i

4 z(i+ 1) = z(i)ai

5 end

6 end
7 while xint(i) != 0 do
8 if xint(i) > 0 then
9 z(i+ 1) = z(i) ∗ e xint(i) = xint(i) - 1

10 else
11 z(i+ 1) = z(i)/e xint(i) = xint(i) + 1
12 end

13 end

Multiplication is implemented using the CORDIC Algorithm according to Algo-

rithm 2. x is the multiplicand, y is the multiplier, z is the product, i is the number

of iterations, and k is the CORDIC iteration number.

Subsequently, division is performed using Algorithm 3. x is the dividend, y is the

divisor, z is the quotient, i is the number of iterations, and k is the CORDIC

iteration number.

Figure 3.1 shows the normalized Root-Mean Square Error (nRMSE) of the CORDIC

algorithm when applied to multiplication, division, and the exponential function

in the typical operational range of the Hodgkin-Huxley Neuron. It is apparent

that as the number of iterations increases, the error converges to zero, making the
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Algorithm 2: The CORDIC multiplication algorithm.

1 for i← −l to k do
// iterate n=2k+1 times

2 if x(i) ≥ 0 then
3 x(i+ 1) = x(i)− 2−i

4 z(i+ 1) = z(i) + 2−iy

5 else
6 x(i+ 1) = x(i) + 2−i

7 z(i+ 1) = z(i)− 2−iy

8 end

9 end

Algorithm 3: The CORDIC division algorithm.

1 for i← −k to k do
// iterate n=2k+1 times

2 if x(i) ≥ 0 then
3 x(i+ 1) = x(i)− 2−iy
4 z(i+ 1) = z(i) + 2−i

5 else
6 x(i+ 1) = x(i) + 2−iy
7 z(i+ 1) = z(i)− 2−i

8 end

9 end

CORDIC algorithm an excellent high-accuracy method for implementing these

operations in digital hardware.

As will be presented in Section 3.4, the algorithms described in Algorithms 1 to 3

greatly reduce the hardware requirements for computing the non-linear terms of

the Hodgkin-Huxley equations, resulting in smaller digital hardware.

3.3 Proposed Method

An implementation of the Hodgkin-Huxley neuron where the CORDIC algorithm

is used to compute all nonlinear terms (multiplication, division, and exponential)
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Figure 3.3: V-n phase portraits for (A), (C), (E) the original Hodgkin-Huxley
neuron and (B), (D), (F) the CORDIC Hodgkin-Huxley neuron for varying
currents where dm

dt = 0 and dh
dt = 0. V is defined in Equation 3.1 and n is

defined in Equation 3.2. These phase portraits show that the proposed CORDIC
Hodgkin-Huxley implementation show very similar bifurcations.

is proposed. Given the high accuracy of the CORDIC algorithm, this does not pro-

pose any approximation or modification of the neuron model, but rather a direct

implementation that reduces the required digital hardware resources. Strategic

scheduling and design (described subsequently) allowed for a reasonable mainte-

nance of the system throughput, even though the speed of real biological systems

is very low relative to the capabilities of digital electric hardware [3, 41].
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3.3.1 Verification

To effectively utilize the CORDIC algorithm to reduce the hardware size of the

Hodgkin-Huxley neuron, the effects of the use of the algorithm in the equations

had to be thoroughly evaluated. MATLAB simulations were conducted for varying

input currents and system parameters to compare the performance of the Hodgkin-

Huxley neuron using the CORDIC Algorithm to the original neuron. Table 3.1

shows the parameter sets used for testing and verification. Parameter Set 1 can

be found in [56], while Parameter Set 2 can be found in [46]. These two sets

of parameters were used to confirm the accuracy of the CORDIC algorithm for

implementation with different neuron operation conditions. Figure 3.2 shows sim-

ulations comparing the original Hodgkin-Huxley neuron to implementations with

varying CORDIC iteration numbers. It is noted that the accuracy of the imple-

mentation relative to the original model improves with increasing iteration number

as expected.

The objective of the simulations was firstly to determine numbers of iterations

resulting in the lowest achieved error under all operating conditions, and secondly

to determine the most feasible compromise between the iteration number and the

accuracy of the output such that the throughput of the system is not severely

afflicted. Based on simulation, it was determined that 10 iterations for expo-

nential terms, 14 iterations for multiplication terms, and 8 iterations for division

terms yields an error lower than previously proposed implementations [43,44] while

maintaining a sufficient throughput. Note that these numbers refer to the value

of k in Algorithms 1 to 3. The higher accuracy requirement for the multiplication

operation compared to the others was expected as there are 17 multiplication op-

erations, compared to 6 exponential operations and 3 divisions. This implies that

the accuracy of the multiplication has the greatest influence on the accuracy of the

implementation. Figure 3.4 shows the comparison of the original Hodgkin-Huxley

Neuron to the CORDIC implementation for varying input currents, while Table 3.2



A Resource-Efficient and High-Accuracy CORDIC-Based Digital Implementation
of the Hodgkin-Huxley Neuron 34

20 40 60 80 100
Time (ms)

-60

-40

-20

0
P

ot
en

tia
l (

m
V

)

Original HH
CORDIC HH

(a) Parameter Set 1, I=0µA

20 40 60 80 100
Time (ms)

-60

-40

-20

0

20

P
ot

en
tia

l (
m

V
)

Original HH
CORDIC HH

(b) Parameter Set 1, I=700µA
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(c) Parameter Set 2, I=100µA
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Figure 3.4: Software simulations of the membrane potential as a function of
time for the original Hodgkin-Huxley Neuron and the CORDIC Hodgkin-Huxley
Neuron for varying parameter sets and input currents. This shows the excellent
qualitative matching of the CORDIC Hodgkin-Huxley neuron to the original

model.

shows corresponding quantitative error. It is evident that the selected CORDIC

implementation qualitatively follows the behaviour of the Hodgkin-Huxley neuron.

3.3.2 Error Analysis

Quantitative error analysis was performed to better characterize the accuracy of

the proposed CORDIC Hodgkin-Huxley neuron to the original model. The Mean

Absolute Error (MAE), Root Mean Square Error (RMSE), Normalized Root Mean
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Table 3.2: Error evaluation for select CORDIC Algorithm iteration numbers
for exponential, multiplication, and division terms.

Current Parameter Iteration nRMSE (%) MRE (%)
Set Number

8 26.705 98.433
10 27.035 114.724

500µA 1 12 0.860 0.096
14 0.446 1.684
16 0.226 0.862
18 0.647 2.429
20 0.033 0.121
8 27.046 45.548
10 26.728 42.321

50µA 2 12 1.530 0.608
14 0.451 0.164
16 0.289 0.180
18 0.111 0.030
20 0.213 0.116
8 28.158 104.685
10 5.2011 2.939

700µA 1 12 0.829 1.116
16 0.640 1.530
18 0.034 0.080
20 0.004 0.010

Square Error (NRMSE) and Correlation are presented to characterize the match-

ing of the original Hodgkin-Huxley neuron to the CORDIC-based model. These

error quantities are used in multiple previously proposed Hodgkin-Huxley imple-

mentations [43,44] and are described by the following:

MAE =
1

n

n∑
i=1

|VCORDIC − VHH | (3.11)

RMSE =

√∑n
i=1(VCORDIC − VHH)2

n
(3.12)

NRMSE =
RMSE

∆Vmax −∆Vmin
(3.13)

Correlation(VCORDIC , VHH) =
cov(VCORDIC , VHH)

σCORDIC · σHH
(3.14)
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Table 3.3: Error measurements for the proposed CORDIC implementation of
the Hodgkin-Huxley neuron using Parameter Set 1 (PS1) and Parameter Set 2
(PS2). The low observed error implies that the proposed CORDIC implemen-

tation closely matches the original neuron model.

Measure of Error PS1 PS2 Average

MAE 0.23 0.20 0.215
RMSE 0.28 0.23 0.255
NRMSE 0.40 0.20 0.30

Correlation 0.99 0.99 0.99

VCORDIC and VHH are the membrane potential values for the CORDIC implemen-

tation and the original Hodgkin-Huxley neuron respectively. The error is assessed

by comparing the membrane potential for a single spike in the original and pro-

posed neuron for dt = 10ms. The error quantities are presented in Table 3.3.

Ten different input currents ranging from 0 to 2mA for each of the two parameter

sets were used to evaluate the error. The value reported for each parameter set

in Table 3.3 is the average of all ten trials for that parameter set. It is obvious

that the proposed CORDIC implementation exhibits very close matching to the

original model. This was expected given the exceptional accuracy of the CORDIC

algorithm [29].

3.3.3 Bifurcation Analysis of the Hodgkin-Huxley Neuron

and CORDIC Implementation

A bifurcation is a qualitative change in the phase portrait of a dynamical system,

causing a change in the stability and behaviour of the system. Neurons exhibit

bifurcations when switching between spiking and resting states [30]. Thus, the

characterization of a neuron’s bifurcations an important piece of information when

analysing its behaviour, particularly for networks.

To characterize the bifurcations of the Hodgkin-Huxley Neuron, firstly the Jaco-

bian Matrix J describing the interaction between the membrane potential V and
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each of the auxiliary variables n, m, and h, must be defined as:

J(V, x) =

 δ
δV

dV
dt

δ
δx

dV
dt

δ
δV

dx
dt

δ
δx

dx
dt

 (3.15)

where x represents n, m, or h as defined in Equations 3.2 - 3.4.

J(V, n) =

[ −1
C

(gKn
4 + gNam

3h+ gl) 4gKn
3(V − VK)

(1− n)( δαn

δV
V + αn) + n( δβn

δV
V − βn) −V (αn + βn)

]
(3.16)

J(V,m) =

[ −1
C

(gKn
4 + gNam

3h+ gl) 3gNam
2h(V − VNa)

(1−m)( δαm

δV
V + αm) +m( δβm

δV
V − βm) −V (αm + βm)

]
(3.17)

J(V, h) =

[ −1
C

(gKn
4 + gNam

3h+ gl) gNam
3(V − VNa)

(1− h)( δαh

δV
V + αh) + h( δβh

δV
V − βh) −V (αh + βh)

]
(3.18)

Therefore, the Jacobian Matrices that characterize the behaviour of the Hodgkin-

Huxley Neuron are given by matrices in Equations 3.16 - 3.18. The partial deriva-

tives of the α and β functions are given by:

δαn
δV

=
0.01− (0.06 + 0.001V )e−0.1(V+50))

(1− e−0.1(V+50))2
(3.19)

δαm
δV

=
0.1− (0.45 + 0.01V )e−0.1(V+35))

(1− e−0.1(V+35))2
(3.20)

δαh
δV

=
−0.07

20
e

−(V +60)
20 (3.21)

δβn
δV

=
0.125

80
e

−(V +60)
80 (3.22)

δβm
δV

=
4

18
e

−(V +60)
18 (3.23)
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Table 3.4: Fixed Points and corresponding eigenvalues for the Hodgkin-
Huxley Neuron and the CORDIC HH Neuron for varying current using Pa-
rameter Set 1. The proximity of the fixed points between the CORDIC HH and

the original Hodgkin-Huxley neuron implies close behavioural similarity.

Hodgkin-Huxley CORDIC HH
Current Fixed Point (V,n,m,h) Fixed Point (V,n,m,h)

0µ A (-60.048,0.317,0.053,0.598) (-60.665,0.318,0.049,0.627)
50µ A (-56.782,0.368,0.077,0.481) (-56.629,0.383,0.079,0.471)
100µ A (-54.621,0.402,0.098,0.405) (-54.775,0.412,0.096,0.421)
200µ A (-51.643,0.450,0.134,0.309) (-51.6,0.444,0.134,0.304)
400µ A (-47.84,0.509,0.195,0.21) (-47.800,0.514,0.196,0.208)
500µ A (-46.443,0.53,0.221,0.180) (-46.518,0.534,0.221,0.182)
700µ A (-44.182,0.562,0.269,0.140) (-44.5,0.556,0.261,0.144)

δβh
δV

=
0.1e−0.1(V+30)

(1 + e−0.1(V+30))2
(3.24)

The fixed points of the system occur when the time derivatives of V , n, m, and

h are all equal to zero. Again, V , n, m, and h are defined in Equations 3.1 -

3.4. The behaviour around these fixed points influences the bifurcation behaviour

of the neuron. Thus, the position and behaviour around these fixed points is

important for characterizing the neuron’s behaviour.

A numerical solution was found for the fixed points at varying currents. The so-

lutions are shown in Table 3.4. Figure 3.3 shows the V-n phase portraits for both

the original neuron and the CORDIC implementation. The V-n phase portraits

are shown for dm
dt

= 0 and dh
dt

= 0. From Table 3.4 it is evident that the CORDIC

implementation has fixed points that closely follow the original Hodgkin-Huxley

neuron. From Figure 3.3 it can be seen that the qualitative behaviour around

the fixed points at given input current values is consistent between the two neu-

rons. Therefore, the use of the CORDIC algorithm for implementing the Hodgkin-

Huxley neuron does not impose a change in the behaviour of the neuron.



A Resource-Efficient and High-Accuracy CORDIC-Based Digital Implementation
of the Hodgkin-Huxley Neuron 39

3.4 FPGA Hardware Implementation

The proposed CORDIC Hodgkin-Huxley neuron was implemented in digital hard-

ware on the Xilinx Kintex-7 FPGA. The system was discretized using Euler’s

method, and based on the operational range of the neuron’s input current and

membrane potential, a 22-bit signed fixed point arithmetic was employed using

10 integer bits and 12 fractional bits. The bit width was selected to ensure that

overflow and underflow do not occur during operation. The time step was selected

as dt = 2−5.

The input parameters of the Hodgkin-Huxley neuron are 16-bit signed fixed point

values with different radix points for each parameter based on its value range. Cm

is assumed to be input as its inverse, since this is the only form in which it is used

in the neuron. Cm,inv, VNa, Vk, and VL have 8 integer bits and 8 fractional bits.

gNa has 3 integer bits and 13 fractional bits, while gk and gL have 1 integer bit and

15 fractional bits. Again, these radix points were selected based on the reported

ranges of these parameters which were derived from experimental observations for

the neuron model [4, 57].

Given the selected iteration numbers for the CORDIC algorithm implementations

of the non-linear terms, the input operands are bit extended before a given oper-

ation to prevent overflow and underflow during shifts, and the result is returned

to the 22-bit representation. The extension methodology is used to reduce the

required number of LUTs and flip-flops in the FPGA implementation as data is

stored with a lower word length while temporary registers are used for operations

other than addition and subtraction.

The structure of the implemented CORDIC exponential, multiplication, and di-

vision units are shown in Figures 3.5 - 3.7. In Figure 3.5 the arctangent of 2−k

is implemented using multiplexed shift and add operations that are conditionally

performed. 2−i is generated for each iteration using a right shift register that is
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initialized to 2−1 for the first iteration and shifted before each subsequent iteration.

When k, the desired number of iterations is reached (in this case 10 iterations),

i(4), the fourth bit of register i will be 1, moving the unit to the third state in

which conditional multiplication or division by e is performed based on the integer

part of input x. These multiplications and divisions are performed using shift and

add operations for a low hardware cost.

As can be observed in Figures 3.6 and 3.7, the structures of the CORDIC multi-

plication and division units are quite similar. The most notable difference is that

the division unit requires correction for the signs of the operands. They are state

machines with two states, where the first state performs addition or subtraction

based on the sign bit of x (the multiplicand or the dividend) and updates the

iteration count. In the second state, the iteration counter’s most significant bit

is checked. If it is 1, the process is complete and a return signal is generated to

return the result of the operation, otherwise right shifts are performed and the

unit returns to the first state.

Exponential terms are computed consecutively using a single CORDIC exponential

unit. This was found to be the most effective scheduling as the CORDIC exponen-

tial unit represents the critical path of the system and is the largest CORDIC eval-

uation unit in terms of resource utilization. Therefore, the most resource-efficient

scheduling was the use of a single CORDIC exponential unit. The CORDIC mul-

tiplication operations were processed in batches of 3 such that the resource usage

is reasonable, and the throughput of the system is not adversely affected. Division

operations were run sequentially. Other scheduling options were evaluated, in-

cluding sequential multiplication and division operations. Although these options

reduce hardware requirements, the reduction is not significant in comparison to

the additional delay these options introduced since the CORDIC multiplication

and division units as shown in Figures 3.6 and 3.7 are relatively simple. Figure

3.8 shows scheduling diagrams for the proposed hardware implementation sum-

marizing the system’s scheduling in sections. As can be seen, the successional
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conditionally updated based on the control signal generated by the comparison

of x(frac) (the fractional part of x) and 2−i.
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Figure 3.6: A block diagram of the CORDIC multiplication unit.

exponential and division operations are run concurrently with the multiplication

operations such that the use of single exponential and division units does not in-

crease the latency of the system. Handshaking protocols are used to coordinate

the operations into distinct stages as shown in Figure 3.8.

The CORDIC multiplication and division algorithms require multiplication of the

operand by 2−n to 2n, were n is the number of iterations. These multiplications

by powers of 2 translate into right and left shift operations in digital hardware.

Therefore, for 8 iterations in the division operation, the 22-bit input operands

were extended to 39 bits by padding with 8 fractional bits and 9 integer bits for

an additional sign bit to handle possible overflow for division operations. By the

same logic, for CORDIC multiplication with 14 iterations the input operands were

extended to 51 bits. The results were then reduced to 22-bit outputs for further

use in the system.

Figure 3.9 shows oscilloscope images of the membrane potential of the implemented

CORDIC Hodgkin-Huxley neuron. The membrane potential was converted into
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Figure 3.7: A block diagram of the CORDIC division unit.

an analog signal to view on the oscilloscope using a 12-bit resistive ladder Digital-

to-Analog Converter (DAC), which explains any observed noise. To physically

verify the design, the proposed design was realized on an FPGA to obtain the

results shown in Figure 3.9.

3.5 Discussion

In [45, 46] the concept of neuron cores is used, where each core implements 512

neurons in real time. Although this is feasible for simulation, in reality each core

is a single neuron with the membrane potential and state information of each

neuron stored and sequentially loaded. The figure of 512 neurons refers to the



A Resource-Efficient and High-Accuracy CORDIC-Based Digital Implementation
of the Hodgkin-Huxley Neuron 44

CORDIC 
MUL

CORDIC 
MUL

CORDIC 
MUL

hm gNan

CORDIC 
MUL

CORDIC 
MUL

CORDIC 
MUL-

v VK

CORDIC 
MUL

CORDIC 
MUL

CORDIC 
MUL

2's 
COMP

v>>4 v>>7v>>5

5

+

+

CORDIC 
EXP

CORDIC 
EXP

?n,dem

+

3.5

2's 
COMP

CORDIC 
DIV

CORDIC 
EXP

?n,num

CORDIC 
MUL

CORDIC 
MUL

CORDIC 
MUL

gK

-

v VNa

-

v Vl

gl

+

?n

-

n1

-

m1

?m

CORDIC 
EXP

CORDIC 
EXP

CORDIC 
MUL

CORDIC 
MUL

CORDIC 
MUL

CORDIC 
EXP+

Iin

?n

?h,dem

n ?h h

-

h1

?h

+

v>>5 v>>9v>>6

+

v>>10 -3

?h

3

2's 
COMP

+

CORDIC 
DIV

?m,dem

?n

CORDIC 
DIV

1

v>>7 v>>8
v>>10

0.75+

-

1

-

1

?m,num

?m

?h

>>3

2's 
COMP

?n

v>>5
v>>6 v>>7

3.33

2's 
COMP

+

?m

-CORDIC 
MUL

CORDIC 
MUL -

?m m1/Cm>>5

+ +

+

v[t+1] m[t+1]n[t+1]

nv

>>5 >>5

- m

>>5

+

h[t+1]

>>5

h

Figure 3.8: An overall scheduling diagram of the proposed neuron.



A Resource-Efficient and High-Accuracy CORDIC-Based Digital Implementation
of the Hodgkin-Huxley Neuron 45

 

(a) Parameter Set 1, I=500µA

 

(b) Parameter Set 1, I=200µA

 

(c) Parameter Set 2, I=20µA

 

(d) Parameter Set 2, I=62.5µA

Figure 3.9: Oscilloscope images showing the membrane potential of the im-
plemented neuron for different input synaptic currents and input parameters.
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Table 3.5: Post implementation FPGA resource usage information for the
proposed CORDIC Hodgkin Huxley Neuron and previously proposed FPGA
implementations of the Hodgkin-Huxley Neuron. *Note: Modelling RMSE
for [44], [43], and the proposed implementation was computed by evaluating
the error in the membrane potential for the proposed implementation approxi-
mations and methods to the original Hodgkin-Huxley neuron model for various
input currents. See the Error Analysis subsection for detailed information on

the error analysis.

Resource CORDIC HH Haghiri et al. [44] CORDIC HH Shama et al. [43]
Kintex-7 Virtex-4 Kintex-7 Virtex-2

Flip Flops 1534 480 1534 2840
4-input LUTs 2380 2344 2380 5660

DSPs 0 0 0 0
Max Freq. 204.7MHz 200MHz 204.7MHz 85MHz

Model RMSE* 0.255 7.4 0.255 0.27

Resource CORDIC HH Khoyratee et al. [46] CORDIC HH Akbarzadeh et al. [45]
Kintex-7 Kintex-7 Artix-7 Artix-7

Flip Flops 1534 1552 1534 25430
4-input LUTs 2380 4735 2386 29130

DSPs 0 16 0 280
Max Freq. 202.5MHz 100MHz 163.64MHz 71.4MHz

Resource CORDIC HH Bonabi et al. [47] CORDIC HH Yi et al. [59]
Spartan 7 Spartan 3 Zinq Zinq

Flip Flops 1534 7231 1534 7571
4-input LUTs 2388 23514 2394 8457

DSPs 0 99 0 45
Max Freq. 152.05MHz 37.563MHz 133.87MHz -

ability of the system to compute at on biological time scale for this number of

neurons. Additionally the model implemented in [46] is a simplification of the

original Hodgkin-Huxley model and is therefore not an even comparison. Fur-

thermore, [45–47,59] all use DSP blocks, which if implemented using logic on the

FPGA would add dramatically to the number of LUTs.

The proposed implementation in [43] is of very similar accuracy to the proposed

CORDIC implementation. However, it requires far greater amounts of digital re-

sources from the FPGA and operates at a lower clock frequency. Additionally, the

proposed neuron in [43] does not allow for variable model parameter input. For

applications such as disease modelling or the simulation of the effects of new med-

ications, these input parameters are important as they directly model a physical

characteristic of a real neuron. Some neurological diseases, such as Fabry Disease,

are believed to include signature changes to ionic conductance in neurons [60].
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Thus the proposed implementation in [43] may not be suitable to this task since

the ionic conductance values are fixed, whereas they are externally changeable in

the current proposed CORDIC implementation.

In [50], the authors implement the Hodgkin-Huxley neuron with floating point

arithmetic and fixed physiological parameters. Although the authors show that

the floating point arithmetic of their design has a better accuracy of a fixed point

implementation, the design is substantially larger than fixed point implementa-

tions and fixed physiological parameters impose the same limitations on biomed-

ical applications previously described. Additionally, to modify the floating point

architecture to include the additional multiplication and division terms would sub-

stantially increase the size of the neuron.

Although the proposed design in [44] is similar in size to the proposed CORDIC

implementation, it is important to note that the CORDIC implementation is dis-

tinct because it is far more accurate and accepts the model parameters as input,

meaning they are variable rather than fixed. The potential significance of having

variable physical neuron parameters in the design was described above for biomed-

ical applications. This opens many more applications to the proposed CORDIC

implementation in neuronal simulation acceleration, disease modelling, and artifi-

cial SNN implementations, among other applications since the parameters of the

model depend on the type of neuron being modeled [56, 57]. Furthermore, in [44]

the exponential functions in the Hodgkin-Huxley neuron are approximated by base

2 functions. Although this is an effective method for hardware simplification, it

imposes a limitation on the input current range as the error in the approximation

grows dramatically with increasing input. The CORDIC algorithm does not suffer

from this problem [29]. Moreover, although the flip-flop usage is higher in the case

of the proposed CORDIC implementation, the flip-flop utilization on the Kintex-7

board used for implementation is only 1.87% compared to 5.80% for Look-Up Ta-

ble (LUT) utilization. This implies that flip-flop usage is not the limiting factor

as to the number of neurons that is implementable on a single FPGA and thus
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the number of flip-flops is less significant than the number of LUTs, which is very

similar for both implementations.

3.6 Conclusion

A Hodgkin-Huxley neuron hardware system was designed and implemented on

FPGA using the CORDIC algorithm for all nonlinear terms. The resulting sys-

tem has low digital hardware resource requirements, close matching to the target

neuron model, and accepts different neuron parameters as input. The flexibility

of the physiological parameters of the model in the proposed design distinguishes

it from other designs as a strong candidate for diverse biomedical applications.



Chapter 4

The Input-Dependent Variable

Sampling (I-DEVS) Digital

Neuron Implementation Method

4.1 Introduction

Parallelism with real biological systems is central to neuromorphic systems, and

one of the most characteristic properties of real neural systems is their remark-

ably low power consumption in comparison to electrical hardware systems [61–63].

Given the large networks of parallel neurons found in real biological systems, low

power consumption is paramount to an effective and feasible electrical hardware

replication.

Many proposed spiking neuron and neuroprocessor implementations offer substan-

tial power savings compared to implementations prior to their proposal [15,31,42,

64–72], however in each case limitations or restrictions are imposed on the imple-

mentation such as the use of a specific technology node, neuron model, and/or

hardware implementation technique are required. Additionally, among the diverse

49
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models of varying biological detail of spiking neuron behaviour [4, 5, 7, 8, 10], im-

plementations concerned with power consumption often use the simplest and least

biologically detailed models available.

References [42,64–67] use neuron models of low biological detail to achieve power

savings. These neuron models cannot replicate all behaviours of real biologial

neurons and the power savings are not replicable with a higher level of biological

detail in these propsed implementations.

Among the vast digital spiking neuron implementations, few works prioritize power

optimization, and among these works a small portion report power consumption for

their implemented neurons. Most proposed implementations focus on minimizing

hardware resource requirements. Although this is important, the neuron’s power

consumption is a critical factor for biological analogy [62]. Among the few digital

implementations of biologically detailed neurons that report power consumption,

specific hardware implementation techniques such as the CORDIC algorithm have

been employed and shown to offer power savings [69]. Although the CORDIC

algorithm is effective in reducing hardware resource and power consumption, it is

an iterative algorithm which lowers the system throughput and this approach to

power reduction limits the flexibility in the hardware design to the use of a single

technique.

In designing SNNs, one of the most important considerations is the design of the

spiking neurons used in the network. Many mathematical neuron models have

been proposed with varying levels of biological detail and description [4,5,7,8,10].

Since neurons are dynamical systems, meaning they are neither linear nor time-

invariant, implementing spiking neuron hardware systems presents a specific and

substantial set of design challenges and considerations. Firstly, the implemented

neuron must faithfully follow the behaviour of the target neuron model, exhibit-

ing similar behavioural characteristics and bifurcations. Simultaneously, biological
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neurons are highly efficient, exhibiting low power consumption, and are addition-

ally physically very small. The power efficiency is due in part to the fact that

biological neurons are active only when receiving stimulus [61]. Thus, low power

consumption and hardware resource usage are critical as these factors are parallel

with biology and permissive of larger SNNs.

To remedy this need for reduced power consumption in digital neurons, it was

noted that in real biological neural systems, neurons are inactive most of the

time [61, 62]. This inactivity is how biological systems achieve their low-power

operation. In this work, a digital hardware implementation method by which

inactivity is included in the digital neuron is proposed that can be applied to

greatly reduce its power consumption. This implementation method is parallel to

the inactivity observed in real biological neurons for low stimulus [63].

The proposed novel approach to digital hardware implementations of spiking neu-

rons evaluates the neuron’s differential equations at a frequency dependent on in-

put current using a sampling-based approach. The variability in the frequency of

the sampling reduces unnecessary switching activity for low-stimulus states. This

novel Input-DEpendent Variable Sampling (I-DEVS) digital realization method to

spiking neuron implementation results in neurons with minimal additional hard-

ware resource usage in exchange for dramatic dynamic power savings as the switch-

ing activity is greatly reduced compared to traditional neuron implementations.

Furthermore, the behaviour of the neuron is unaltered using this approach.

To verify the effectiveness of the I-DEVS digital neuron realization method, the

Adaptive-Exponential Integrate-and-Fire (AdEx) model [8] and the Izhikevich

model [7], were designed and implemented on an FPGA using the proposed method.

The novel I-DEVS sampling-based method limits the number of times the differ-

ential equation is evaluated in the hardware system, meaning idle clock cycles

are permissible when possible in the system which greatly reduces the power con-

sumption of the neuron. The proposed implementation’s inclusion of idle time
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for low stimulus is analogous to the behaviour of real biological neurons under

low-stimulus operational conditions, which allows for the low-power operation of

the human nervous system [61,62]. The unique approach allows for a large range

of input current for which the neuron remains stable, while also allowing for a

reduction in power consumption and uninhibited neuron performance.

4.2 Neuron Modelling

Two neuron models were selected for implementation, namely the Izhikevich Model

[7] and the AdEx Model [8]. Both are characterized by a pair of differential

equations that describe neuronal behaviour. The discretized form of the Izhikevich

Model describes neuronal behaviour with the following two equations and reset

condition:

v[n+ 1] = v[n] + dt(0.04v2 + 5v + 140− u+ I) (4.1)

u[n+ 1] = u[n] + dt(a(bv − u)) (4.2)

if v[n] ≥ 30mV, then

v → c

u→ u+ d

(4.3)

Where v is the membrane potential, I is the input synaptic current, u is an auxil-

iary variable, c is the reset potential, a, b, and d are model parameters, and dt is

the time step.

After discretization by the Euler method, the AdEx neuron model is given by:

V [n+ 1] = V [n] + dt
1

C
(−gL(V − EL) + gL∆T e

V −VT
∆T − w + I) (4.4)

w[n+ 1] = w[n] + dt
1

τw
(a(V − EL)− w) (4.5)
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if V [n] ≥ 20mV, then

V → Vr

w → w + b

(4.6)

Where C is the membrane capacitance, gL is the leak conductance, EL is the

leak reversal potential, VT is the spike threshold, ∆T is the slope factor, τw is the

adaptation time constant, a is the subthreshold adaptation, b is the spike-triggered

adaptation, Vr is the reset potential, and dt is the time step.

It is important to note that many proposed digital implementations of the AdEx

and Izhikevich neuron models focus primarily on hardware design techniques that

reduce resource requirements. Many acknowledge the significance of power con-

sumption, but do not include detailed power analysis [73,74]. Given the significant

advantages of digital neuron hardware implementations, namely their accuracy

and tolerance for noise, the power consumption is a significant topic to address to

ameliorate digital neuron designs and make them more accurate to real biology.

4.3 Proposed Power Reduction Methodology

4.3.1 Methodology

Analogous behaviour to real biological neurons was central to the development

of the I-DEVS neuron implementation method. The stimulus-dependent activity

of real neurons allows for the low-power operation of biological nervous systems

[61–63], and in homology the I-DEVS method allows for inactivity to be included in

the neuron’s behaviour at a proportion determined by the input stimulus. Figure

4.1 shows a block diagram of the I-DEVS method. The input current and clock

input to a comparator and timer block, where the input is compared to a threshold

determined by the neuron model. Based on the input current, the timer and time

step used in the neuron discretization are set. Once the timer reaches a value

that is set dependent on the input current, the current, clock, and time step of
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Figure 4.1: A high-level block diagram of the proposed I-DEVS neuron
method.

discretization are passed to the neuron for the period of time necessary for the

neuron to perform one evaluation, then, upon the receipt of a handshake signal,

the neuron’s input and clock are disabled again. This effectively samples the

neuron’s output membrane potential at a variable sampling frequency.

The variability in the sampling is critical to allowing the neuron to produce valid,

uncorrupted output for a wide domain of input current while avoiding unnecessary

switching in the digital neuron for low input stimulus. The sampling-based ap-

proach allows for large amounts of inactivity in the neuron circuit, which greatly

reduces the digital switching activity, leading to a reduced dynamic power con-

sumption in the system. An important novelty of the proposed I-DEVS method is

that the neuron model and digital hardware architecture have no restriction and

do not require modification to successfully utilize the method.

4.3.2 Simulations for Validation and Design Formulation

Software simulations were conducted to evaluate the stability and validity of the

behaviours of both the AdEx [8] and Izhikevich [7] neuron models for varying input

currents for a given sampling frequency. To successfully realize a neuron with a

variable time step, it was first necessary to assess the effects of the size of the time

step on the valid input current range as well as the power consumption associated

with a given time step.
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Figure 4.2 shows simulations of both neuron models for a constant input current

with varying time step. It is evident from Figure 4.2 that a large time step has

an adverse effect on the accuracy of the neuron’s membrane potential. However,

its is also clear that the smallest possible time step is not always necessary for

high accuracy, meaning a time step below a given size for a given input current

will result in redundant and unnecessary additional calculations of the neuron’s

differential equations. There is no visible qualitative change between Figure 4.2

(A) and (C) (AdEx neuron for dt = 1/1024 and dt = 1/16) or between (B) and

(D) (Izhikevich neuron for dt = 1/1024 and dt = 1/8), which means for those two

given input currents time steps smaller than 1/16 and 1/8 respectively are not

necessary to achieve desired behaviour.

Figure 4.3 shows the value of the time step and current for which each neuron

becomes unstable, which directly correlates to stability at a given sampling fre-

quency in digital hardware. As expected, higher current input requires a smaller

time step to maintain stability in the neuron’s output. Figure 4.3 provides highly

important information for the design of a variable time step system as the points

at which the time step should change can be inferred from the curve. It logically

follows that a lower time step results in a greater valid input current domain.

Using the information gathered from simulation, a system was designed in which

the time step of the neuron discretization is variable. The time step assumes one

of three different values depending on the input current applied to the neuron.

The threshold time steps found from Figure 4.3 were used to determine the proper

transition points for the time step in the domain of the input current.

Figures 4.4 and 4.5 show simulations of the proposed neurons with variable time

step. It is evident that the stability of the neuron is maintained for a large range of

current. However, the unnecessarily high computation time and power consump-

tion associated with a high time step is avoided for input current values for which

it is not necessary. In digital hardware, the use of a high time step for low input
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(a) AdEx dt=1/1024

 

 

(b) Izhikevich dt=1/1024

 

 

(c) AdEx dt=1/16

 

 

(d) Izhikevich dt=1/8

 

 

(e) AdEx dt=1/4

 

 

(f) Izhikevich dt=2

 

 

(g) AdEx dt=2

 

 

(h) Izhikevich dt=4

Figure 4.2: Membrane potential waveform of (A), (C), (E), (G) the AdEx
(B), (D), (F), (H) the Izhikevich neurons for different time steps.
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Figure 4.3: Threshold time steps at which the (A) AdEx and (B) Izhikevich
neurons become unstable as function of input current.

currents to avoid unnecessary calculation translates to lower switching activity,

which implies lowered dynamic power consumption. All of the above-mentioned

effects of time step variation were characterized in [75].

4.4 Validation in Digital Hardware

4.4.1 Hardware Design

The proposed neuron systems were implemented on FPGA. Consistent implemen-

tations for both the AdEx and Izhikevich neuron were used between the I-DEVS

and the traditional implementations. The AdEx neuron was implemented in Ver-

ilog using a 37-bit signed fixed-point implementation with 1 sign bit, 13 integer

bits, and 23 fractional bits. The digital word length was selected to accommodate

the CORDIC algorithm used for the implementation of the exponential term in

the AdEx neuron model. The Izhikevich neuron was implemented in VHDL using

a 33-bit signed fixed point with 1 sign bit, 18 integer bits, and 14 fractional bits.

The v2 in the Izhikevich neuron model was implemented using a DSP multiplier.
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Figure 4.4: Simulations of the AdEx Neuron with and without a variable
time step for a triangular wave current. (A) shows the membrane potential of
an AdEx neuron with a fixed timestep of dt = 1/512 (B) shows the membrane
potential of an AdEx neuron with the I-DEVS method, (C) shows the input

current, and (D) shows the value of dt as a function of time.

Although this is arguably not ideal for neuron implementations, the primary fo-

cus of this work is validation of the independence of the I-DEVS method on the

architecture of the neuron, so diverse neuron implementation architectures were

explored. In both neurons, the I-DEVS module was implemented using a state

machine to control a comparator to the input current, and an 8-bit timer with

three settings based on the input current range. The timer is used to determine

when to pass the clock and input current to the neuron to acquire another sample.

Figure 4.6 shows a block diagram of the I-DEVS hardware module.

The effectiveness of the I-DEVS method was assessed firstly in simulations to

verify that the implemented hardware systems exhibit the targeted functionality.

Functional simulations were successful. It was noted that the spike frequency of
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(b)

 

(c)

 

(d)

Figure 4.5: Simulations of the Izhikevich Neuron with and without a variable
time step for a triangular wave current. (A) shows the membrane potential of an
Izhikevich neuron with a fixed timestep of dt = 1/512 (B) shows the membrane
potential of an Izhikevich neuron with the I-DEVS method, (C) shows the input

current, and (D) shows the value of dt as a function of time

the neurons implemented using the I-DEVS method was lower than those of the

traditional hardware implementations. This was observed in software simulations

as well and was expected as more points of the difference equations are computed

per unit time. This does not effect the bifurcative behaviours of the neurons

since bifurcation analysis is performed independently of the discretized neuron,

meaning that their network performance will be uninhibited as the final synaptic

weights of a trained network will be different in compensation for the different

spike frequencies [3].

Furthermore, the projected savings in circuit switching activity were assessed. To

validate theoretical expectations, the number of times each implementation eval-

uates the neuron’s difference equations per average time was evaluated through

functional simulation of the implemented neurons for different ranges of input cur-

rent. Figure 4.7 shows the savings in evaluations per time as well as the savings in
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Figure 4.6: A block diagram of the digital hardware implementation I-DEVS
module.
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(a)

 

(b)

Figure 4.7: Computational savings per time from the I-DEVS method com-
pared to traditional implementations for the AdEx and Izhikevich neurons. (A)
shows the savings in difference equation evaluations and (B) shows the savings

in clock cycles for which the neuron is active.

the number of clock cycles for which the neuron is actively performing calculations.

The substantial savings in activity implies reductions in switching activity in the

system, which leads to reductions in power consumption. The third threshold

current, Ithres3, shown in Figure 4.7 denotes the input current at which the output

becomes corrupt for the smallest time step used in the systems of dt = 1/128. It

is important to note that this threshold was not implemented since input current

in this range does not contribute significant information to the behaviour of the

neuron models [7, 8].
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Table 4.1: FPGA Resource Usage Information on the Xilinx Spartan 7 for
neuron implementations with and without the I-DEVS method.

Neuron Model LUT FF DSP I/O Max. Clock (MHz)
AdEx 1338 479 0 108 120.31

AdEx I-DEVS 1582 510 0 115 119.42
Izhikevich 397 194 4 67 249.25

Izhikevich I-DEVS 451 217 4 67 249.25

The proposed system was implemented and validated on an Altera DE0 devel-

opment board. For comparison, traditional implementation methods were imple-

mented and tested as well alongside the I-DEVS neurons. Figures 4.8 and 4.9 show

oscilloscope images for both the implemented AdEx and Izhikevich models. The

digital membrane voltage was converted to an analog signal using a 12-bit resistive

ladder for digital-to-analog conversion to view the waveform on the oscilloscope.

It is evident that the behaviour of the implemented neuron is consistent with ex-

pectations. Although the I-DEVS neurons exhibit lower spiking frequencies than

their fixed time step counterparts, the I-DEVS and traditional implementations

exhibit consistent spiking behaviour for a given input current.

The prominence of the spike frequency difference was observed to be greater in

the digital hardware implementations compared to the software simulations. This

can be explained by the number of clock cycles required to evaluate the neuron’s

difference equations in hardware. Since both neurons were implemented using

state machines (and in the case of the AdEx neuron, with an iterative algorithm),

more than one clock cycle is required to evaluate the difference equations, which

lowers the effective sampling frequency compared to simulation. Adjustments to

the I-DEVS module’s timer values could compensate if a higher spike frequency is

necessary for a given application. However, it is important to note again that the

I-DEVS method does not change the bifurcative behaviour of the neuron, meaning

traditional neuron implementations and I-DEVS neuron implementations exhibit

the same behaviour.
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(a) Triangular Wave (b) I-DEVS Triangular Wave

(c) I < vthres,1 (d) I-DEVS I < vthres,1

(e) vthres,1 < I < vthres,2 (f) I-DEVS vthres,1 < I < vthres,2

(g) I > vthres,2 (h) I-DEVS I > vthres,2

Figure 4.8: Oscilloscope images for (A), (C), (E), (G) an AdEx Neuron imple-
mented using traditional hardware implementation, and (B), (D), (F), (H) the
same neuron implemented using the I-DEVS method. Membrane potential is
shown in blue and input current is shown in yellow. Horizontally paired images

show the same input current.
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(a) Triangular Wave (b) I-DEVS Triangular Wave

(c) I < vthres,1 (d) I-DEVS I < vthres,1

(e) vthres,1 < I < vthres,2 (f) I-DEVS vthres,1 < I < vthres,2

(g) I > vthres,2 (h) I-DEVS I > vthres,2

Figure 4.9: Oscilloscope images for (A), (C), (E), (G) an Izhikevich Neuron
implemented using traditional hardware implementation, and (B), (D), (F), (H)
the same digital neuron implemented using the I-DEVS method. Membrane
potential is shown in blue and input current is shown in yellow. Horizontally

paired images show the same input current.
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Furthermore, Table 4.1 shows the FPGA hardware resource usage information for

each neuron implemented both with a fixed time step and with the I-DEVS method

on the Xilinx Spartan 7 FPGA. It is obvious that the I-DEVS method used to

greatly reduce the neuron’s power consumption presents a very minor trade-off in

hardware usage.

4.4.2 Power Analysis

The power consumption of the variable time step neurons was analyzed using Vi-

vado’s Power Estimator and compared with the power consumption of fixed time

step implementations. Using Vivado’s Power Analysis tool, the FPGA implemen-

tations showed a 16.67% best case power reduction. Although this is inconsistent

with the much larger anticipated power savings, it is noted that FPGA implemen-

tations are limited in their power savings by the architecture of the FPGA [76].

To better capture the power savings offered by the I-DEVS method, the neurons

were synthesized in Synopsys and the power consumption was estimated for a

digital ASIC design. Table 4.2 shows power consumption information for the orig-

inal and I-DEVS neurons. The substantial power savings shown are consistent

with the expectations associated with the savings in switching activity at a clock

frequency of 50MHz. As expected, the power savings are lower than the com-

putation savings due to parasitic elements in the ASIC implementation that are

prominent with circuitry on fast-switching lines such as the clock line in digital

systems [77]. Furthermore, the power consumption is much lower in ASIC imple-

mentation estimations for all neurons as expected due to the architecture of the

FPGA.

Since the power consumption of a digital Izhikevich neuron is reported for a clock

frequency of 9.1MHz in [69], Synopsys power estimates were also collected for

a clock frequency of 10MHz for the Izhikevich implementation to create a fair
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Table 4.2: Dynamic Power Estimates for a 50MHz clock for ASIC and FPGA
digital implementations of the AdEx and Izhikevich neurons using the I-DEVS
method. Note that the I-DEVS column for power reports from [69] is used to

report the power consumption of the CORDIC implementation.

Clock Neuron Original I-DEVS Savings
Model (mW) (mW) (%)

ASIC AdEx 4.4733 1.4662 67.22
50MHz Izhikevich 2.0344 0.69369 65.90

FPGA AdEx 18 15 16.67
Izhikevich 7 7 0

10MHz ASIC Izhikevich 0.4081 0.1391 65.91
9.1MHz Izhikevich [69] 1.06 0.33 68.87

comparison. As shown below, the I-DEVS method offers very similar power savings

without imposing restrictions on the neuron’s implementation architecture.

It is also important to note again that the AdEx neuron used in this study was

implemented using the CORDIC algorithm for both the I-DEVS and traditional

neuron, and the Izhikevich neuron was implemented using DSP multipliers in both

cases. Different design approaches, digital word lengths, and neuron models were

used to support the assertation that the I-DEVS method can reduce the power

consumption for neurons of higher biological detail independent of the architecture

of the neuron.

Although the relationship of the switching activity savings shown in Figure 4.7

to the power savings reported in Table 4.2 is not directly proportional, there is

a clear and evident relationship between the switching activity and the dynamic

power consumption of the neuron. Thus, the I-DEVS method is highly effective

in reducing dynamic power consumption through the inclusion of inactivity in the

neuron.
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4.5 Conclusion

Two spiking neurons were implemented in digital hardware via FPGA with the

novel I-DEVS sampling-based digital neuron implementation method. The valid

input current domain is substantially large, and simultaneously the implementa-

tion exhibits a lower power consumption compared to traditional implementations

with fixed small time step as unnecessary active computation time for lower in-

put currents is avoided. The I-DEVS method showed consistent reductions in

switching activity and thus reductions in dynamic power consumption in the neu-

ron independent of the neuron model and implementation method of the neuron

module.

The application of the I-DEVS method offers substantial advantages for neurons

to be used in SNNs as the power consumption is a key metric and an important

consideration for SNN design. The reduced dynamic power consumption of neu-

rons implemented using the I-DEVS method offers potential for larger networks

of biologically detailed neurons.



Chapter 5

Selective Input Sparsity for

Spiking Neural Network Size

Reduction

5.1 Introduction

As explained in Chapter 1, SNNs come with potential benefits over traditional

ANNs, most notably temporal sparsity [12, 21], which may lead to lower switch-

ing activity and thus lower power consumption in hardware when implemented

effectively [77]. Again considering the ever-increasing inclusion of AI systems in

commercial applications and the environmental impacts of high-power comput-

ing associated with data processing [78], SNNs are an important option to fully

excavate for the future of AI.

Hardware implementations of SNNs have substantial potential for the above-

mentioned reasons. However, in hardware the size of the network is a significant

consideration. Large, fully parallel networks consume substantial silicon area and

68
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require a great deal of interconnection which leads to routing challenges. Convolu-

tional SNNs [79–82] and feedfoward architectures [83–85] have been proposed as an

effective solution for many pattern recognition problems and have achieved excep-

tional accuracy. However, the hardware resource requirements for implementing

such networks is extraordinarily high. Furthermore, methods such as downsam-

pling input data [15] have been deployed to simplify hardware requirements and

increase accuracy. Although effective, that requires substantial data pre-processing

which translates to delay and additional hardware in edge applications.

Sparsity in neural networks is a fascinating and exciting concept because it offers

the potential to reduce the network size and has been shown to have limited

adverse effect on classification accuracy in pattern recognition applications [86,87].

Sparsity in the interconnections of network layers is a highly active topic of interest

for these reasons.

Here the novel concept of input sparsity in image classification problems is in-

troduced and explored. Input sparsity refers to the removal of connections to

input pixels without concern for the preservation of image integrity. The primary

motivation goal of the introduction of input sparsity to SNNs is network size re-

duction, decreased inference and training time, and lowered hardware resource

requirements and power consumption in hardware implementations. Following

initial exploration, a methodology by which input sparsity can be selectively in-

troduced based on the training image set of a dataset is proposed. The proposed

Selective Input Sparsity (SIS) methodology not only reduces network size but in-

creases the network’s inference accuracy in the datasets to which it was applied.

The inference time and accuracy of SNNs created with the SIS architecture are

compared to the performance of SNNs with random input sparsity and it is shown

that the SIS method introduces substantial sparsity in the network while main-

taining comparable accuracy.
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(a) (b) (c)

(d) (e) (f)

Figure 5.1: Sample images from (a) - (c) the MNIST handwritten digit
database [88] and (d) - (f) the Fashion MNIST database [89].

5.2 Background Simulation

Firstly, a study of the effects of pixel deletion in the input image was conducted.

Two data sets were used for exploration; the Modified National Institute of Stan-

dards and Technology (MNIST) handwritten digits dataset containing handwrit-

ten digits from 0 to 9 [88], and the “Fashion MNIST” dataset that contains images

of fashion items belonging to ten different classes [89]. Sample images from both

datasets are shown in Figure 5.1. Both datasets contain 60000 training images and

10000 test images that are 784 pixels and each pixel is an 8 bit greyscale value from

0 to 255. In the case of the digit MNIST dataset, the images were deskewed follow-

ing the approach in [90]. Since the main consideration of the proposed networks

is hardware feasibility, network size is critical as it relates to power consump-

tion, silicon area, and speed which are all main hardware performance metrics.

Deskewing operations are common in smaller networks when approaching pattern

classification problems [88].
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To develop baseline results and examine the possible benefits of input sparsity,

simulations were conducted for varying levels of input sparsity for random pixel

deletion. For sparsity ranging from 0 (a fully connected network) to 0.9 (90%

of all input pixels removed), the accuracy of a two-layer network was assessed

for the stated sparsity range in increments of 0.1. 100 trials were conducted for

levels of input sparsity ranging from 0 to 0.9 in increments of 0.1. The number of

deleted pixels for a given trial corresponded to the level of sparsity. For example,

a sparsity of 0.1 means that the number of deleted pixels is the rounded product

of 0.1 and 784, the total number of pixels. Thus, at a sparsity of 0.1, 78 pixels

were randomly deleted for each of the 100 trials. Since for each trial a different

set of pixels were removed at random, 100 trials were used to observe variation in

the network’s classification accuracy for different configurations of input sparsity.

A sparsity of 1.0 implies that the input is not connected to the network and is

therefore meaningless.

The network, as stated above, was a simple two-layer network comprised of an

input layer of n pixels, where n is the number of pixels in the input layer, and ten

output neurons with Rectified Linear Unit (ReLU) activation functions. No biases

were used in addition to the network weights for simplicity. Many recent finds have

found that the trained weights from a simple network of ReLU non-spiking neurons

are mappable to an analogous structure as an SNN with relatively low accuracy

loss [12,13]. The weights were then applied to an SNN, input pixels were converted

to spike trains using non-leaky unsigned 8-bit integer Integrate-and-Fire (IF) neu-

rons, and IF neurons were used in place of ReLU activation functions. Although

the network after pixel deletion is fully connected, this method is fundamentally

different from downsampling as features in the image are not necessarily preserved

since pixels are deleted at random.

In both datasets, the pixel intensities were normalized into an 8-bit fractional

range through division by 256 for training a traditional ANN. Input normalization

is a helpful step for weight convergence in ANNs. Tensorflow with Keras was used
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to train a non-spiking network using Sparse Categorical Cross Entropy as the loss

function and Stochastic Gradient Descent with the Adam optimizer [91]. Pixels

are deleted from the input image at random according to the sparsity level, and

the remaining pixels are connected to ten output neurons, one for each class of

input, with ReLU activation functions in a fully connected manner.

Figure 5.2 shows the average classification accuracy and minimum and maximum

accuracy observed for each tested level of sparsity. From the experimental results,

it is not apparent that increasing sparsity results in lower classification accuracy.

The results do not present an obvious trend. An interesting finding is that the

maximum accuracy of networks with input sparsity exceeds that of the fully con-

nected network. This may imply that input sparsity in SNNs, much like sparse

connections, can meet or exceed baseline performance when properly realized [87].

However, it is interesting to observe that the maximum accuracy of the network

remains high for high levels of sparsity. Conversely, some sparse inputs yield very

low accuracy. A clear implication of this trend is that some pixels are far more

significant in class distinction than others.

5.2.1 Other Explored Reduction Methods

Another interesting method of hardware reduction that was explored was minia-

ture, independent SNNs that make inferences based on localized regions of the

input image. The miniature networks then voted based on how they classified

their local region of the input image to develop an overall classification.

Although this method showed itself to be effective in reducing inference time and

reducing prospective hardware resource requirements, the accuracy of this method

suffered substantially compared to baseline methods. Although the concept is

interesting, it may require further exploration to fully excavate the possible savings

while preserving classification accuracy.
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Figure 5.2: Average, maximum, and minimum classification accuracy ob-
served from 100 trials at each level of input sparsity. It is interesting to observe
that the proposed experimentation does not present a clear relationship between

the input sparsity and classification accuracy.
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5.3 Proposed Selective Input Sparsity

5.3.1 The Selective Input Sparsity (SIS) Method

In the background simulations, it was noted that no obvious trend between in-

put sparsity and inference accuracy was observed in the experimental results.

Naturally, this leads to curiosity and further investigation to evaluate why some

sparse configurations showed substantially higher classification accuracy than oth-

ers. Given the nearly linear decrease in inference time with input sparsity and

the linear decrease in the number of synapses, it would be highly advantageous to

derive a method by which the significance of input pixels can be evaluated, and

deletions can be made based on the training set to create sparsity in the network

before training.

The proposed novel method of Selective Input Sparsity (SIS) involves inferring

information from the training set to reduce the network size. In experimentation,

the intensity of the pixels in the first n1 training set images were averaged to

determine a threshold pixel value, t. Then, a tally of the number of times a pixel

in each index exceeds the threshold value in the next n2 images was conducted. aU

and aL are both less than 1 as they are used to assess the a given pixel’s activity

with respect to the number of images in group n2. If the tally for a given pixel

exceeded aL of the n2 images, which was 10% in the experiment, this implies that

at least one of the image classes requires that pixel for distinction, so it was kept.

Conversely, if the tally for a given pixel exceeded aU = 50% of the n2 images,

this implies that the pixel may not help in distinguishing classes, so the pixel

was discarded. In the cases of the digit MNIST and fashion MNIST datasets in

the proposed experimentation, n1 = n2 = 10000. This selection method can be

summarized by the following algorithm:

For the two datasets, the threshold pixel intensity of the normalized data was

found to be 0.1317 for the digit MNIST dataset and 0.2852 for the fashion MNIST
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Algorithm 4: The proposed SIS method. p is the number of pixels per image,
n1 and n2 are partitions of the training images, t is the threshold pixel intensity,
count is the tally of instances where a pixel exceeds the threshold intensity, x
represents the training set images, aU and aL are the upper and lower limits
of pixel activity, and index is the list of indices of retained pixels.

1 for i← 1 to n1 do
2 y[i] = average of pixels of x[i]
3 end
4 t = average of y
5 for i← 1 to n1 + n2 + 1 do
6 for j ← 1 to p do
7 if x[i,j] ≥ t then
8 count[i] = count[i] + 1
9 end

10 end

11 end
12 for i← 1 to p do
13 if count[i] ≥ aLn2 AND count[i] ≤ aUn2 then
14 Add pixel j to index
15 end

16 end

dataset. This variation in the threshold pixel intensity corresponds to different

levels of input space usership by the two datasets. This difference is helpful in

assessing the effectiveness of the proposed SIS method for network implementation

for distinct classification problems. Figure 5.3 shows input space receptive field

maps for both datasets after network implementation using the SIS method. For

the digit MNIST dataset 597 input pixels were removed while 489 pixels were

removed in the fashion MNIST dataset, corresponding to sparsity values of 76.15%

and 62.37% respectively. Additionally, the SIS method was effective in finding

pixels that gave the maximum observed accuracy in the random experiments for

a given level of input sparsity.

It is important to note that Figure 5.3 shows retained and omitted pixels for the

structure of the SNN. Although Algorithm 4 may resemble edge detection, it is

not a pre-processing step applied to input data for inference, but rather is used to
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(a) Digit MNIST (b) Fashion MNIST

(c) Digit MNIST (d) Fashion MNIST

Figure 5.3: (A) and (B) A receptive field map of the retained and discarded
pixels in the SIS networks for both datasets. Blue pixels were retained. (C) and

(D) show sample images applied to the receptive field maps.

select retained sparse connections for the whole network.

5.3.2 Software Validation

ANNs were trained for both a baseline Fully-Connected (FC) network and an

SIS network for both datasets. 100 trials were conducted for each network to
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find the random weight initialization that converged to the maximum observed

classification accuracy for the network.

Subsequently, the trained ANNs were quantized to 8-bit signed integer represen-

tation for all network weights using Keras quantization-aware training and the

TensorFlowLite tool. This was done to simplify hardware implementation require-

ments and the accuracy change was negligible in most cases since the networks are

small with two layers.

SNNs with pre-trained weights were simulated to make inferences on all images in

the test set images for each dataset using the quantized weights. In both cases,

the test images are different from the training images. The images were converted

to rate codes using simple 8-bit unsigned IF neurons.

Since SNNs are time dynamic, two important considerations in the conversion

from traditional ANN to SNN is the time step of discretization and the exposure

time of each image. As both these parameters increase, the accuracy of the SNN

approaches that the of the pre-trained ANN with the same weights. However,

longer exposure times require longer simulations, and higher time steps remove

the advantage of temporal sparsity presented by SNNs [12]. After investigation, a

balance between accuracy and inference time was found for dt = 0.25 for 16 time

steps.

In the case of the MNIST handwritten digits, a selective sparsity of 76.15% ob-

tained an accuracy of 90.87% compared to a baseline accuracy of 95.1% for all

10000 test images. Table 5.1 summarizes this information as well as spike thresh-

olds for input and output layer neurons. Spiking thresholds were selected as powers

of 2 so they can be treated as flag bits in hardware. It is important to note that

the goal was not to solve the MNIST handwritten digits with a record accuracy, as

exceptional accuracies have already been achieved [83–85,92,93]. Instead, the goal

was to determine if the pre-training network can be created with targeted sparse
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Table 5.1: Python simulation results for all 10000 test images for baseline
Fully-Connected (FC) SNNs and SNNs with Selective Input Sparsity (SIS).

dt = 0.25 and each test image was exposed for 16 time steps.

FC SIS FC SIS
Digits Digits Fashion Fashion

Input Pixels 784 187 784 295
Synapses 7840 1870 7840 2950
Sparsity 0 76.15% 0 62.37%

Inference Accuracy 95.1% 90.87% 80.28% 80.22%
Inference Time (m:s) 4:10.58 1:25.39 07:49.32 2:31.33

vth,in 128 128 128 128
vth,out 64 32 16 16

input connections and evaluate the efficacy of the SIS method when applied to a

baseline architecture.

The input sparsity introduced by the SIS method is lesser in the case of the

Fashion MNIST dataset as there are more pixels that are frequently part of the

image foreground. However, the introduced sparsity is still substantial at 62.36%.

Furthermore, it was noted that the accuracy of the networks in both the baseline

and selective sparsity cases was relatively low. This is likely due to the higher

complexity of the Fashion MNIST dataset compared to the MNIST handwritten

digits dataset [89]. Since both the baseline and selectively sparse-input networks

have depressed accuracy, a different network architecture may be required to obtain

a better accuracy. The architecture used is small as hardware implementation is

the primary objective. Nevertheless, the introduction of selective sparsity reduces

the number of required synapses and yields a very similar classification accuracy.

An important note is that the SIS methodology exceeds the average accuracy of

random input sparsity and approaches the maximum observed accuracy at a given

level of sparsity in both cases.
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5.4 Conclusion

The concept of input sparsity in SNNs for image classification problems has been

introduced, and a Selective Input Sparsity (SIS) method has been proposed that

can be used to potentially increase classification accuracy while reducing the size

of the network before training. SNNs employing SIS is evidently well-suited to

implementation in digital hardware.

One important note to make for this current chapter is that the goal of the work

was not to propose a record accuracy solution to the discussed datasets, but rather

to implement efficient hardware and maintain an accuracy that is similar to a

baseline network. The adoption of various hidden layer sizes, further grid search

for optimal random network weight initialization, and more training epochs could

be used to improve the presented results potentially further.



Chapter 6

Spiking Neural Network

Hardware Implementations

The information collected in the previous chapter was highly important for hard-

ware development. The trained network weights and selected input and output

layer spiking thresholds were applied to the digital hardware.

All implementations used a time step of discretization of dt = 0.25 and signed 8-bit

integer datapaths. The 8-bit integer datapath is both sufficiently wide for accu-

racy in the implementation and small enough to maintain low hardware resource

requirements.

Since there are ten output neurons, one corresponding to each input class, the

output layer neuron with the highest spiking activity determines the image classi-

fication.

80
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6.1 Hardware Blocks

6.1.1 Input Image Loading

Image input to the system is loaded one pixel at a time and each 8-bit pixel is

loaded in parallel. The network then loads the presented pixel into a RAM. The

loading stops when an end of data signal is triggered, indicating the end of the

current image.

The loading process uses a handshaking protocol. The image loading controller

gives a signal valid in to the network to indicate that valid data is ready to be

presented to the network. When the network has completed an inference and is

waiting for new data it gives the controller a signal called new data to indicate

that it is ready to receive new data for inference. Following the first clock cycle

where both signals are asserted high, the controller starts to present data to the

network. The address of the current input pixel is also passed to the network as a

redundant method of insuring synchronization.

In the case of the SIS network, a Look-Up Table (LUT) contains the indices of

the retained pixels after the application of the SIS algorithm and points to the 0th

element initially. As input pixels are presented to the network, the input loading

mechanism compares the input pixel address to the address in the element to which

the LUT points. If the input pixel address matches the current element in the SIS

index, the pixel is added to the input RAM and the LUT pointer is incremented

to the next element. A signal to indicate the end of the required data is triggered

after pixel corresponding to the last element in the LUT has been loaded.
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6.1.2 Output Layer Integrate and Fire Neurons

The network implementation uses signed 8-bit integer IF neurons for the output

layer. The neuron design is simple and is essentially an accumulator with a spiking

condition. Since spiking thresholds were selected as powers of 2, the spike condition

can be checked through the logical AND of the inverse of the sign bit and the

corresponding threshold bit. A synchronous reset was also implemented to reset

the membrane potential to zero when asserted. This reset simplifies resetting the

network to a resting state between input images.

Additionally, a clamp was introduced for when the membrane potential is less than

or equal to -65. -65 was selected for the clamp because it can be implemented as

the logical AND of the sign bit and inverted sixth bit. Additionally, since the

time step was selected as dt = 0.25, the maximum magnitude of negative input

current to this neuron, -63, after a shift right by two operation will not cause

integer rollover. Therefore, this clamp was implemented to avoid integer rollover

without the need for a larger word length in the system.

The behaviour of the output neuron can be described by:

v[n+ 1] = v[n] + dt ∗ I[n] (6.1)

ifv[n] ≥ vthres, then

v[n+ 1] = 0

spike→ 1

(6.2)

ifv[n] ≤ vclamp, then

v[n+ 1] = vclamp

spike→ 0

(6.3)

where v is the membrane potential of the neuron, I is the input current to the

neuron, vthres is the spiking threshold, and vclamp is the membrane potential clamp
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value described above. The input layer neurons are designed in the same way,

except with an unsigned 8-bit datapath and therefore no negative clamp condition.

6.1.3 Weight Application at the Time of Spike Events

When an input spike event occurs, the event is attributed to the address of the pixel

that caused the event. This address is then passed to read-only memory blocks

containing the weights for each connection to the output neurons. A weight enable

signal is then asserted high, and the corresponding weight is then applied as input

current to the output layer neurons. Once the update has been completed, weight

enable is set low so no unneeded updates occur.

6.1.4 Output Spike Counting

The activity of each output neuron is measured by the total number of spikes the

neuron emits during exposure to an image. The spikes are counted using a simple

unsigned synchronous counter with reset to zero where the count enable is the spike

from the corresponding output neuron. The width of the counters was chosen to

be 5-bit based on activity observations to prevent overflow. Once exposure to an

image has ended, the spike tallies are compared using a simple comparison tree

algorithm where comparisons occur in pairs until the counter with the highest

value is selected as the network’s classification.

6.2 Network Operation

Both a baseline Fully-Connected (FC) SNN and an SIS SNN were implemented

so that an even comparison can be made between the proposed methodology and
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Table 6.1: FPGA hardware implementation resource utilization and perfor-
mance for 1000 test images compared to expectations from Python simulations
for the MNIST digits classifcation network. Both hardware designs were imple-

mented on the Kintex-7 FPGA.

FC Digits SIS Digits FC Digits SIS Digits
Hardware Hardware Python Python

Inference Accuracy 93.4% 87.7% 95.1% 89.2%
Inference Time (ms) 109.96 36.26 24015.7 8120.3
Max. Clock Freq. 349.16MHz 267.38MHz N/A N/A

LUTs 1405 345
LUTRAM 182 0

FF 333 263
BRAM 0 3.5

baseline methods. The operation mechanism and network building blocks are

consistent for both designs.

After the input image data has been loaded as described in subsection 6.1.1, the

network cycles through the input pixels stored in RAM sequentially. During a

cycle through the input pixels, the input pixel stored in RAM is loaded as well as

a corresponding membrane potential for the pixel and sent as input to an input

layer neuron. If a spike occurs, the neuron is reset, and the spike is sent to

the output layer and the membrane potentials of the parallel output neurons are

updated accordingly based on the pre-trained weights stored in ROM.

When the last pixel in the image has been reached, an ”end of data” flag is asserted,

and the pixel address counter is reset. Since, as mentioned in Table 5.1, the images

were exposed for 16 time steps, this cycle occurs 16 times until the fourth bit of a

counter is asserted high (corresponding to 16 cycles), meaning the exposure time

has concluded. The spike counting procedure described in Subsection 6.1.4 then

returns the network’s classification of the input image.
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6.3 Results

Table 6.1 shows FPGA hardware implementation results for the baseline and pro-

posed SIS SNNs for the MNIST digits dataset. It is important to again note that

the goal of the proposed hardware designs was not record accuracy on the pre-

sented datasets but rather to show the efficacy of the proposed SIS method against

a baseline implementation, and to create efficient hardware for edge inference ap-

plications.

As is apparent from Table 6.1, the FPGA hardware implementations for both

the FC network and SIS network outperform their corresponding Python SNN

realizations in inference time by dramatic margins while maintaining consistent

accuracy. The reported inference times also includes the required loading time to

sequentially receive input image pixels from the loading mechanism, so this time

metric is more inclusive and better models a real edge application.

Furthermore, the expected speed advantage is notable in the SIS network compared

to the FC network. To increase the inference speed of the FC network, the Block

RAM (BRAM) was converted to LUTRAM so that the maximum clock frequency

could increase. Even with a clock frequency that is 29.5% higher than the SIS

network, the SIS network still can perform inferences in less than one third of

the time required by the FC network in the case of the MNIST digits dataset.

Although the classification accuracy suffers to varying degrees depending on the

dataset, given the speedup observed using the SIS method it is a valid contender

for applications where speed is prioritized.



Chapter 7

Conclusion

7.1 A Summary of Conclusions

The overall goal of these works was novel contributions in neuromorphic engineer-

ing as well as in SNN-based AI applications.

Given the variety of the work proposed between chapters and sections, conclusions

have been summarized for each section.

7.1.1 Spiking Neuron Implementations

Chapter 2 describes novel modifications to the Izhikevich neuron model through

which the hardware resource requirements of a digital hardware implementation

of the neuron are reduced and the spiking behaviour of the neuron can be manip-

ulated using a single parameter to behaviourally reproduce all excitatory cortical

neuron behaviours. The novel proposed HOMIN model was also shown to be effec-

tive in simple SNNs with synapses exhibiting STDP for associative learning. The

HOMIN model would also be a good candidate for networks in which an Izhike-

vich neuron would be effective as the HOMIN neuron would require lower silicon

86
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area per unit and less interconnection should the spiking behaviour of the neuron

require flexibility.

Chapter 3 presents an FPGA implementation of the Hodgkin-Huxley neuron using

the CORDIC algorithm for all non-linear terms, resulting in simplified hardware

requirements compared to most other proposed implementations, very high accu-

racy, and flexibility in the physiological parameters of the neuron. The latter two

successes make this design an excellent candidate for hardware acceleration of neu-

ronal disease modeling and other biomedical applications where high parallelism

to biological neurons is required.

Chapter 4 proposes a novel power-reduction methodology for biologically detailed

digital spiking neurons that is highly inspired by the operation of real neurons.

The sampling-based method introduces low-activity states to the system, which in

turn reduces circuit switching activity by avoiding unnecessary computations and

thus reduces power consumption. This method could be paired with neuromorphic

chips for energy-efficient solutions in neuromorphic computing.

7.1.2 Spiking Neural Networks

Chapter 5 proposes a novel algorithm by which an SNN’s size can be reduced be-

fore training based on properties of the training set images. This method dramat-

ically reduces inference time (67% reduction in inference time for the MNIST digit

dataset) with only minor accuracy impediments compared to baseline networks.

Chapter 6 describes corresponding hardware implementations for the proposed

SNNs. The hardware shows excellent speed improvements compared to software

simulation.
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7.2 Possible Future Works and Extensions

The proposed works have many possible extensions in various applications.

The work in Chapters 3 and 4 could be coupled with biologically detailed digital

astrocytes and tripartite synapses to create an energy-efficient neuromorphic sys-

tem for hardware-accelerated nervous system modeling. Work such as this could

have many positive implications in biomedical applications.

The work in Chapters 5 and 6 could be extended to testing in edge applications

and could be applied to many diverse image classification problems.
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