
TURUN YLIOPISTON JULKAISUJA
ANNALES UNIVERSITATIS TURKUENSIS

SARJA - SER. A I OSA - TOM. 446

ASTRONOMICA - CHEMICA - PHYSICA - MATHEMATICA

TURUN YLIOPISTO
UNIVERSITY OF TURKU

Turku 2012

Memristive Computing

by

Eero Lehtonen

From the Business and Innovation Development (BID) unit, and the Department
of Information Technology
University of Turku, Finland

Supervisors

Adjunct Professor Mika Laiho
Business and Innovation Development (BID)
University of Turku
FIN-20014 University of Turku
Finland

Dr. Tech. Jussi Poikonen
Department of Communications and Networking
Aalto University
FIN-00076 Aalto University
Finland

Dr. Tech. Jarkko Paavola
Business and Innovation Development (BID)
University of Turku
FIN-20014 University of Turku
Finland

Reviewers

Assistant Professor Dmitri Strukov
Electrical and Computer Engineering Department
University of California, Santa Barbara
Harold Frank Hall, Rm 5153
Santa Barbara, CA 93106-9560, USA

Dr. Tech. Lauri Koskinen
Department of Micro- and Nanosciences
Aalto University
Rm ECDL I307B
PL 13000, 00076 Aalto, Finland

Opponent

Dr. Ricardo Carmona Galán
Instituto de Microelectrónica de Sevilla
CSIC-Universidad de Sevilla
Avda. Américo Vespucio s/n
41092 Sevilla, Spain

ISBN 978-951-29-5148-2 (PRINT)
ISBN 978-951-29-5147-5 (PDF)
ISSN 0082-7002
Painosalama Oy - Turku, Finland 2012

Abstract

Memristive computing refers to the utilization of the memristor, the fourth
fundamental passive circuit element, in computational tasks.

The existence of the memristor was theoretically predicted in 1971 by
Leon O. Chua, but experimentally validated only in 2008 by HP Labs. A
memristor is essentially a nonvolatile nanoscale programmable resistor —
indeed, memory resistor — whose resistance, or memristance to be precise,
is changed by applying a voltage across, or current through, the device.

Memristive computing is a new area of research, and many of its fun-
damental questions still remain open. For example, it is yet unclear which
applications would benefit the most from the inherent nonlinear dynamics
of memristors. In any case, these dynamics should be exploited to allow
memristors to perform computation in a natural way instead of attempt-
ing to emulate existing technologies such as CMOS logic. Examples of such
methods of computation presented in this thesis are memristive stateful logic
operations, memristive multiplication based on the translinear principle, and
the exploitation of nonlinear dynamics to construct chaotic memristive cir-
cuits.

This thesis considers memristive computing at various levels of abstrac-
tion. The first part of the thesis analyses the physical properties and the
current-voltage behaviour of a single device. The middle part presents mem-
ristor programming methods, and describes microcircuits for logic and ana-
log operations. The final chapters discuss memristive computing in large-
scale applications. In particular, cellular neural networks, and associative
memory architectures are proposed as applications that significantly benefit
from memristive implementation. The work presents several new results on
memristor modeling and programming, memristive logic, analog arithmetic
operations on memristors, and applications of memristors.

The main conclusion of this thesis is that memristive computing will
be advantageous in large-scale, highly parallel mixed-mode processing ar-
chitectures. This can be justified by the following two arguments. First,
since processing can be performed directly within memristive memory ar-
chitectures, the required circuitry, processing time, and possibly also power
consumption can be reduced compared to a conventional CMOS implemen-
tation. Second, intrachip communication can be naturally implemented by
a memristive crossbar structure.

i

Acknowledgements

The research leading to this thesis was funded by University of Turku and
the Graduate school in Electronics, Telecommunications and Automation
(GETA). Further financial support was provided by the Nokia foundation,
the Finnish foundation for technology promotion (Tekniikan Edistämissäätiö,
TES), and the Fulbright foundation.

Several people have had a major impact on the completion of this work.
First of all I want to thank doctor Mika Laiho for supervising this work. His
guidance and active participation in the research leading to this thesis have
been invaluable. I wish to thank doctor Jussi Poikonen also for supervision,
co-authoring of several papers, and of all the help I received when refining
the draft of this thesis. I am grateful to doctor Jarkko Paavola for super-
vising my research work, and especially for the guidance he gave me in the
beginning of my graduate studies.

I wish to thank professor Ari Paasio, the director of BID Technology, for
providing the excellent working conditions for my research work. My grat-
itude goes also to my friends and colleagues Tero Hurnanen, Jari Tissari,
and doctor Tero Jokela for the great atmosphere we have in our work place.
I wish to express my gratitude for many people who have had a positive
impact to my work at University of Turku, especially Mikko Jalonen, Peter
Virta, professor Valery Ipatov, professor Juhani Karhumäki, doctor Alexey
Dudkov, doctor Ilpo Lahti, and professor Jouni Isoaho. I wish to thank pro-
fessor Wei Lu for co-authoring two joint publications, and professor Jennifer
Hasler for many useful advice I have received during our collaboration. Also,
I wish to thank the pre-examiners of this thesis, professor Dmitri Strukov
and doctor Lauri Koskinen, for their insightful comments and prompt re-
views.

I had a privilege to visit the Redwood Center for Theoretical Neu-
roscience at University of California, Berkeley, during the academic year
2011/2012. I wish to thank professor Bruno Olshausen for the invitation
and the excellent working conditions, and doctor Pentti Kanerva for his
guidance and friendship, and for introducing me to the fascinating field of
cognitive computing.

Finally I want to thank my family, my parents Jouko and Pirkko, and
my sister Anna for the example, love, and guidance they have given to me
throughout all my life. I thank my beloved Iina for all her love and support,
and Kaapo, just for being who he is.

ii

Contents

List of Symbols vii

1 Introduction 1

1.1 Motivation . 1

1.2 Organization of the thesis . 3

2 Memristor Fundamentals 7

2.1 Fundamental notions . 7

2.1.1 Circuit variables . 7
2.1.2 Functional relations 8

2.2 Memristor . 8

2.2.1 Chua’s 1971 memristor 8
2.2.2 Memristive system . 9

2.2.3 Memristor . 10

3 Thin-Film Memristor 15

3.1 Foundations of thin-film memristors 15

3.1.1 Static electron transport 16
3.1.2 Ionic drift . 17

3.2 TiO2 based memristor . 18

3.3 Other memristor implementations 19
3.3.1 Analog memristor . 19

3.3.2 M/a-Si/p-Si -memristor 21

3.3.3 Rectifying memristor 21

3.4 Generic model of an analog thin-film memristor 22
3.4.1 A generic SPICE model 26

4 Memristor Programming 29

4.1 Switching behavior of a memristor 29

4.1.1 Switching time and energy 30
4.1.2 Threshold voltage . 32

4.2 Programming methods . 34

4.2.1 Relative methods . 35

iii

4.2.2 Absolute methods . 36

5 Analog Arithmetic Operations 43

5.1 Copying the state of a memristor 43

5.1.1 Self-terminating copying of the current of a memristor 44

5.1.2 Cyclical copying of the current of a memristor 45

5.2 Addition of currents of memristors 46

5.2.1 Representing signed numbers 47

5.3 Multiplication of states of memristors 49

5.4 Memristive arithmetic unit 50

5.5 Remarks on implementation 51

6 Memristive Implication Logic 53

6.1 Memristive stateful logic . 54

6.1.1 Material implication 55

6.1.2 Other stateful logic operations 57

6.1.3 Computational sequence 58

6.2 Synthesis with 2–depth NAND form 59

6.2.1 Complementary NAND–method 61

6.3 Minimizing the number of auxiliary memristors 62

6.3.1 Synthesis with a single auxiliary memristor 62

6.4 Multi-input implication logic 64

6.4.1 Reducing the disjunctive form 67

6.4.2 NAND–OR method 69

6.5 Summary of the synthesis methods 70

6.5.1 Worst-case algorithmic complexities 70

6.6 Limitations and improvements 71

6.7 Converse nonimplication . 73

7 Memristive Crossbars 75

7.1 Memristive crossbar . 75

7.2 Interfacing memristive crossbars with CMOS circuitry 76

7.2.1 Demultiplexers . 77

7.2.2 CMOL-type architectures 78

7.2.3 Addressing in a CMOL-type architecture 81

7.2.4 Segmented nanowires 82

7.2.5 Vertical stacking of memristive crossbars 84

7.3 Accessing and programming memristors within a crossbar . . 84

7.3.1 Half-select problem and sneak paths 86

7.3.2 Writing to and reading from a memristive crossbar . . 87

7.3.3 Nanowire resistance 88

iv

8 Memristor Applications 91

8.1 Digital memory . 91
8.2 Reconfigurable logic circuits 92
8.3 Parallel stateful logic . 92

8.3.1 Column-wise operations 93
8.3.2 Row-wise operations 94
8.3.3 Example: Parallelized synthesis of a Boolean function 95

8.4 Chaotic circuits . 96
8.4.1 Memristive Chua’s oscillator 97
8.4.2 Memristive logistic map 98

8.5 Neuromorphic hardware . 101
8.6 Cellular Neural Networks . 103

8.6.1 Standard memristive CNN 105
8.6.2 Memristive binary CNN 110
8.6.3 CNN Universal Machine: computing with waves . . . 112

9 Memristive Associative Memories 119

9.1 Definitions and architectures 120
9.1.1 Associative memory 120
9.1.2 Data representation 121
9.1.3 Unary and distributed architectures 121
9.1.4 Capacities of associative memories 122
9.1.5 Literature review of memristive associative memories . 123

9.2 Memristive autoassociative CAM 124
9.2.1 Autoassociative CAM 124
9.2.2 Implementation of a memristive ACAM 125
9.2.3 Simulation of the ACAM cell 129

9.3 Sparse distributed memory architectures 129
9.3.1 Memristive Willshaw memory 131
9.3.2 Structure and operation of a Sparse Distributed Memory132
9.3.3 Implementation of a memristive SDM 134
9.3.4 Simulations and error analysis 137

9.4 Discussion on hardware requirements 140

10 Conclusion 143

Bibliography 146

v

vi

List of Symbols

The following lists the symbols used in this thesis. As can be seen, some
symbols, such as e, have multiple meanings. The meaning of such a symbol
should be clear from its context.

→ Material implication operation
6← Converse nonimplication operation
a Crystal periodicity
A Set of auxiliary memristors (stateful logic)
A SDM address matrix
aj Auxiliary memristor (stateful logic)
A(i, j; k, l) A-template of a CNN
α Constant of the generic analog memristor model
α Tilting angle of a nanowire crossbar w.r.t. CMOS layer
αS Constant for the Schottky current equation
αT Constant for the tunnelling current equation
B Subset {0, 1} natural numbers
B(i, j; k, l) B-template of a CNN
β Constant of the generic analog memristor model
βS Constant for the Schottky current
βT Constant for the tunnelling current
C Network capacity of an associative memory
C(·) Capacitance
C SDM content matrix
d SDM distance vector
e Euler’s number
e Unit charge
E Energy
E Local electric field
E0 Characteristic electric field of a crystal
E Average electric field
η Constant of the generic analog memristor model
F Fabrication feature size

vii

GND Ground voltage
G(·) Conductance
γ Number of memristors on a segmented nanowire crossbar
H(·) Heaviside function
i(·) or I Electric current
i(V) Current at voltage V
I(m) Current through memristor m
kB Boltzmann constant
L Length
L(·) Inductance
L(·) Logistic map
λ Constant of the generic analog memristor model
M Vector capacity of an associative memory
m Memristor
M(·) Memristance
µ Ionic mobility
N Number of CMOS cells in a CMOL circuit
N Number of neurons in an associative memory
P (·) Power
P Set of input memristors (stateful logic)
pi Input memristor (stateful logic)
ϕ Magnetic flux
πk An AND-clause of non-inverted input variables
q Electric charge
Q = {q1, q2} Set of work memristors (stateful logic)
R Set of result memristors (stateful logic)
R(·) Resistance
ROFF Maximum resistance of a bistable memristor
RON Minimum resistance of a bistable memristor
R0 Reference resistance in a stateful logic circuit
rk Result memristor (stateful logic)
s Switch
S3(·) Three-input parity function
σk An OR-clause of non-inverted input variables
t Time
T Time scale
T Temperature
Θ Threshold value
u Input vector (associative memory)
v Stored vector (associative memory)
v(·) or V Electric voltage
vcond Conditional voltage (stateful logic)

viii

VDD High rail voltage
V (m) Voltage across a memristor
vprog or VP Programming voltage
vread or VR Read voltage
vset Set voltage (stateful logic)
VSS Low rail voltage
vǫ(T) ǫ-threshold voltage at time scale T
V T− Negative threshold voltage of a memristor
V T+ Positive threshold voltage of a memristor
V T Threshold voltage of a memristor, assuming V T− = −V T+.
w or w Memristor’s state variable
W Willshaw memory matrix
wmax Maximum value of a state variable
wmin Minimum value of a state variable
y SDM activation pattern
z Input vector (associative memory)

ix

Chapter 1

Introduction

1.1 Motivation

A memristor is a passive two-terminal resistive component, whose resistance
changes as a function of the voltage across or the current through it. Its
existence was first postulated by Leon Chua in 1971 [17], but at that time
all the known physical emulations of this device required an internal power
supply. It took nearly 40 years until in 2008 the first passive realization of a
memristor was reported by HP Labs [104]. This publication ignited massive
interest in the field of memristor research, even though physical memristors
had been studied at least for a couple of decades by then. The connection
between these strangely behaving components and the original theoretical
definition by Chua just had not been previously discovered.

The apparent strangeness in the electric behaviour of memristors is that
their I-V curves form pinched hysteresis loops, and the forms of these loops
depend on the amplitudes and frequencies of the input voltage signals. This
phenomenon can be formally treated by defining a state variable, which de-
termines the memristor’s instantaneous resistance also known as the mem-
ristance. For thin-film memristors such as the device reported by HP Labs,
the state variable corresponds to a statistical measure of the configuration
of dopant ions inside the memristor, which can be relocated by applying
an external electric field. Since relatively large electric fields are required
to move ions within the memristive material, the dimensions of a thin-film
memristor must be in the order of nanometers.

Memristors are typically formed within a nanowire crossbar in order to
facilitate the fabrication process. Nanowires can be patterned for example
by e-beam lithography process, and when memristive material is stacked be-
tween the nanowire layers, it follows that a memristor is in self-aligned man-
ner formed at each crosspoint of two mutually perpendicular nanowires [43].
A memristive memory architecture can then be implemented by comple-

1

menting a memristive crossbar with active CMOS circuitry for selecting
and driving the nanowires of the crossbar [43]. The fabrication of digi-
tal memories is the driving force of memristor technology, since very dense
memory architectures can potentially be manufactured. Moreover, from the
perspective of memory technology, it is very advantageous that memristors
are practically non-volatile, which means that they retain their states even
when unpowered. In recent press releases it has been stated that memristive
memory should become commercially available in 2014 [78], while a simi-
lar resistive memory technology called the phase change memory is already
currently available for mobile device manufacturers [79].

This thesis focuses on memristive computing. The main idea here is
to take advantage of the physical characteristics of memristors in order to
enable processing that is difficult or area consuming to realize with pure
CMOS circuitry. To date, various physical implementations of memristors
have been reported. They can be binary, as the devices presented in [57,104],
meaning that they have two distinct states of resistivity. Some of the re-
ported memristors have small numbers of discrete states [36,44], while some
are analog meaning that their memristances can be changed in a continuous
fashion [13,32]. Each of these different classes of memristors can be used in
different computational applications. For example, analog memristors can
be used for continuous arithmetic operations as is explained in Chapter 5.
On the other hand, binary memristors can be used to perform so-called
stateful logic as discussed in Chapter 6, which allows for direct implemen-
tation of logic computing within memristive crossbars. These elementary
operations can be used to implement more involved applications, such as
the ones presented in Chapters 8 and 9. Since the field of memristive com-
puting is rather new, most of the contents of this thesis can be regarded as
basic research forming a basis for future work.

The CMOS/memristor hybrid architecture discussed in Chapter 7 allows
the memristors to be used both as memory units and as programmable
connections between different parts of a CMOS chip. This makes memristors
well-suited for parallel processing applications, in which CMOS processing
units communicate with each other via programmable nanowire crossbars.
In this thesis, such parallel processing systems are described in Chapters 8
and 9, which among other memristor applications discuss implementations
of various artificial neural network architectures.

The claim I make in this thesis is that memristive computing will be
advantageous in large-scale, highly parallel mixed-mode processing archi-
tectures. A justification for this claim is that since part of the processing
can be performed within memory, the processing time, required circuitry,
and also possibly power consumption of the system can be reduced.

Memristive architectures are ideally suited for computation within a
memory, and thus memristors should not be regarded only as memory, but

2

also as nanoscale computing units. An analogy of memristive computation
can be found in biology, where local memory units called synapses perform
a major part of the computation realized in the nervous system. A synapse
acts as a memory unit and a communication link between neurons, but it
also performs significant computational tasks — a role similar to that of a
memristor in memristive computing. As the reduction in the size of CMOS
transistors will eventually cease, it is crucial to investigate new computing
architectures beyond the conventional von Neumann paradigm. I believe
that memristors will allow for processing with scale and speed currently
unavailable in CMOS computing architectures.

1.2 Organization of the thesis

In the following, I review the rest of the chapters in this thesis, and refer to
the relevant original publications.

• Chapter 2. Memristor Fundamentals

Theoretical definitions and general properties of different classes of
memristive systems are presented. A definition of the memristor for
the purposes of this thesis is given.

• Chapter 3. Thin-Film Memristor

The fabrication and characteristics of different thin-film memristors
are considered. A SPICE model of a generic analog memristor model
is presented.

• Chapter 4. Memristor Programming

The I-V behaviours of memristive devices are investigated. Closed-
form expressions for the switching time, power, and energy are derived
for the generic memristor model. The so-called threshold voltage phe-
nomenon for programming the state of a memristor is described. Dif-
ferent methods for progamming the state of a memristor are presented.
Related publications:

[56] M. Laiho, E. Lehtonen, A. Russell, P. Dudek: Memristive synapses
are becoming reality, an article in the newsletter of the Institute of
Neuromorphic Engineering, November 2010

My contributions: Modelling and simulating the analog memristor.

[66] E. Lehtonen, J. H. Poikonen, M. Laiho, W. Lu: Time-Dependency
of the Threshold Voltage in Memristive Devices, Proc. IEEE Interna-
tional Symposium on Circuits and Systems 2011, Rio de Janeiro, May
2011.

3

My contributions: All of the theoretical results and simulations pre-
sented in the first four sections of the paper. The results presented in
the fifth section were derived in collaboration with Poikonen.

• Chapter 5. Analog Arithmetic Operations

The implementation of elementary arithmetic operations — addition,
subtraction, multiplication, and division — with analog memristors
is described. A memristor circuit implementing these operations is
presented. Related publications:

[53] M. Laiho, E. Lehtonen: Arithmetic Operations within Memristor-
Based Analog Memory, Proc. 12th IEEE CNNA – International Work-
shop on Cellular Nanoscale Networks and Applications, Berkeley, Febru-
ary 2010.

My contributions: Formulation of the memristor model used in the
paper, and its mathematical analysis.

[55] M. Laiho, E. Lehtonen, W. Lu: Memristive Analog Arithmetic
Within Cellular Arrays, Proc. IEEE International Symposium on Cir-
cuits and Systems 2012, Seoul, May 2012

My contributions: Formulation of the translinear principle used for
memristance multiplication, and the signed addition on memristances.
SPICE simulations of the memristive arithmetic unit.

• Chapter 6. Memristive Implication Logic

Logic computing with memristors is considered. Memristors are nat-
urally suited for performing stateful logic operations, of which the so-
called material implication operation can be most straightforwardly
implemented. Various methods for synthesizing an arbitrary Boolean
function with implication logic are presented. Related publications:

[58] E. Lehtonen, M. Laiho: Stateful implication logic with memristors,
Proc. IEEE/ACM International Symposium on Nanoscale Architec-
tures 2009, pp. 33 – 36, July 2009

My contributions: Major contributions to the text and theoretical
analysis, including the derivation of the synthesis method, and the
simulations of the computational sequences.

[62] E. Lehtonen, J. H. Poikonen, M. Laiho: Two Memristors Suffice
to Compute All Boolean Functions, IET Electronic Letters, Vol. 46,
Iss. 3, pp. 239 – 240, February 2010.

My contributions: Formulation of the recursive conjunctive form. Proof
of this form was discovered by Poikonen, and we derived the presented
formulation together.

4

[89] J. H. Poikonen, E. Lehtonen, M. Laiho: On Synthesis of Boolean
Expressions for Memristive Devices Using Sequential Implication Logic,
accepted for publication in IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits

My contributions: Assisted in formulating the reduction method de-
scribed in Section III. Discovery of the multi-input implication form.

[64] E. Lehtonen, J. H. Poikonen, M. Laiho: Implication Logic Syn-
thesis Methods for Memristors, Proc. IEEE International Symposium
on Circuits and Systems 2012, Seoul, May 2012

My contributions: Derivation of the NAND-OR synthesis method and
a reformulation of the synthesis method presented in [62] in the case
of multi-input implication logic.

• Chapter 7. Memristive Crossbars

Large-scale memristive crossbar arrays are discussed. Two different
approaches for interfacing memristive crossbars with CMOS circuitry
are presented: the demultiplexer architecture and the so-called CMOS
/ molecular hybrid (CMOL) architecture. Inherent limitations of a
memristive crossbar are discussed, and read and write operations within
a crossbar are described.

• Chapter 8. Memristor Applications

Various applications of memristive circuits are presented, including
digital memories, field programmable gate arrays, parallel stateful
logic circuits, chaotic circuits, and neural and cellular neural networks.
Related publications:

[60] E. Lehtonen, M. Laiho, J. H. Poikonen: A Chaotic Memristor
Circuit, Proc. 12th IEEE CNNA – International Workshop on Cellular
Nanoscale Networks and Applications, Berkeley, February 2010.

My contributions: All of the new results presented in this paper.

[59] E. Lehtonen, M. Laiho: CNN Using Memristors for Neighbor-
hood Connections, Proc. 12th IEEE CNNA – International Workshop
on Cellular Nanoscale Networks and Applications, Berkeley, February
2010.

My contributions: An enhanced model of the memristor presented
in [116]. Major contributions to the text.

[67] E. Lehtonen, J. H. Poikonen, J. K. Poikonen, M. Laiho: Grayscale
CNN Computation of Boolean Functions, Proc. First IEEE Latin
American Symposium on Circuits and Systems, Iguassu Falls, Febru-
ary 2010.

5

My contributions: Theoretical derivation of the synthesis method for
Boolean functions using grayscale CNN processors.

[61] E. Lehtonen, J. H. Poikonen, M. Laiho: A CNN Approach to
Computing Arbitrary Boolean Functions, Proc. IEEE International
Symposium on Circuits and Systems 2010, Paris, June 2010.

My contributions: All of the theoretical considerations and results.

[54] M. Laiho, E. Lehtonen: Cellular Nanoscale Network Cell with
Memristors for Synapses and Local Implication Logic, Proc. IEEE
International Symposium on Circuits and Systems 2010, Paris, June
2010.

My contributions: Small contributions in the theoretical aspects of
memristor modelling and implication logic.

[63] E. Lehtonen, J. H. Poikonen, M. Laiho: Applications and Lim-
itations of Memristive Implication Logic, Proc. 13th IEEE CNNA –
International Workshop on Cellular Nanoscale Networks and Applica-
tions, Turin, August 2012.

My contributions: Discovery of the converse nonimplication operation,
and formulation of stateful logic in memristive crossbars.

• Chapter 9. Memristive Associative Memories Memristive im-
plementations of various associative memory architectures are pre-
sented. A related publication:

[65] E. Lehtonen, J. H. Poikonen, M. Laiho, P. Kanerva: Memristive
associative memories, submitted to IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 2012.

My contributions: Theoretical foundations of the memristive imple-
mentations of the ACAM, Willshaw, and SDM memories. Co-design
of the CMOS cell used for these memories.

This thesis is then organized as follows. Chapters 2 and 3 provide the
basic notions and insights into the theory of memristors and fabrication of
physical devices, respectively. Chapter 4 describes different methods for
programming memristors. These methods are used for the elementary com-
putational operations presented in Chapters 5 and 6. Chapter 7 describes
the interfacing of memristive crossbars to CMOS circuitry. Various applica-
tions of memristive computing are discussed in Chapters 8 and 9. Finally,
Chapter 10 concludes this thesis.

The aim of this work is to present a thorough analysis of memristive com-
puting. The scope of this thesis spans from the investigation of single device
characteristics to the considerations relevant in large-scale applications.

6

Chapter 2

Memristor Fundamentals

In this chapter the central topic of the thesis, the memristor, is defined.
First some circuit theoretical notions are fixed, and the fundamental circuit
elements are reviewed. The second part of this chapter is devoted to the the-
ory of memristors, beginning in Leon Chua’s definition of a memristor from
1971. Then a more general class of components called memristive systems
is investigated, and finally a new definition for a memristor is proposed.

2.1 Fundamental notions

In this section some fundamental quantities and functional relations in elec-
tronics and circuit theory are defined.

2.1.1 Circuit variables

Electric charge q is a physical property of matter which causes it to experi-
ence a force when near other electrically charged matter. The fundamental
unit of electric charge is the magnitude of the charge of an electron or a
proton, and has in SI units the approximate value [80]

e = 1.602176487(40) × 10−19 coulombs. (2.1)

The electric current i through a closed surface is defined as the first
derivative of the charge, i.e.,

i =
dq

dt
or q =

∫ t2

t1

idt. (2.2)

The electric voltage v is the electrical force that would drive an electric
current between those points. More precisely, electric voltage is the electrical

7

potential energy per unit charge. For a test charge q0 whose potential energy
is U0, the electric voltage [119] equals

v =
U0

q0
. (2.3)

Themagnetic flux ϕ is defined as the time integral of the electric voltage:

ϕ =

∫ t2

t1

vdt or v =
dϕ

dt
. (2.4)

In the following, the prefixes electric and magnetic are omitted, and
the above defined quantities are addressed as the charge, the current, the
voltage, and the flux.

2.1.2 Functional relations

The four circuit variables can be ordered in a diagram shown in Figure 2.1.
A passive circuit element is called fundamental, if it cannot be written as a
network of other circuit elements. The relations represented by the vertical
lines in the diagram denote the definitions of the circuit variables given
above, while the diagonal lines and the bottom horizontal line represent
the relations given by the three familiar fundamental two-terminal circuit
elements: the capacitor, the inductor, and the resistor. These relations can
be mathematically written as

dq = C(v)dv (capacitor) (2.5)

dϕ = L(i)di (inductor) (2.6)

dv = R(i)di (resistor) (2.7)

When the proportionality factors C, L and R are constants, the correspond-
ing circuit elements are linear.

2.2 Memristor

2.2.1 Chua’s 1971 memristor

In the seminal paper [17], Chua introduced a new fundamental two-terminal
circuit element, which is called flux-charge memristor in this thesis. Its
existence was conjectured due to the previously missing relation between
the flux and the charge, therefore yielding the defining relation

dϕ = M(q)dq (2.8)

represented by the top horizontal line in Figure 2.1. The multiplicative term
M(·) is called the memristance function. Notice that M(q) = dϕ/dq, which
shows that a memristor is defined by a functional relation between ϕ and q.

8

ϕ q

v

∫
dt

∫
dt

i

d
ϕ
=

L
(i
)d
i

d
q
=

C
(v
)d
v

dϕ = M(q)dq

dv = R(i)di

Figure 2.1: The four circuit variables connected by the fundamental circuit
elements.

Dividing both sides of (2.8) by dt one obtains

v = M(q)i. (2.9)

For a constant M , equation (2.9) is nothing but the defining relation of
a linear resistor. However, with a non-constant M it describes a resistor
with a memory, more precisely a resistor whose resistance depends on the
amount of charge that has passed through the device. A typical response of
a flux-charge memristor to a sinusoidal input is depicted in Figure 2.2. The
fundamentality of the flux-charge memristor can also be deduced from this
figure, as it is impossible to make a network of capacitors, inductors and
resistors with an I-V behaviour forming a pinched hysteresis curve [18].

The following results are proved in [17].

Theorem 1. A flux-charge memristor is passive if and only if its incremen-
tal memristance M(q) is nonnegative; i.e., if and only if M(q) ≥ 0.

Theorem 2. A one-port containing only flux-charge memristors is equiva-
lent to a flux-charge memristor.

Theorem 3. Any network containing only flux-charge memristors with pos-
itive incremental memristances has one, and only one, solution.

2.2.2 Memristive system

In 1976, Chua and Kang generalized the original definition of a memristor
to a more general class of dynamical systems called memristive systems [18].
An nth-order current-controlled memristive one-port is represented by

{

v = R(w, i, t)i

ẇ = f(w, i, t)
(2.10)

9

−1 0 1

−20

0

20

Voltage (V)

C
ur

re
nt

 (
µ

A
)

Figure 2.2: An I-V curve of a flux-charge memristor whose memristance
function is linear M(q) = αq, driven by a sinusoidal voltage input. The
pinched hysteresis loop is a typical response to a periodic voltage input.

where w ∈ R
n is the n-dimensional state variable of the system, and ẇ is

its time derivative. Similarly, the nth-order voltage-controlled memristive
one-port is defined as {

i = G(w, v, t)v

ẇ = f(w, v, t).
(2.11)

A flux-charge memristor is a one-dimensional current-controlled time-
invariant memristive system, for which

v = M(w)i and ẇ = q̇ = i, (2.12)

where w = q and M(·) is the memristance function.
Chua and Kang noted that memristive systems are capable of modelling

for example such systems as the thermistor, and the Hodgkin-Huxley circuit
model of the nerve axon membrane [29]. They also proved various properties
for time-invariant memristive systems, the most important for this thesis
being the no-energy discharge property: a time-invariant memristive system
is passive if and only if R(w, i) ≥ 0 everywhere.

2.2.3 Memristor

In the previous subsection the I-V relationship of a memristive system was
defined as

v = R(w, i, t)i or i = G(w, v, t)v. (2.13)

For actual physical memristors manufactured so far this formulation is some-
what unnatural as there is no linear instantaneous relation between voltage

10

and current, and therefore for example one should define

R(w, i, t) = R′(w, i, t)/i (2.14)

in order to get rid of the term i in (2.13). Since R′(·) is the function one is
actually interested in, it is more convenient to devise a new definition which
uses R′ explicitly instead of R.

In the following I propose, for the purposes of this thesis, a definition for
the memristor, which closely relates to the physical realizations discussed
in Chapter 3. It should be noted that this definition does not generalize
the flux-charge memristor, but rather defines a different subset of the set of
memristive systems. Rationales for this definition are that the majority of
the physical thin-film devices reported so far are not flux-charge memristors,
and that the set of memristive systems is too broad to be simply called the
set of memristors. The particular characteristics of the proposed memristor
and its similarity and difference to the flux-charge memristor are discussed
in the subsequent examples. For the definition, the following two elementary
notions of real-valued functions are needed:

Let f(x, y) be a real-valued two-variable function and let c ∈ R be fixed.
Then

f |y=c(x) : R→ R, f |y=c(x) = f(x, c)

is the restriction of f to the subset {(x, c)|x ∈ R}. A one-variable function
f(x) is called increasing, if x ≤ y implies f(x) ≤ f(y).

Definition 4. A memristor is a dynamical system

{

ẇ = f(w, v)

i = g(w, v),
(2.15)

with the following properties:

(i) for all values of w, f(w, 0) = g(w, 0) = 0

(ii) the restrictions

f |w(v), g|w(v), and g|v(w)
are increasing for all values of v and w.

The variable w ∈ R is called the state variable of the memristor.

Remark 5. From the monotonicities of g|w(v) and g|v(w) it follows that the
state variable w is a measure of conductance of a memristor. The mono-
tonicity of f |w(v) guarantees that positive voltages increase and negative
voltages decrease a memristor’s conductivity.

11

Remark 6. Definition 4 describes a voltage controlled memristor, as ẇ is
a function of v. Similarly one could define a current controlled memristor
as {

ẇ = h(w, i)

v = k(w, i),
(2.16)

for which h(w, 0) = k(w, 0) = 0 and the restrictions h|w(i), k|w(i), and
k|i(w) are all increasing functions.

However, if gw(v) in Definition 4 is strictly increasing and thus bijec-
tive, then a voltage controlled memristor can be seen as a current controlled
memristor. Indeed, now g|−1

w (i) is also strictly increasing, and

{

ẇ = f(w, v) = f(w, g|−1
w (i))

v = g|−1
w (i).

(2.17)

Section 3.4 describes a generic model of a physical analog memristor,
which is widely used in the examples of this thesis. In this model, gw(v) is
a strictly increasing function. Therefore it can be seen either as a voltage
controlled or as a current controlled memristor, where the functions f and
g are chosen to model the dynamics of a physical memristor.

Theorem 7. A memristor is nonvolatile and passive. Moreover, it cannot
be written as a network of capacitors, inductors and resistors.

Proof. Nonvolatility follows from f(w, 0) = 0. Since g(w, 0) = 0 and g|w(v)
is an increasing function, it follows that

v · i = v · g(w, v) ≥ 0,

which proves the second claim. The third claim follows from the fact that
a flux-charge memristor with an increasing memristance function M(q) is a
memristor.

Example 8. The sets of memristors and flux-charge memristors are incom-
parable. Indeed, choosing a non-linear g with respect to voltage in Definition
4 results in a memristor which is not a flux-charge memristor. On the other
hand, a flux-charge memristor can provide negative differential resistance
which is a forbidden characteristic of a memristor.

Remark 9. Why is the memristor in this thesis not defined as a generaliza-
tion of the flux-charge memristor? Although logically appealing, this choice
would not have lead to the simplicity of Definition 4 and its powerful corol-
laries of Theorem 7. The memristor is defined as it is to cover the physical
realizations discussed in the following chapter.

12

b)a)

Figure 2.3: Memristor symbols used in this thesis.

Remark 10. A flux-charge memristor is defined by function ϕ = ϕ(q) that
relates the flux to the charge. This is not the case with the memristor ac-
cording to Definition 4. Indeed, f(w, v) can be a very non-linear function
of v, and therefore w does not have to be a function of ϕ (or q). This
points out why the memristors in this thesis are not characterized by their
ϕ− q relationship, but rather by their I-V curves, when the input voltage is
specified.

Example 11. GeSbTe alloy based phase-change memory [52] is not a mem-
ristor. This is because its conductance depends on the magnitude, not polar-
ity, of the input voltage. A short, high magnitude pulse freezes the material
to an amorphous state with high resistance. A longer pulse with medium
magnitude of voltage is used to re-crystallize the material, yielding a low
resistance. An even lower magnitude of voltage is used to read the state of
the memory.

On the contrary to the above, a memristor’s conductance increases with
an input voltage of one polarity and decreases with an input voltage of the
other polarity. Still, a phase-change memory is a memristive system: it has
a state which depends on the history of the input voltage and defines the
conductivity of the system.

Although in Definition 4 the state variable is allowed to take any real
value, in the rest of this thesis it is assumed to be normalized to the unit
interval w ∈ [0, 1], where w = 0 corresponds to the non-conductive off-
state, and w = 1 corresponds to the conductive on-state. An example of an
explicit, strictly increasing and continous normalization function is N(x) =
arctan(x)/π + 1/2. In physical realizations the off-state of a memristor is
always slightly conductive, that is, w ≥ wmin for some small constant wmin.

Remark 12.

1. Two different symbols for a memristor are used in this thesis. The
symbol shown in Figure 2.3 a) is used in most cases. The symbol

13

in Figure 2.3 b) is used when memristors with only two states are
considered. A memristor in a low-conductance state is represented
by an open switch, while a memristor in a high-conductance state is
represented by a closed switch.

2. The terms I-V behaviour or I-V curve are used throughout this thesis.
The former means the overall dynamical relationship between current
and voltage in a memristor, while the latter refers to a specific curve
obtained from choosing some voltage input.

14

Chapter 3

Thin-Film Memristor

A vast majority of physical memristors presented so far are thin-film solid
state devices, and therefore it is appropriate to devote a chapter of this
thesis to investigate their properties. Although resistive switches with thin-
film structure have been observed and studied since the 1980s [36], it was
not until 2008 that researchers from HP Labs announced to have found the
“missing memristor” in rutile cross-point switches [104]. This article had a
great impact on the research of memristive systems, as it was the first paper
to associate the theory of memristors with thin-film solid state devices. After
this initial breakthrough, a multitude of different thin-film implementations
of memristors have been proposed, for example in [13,33,35,36].

This chapter is organized as follows. First, in Section 3.1, common phys-
ical properties of thin-film memristors are investigated. In Section 3.2 the
HP Labs’ TiO2 memristor is surveyed more closely, and its mathematical
model is examined. Next, in Section 3.3 other implementations of thin-film
memristors and their models are presented. Finally, in Section 3.4 a simpli-
fied and generic analog thin-film memristor model based on the discussed
physical devices is derived. A SPICE netlist of this model is presented in
Section 3.4.1. This model will be used in the rest of the thesis as a prototype
model of a thin-film memristor.

3.1 Foundations of thin-film memristors

A schematic of a thin-film memristor cross section is presented in Figure 3.1.
The device is sandwiched between a top and and a bottom electrode. Be-
tween the electrodes is an insulator or a semiconductor layer, inside which
there are conducting filaments, whose number and lengths define the con-
ductance of the device. The filaments consist of dopant ions or vacancies of
ions, and their positions can be changed by applying a voltage between the
top and the bottom electrodes.

15

filaments
Conducting

S
em

ic
on

d
u
ct
or

Top electrode

Bottom electrode

Figure 3.1: The cross section of a thin-film memristor.

Memristors can be divided roughly into two categories by their dynamical
behavior. They can be either digital, which means that their states can
assume a few different values, or analog if their states can take any value
in a seemingly continuous range. A digital memristor, whose state can have
only two distinct values is called binary or bistable.

3.1.1 Static electron transport

Metal/semiconductor contacts generally fall into one of two categories: they
are either rectifying Schottky-type contacts in the case of low doping, or
nonrectifying ohmic contacts in the case of heavy doping [87]. Assuming
that the conducting filaments grow from the bottom electrode towards the
top electrode as in Figure 3.1 it follows that the semiconductor contact at
the bottom electrode can be assumed to be ohmic.

The semiconductor contact at the top electrode is Schottky type if the
vicinity of this contact is devoid of conducting filaments. In this case it is
said that the thin-film memristor is in off-state. The current iS through the
memristor can now be expressed in the form [87]

iS ≈ αS(exp(βSv)− 1), (3.1)

where v is the voltage across the device, and αS and βS are constants.
If the conducting filaments penetrate the Schottky electron barrier, the

memristor is said to be in on-state, where the electron transport is dictated
by the tunnelling phenomenon through a thin residual barrier [116]. The
tunnelling current iT can be modeled [87] as

iT ≈ αT sinh(βT v), (3.2)

where αT and βT are constants, and v is the voltage across the memristor.
In general, the current through the device can be written as a linear

combination of the currents presented in (3.1) and (3.2), as a variable num-
ber of conducting filaments approach and penetrate the Schottky barrier.

16

∼ qEa

∼ kBT

a

E , vd

Figure 3.2: The rigid point-ion model with an applied electric field. Thermal
heating lifts the ground state of the ions by kBT , while the local electric field
decreases the depth of the potential well in the direction of the applied field
by qEa/2.

Therefore, the total current through the memristor can be written as

i ≈ cS(w)iS + cT (w)iT , (3.3)

where the state variable w ∈ [0, 1] describes the effective influence of the
conducting filament front, and cS(·) and cT (·) are some non-negative coef-
ficient functions. With a suitable choice of coefficient functions the current
in (3.3) satisfies requirements of Definition 4.

In [33] it was shown that the semiconductor contact at the top electrode
can be prepared to be non-rectifying already at fabrication, thus weaken-
ing the coefficient αS in (3.1) and making the total current of the device
approach the tunnelling current of (3.2).

3.1.2 Ionic drift

Since a conducting filament consists of ions or ion vacancies, changing the
state of the memristor means moving ions or vacancies within the semi-
conductor part of the memristor. In the following a model of ionic drift
originally presented in [106] and [35] is investigated.

A rigid point-ion model for ionic crystals is illustrated schematically in
Figure 3.2 for positive mobile ions. A drifting ion moves from one potential
well to the next, where the net potential is determined by the constituent
ions of the crystal.

An applied voltage V creates a local electric field E inside the material
which changes the depth of the potential wells by ∼ qEa/2, where a is the
periodicity of the crystal, or the length between two consecutive potential

17

wells. The local electric field E is an effective quantity and can be much, for
example 100 times [106], stronger than the calculatory average electric field
E = V/L, where L is the length of the semiconductor layer of the memristor.
The overall effect of the field E on the average ionic drift velocity vd can be
written as

vd ≈
{

µE E << E0

µE0e
E/E0 , E ∼ E0

(3.4)

where µ is the ionic mobility at small electric fields, and E0 = 2kBT /(qa) is
the characteristic electric field of the crystal [106]. Here kB is the Boltzmann
constant, and T is the temperature measured in Kelvins.

When the magnitude of the local electric field E is much smaller than E0

the ionic drift behaves linearly. On the other hand, when E is of the same
order or larger than E0, the ionic drift depends exponentially on it. A typical
magnitude for the characteristic field is E0 ∼ 1 MV at the room temperature
T = 300 K [106]. From (3.4) it can be seen that as the magnitude of the
local electric field changes from 10 to 40MV, the drift velocity increases
by more than 10 orders of magnitude. For a local field E = 40 MV the
applied electric field E can still be well below the breakdown value of the
semiconductor crystal.

In addition to the above, power dissipation in the small volume of the
memristor yields significant heating, which in turn increases the ionic drift
velocity. The overall effect makes the ionic drift a random Poisson process,
whose rate is exponential or even super-exponential with respect to the
applied voltage V [35]. This significant nonlinearity of the drift velocity
makes it possible for a device to be practically nonvolatile, and still have a
switching time in the nanosecond scale [106].

3.2 TiO2 based memristor

The HP Labs’ memristor [104,116] consists of platinum electrodes enclosing
a TiO2 / TiO2−x semiconductor bulk. In the following the fabrication process
of this digital memristor is briefly reviewed. First, a crystal of rutile TiO2 is
annealed to create an oxygen-deficient layer near the bottom surface of the
semiconductor [116]. Even a relatively minor stoichiometric ratio of 0.1% in
TiO2−x is enough to make the oxygen-deficient layer highly conductive, as
oxygen vacancies in TiO2 act as n-type dopants [106].

The conducting filaments are formed by applying a high voltage across
the device. This forming step induces a permanent change to the oxide film
by means of electroreduction [116]. In addition to creating the conducting
filaments, it also produces a remnant tunnelling gap between the filaments
and the top electrode [86].

18

After the forming step, the device is ready to be used as a memristor.
In the on-state, the I-V behaviour of the memristor is dominated by the
tunnelling phenomenon, while in the off-state its I-V curve is rectifying [116].
Since the oxygen vacancies are positively charged, positive voltages across
the memristor tend to turn it off, while negative voltages can be used to
turn the device on. The Pt / TiO2 / Pt memristors have on/off conductance
ratios of the order 1× 103 [116]. Their switching behaviour is found to be
insensitive to the device size from 5 × 5 µm2 to the litography constricted
size of 50× 50 nm2 [86].

When modeling the device, the state variable w of the TiO2 based mem-
ristor can be chosen to be a normalized tunnelling gap width between the
conducting filaments and the top electrode. The actual magnitude of the
tunnelling gap modulation is a few nanometers.

The following equation describes the I-V behaviour of the TiO2 based
memristor [116]:

i = wnαT sinh(βT v) + αS(exp(βSv)− 1), (3.5)

where n, αT , βT , αS , and βS are positive constants.
The dynamics of the state variable w are modelled in [86] as

ẇ =







foff
wc

sinh
(

i
ioff

)

exp
[

− exp
(

w − aoff
wc
− i

b

)

− w
]

, i > 0

fon
wc

sinh
(

i
ion

)

exp
[

− exp
(

−w + aon
wc

+ i
b

)

− w
]

, i < 0
(3.6)

where wc, fon/off, ion/off, aon/off, and b are material and dimension dependent
positive constants.

Equations (3.5) and (3.6) satisfy the requirements of Definition 4. Clearly,
both di/dw and di/dv are non-negative. Moreover, also dw/dv is non-
negative, since i is an increasing function of v, and therefore so is sinh(i/io),
where io is either ion or ioff.

3.3 Other memristor implementations

3.3.1 Analog memristor

In [13], Chang et al. investigate a tungsten based analog memristor. This
device consists of a top palladium electrode, a tungsten oxide switching layer
and a bottom tungsten electrode.

The fabrication process is roughly described as follows. First, tungsten
is deposited on a thermally oxidized silicon substrate by sputtering at room
temperature. The middle layer is obtained by partly annealing the tungsten
film, forming thus a tungsten oxide (WO3) film. Finally, the top palla-
dium nanowire is formed by e-beam lithography. The reported Pd/WO3/W
structure has dimensions 130nm × 130nm.

19

−1 0 1

−4

0

4

Voltage (V)

C
ur

re
nt

 (
µ

A
)

Figure 3.3: The I-V curve of the tungsten oxide-based analog memristor
model with sinusoidal input voltage whose amplitude is 1.25V and frequency
is 1Hz.

An important asset of this fabrication process is that it avoids electro-
forming. A Schottky barrier is formed between the WOx film and the W
bottom electrode. Application of a positive voltage accross the device re-
sults in a drift of the oxygen vacancies toward the bottom electrode thus
resulting in an ohmic-like contact dominated by a tunnelling current. The
state variable w ∈ [0, 1] represents the normalized area index of the con-
ducting region. More precisely, w = 0 indicates fully Schottky-dominated
conduction while w = 1 indicates fully tunnelling-dominated conducting.

The defining equations of the memristor are

i = (1− w)αS [1− exp(−βSv) + wαT sinh(βT v) (3.7)

ẇ = λ[exp(η1v)− exp(−η2v)], (3.8)

where αS,T , βS,T and η1,2 are positive constants. The rate of change of
the state variable, described by (3.8), does not depend on w since in this
model the existing conducting regions do not affect the formation of new
conducting regions. An I-V curve of this memristor model is depicted in
Figure 3.3.

Remark 13. Recent results [2, 117] indicate that some analog memristors
may operate by modulating the length and width of a single filament. This
would allow for analog memristors with footprints of the same order than
those of digital memristors. In [2] first results concerning an analog mem-
ristor with an active area less than 20 nm2 were presented.

20

3.3.2 M/a-Si/p-Si -memristor

In [36] Jo and Lu propose a memristor with a top metal — for example,
silver — electrode, an active amorphous silicon layer, and a heavily doped
p-type crystalline silicon layer as the bottom layer. The apparent advantage
of such a structure is that only the standard CMOS process is required
for the device fabrication. As with the analog memristor, electroforming
is not required during fabrication of a M/a-Si/p-Si device. The resistance
switching behaviour is explained by metal filament formation inside the a-Si
matrix; the top electrode’s metal ions drift inside the active layer towards the
p-Si bottom electrode at positive applied voltages. The conducting filament
size in M/a-Si/p-Si devices is found to be much smaller than the 50 nm×
50 nm metal electrode size limited by the standard lithography process,
which implies that in principle even smaller devices can be fabricated using
nanoimprint lithography.

The conductance of this digital memristor cannot be accurately pro-
grammed in a continous fashion, but it does have multibit capability; differ-
ent resistivity levels can be programmed by controlling the maximum write
programming current. The programmed resistivity levels differ from each
other in an exponential rather than a linear fashion in contrast to the analog
memristor discussed in the previous subsection.

Jo and Lu note that that the observed switching behaviour is insensitive
to the fabrication method of the a-Si layer, but that the on/off conductance
ratio does depend on the method. For example, a low pressure chemical
vapor deposition process results in a conductance ratio 107. Moreover, two
different types of switching behaviour, rectifying and nonrectifying, are pos-
sible for a M/a-Si/p-Si device in the on-state. The type of the switching
behaviour depends on the fabrication method and the thickness of the a-Si
layer.

3.3.3 Rectifying memristor

As noted above, the M/a-Si/p-Si memristor can be fabricated to exhibit
diode characteristics. The rectifying behaviour is explained in [44] by the
motion of the silver ions inside the a-Si matrix. When the device is in the
on-state and a negative voltage is applied over it, the conducting filament
within the a-Si matrix is partially retracted thus significantly suppressing
the device conductance. The partially retracted mobile silver ions can be
readily injected again to the a-Si/p-Si interface by applying a small positive
bias. The actual programming of the memristor takes place at much larger
absolute voltages.

In Figure 3.4, an I-V curve of a simplified model of this memristor is
represented. It is assumed that the memristor has two states which corre-

21

−3 −2 −1 0 1 2 3

0

100

200

300

Voltage (V)

C
ur

re
nt

 (
nA

)

Figure 3.4: I-V curve of the rectifying memristor model. On-resistance of the
device equals 10 MΩ, and the off-resistance is 10 TΩ. The device switches
from off-state to on-state at approximately 2 V, and from on-state to off-
state at approximately −2 V. Negative current is rectified with the plotted
voltages below 1 pA.

spond to resistance values RON = 10 MΩ and ROFF = 10 TΩ so that the
resistance ratio ROFF/RON = 106, as was reported in [44]. Furthermore,
the device is assumed to switch from the off-state to the on-state at V = 2 V,
and from the on-state to the off-state at V = −2V. The rectifying ratio of
the device is assumed to be 106.

3.4 Generic model of an analog thin-film memris-

tor

In this section a generic memristor model based on the previous survey of
thin-film memristive devices is presented. To simplify the analysis of digital
memristive circuits, in this thesis a digital memristor is generally modelled
as a discrete-time binary switch:

w(t+ 1) =







0, v < V T−

1, v > V T+

w(t), V T− ≤ v ≤ V T+

(3.9)

where v is the voltage across the device at time t + 1. The voltage values
V T− < 0 and V T+ > 0 are called the negative and positive threshold volt-
age of the memristor, respectively. The threshold voltage phenomenon is

22

properly analyzed in Chapter 4. When a more elaborate digital memristor
model is required, for example the model for the TiO2 based memristor can
be used. Also the generic memristor model discussed in the rest of this
chapter can be applied, when suitable parameters are chosen.

In the following a generic analog memristor model adopted from our
publication [66] is presented. As was noted in Subsection 3.3.2, during the
fabrication process it is possible to limit the Schottky effect at one of the
interfaces making the I-V behaviour of a memristor depend mainly on the
effective tunnelling barrier. Diminishing the rectification of a memristor
makes its I-V behaviour more symmetrical regardless of its state. This
property is beneficial in some applications, as is later seen for example in
Chapter 5.

The following assumptions on the analog memristor model are made:

• The current-voltage behaviour of the device is dominated by the tun-
nelling phenomenon.

• The state variable w ∈ [0, 1] represents the normalized area index
of the conducting region — for example, the number of conducting
filaments in the vicinity of the tunnelling barrier.

• The drift velocity of charged mobile ions in the active layer of the
memristor is assumed to depend exponentially on the electric field,
and thus, voltage. Moreover, the area of the conducting region does
not affect the drift velocity of the mobile ions.

Definition 14. Given positive constants α, β, λ, and η, the generic analog
memristor model is defined by the following equations:

i = wα sinh(βv) (3.10)

ẇ = λ sinh(ηv), (3.11)

with the constraint that if w = 0 and v < 0, or if w = 1 and v > 0, then
ẇ = 0. In other words, the state variable w is hard-limited to the interval
[0, 1].

Remark 15. The parameters α, β, λ, and η are determined by material
properties of the modeled memristor, such as the barrier height for tun-
nelling, the effective tunnelling distance in the conducting region, and inter-
face effects. However, in the following they are regarded as fitting parameters
that yield I-V curves qualitatively similar to experimental data.

Remark 16. The generic analog memristor model satisfies the requirements
of Definition 4. Indeed, for a fixed w ∈ [0, 1], the current and ẇ are increas-
ing functions of voltage. On the other hand, for fixed voltage, the current is
directly proportional to the state variable w.

23

βmax

αmin

βmin

αmax

ηmin

λmaxλmin

ηmax

Figure 3.5: The generic analog memristor model with four choices of con-
stants α, β, λ and η.

In the following example, the consequences for different choices of the
constants α, β, λ and η are investigated.

Example 17. Let the input voltage be sinusoidal with frequency 1MHz and
amplitude 2V, and let the maximum current be 10µA and let w operate
within the interval [0.01, 1]. Consider the following values for the constants:

(α, β) = (αmax, βmin) or (α, β) = (αmin, βmax),

(λ, η) = (λmax, ηmin) or (λ, η) = (λmin, ηmax)

where

αmin = 4.2× 10−7, αmax = 5× 10−4, βmin = 0.01, βmax = 2,

λmin = 0.06, λmax = 1× 106, ηmin = 1, ηmax = 10.

These values do not reflect any physical limits of the constants but rather
serve simply as choices which yield visibly different I-V curves. In Fig-
ure 3.5 the I-V curves for the four possible different choices of the constants
(α, β, λ, η) are depicted, while Figure 3.6 illustrates the operation of the state
variable w for the two possible different choices of (λ, η).

Since α and λ can be regarded as scaling factors, it suffices to investigate
the effect of the constants β and η on the behavior of the memristor model.
The magnitude of the constant β defines how linear or exponential the I-V

24

0 0,25 0,5 0.75 1

0

1

0.5

Time (µs)

S
ta

te
 v

ar
ia

bl
e

w

λ
max

, η
min

λ
min

, η
max

v(t)

Figure 3.6: The dependence of the value of the state variable w on the input
voltage v(t). Depicted are the cases (λmax, ηmin) and (λmin, ηmax) and the
phase of the input voltage whose amplitude is 2V.

relationship is:

sinh(βv) ≈
{

βv, for βv ≈ 0,

exp(βv)/2, for βv > 1.
(3.12)

Similarly, the magnitude of the constant η defines how linear or exponential
ẇ is with respect to the input voltage.

The four different I-V curves of Figure 3.5 are summarized as follows:

• In the top right quarter of Figure 3.5 both β and η are close to zero,
thus yielding a completely linear model. In other words this I-V curve
corresponds to a flux-charge memristor whose memristance function
M is linear with respect to charge.

• In the top left quarter, the constant β is close to zero but η is large. The
resulting model corresponds to a memristor whose I-V relationship is
linear for a fixed state variable w, but for which the change of the
state variable depends exponentially on the input voltage. Such a
device would make an ideal binary memristor, since it essentially has
two states, and moving from one state to the other occurs abruptly
when the magnitude of the input voltage is large enough. At the
same time measuring the state of the memristor using a voltage of
small magnitude would be easy due to the linearity of current w.r.t.
voltage.

• In the bottom left quarter both β and η are large, thus yielding a
completely exponential model. Again, the memristor has two distinct
states, and moving from one state to the other occurs abruptly. How-
ever, in this model also the I-V relationship is exponential. The reader

25

may find some similarity in the behaviour of this model and the TiO2

based memristor.

• Finally, in the bottom right quarter, β is large and η is close to zero.
This makes the I-V relationship exponential, while the state variable
w changes rather linearly with respect to the input voltage. If there
exists a threshold voltage below which the memristor’s state can be
measured without disturbing it, then such a device could serve as an
analog memristor.

3.4.1 A generic SPICE model

To conclude this chapter, a SPICE model of the above described generic ana-
log memristor model is presented. The state variable is modeled as charge
trapped in the capacitor Csv. The state variable changes due to the current
coming from the voltage dependent current source Gsv. The amount of cur-
rent coming from this source depends on the voltage between nodes T and
B, which denote the top and bottom electrode of the memristor, respec-
tively. The auxiliary functions are used to keep the state variable within
the interval [0, 1]. Finally, between nodes T and B there exists a voltage
dependent current source which is denoted by Gmem. Its value depends on
the state variable and the voltage between T and B. A circuit diagram of
this model excluding the auxiliary functions is depicted in Figure 3.7.

V (w)

B

V (w)α sinh(βV (T,B))

T

λ sinh(ηV (T,B))

Figure 3.7: A circuit equivalent of the generic SPICE model. The voltage
dependent current sources model the I-V behavior of the memristor and
the rate of change of the state variable. The auxiliary functions limiting
the value of the state variable — which is represented by the voltage V (w)
across the capacitor — are omitted here for simplicity.

26

The SPICE netlist of the generic memristor model is as follows:

.SUBCKT memristor T B w PARAMS:

+alpha=5e-4 beta=0.01 lambda=1e6 eta=1 lmin=0.01 lmax=1

+svinit = 0.01

*T and B are the top and bottom electrodes, respectively

*w is the state variable limited by lmin and lmax

*svinit is the initial value of the state variable

*State variable

Gsv 0 w value = {lambda*sinh(eta*V(T,B))*trunc(V(w),V(T,B))}

Csv w 0 1

.IC V(w) {svinit}

*Output

Gmem T B value = {V(w)*alpha*sinh(beta*V(T,B))}

*Auxiliary functions:

.func sign2(var) = {(sgn(var)+1)/2}

.func trunc(var1,var2) = {(sign2(var1-lmin)+sign2(var2))*

(sign2(lmax-var1)+sign2(-var2))/2}

.ENDS memristor

27

28

Chapter 4

Memristor Programming

In order to use memristors for computing, it is important to be able to
rigorously change their states of conductance. Generally, this means either
programming a memristor’s state variable to a certain value, or changing
its value by a certain amount. The programming task requires knowledge
on the switching behavior of the memristor, for example it is essential to
know the relationship between the input voltage and the switching time of
the device. Also, when reading the memristor’s conductance one needs to
operate with a sufficiently low voltage or short time scale in order to keep
the memristor’s state unperturbated.

With these requirements in mind, the first part of this chapter is devoted
to defining some basic quantities such as the switching time and energy of
a memristor. While these concepts apply for arbitrary memristors, closed-
form solutions are provided only for the generic memristor model. Applying
the theory described in the first section, the second part of this chapter is
devoted to memristor programming methods. The main references for this
chapter are our publications [66] and [53].

4.1 Switching behavior of a memristor

In the examples of this section, the generic memristor model with the pa-
rameters α = 4.2 × 10−7, β = 2, λ = 0.06, and η = 10 is assumed. An I-V
curve of this model corresponding to a sinusoidal input voltage is depicted
in Figure 4.1.

Remark 18. In the simulations presented in this chapter, and the rest of
this thesis, the non-memristive components are modeled as follows. A tran-
sistor symbol, such as the one depicted in Figure 4.6, in a circuit diagram
implies that a Berkeley Short-channel IGFET Model (BSIM) [93] version
4.6 is used in the corresponding simulation. A switch symbol — see, e.g.
Figure 4.8 — implies that an ideal switch model of a transistor is applied.

29

−2 −1 0 1 2

−10

−5

0

5

10

Voltage (V)

C
ur

re
nt

 (
µA

)

Figure 4.1: An I-V curve of the generic memristor model used in the ex-
amples. The input sinusoidal voltage has frequency 1MHz and amplitude
2V.

Operational amplifiers are simulated by an ideal high-gain model with finite
output voltages. Wire resistances and capacitances have not been taken into
account in the simulations.

The aforementioned ideal assumptions are made to keep the emphasis of
the simulations on memristive dynamics.

4.1.1 Switching time and energy

First, the time and the amount of energy required to program a memristor’s
state using a fixed voltage vprog are derived. Suppose a memristor is initially
in the state w = w1, and that it is to be programmed to the state w = w2.
Since the rate of change of the generic memristor model’s state variable

ẇ = λ sinh(ηv) (4.1)

is constant for the fixed input voltage vprog, the switching time T (w1 → w2)
can be written as

T (w1 → w2) =
w2 − w1

λ sinh(ηvprog)
. (4.2)

The assumption of a constant ẇ at a given voltage is an ideality, which is not
true for some physical devices, for example the TiO2-memristor disussed in
Subsection 3.2. For such devices the expression for the switching time must
be derived by using a more appropriate memristor model. Note that if the

30

1 1.5 2 2.5

10
−9

10
−6

10
−3

Voltage (V)

S
w

itc
hi

ng
 ti

m
e

(s
)

1 1.5 2 2.5
10

−7

10
−6

10
−5

10
−4

Voltage (V)
A

ve
ra

ge
 p

ow
er

 (
W

)
1 1.5 2 2.5

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

Voltage (V)

E
ne

rg
y

(J
)

Figure 4.2: Programming the state variable from w1 = 0 to w2 = 1 with a
constant voltage. In the subfigures the switching time, average power, and
energy are plotted for the generic memristor model with the parameters
α = 4.2 × 10−7, β = 2, λ = 0.06, and η = 10.

evaluation of (4.2) results in a negative value, the polarity of the voltage is
incorrect, and the switching time is infinite.

Assuming that the switching energy is consumed in Joule heating, the
average power consumed during the switching process equals

P (w1 → w2) = v(t)i(t) = vprog
w1 + w2

2
α sinh(βvprog) (4.3)

again by virtue of ẇ being constant. Multiplying Equations (4.2) and (4.3),
the expression for the switching energy is obtained:

E(w1 → w2) =
1

2
vprog(w

2
2 − w2

1)
α sinh(βvprog)

λ sinh(ηvprog)
. (4.4)

From Equations (4.2) and (4.3) it is seen that the switching time de-
creases and average switching power increases exponentially with voltage.
Switching energy, however, may either decrease or increase with the pro-
gramming voltage vprog. The exact behavior of the switching energy depends
on the choice of the parameters α, β, λ, and η.

Example 19. When β < η, the switching energy decreases exponentially
with the programming voltage vprog. This result is in accordance with the re-
ported behavior of the TiO2 memristor [86]. In Figure 4.2 the switching time,
average power, and energy of the generic memristor model with the param-
eters fixed at the beginning of this section are plotted for vprog ∈ [1V, 2.5V].

31

Example 20. When λ = 0, the memristor model corresponds to a non-
linear resistor. In this case the switching time and energy given by Equa-
tions 4.2 and 4.4 are infinite, as they should be.

4.1.2 Threshold voltage

Next, the memristive threshold voltage phenomenon reported for example
in [33,104,116] is investigated. In short, a threshold for the magnitude of the
voltage across the memristor has been observed below which the devices do
not significantly change their state and above which they can be programmed
to a different state. As already noted in the first publication considering
the TiO2-based memristor [104], the threshold voltage is dynamical; any
voltage across a memristor will change its state, but the rate of change
depends on the voltage across the device. Thus, fixing the time scale of
operation defines some soft voltage region within which the state variable w
will stay for all practical purposes stationary. Here it should be noted that
some physical devices, such the one investigated in [4], have so non-linear
switching dynamics that their states stay practically unchanged, when a
small enough voltage bias is set across them.

In the following the threshold voltage phenomenon is quantitatively ana-
lyzed for the generic memristor model. Originally these results were reported
in [66]. Generally, a memristor has two threshold voltages, one for both po-
larities. Since in the generic memristor model the rate of change of the state
variable is an odd function of voltage, the negative threshold voltage has
equal magnitude to the positive threshold voltage.

Definition 21. Let ǫ > 0 and T > 0 be fixed. Let w(0) and w(T) be the
values of the state variable at time t = 0 and t = T , respectively. If the
memristor is programmed with a constant voltage vǫ for the time T and

w(T)− w(0) = ǫ,

then the voltage vǫ is called the ǫ-threshold voltage at time scale T .

In other words there is a memristor parameter dependent function vǫ(T)
which relates a threshold voltage vǫ to a given time scale T . From Equa-
tion (4.1) one solves the ǫ-threshold voltage for the generic memristor model
as

dw

dt
T = λ sinh(ηvǫ)T = ǫ (4.5)

=⇒ vǫ =
1

η
sinh−1

(ǫ

λT

)

. (4.6)

Example 22. Assuming the generic memristor model with the parameters
α = 4.2 × 10−7, β = 2, λ = 0.06, and η = 10, the 0.01-threshold voltage

32

10
−9

10
−7

10
−5

10
−3

0.5

1

1.5

2

Timescale (s)

V
ol

ta
ge

 (
V

)

Figure 4.3: The ǫ-threshold voltage for ǫ = 0.01 with different time scales.

for time scales T ∈ [1e − 9s, 1e − 3s] is plotted in Figure 4.3. The semilog
graph of the threshold voltage is a straight line, as can be deduced from the
fact that (4.6) can be accurately approximated as

vǫ =
1

η

(

ln
(ǫ

λT

)

+ ln 2
)

, (4.7)

when ǫ/(λT)≫ 1.

The term threshold implies that there is an abrupt change in the pro-
grammability of the memristor at a given voltage. Analyzing the change of
the state variable at voltage vǫ+∆v, where vǫ is an ǫ-threshold at time scale
T yields

dw(vǫ +∆v)

dt
T = λ sinh(η(vǫ +∆v))T.

If η(vǫ +∆v) is larger than 1 then the following approximation holds:

dw(vǫ +∆v)

dt
T ≈ λ exp(η(vǫ +∆v))T/2 (4.8)

= ǫ · exp(η ·∆v). (4.9)

Thus the memristor programming rate is increased by a factor of exp(η ·∆v)
if the applied voltage across it is vǫ +∆v instead of vǫ. This shows that the
constant η defines the sharpness of the threshold voltage.

Example 23. With the chosen parameters, exp(η · ∆v) = 10 for ∆v =
0.23V. Moreover, this change in the programming rate is independent of
the time scale T . In other words the threshold is equally sharp at every ǫ
and T . In Figure 4.4 the change of the state variable w is plotted for two
different time scales T = 1e-6s and T = 1e-9s. The steepness of the curves
are identical regardless of the different time scales as was to be expected.

33

1 1.4 1.8 2.2
0

0.25

0.5

0.7

Voltage (V)

C
ha

ng
e

in
 th

e
st

at
e

va
ria

bl
e

 ∆
w

∆w, T=1e−6s

∆w, T=1e−9s

Figure 4.4: The change in state variable w for two different time scales,
T = 1e-6s and T = 1e-9s as the function of the voltage across the device.

Effect of parameter variance on threshold voltage

In practice, the generic memristor model’s parameters α, β, λ, and η may
vary from their nominal values due to fabrication non-idealities. Variations
∆λ and ∆η in λ and η, respectively, cause an error ∆vǫ in the threshold
voltage vǫ, which can be upper bounded as follows [66]:

∆vǫ
vǫ
≤ 1

vǫ

(∣
∣
∣
∣
∆λ

∂vǫ
∂λ

∣
∣
∣
∣
+

∣
∣
∣
∣
∆η

∂vǫ
∂η

∣
∣
∣
∣

)

(4.10)

≈
∣
∣
∣
∣

1

vǫη
· ∆λ

λ

∣
∣
∣
∣
+

∣
∣
∣
∣

∆η

η

∣
∣
∣
∣
, (4.11)

given that ǫ/(λT)≫ 1.

This error has implications to programming methods sensitive to the
exact magnitude of the threshold voltage, as is for example the case with
the self-terminating programming described in Section 4.2.2.

4.2 Programming methods

In the remaining part of this chapter different programming methods for
memristors are investigated. First, in Section 4.2.1 methods for program-
ming a memristor relative to its current state are studied. Section 4.2.2
concentrates on absolute programming methods, in which a memristor is
programmed to an explicitly given state.

34

4.2.1 Relative methods

Programming with a square pulse

Let a memristor be in state w ∈ [0, 1], let ǫ > 0, and let vǫ be the ǫ-threshold
voltage of this memristor for time scale T . A square voltage pulse across
the memristor with amplitude vǫ and duration T changes by definition the
state of the memristor from w to w + ǫ, if this value is within the interval
[0, 1]. Similarly, a square voltage pulse with amplitude −vǫ decreases the
state variable from w to w − ǫ.

Since the rate of change of the state variable is constant for a fixed
voltage, the amount of programming is controlled by the duration of the
voltage pulse: A pulse with amplitude vǫ and duration T ′ changes the state
variable by an amount of ǫ(T ′/T). On the other hand, a train of n pulses
with amplitude vǫ and duration T increases the state variable from w to
w + nǫ.

Square voltage pulses are used in the cyclical programming method de-
scribed in Section 4.2.2.

Spike-timing-dependent plasticity

More complex programming behavior is obtained by assuming other shapes
than just a rectangular one for the programming pulse. Here a programming
scheme called spike-timing-dependent plasticity (STDP) [11] is investigated.
STDP is a learning mechanism that is postulated to exist in some synapses
of mammalian brains. It causes the synaptic weight to change as a function
of the relative spike times of pre-synaptic and post-synaptic neurons: If a
pre-synaptic spike precedes the post-synaptic one, the synaptic weight is
increased. Vice versa, if the post-synaptic spike precedes the pre-synaptic
spike, the synaptic weight is decreased. The amount of change of the synap-
tic weight depends exponentially on the time difference between the spikes.
The closer the spikes occur in time, the larger the change in the synaptic
weight.

Originally STDP for memristive devices was proposed in [98]. There the
STDP mechanism was implemented using time slots, and therefore a global
clock signal for the neurons was required. Generalizations of this idea for
asynchronous computation were investigated in [3, 72, 83]. In the following
the approach proposed in [83] is presented.

Let a memristor be located between nodes n1 and n2. When at rest,
both nodes are at ground voltage, v(n1) = v(n2) = 0. In spiking phase, the
voltage at a node changes according to the pulse depicted in Figure 4.5 a).
The amplitude of the spike is chosen to be smaller than a given ǫ-threshold
voltage of the memristor related to the time scale of the pulse. Thus, when
a node in one end of the memristor fires a single spike and the node in the

35

v
(n

1
)

v
(n

2
)

v
(m

em
)

a) b)

∆w

∆t

t

t

t

Figure 4.5: Spike-timing-dependent plasticity based programming of a mem-
ristor. a) Spike shapes that realize STDP. Dashed lines correspond to the
ǫ-threshold voltages. b) Change of memristor state as a function of spike-
timing.

other end is grounded, the state variable of the memristor changes less than
ǫ. However, when both nodes spike almost simultaneously, the magnitude
of the voltage across the memristor exceeds the ǫ-threshold, and the state
variable of the memristor is changed by ∆w, whose value depends on the
relative timing of the spikes, as depicted in Figure 4.5 a) and b). Since the
rate of change of the state variable depends exponentially on the voltage,
the resulting programming curve decays exponentially with increasing time
difference between the spikes.

4.2.2 Absolute methods

Self-terminating programming

Self-terminating programming means a programming method where the
state of the memristor relaxes within a predetermined time interval to a
targeted value. The programming is not monitored as the dynamics of the
circuit ensure that the programming of the state variable is terminated once
the target value is reached. An advantage in using self-terminating program-
ming is the simplicity of the required circuitry. As a downside the accuracy
of the programming is generally inferior to the other absolute program-
ming method presented in this section. Experimental results concerning
self-terminating programming are reported in [35].

A memristive current memory based on self-terminating programming is
depicted in Figure 4.6. Using the simple circuit depicted in Figure 4.6 a) it
is possible to program a specific current into the memristor, assuming that
it is originally in a low-conductance state w ≈ 0. A memristor and a p-type

36

+
−

vwrite

vbias

a) b)

vread

VDD VDD

Figure 4.6: a) Write and b) read configuration of a memristive self-
terminating current memory.

transistor are placed in series. The PMOS–transistor is acting as a current
source that is biased with vbias to carry a current iwrite in saturation.

Forcing a constant current through the memristor makes the voltage
across it at first larger than the ǫ-threshold voltage vǫ. Thus the memristor
programs into a more conductive state. As the voltage over the memristor
approaches vǫ, the rate of change of the state variable decreases. As a result,
the state w of the device converges approximately to a value which satisfies

iwrite = wα sinh(βvǫ). (4.12)

In the appropriate time scale, the programming effectively terminates as
the voltage across the memristor becomes sufficiently close to the threshold
voltage.

A nondestructive read operation can be carried out at the ǫ-threshold
voltage, provided that the time of the read operation is much shorter than
the write operation. In Figure 4.6 b) the read phase is illustrated. In this
circuit the operational amplifier drives the NMOS–transistor so as to keep
its source voltage at vread = vǫ. The read-out current is directed through
the current-mirror.

In Figure 4.7 simulation results for the self-terminating memristive cur-
rent memory’s write and read operations are depicted.

Remark 24. For the self-terminating memristive current memory it is ad-
vantageous that the I-V behavior of the memristor is close to linear, i.e., the
ratio α/β is large, and that the programming behavior is exponential, i.e., the
ratio λ/η is small. The latter requirement follows since the threshold volt-
age should be made as sharp as possible in order to have the programming
continue with high rate until the target value is reached.

37

0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time (µs)

S
ta

te
 v

ar
ia

bl
e

w

0 1 2 3
0

1

2

3

4

5

6

Time (µs)

C
ur

re
nt

 (
µA

)

Figure 4.7: Using the memristor as a current memory. Left subfigure:
Change of the state variable with 0.01-threshold voltage at timescale 1µs
in the write phase. The generic memristor model is used with parameters
α = 5 × 104, β = 0.01, λ = 0.06, and η = 10. The different curves cor-
respond to the target currents 1µA, . . ., 5µA shown in the right subfigure.
Right subfigure: A comparison of the stored currents (solid lines) versus
target currents (dashed curves) in the read phase.

38

To see why a linear I-V behavior is desired, recall that the programming
of the memristor begins at a low-conductance state w < 0.1. When the
PMOS–transistor is in saturation, voltage v across the memristor satisfies

iwrite/w = α sinh(βv). (4.13)

During the programming the state variable w increases and thus the left
hand side of (4.13) decreases. If the I-V behavior of the memristor were
exponential, the parameter β would be large, and hence v would become close
to vǫ for values of w relatively far from the targeted value thus slowing down
the programming. On the other hand, with a linear I-V behavior the voltage
v across the memristor stays further above vǫ as the state variable w changes
towards the targeted value, and thus also the programming rate stays higher.

In this thesis, self-terminating programming is applied in Chapters 5
and 6, which discuss memristive arithmetic operations and logic computing,
respectively.

Continuous monitoring

In continuous monitoring the current through a memristor, when a pro-
gramming voltage Vprog is set across it, is continuously compared to a de-
sired value. As long as the current is below (above) the desired value, the
memristor is allowed to program towards a more (less) conductive state.
In Figure 4.8 a circuit realizing this programming method is depicted. An
operational amplifier is used to set a virtual ground to one electrode of the
memristor in order to convert the current through the memristor to the
voltage across the resistor Rref.

Suppose that the memristor is initially at a low-conductance state w ≈ 0,
the SR-latch is set to state Q = 1, and that the switch s1 is closed. The
output of the inverting operational amplifier is connected to the input of
the comparator. The memristor is programmed towards a more conductive
state until the current through it equals I = Vref/Rref. At that point, the
state of the comparator is flipped to logical 1. This resets the SR-latch
and opens the switch s1 thus ending the programming. A simulation of the
continuous monitoring method is depicted in Figure 4.9. A problem with
this programming method is the complicated circuitry it needs, including
an operational amplifier and an SR-latch. Moreover, the desired current is
measured at a programming voltage, and thus if the I − V behaviour of the
memristor is very nonlinear, a look-up table may be required to associate
targeted read current values to the programming currents. On the other
hand, this method should be more reliable than the self-terminating method,
since the state of the memristor is being continuously monitored during the
programming. As continuous monitoring does not require clocking, it should

39

S Q

QR

−

+

−

+ -Vref

Rref

Vprog

OP-AMP

s1

Figure 4.8: Programming the memristor with continuous monitoring. The
comparator at the top of the circuit outputs logical 1 when the current
through the memristor reaches the desired value I = Vref/Rref. This switches
the state of the SR-latch and opens the switch s1 which connects the pro-
gramming voltage Vprog to one electrode of the memristor, thus ending the
programming.

also be faster than the cyclical programming method discussed next. For
these reasons it is suggested to be used in the memristive CNN application
presented in Subsection 8.6.1.

Cyclical programming

To conclude this chapter, the cyclical programming method previously pro-
posed for programming floating-gate transistors [7] is investigated. For mem-
ristors, this programming scheme was originally proposed in our publica-
tion [53]. In [118], a similar programming method was proposed and simu-
lated with a model of the TiO2-memristor, while [4] presents experimental
data of a feedback-based programming method that closely resembles cycli-
cal programming, which achieves 7 bit precision on a TiO2-based memristive
device.

The idea in cyclical programming is to divide the programming process
into two phases: the monitoring phase and the programming phase. In the
monitoring phase the state of a memristor is measured in a nondestructive
fashion, for example using a low read voltage. Depending on the result ob-
tained from the monitoring, the state of the memristor is then programmed
to the correct direction by a small constant amount in the programming
phase. After programming the system returns to the read phase, and the
two phases are alternated until the state of the memristor converges near
to its targeted value. In contrast to self-terminating programming, cycli-
cal programming can begin at any initial state of a memristor. Cyclical

40

0 2 4 6 8 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time (µs)

S
ta

te
 v

ar
ia

bl
e

w

Figure 4.9: Simulation of the continuous monitoring method. The generic
analog memristor model with parameters α = 5e − 4, β = 0.01, λ = 0.06,
η = 10, yielding a threshold voltage 1.27 V at 1 µs timescale was used.
The reference voltage and resistor were Vref = 4.5 V and Rref = 330 kΩ,
respectively, corresponding to a current I = Vref/Rref ≈ 13.6 µA through
the memristor, or the value w = 0.6 of state variable at the programming
voltage Vprog = 1.5 V.

programming can be made as precise as needed or physically possible by ad-
justing the lengths and amplitudes of the programming pulses, as is shown
in [4]. The downside of this programming method is the additional circuitry
needed in comparison with self-terminating programming. It should also
be noted that cyclical programming requires clocking unlike the continuous
monitoring method.

In the left subfigure of Figure 4.10 the circuitry needed for the monitoring
and programming phases is depicted. In the monitoring phase, the switch
s1 is open and the switch s2 is closed, and thus the voltage IN is compared
to ground value and the result is stored into the capacitor. In practice the
current source im is realized for example with an NMOS–transistor. In the
programming phase the switch s1 is closed and the switch s2 is opened,
and the memristor is programmed either towards a more conductive or a
less conductive state, depending on the voltage vc sampled into the capaci-
tor. Switching cyclically between the two operation phases, the state of the
memristor eventually converges to satisfy

i(Vm) = im, (4.14)

where i(Vm) is the current through the memristor at voltage Vm. A simula-
tion of the cyclically programmed current memory is depicted in the right
subfigure of Figure 4.10. Here a memristor is programmed cyclically to store
currents from 1µA to 4µA.

41

0 0.5 1 1.5 2 2.5 3
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Time (µs)

C
ur

re
nt

 (
µA

)

Figure 4.10: Cyclical programming of a memristor. Left subfigure: The
current memory configuration. Right subfigure: The current through the
memristor corresponding to input voltage of 1V during the monitoring phase
of the cyclical programming. Initially, the value of the state variable is w =
0.5 corresponding to a current of 2.5µA. The different curves correspond
to the different currents (1µA, 1.5µA, . . ., 4µA) to be stored. The generic
memristor model with parameters α = 5 × 10−4, β = 0.01, λ = 0.06, and
η = 10 is used. The sampling rate of the switch s2 is 100 Msps.

42

Chapter 5

Analog Arithmetic
Operations

In this chapter the absolute programming methods discussed in Section 4.2.2
are used to perform analog arithmetic operations with memristors. Three
basic arithmetic operations are discussed: copying, addition, and multipli-
cation.

Copying and addition do not assume any specific memristor model, and
these operations can be modified to operate also on signed numbers, as is
described in Section 5.2. The variable to be copied or added is the current
through a memristor, when a fixed voltage is set across it. Hence, the mem-
ristors acting in these operations do not need to have the same parameters or
threshold voltages. If they do have same parameters, then these operations
act on the state variables of the memristors.

A memristive multiplication operation is described in Section 5.3. It
requires a memristor whose I-V behaviour is exponential or sinh-type, and
it operates only on positive numbers which are represented by the state
variable of a memristor. Since it operates on state variables, it is less robust
against parameter variations and device mismatch than the other memristive
arithmetic operations described in this chapter.

The presented arithmetic operations are further used in this thesis in the
memristive applications of Chapters 8 and 9. The main references for this
chapter are our publications [53] and [55].

5.1 Copying the state of a memristor

In the following, two different methods for copying the current of a memris-
tor are described. The first of the proposed methods uses self-terminating
programming, while the second uses cyclical programming, as described in
Section 4.2.2.

43

m1

2Vǫ2

m2

< Vǫ1 > Vǫ2

Figure 5.1: Copying the current from one memristor to another using self-
terminating programming.

5.1.1 Self-terminating copying of the current of a memristor

Let Vǫi be the threshold voltage for some small ǫ and some timescale T of
the memristor mi, where i = 1, 2. For the self-terminating copy operation,
assume that the threshold voltages satisfy Vǫ1 ≥ Vǫ2. Now, copying the
current through memristor m1 at voltage Vǫ2 is achieved by setting the
voltage 2Vǫ2 over the memristors connected in series as shown in Figure 5.1.
Assuming that the memristor m2 is initially in a low-conductance state, the
voltage across it lies within the interval (Vǫ2, 2Vǫ2]. While this is true, it
follows that the voltage across the memristor m1 satisfies

V (m1) < Vǫ2 ≤ Vǫ1. (5.1)

Ideally, the self-terminating programming continues until the voltage across
m2 reaches Vǫ2, when the duration of the programming is comparable to T .
By (5.1) the state of m1 stays approximately constant during the program-
ming. The currents through the memristors thus converge to satisfy

Im2
(Vǫ2) = Im1

(Vǫ2), (5.2)

where Im(V) stands for the current through the memristor m at a voltage
V . In other words, the current through m1 at voltage Vǫ2 is programmed
to be the current of m2 at the same voltage. Should the parameters of
the memristors m1 and m2 be identical, this means that in the end of the
programming w2 = w1, that is, the state of m1 is copied as the state of m2.

There are some practical problems in self-terminating copying. As the
state of m2 approaches the desired value, the voltage across the device de-
creases and so does the programming rate. For example, as shown in the
left subfigure of Figure 5.2, copying state values close to w = 0.9 is not
accurate. Also, the closer the voltage across m1 is to Vǫ1, the faster the
undesired change of the state of m1. Regardless of the model parameters,
copying small state values results in more accurate results as shown in the
right subfigure of Figure 5.2. The right subfigure of Figure 5.2 demonstrates
that a more nonlinear model with (λ = 1e-9, η = 50) yields fairly accurate

44

0 1 2 3
0

0.2

0.4

0.6

0.8

1

Time (s)

S
ta

te
 v

ar
ia

bl
e

w

S
ta

te
 v

ar
ia

bl
e

w

0 1 2 3
0

0.2

0.4

0.6

0.8

1

Time (s)µ µ

reference

λ = 0.05, η = 10

λ = 1e− 6, η = 20

λ = 1e− 9, η = 50

Figure 5.2: Copying the current from a memristor to another. Left subfigure:
Copying the current corresponding to the value of state variable w = 0.9 with
three different memristor models, η = 10, 20, 50. Right subfigure: Copying
different currents with a memristor model with λ = 1e-9, η = 50.

results also with values of w close to 1. It should be noted that the value
η = 50 yields an extremely exponential, and possibly unrealistic, model with
respect to programming voltage.

5.1.2 Cyclical copying of the current of a memristor

A more accurate although also more complex copy operation is obtained
by using the cyclical programming method. A cyclical copying circuit is
depicted in Figure 5.3. It is assumed that the read voltage VR satisfies
2VR < Vǫ1,2 in order to keep the states of the memristors unchanged during
the read phase.

The cyclical copying circuit operates similarly to the one depicted in
Figure 4.10 of Chapter 4. In the read phase, V1 = VR, V2 = −VR, and the
voltage IN is compared to the ground potential at the comparator. Then
V1 is driven to high impedance in order to keep the state of m1 unchanged
during the programming phase. During the programming phase, the voltage
V2 is set to ground, and depending on the polarity of the node ct — which
corresponds to the polarity of the node IN during the read phase — either
VP or −VP is connected to IN by the switch s1, where VP is a programming
voltage suitable for the memristor m2. This changes the state of m2 by a
small amount either to the more conductive or the less conductive direction,
and hence the circuit gradually converges to satisfy Im2

(VR) = Im1
(VR),

where Imi
(VR) is the read current through the memristor mi. Again, in the

45

V

V

−
+

ct
s2

VP

GND

s1

ct

ct

−VP

IN

1

2

m1

m2

Figure 5.3: A circuit for the cyclical current copy operation.

case of identical memristor parameters, this means that the state variable
w2 is programmed to equal w1.

5.2 Addition of currents of memristors

Next, a memristive circuit performing addition is presented. Due to the
inherent inaccuracy of the self-terminating programming, only cyclical pro-
gramming is considered in the more demanding arithmetic operations dis-
cussed in the rest of this chapter. In Figure 5.4 a memristive arithmetic
unit capable of setting a constant current as the read current of a memris-
tor, copying a memristor’s read current to another memristor, and summing
the read currents of two memristors and storing the result to a third one, is
depicted. All of these arithmetic operations are realized by monitoring the
voltage of the node IN and programming the memristors according to its
polarity.

In the cyclical addition the goal is to change the state of m1 until
Im1

(VR) = Im2
(VR) + Im3

(VR). The circuit of Figure 5.4 can be config-
ured to read and programming phases with switches s1 and s2. In the read
phase the driver voltages are V1 = VR and V2 = V3 = −VR for a small
non-destructive read voltage VR. The operational amplifier is used to com-
pare the node IN to the ground voltage. If the read conductance of m1 is
larger (smaller) than the sum of the read conductances of m2 and m3, the
operational amplifier produces a LO (HI) comparison voltage, which is then
sampled with s2 to the capacitor. In the programming phase the capaci-
tor voltage ct controls whether the programming increases or decreases the
conductance of m1. More precisely, the voltage V1 is set to ground, and

46

V V

V

−
+

ct
s2

VP

GND

s1

ct

ct

−VP

IN

1 2

3

m1 m2

m3Iref1

Figure 5.4: A basic arithmetic circuit for cyclical constant current program-
ming, copying and (signed) addition.

depending on the polarity of ct, either VP or −VP is set to IN by the switch
s1. During the programming phase the drivers V2 and V3 are set to high
impedance in order to prevent unwanted programming of the memristors
m2 and m3.

The cyclical programming forces the voltage at node IN during the read
phase to approach zero. The amount of programming during one cycle (step
size) can be reduced by shortening the duration of a programming cycle, or
lowering VP , as was experimentally shown in [4]. If the step size is small
enough, a sequence of read and programming phase cycles assures that the
read currents satisfy

Im1
(VR) ≈ Im2

(VR) + Im3
(VR). (5.3)

In other words, the sum of the read currents of the two memristors m2 and
m3 is programmed as the read current of the memristor m1. In Figure 5.5,
a simulation of this addition operation is depicted with identical memristors
thus resulting in w1 = w2 +w3.

5.2.1 Representing signed numbers

The memristive addition described above operates only on positive quanti-
ties Imi

(VR). In order to perform signed addition, the circuit of Figure 5.4
can be complemented with a current source, as is described in the following.

Let wmin and wmax be the minimum and maximum value of the state
variables of the input memristors of the addition, and let Imin and Imax be
the corresponding read currents. Let us denote by I0 = (Imin + Imax)/2
the read current corresponding to the value zero: read currents which are

47

0 100 200 300
0.2

0.3

0.4

0.5

0.6

0.7

0.8

w
m

em
w

1

w
2
+w

3

w
2

w
3

.

time (µs)

Figure 5.5: SPICE simulation of summing two memristor currents (states)
into a third memristor. Memristor characteristics were simulated using the
SPICE model presented in Chapter 3.

smaller than I0 are regarded as negative values, and read currents which are
larger than I0 are correspondingly regarded as positive values. As a result,
a read current Ix is associated with a numerical value x by the formula

x = (Ix − I0)/Is, (5.4)

where Is is a scaling constant corresponding to a unit current.

Suppose that the read currents of the memristors m1 and m2 are Ix
and Iy, respectively, and that their signed sum Ix+y is to be stored to the
memristor m3. From (5.4) it follows that

x+ y = (Ix + Iy − 2I0)/Is =⇒ Ix+y = Ix + Iy − I0. (5.5)

In other words, setting the current source Iref1 in the circuit depicted in
Figure 5.4 to output the negative current −I0 allows signed addition of
two inputs. In practice, this current source can be implementd by a pair
of CMOS-transistors to allow both positive and negative currents. Signed
addition of n inputs requires the additional current of −(n− 1)I0.

If the read current is a linear function of the state variable of the mem-
ristor as is the case with the generic analog memristor model of Section 3.4,
and if the parameters of the memristors are identical, then this operation
corresponds to the signed addition of the state variables of the memris-
tors. In Figure 5.6 a simulation of such a case is plotted. Initially the state
variables satisfy w1 = 0.1, w4 = 0.6, and w5 = 0.2. Since w = 0.5 corre-
sponds to the zero value, the state variables w4 and w5 represent numbers
0.1 and −0.3, when the scaling constant Is equals to the read current at
w = 1. After the cyclical programming, w1 = 0.3, yielding thus the result
−0.2 = 0.1 + (−0.3).

48

0 0.5 1 1.5 2
0.1

0.2

0.3

0.4

0.5

0.6

0.7

time (µs)

w
m

em

w
1

w
2
+w

3

w
2

w
3

Figure 5.6: Simulation of the cyclical signed addition. The generic analog
memristor model was used with parameters α = 5e− 4, β = 0.01, λ = 0.06
and η = 10. Here I0 ≈ 1.25 µA.

5.3 Multiplication of states of memristors

There are various options to carry out multiplication and division in analog
CMOS circuits [27]. One method of interest in the context of this section
is the translinear principle. Translinear circuits operate in the logarithmic
domain where multiplication and division can be carried out by addition
and subtraction, respectively. For example, in a diode-connected CMOS
transistor biased to the subthreshold region, the input current is converted
to a logarithmic voltage. With memristors it is the state variable that needs
to be converted to a logarithmic voltage.

Current monitoring provides a way to perform the translinear principle
with the generic analog memristor model. The operation is based on the
observation that the analog memristor model has-sinh type I-V relationship
which can be approximated by an exponential function with sufficiently large
voltages. Consider the circuit shown in Figure 5.7. Let the current Iref2
through the analog memristors m2 and m3 be chosen to be sufficiently large
so that their I − V relationship can be approximated as

Iref2 = wiα sinh(βVi) ≈ wiα exp(βVi)/2 i = 2, 3. (5.6)

Solving the voltages yields

Vi ≈
1

β
ln

(
2Iref2
αwi

)

i = 2, 3, (5.7)

and thus,

Vref = V2 + V3 =
1

β
ln

(

4I2ref2
α2w2w3

)

. (5.8)

49

+ −
V2

V3

V1

Vref

Iref1Iref2

m3

m2 m1

Figure 5.7: A circuit configuration used in cyclical multiplication of state
variables of memristors m2 and m3.

Setting Iref1 = 2I2ref2/α yields

V1 =
1

β
ln

(
2Iref1
αw1

)

=
1

β
ln

(

4I2ref2
α2w1

)

. (5.9)

Now if m1 is cyclically programmed until V1 = Vref, it follows by (5.8)
and (5.9) that w1 = w2w3. Division of two state variables is obtained by
programming w3 instead of w1. This multiplication scheme works as long
as the memristors have sinh-type I-V behavior, mismatch between devices
is small, and the result of the multiplication (or division) lies within the
interval [wmin, wmax].

The current Iref2 should be large enough to enable accurate approxima-
tion of the exponential function as described above, while the monitoring
time should be short enough to avoid unwanted programming of m1 and
m2. Figure 5.8 shows a simulation of the multiplication. Memristor m2 is
at state 0.5, while the state of memristor m3 is at 0.7. After the cyclical
programming, w1 converges to approximately w2w3 = 0.35.

5.4 Memristive arithmetic unit

A memristive arithmetic unit featuring cyclical constant current program-
ming, current copying, signed addition of currents, and multiplication of
state variables is depicted in Figure 5.9. When s3 is closed, the circuit is
configured as the signed addition circuit of Figure 5.4. When s3 opened, the
circuit is configured as the multiplication circuit of Figure 5.7. Additional
switches enabling subtraction and division are left out of this circuit for
simplicity. Moreover, for convenience it is assumed that the current source
Iref1 can output both positive and negative currents. It should be noted that

50

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

time (msec)

w
m

em

w
1

w
2
w

3

w
2

w
3

Figure 5.8: Simulated multiplication of analog memristor state variables.

more memristors can be added to this circuit — for example the subcircuit
containing memristors m2 and m3 can be duplicated.

−
+

GND

ct
s2

VP

V3

Iref2
V2

V1

Iref1

−VPm2

m3

s1

IN

m1

ct

cts3

s3

s3

Figure 5.9: A memristive arithmetic unit. The switch s3 determines whether
the circuit operates in additive or multiplicative configuration, while the
switches s1 and s2 are used to control the cyclical programming.

5.5 Remarks on implementation

The feasibility of memristive arithmetic depends on the programming be-
haviour of the memristor, and on the resolution of its state variable. For
example, it is beneficial that the memristors have a steep programming
threshold, and it is important to be able to change the memristor’s state
by small steps by using suitable voltage pulses. So far in this thesis the
state has been assumed to take continuous values within [wmin, wmax], an

51

assumption which may not hold in reality, where the state corresponds for
example to a distance of ions in crystalline semiconductor bulk as discussed
in Chapter 3.

The analog memristor presented in [13] seems to be a suitable candi-
date for implementing arithmetic operations. Indeed, its state variable can
be changed by small steps in a seemingly continuous range. Moreover, the
model proposed for this tungsten oxide -based memristor closely resembles
the generic analog memristor model of Section 3.4, thus making the mul-
tiplication operation at least in theory possible. However, no arithmetic
experiments using this memristor have been yet conducted.

As a conclusion, the following remarks on memristive arithmetic oper-
ations can be made. If analog memristors with sufficiently high resolution
and low device variability can be fabricated, they could be used for analog
addition and subtraction, where the variables in these arithmetic operations
are presented as currents through the memristors. Moreover, if the I-V
characteristic of the memristor has sinh-type relationship, then approximate
multiplication could be obtained by using the translinear method proposed
in Section 5.3.

52

Chapter 6

Memristive Implication Logic

Implication logic was proposed as a natural form of logic for memristors
by Phil Kuekes in a talk presented at the first Memristor and Memristive
Systems Symposium at University of California, Berkeley in 2008 [50]. The
message of this presentation was that a binary memristor is capable of not
only storing information but also of performing logic on it: a memristor can
act both as a latch and a gate. However, since memristors are two-terminal
devices, they cannot be used as typical Boolean logic gates such as the OR
and the AND gates, and thus a different approach for logic computing must
be taken. As it turns out, the logic operation called material implication,
which was studied by Whitehead and Russell in early 1900s in Principia
Mathematica [112], can be straightforwardly implemented on memristors
with self-terminating programming. Combined with the logical constant
false — with memristors, this means unconditionally resetting a memristor
to the off-state — implication logic is functionally complete, which means
that all Boolean functions can be synthesized using it.

This chapter is organized as follows. In Section 6.1, self-terminating
memristive logic operations are described, and their digital abstractions are
presented. In the next four sections, different synthesis methods for memris-
tive implication logic are described. Section 6.2 presents a synthesis method
based on the 2–depth NAND–form of a Boolean function. This method re-
quires the most computational steps of the synthesis methods discussed in
this chapter, but on the other hand, uses only the elementary single-input
implication operation. Section 6.3 presents a single-input synthesis method
which uses the minimum number of memristors. A variation of this method
using multi-input implication operation is described in Section 6.4; with
multi-input implication logic the number of computational steps required to
synthesize a Boolean function can be significantly reduced. Another solution
for shortening the computational sequences is to use complementary repre-
sentation of variables as is discussed in Sections 6.2.1 and 6.4.2. Accordingly,

53

m2m1

vset

R0

vcond

Figure 6.1: Stateful memristor logic. The resulting state of m2 depends of
its previous state and the state of m1. The state of m1 remains unchanged
during the operation.

the shortest computational sequences are then obtained by applying both
the complementary representation and the multi-input implication opera-
tion, as is the case with the NAND–OR method described in Section 6.4.2.
Section 6.5 summarizes the synthesis methods, and Section 6.6 discusses
the limitations and possible improvements of memristive implication logic.
This chapter is concluded by Section 6.7, wherein a stateful logic opera-
tion requiring rectifying memristors and enabling multi-output operation is
described.

The literature on memristive implication logic is rather limited and hence
this chapter is based mainly on our original contributions [58, 62–64, 89].
Other references used for this chapter are [12], an empirical article on im-
plication logic with the titanium dioxide-type memristor discussed in Sec-
tion 3.2, and the more theoretically inclined publications [28,84].

As a technical note, in the following the logical operators AND and OR
are either written as Boolean functions AND(·) and OR(·), or as logical con-
nectives ∧ and ∨. A Boolean function is a function f : Bn → B, where n is
some positive integer and B = {0, 1}. Moreover, in this chapter memristors
are identified with their states, e.g., m1 = 0 denotes w1 = 0.

6.1 Memristive stateful logic

Kuekes [50] proposed in 2008 that the circuit depicted in Figure 6.1 would
enable self-terminating stateful memristor logic. Here the memristors are
assumed to be bistable linear devices having the on-resistance RON and
the off-resistance ROFF, where the resistance ratio is assumed to satisfy
√

ROFF/RON ≫ 1. The series resistance R0 is chosen as R0 =
√
RONROFF,

so that R0/RON = ROFF/R0 ≫ 1. Memristor m1 is driven with a con-

54

m1 m2 m2 := m1 → m2

0 0 1
0 1 1
1 0 0
1 1 1

Table 6.1: The truth table of material implication operation, resulting from
the choice vcond, vset > 0.

ditional voltage vcond whose magnitude is smaller than the programming
threshold voltage of the memristor, |vcond| < V T . For simplicity it is as-
sumed here that V T = V T+ = −V T−, where the notation of Section 3.4
is used. Memristor m2 is driven with a programming voltage vset, whose
value depends on the chosen stateful logic operation and is determined in
the following. As a result, a stateful logic operation is performed on m2.
In the following subsections, all possible combinations of polarities for the
conditional and programming voltages and the resulting logical operations
are considered.

6.1.1 Material implication

First, suppose that vcond > 0 and that vset > V T satisfies

vset − vcond < V T . (6.1)

As before, the binary values 0 and 1 are used to denote the low-conductance
and the high-conductance states of a memristor, respectively. Now the volt-
age divider in circuit of Figure 6.1 ensures that m2 is programmed to the
on-state exactly when m1 = 0, since the voltage across m2 is not enough to
program it if m1 = 1. On the other hand, the voltage across the memristor
m1 is maintaned below V T at all times, and therefore its state remains un-
changed during the operation. The resulting state of m2 := OR(¬m1,m2)
can be read from the truth table presented in Table 6.1. This truth table
corresponds to the logical connective called material implication that is de-
noted by the symbol→. Material implication and the logical constant false,
corresponding to resetting a memristor’s state to 0, form a universal set of
logical connectives, which means that any Boolean function can be synthe-
sized using them. It is crucial to note that the result of the implication
operation is stored to the state of the memristor m2, that is, to one of the
inputs of the operation. The synthesis of Boolean functions for memristive
implication logic is further investigated in Sections 6.2, 6.3 and 6.4.

In [12] the circuit of Figure 6.1 was shown to perform memristive im-
plication logic, when the TiO2–based memristor was used. The switching
rate of this device is a highly nonlinear, even super-exponential, function

55

KEEP

R0

Figure 6.2: The keeper circuit added in parallel with R0 in the implication
circuit of Figure 6.1.

of the input voltage as was noted in Section 3.2. Such nonlinearity is ad-
vantageous for the implementation of memristive implication logic, as the
threshold voltage of the memristor should be made as sharp as possible in
order to minimize undesirable programming of the memristors.

In general however, the simple circuit of Figure 6.1 may not perform the
implication operation correctly. If m1 and m2 are in the low-conductance
state while performing the implication operation m2 = m1 → m2, R0 should
keep the voltage over m2 large until m2 has changed state. However, as m2

becomes more conductive, the current through R0 increases, and correspond-
ingly the voltage across m2 decreases. This in turn slows down and possibly
even terminates the programming of m2 before the state m2 = 1 is reached.
This problem is dealt with in [54] by adding a keeper subcircuit in parallel
with R0. The keeper circuit depicted in Figure 6.2, activated by a KEEP
signal, maintains an initially low voltage over R0 if m1 = 0.

In Figure 6.3 the implication circuit of Figure 6.1 augmented with the
keeper subcircuit is simulated. Once again, the generic memristor model
is assumed, this time with parameters α = 0.001, β = 0.1, λ = 0.06, and
η = 10. Using time scale T = 1µs, the threshold voltage of this model for
ǫ = 0.01 is

vǫ =
1

η
sinh−1

(ǫ

λT

)

≈ 1.27V. (6.2)

The exact values of the parameters are not important, but as was noted
above, it is advantageous to have as sharp a threshold voltage as possible,
and therefore a large value of the parameter η. The control signals are
operated as follows. At t = 0 s the voltage vcond is set to 1.2 V. Then, at
t = 0.5 µs the KEEP signal is activated. Finally, at t = 1 µs, the voltage
vset is set to 1.8 V. The resistor R0 is chosen to have a resistance value of
10 kΩ.

56

0 0.5 1 1.5 2
0

0.5

1

Time (µs)

S
ta

te
 v

ar
ia

bl
e

w

Initial values: w
1
 = w

2
 = 0.01

0 0.5 1 1.5 2
0

0.5

1

Time (µs)

S
ta

te
 v

ar
ia

bl
e

w

Initial values: w
1
 = 0.01, w

2
 = 1

0 0.5 1 1.5 2
0

0.5

1

Time (µs)

S
ta

te
 v

ar
ia

bl
e

w

Initial values: w
1
 = 1, w

2
 = 0.01

0 0.5 1 1.5 2
0

0.5

1

Time (µs)
S

ta
te

 v
ar

ia
bl

e
w

Initial values: w
1
 = w

2
 = 1

w
1

w
2

Figure 6.3: Simulation of the implication circuit with four different initial
conductance states of the memristorsm1 andm2. The initial and final states
of m1 and m2 satisfy the truth table of the material implication.

6.1.2 Other stateful logic operations

Consider then the case where the polarities of the programming and condi-
tional voltages are both negative:

−V T < vcond < 0,

vset < −V T , and vset − vcond > −V T .

Analogously to the above, one might falsely assume that in this case the
memristorm2 is programmed to the off-state exactly whenm1 = 0, resulting
in m2 := AND(m1,m2). To see why this is not the case, suppose that the
memristors are in states m1 = 0 and m2 = 1. Then the voltage across R0

becomes close to vset due to voltage division, and thus the voltage across m2

becomes too small to change its state to m2 = 0. Consequently, this choice
of voltages does not change the state of m2 at all.

Choosing −V T < vcond < 0 and 0 < vset < V T with the constraint

vset − vcond > V T (6.3)

programs m2 to the on-state exactly when m1 = 1, thus yielding m2 :=
OR(m1,m2). Again a keeper subcircuit may be required for correct opera-
tion. It should be noted that the OR operation together with ’set’ or ’reset’
do not form a universal set of logical connectives. Therefore at least some

57

other stateful logic operation must be used together with OR to synthesize
all Boolean functions.

The fourth possible choice of polarities 0 < vcond < V T and −V T <
vset < 0 with the constraint

vcond − vset > V T (6.4)

yields also the OR-function, but this time on m1. As a result of the oper-
ation, m1 := OR(m1,m2). However, the logical operation changes if recti-
fying memristors are used. Then this fourth choice of polarities results in a
operation called converse nonimplication. The use of rectifying memristors
for converse nonimplication is discussed in more detail in Section 6.7.

6.1.3 Computational sequence

The NAND function is universal, which means that all Boolean functions
can be written in a form containing NANDs of input variables. Thus to show
that memristive implication logic is universal, it is sufficient to synthesize
the NAND function with it. Consider thus three memristors, m1, m2 and
m3, and assume that m3 is initially in the off-state m3 = 0. Suppose then
that two implication operations are performed in succession, first from m1

to m3, and then from m2 to m3. The resulting state of m3 can then be
written as

m3 = m2 → (m1 → m3) = ¬m2 ∨ (¬m1 ∨m3) (6.5)

= (¬m1 ∨ ¬m2) = ¬(m1 ∧m2), (6.6)

since by definition p→ q = (¬p)∨ q. This sequence of operations can briefly
be written as a computational sequence

NAND(m1,m2) : m3 = 0, m1 → m3, m2 → m3, (6.7)

where the result is stored as the state of the memristor m3. Recall, that in
memristive stateful logic the result of the logical operation is stored into the
second operand of the operation, thus mi → mj stands for mj := mi → mj.

From now on, the memristors are divided into three sets: the set P of
input memristors pi, the set A of auxiliary memristors aj , and the set R
of result memristors rk. The states of the input memristors represent the
values of the input variables of the corresponding Boolean function, and
they remain constant at all times. Therefore in a computational sequence,
operations of the form pi = 0 and x→ pi are forbidden, as input memristors
can be located only on the left side of the material implication as in pi → aj .

The auxiliary memristors act as the memory needed to store interme-
diate results of the computation, and the value of the Boolean function is

58

finally stored into the result memristors. If non-complementary representa-
tion of variables is used, the set R = {r} contains only a single memristor.
It is assumed that initially all the auxiliary memristors and the result mem-
ristors are set to state 0. Now the computational sequence of NAND can be
rewritten as

NAND(p1, p2) : p1 → r, p2 → r. (6.8)

Other commonly used Boolean functions can be synthesized as

NOT(p1) : p1 → r (6.9)

OR(p1, p2) : p1 → a, a→ r, (6.10)

a = 0, p2 → a, a→ r (6.11)

AND(p1, p2) : p2 → a, p1 → a, a→ r. (6.12)

Notice that the OR function can be also obtained from the stateful logic
operation for which vcond < 0 and vset > 0. Here its synthesis by material
implication is given for completeness, and also because if rectifying memris-
tors are used, the OR operation may not be available. From the above it
follows that no auxiliary memristors are needed for the synthesis of NAND
and NOT functions, while one auxiliary memristor a is required for the
synthesis of OR and AND functions.

6.2 Synthesis with 2–depth NAND form

All Boolean functions can be written in the disjunctive normal form

f ≡ OR(AND(. . .), . . . ,AND(. . .)), (6.13)

which is useful for the synthesis of Boolean functions in conventional CMOS–
based logic. For memristive implication logic, a more useful form is the
2–depth NAND form

f ≡ NAND(n1, . . . , nk), (6.14)

where each ni is a NAND–clause of (possibly inverted) input variables. This
2–depth NAND form is easy to establish by substituting the OR and all
ANDs in the disjunctive normal form expression of f by NANDs. Notice,
that any NAND–clause ni can be synthesized by using a single auxiliary
memristor. For example, the following computational sequence yields r =
NAND(p1,¬p2), when initially a = r = 0:

p1 → r, p2 → a, a→ r, a = 0. (6.15)

The last step a = 0 is performed to allow possible subsequent computa-
tional sequences. In the next Theorem the computational sequence (6.15)
is generalized for the 2–depth NAND form (6.14), as proposed in [64].

59

Theorem 25. Two auxiliary memristors suffice to synthesize any Boolean
function f : Bn → B.

Proof. Let f be written in the 2–depth NAND–form (6.14). Consider the
ith NAND–clause

ni = NAND(pα1

1 , pα2

2 , . . . , pαn
n), (6.16)

where αj ∈ {0, 1} for all j = 1, . . . , n and the notation p0 = ¬p and p1 = p
is used. For j = 1, . . . , n, perform the computational sequence

• pj → a1, a1 → a2, a1 = 0, if αj = 0

• pj → a2, if αj = 1

After this, the value of ni is stored as the state of the auxiliary memristor
a2. Then perform the computational sequence

a2 → r, a2 = 0. (6.17)

When the above procedure is iterated for all i = 1, . . . , k, the state of
the result memristor r equals

r = NAND(n1, . . . , nk) = f(p1, . . . , pn). (6.18)

Example 26. In the examples of this chapter, the synthesis of the three-
input parity function S3(p1, p2, p3) = p1 + p2 + p3 (mod 2) using different
methods is considered. The function S3 is chosen since it cannot be re-
duced with conventional methods such as the Karnaugh map [40] and the
Quine-McCluskey algorithm [77], and since significantly different lengths of
computational sequences are obtained for this function with different synthe-
sis methods. Moreover, S3 is required for constructing a full-adder circuit,
which makes it practically important. Let S3 be written in the 2–depth NAND
form as

S3 ≡ NAND(NAND(p1, p2, p3),NAND(p1,¬p2,¬p3),
NAND(¬p1, p2¬p3),NAND(¬p1,¬p2, p3)). (6.19)

The corresponding computational sequence is obtained from the constructive
proof of Theorem 25, and it has length 5 + 3 · 9 = 32.

60

R0

¬p1 p2 ¬p2 ¬p3p1 p3

Figure 6.4: Complementary representation of input variables.

6.2.1 Complementary NAND–method

In complementary representation two memristors are reserved for each input
and result variable: one memristor holds the value of the variable while the
other holds its inverted value. This reduces the number of steps required for
synthesizing a Boolean function, as no additional steps are required for the
inverted input variables. On the other hand, complementary representation
doubles the number of memristors required for computation, as is depicted
in Figure 6.4.

Complementary representation can be used to reduce the lengths of the
computational sequences obtained from the 2–depth NAND form. Now
a general NAND–clause ni of (6.16) does not require using an auxiliary
memristor, but can instead be simply computed as

pα1

1 → r1, pα2

2 → r1, . . . , pαn
n → r1. (6.20)

Since one of the result memristors can be used as an auxiliary memristor
during the computation, no additional auxiliary memristors are required in
this method, and thus A = ∅.
Example 27. Recall the 2–depth NAND form (6.19) of S3. With comple-
mentary representation the corresponding computational sequence has length
4 · 5 + 1 = 21, and it consists of the following steps:

p1 → r2, p2 → r2, p3 → r2,

r2 → r1, r2 = 0,

p1 → r2, ¬p2 → r2, ¬p3 → r2,

r2 → r1, r2 = 0,

¬p1 → r2, p2 → r2, ¬p3 → r2,

r2 → r1, r2 = 0,

¬p1 → r2, ¬p2 → r2, p3 → r2,

r2 → r1, r2 = 0, r1 → r2.

61

The final step r1 → r2 is performed to maintain the complementary repre-
sentation. As a result, r1 = S3(p1, p2, p3) and r2 = ¬r1.

6.3 Minimizing the number of auxiliary memris-
tors

No auxiliary memristors are required in the 2–depth NAND–method us-
ing complementary representation, while the number of input and result
memristors must be doubled in order to maintain the complementary rep-
resentation of variables. On the other hand, in the non-complementary
NAND–method described in Section 6.2.1, two auxiliary memristors and
a single result memristor are required. In such a non-complementary set-
ting the number of auxiliary memristors must be non-zero, since without
auxiliary memristors only Boolean functions of the form

f ≡ NAND(pi1, . . . , pik) (6.21)

can be synthesized. This raises the question of exactly how many auxiliary
memristors are required to synthesize any given Boolean functionf : Bn →
B, when a non-complementary representation of variables is assumed. The
answer is one, and this result, adopted from our publication [62], is presented
in the following.

6.3.1 Synthesis with a single auxiliary memristor

To simplify notations of this section, let the singleton sets A = {a} and
R = {r} be combined into a set of work memristors

Q = {q1, q2} := A ∪R. (6.22)

In the following it will be shown that all Boolean functions f : Bn → B can
be synthesized by using the set Q so that the value of the function is finally
stored into one of the work memristors qi. This proves that all Boolean
functions can be synthesized by using a single auxiliary memristor, when
non-complementary representation of variables is used.

Let i, j ∈ {1, 2}, i 6= j. An implication operation from the set of in-
put memristors P is allowed only into qi, while qj is used to maintain the
result of the computational sequence computed so far. The following three
computational subsequences are allowed at any stage of computation:

SO1 = (p→ qi) for any p ∈ P (6.23)

SO2 = (qi → qj, qi = 0) (6.24)

SO3 = (qi → qj, qi = 0, qj → qi, qj = 0, i↔ j). (6.25)

62

In SO3, the expression i ↔ j means that the indices of qi and qj are in-
terchanged. Repeated application of SO1 results in expressions qi = ¬πk,
where πk is a positive product term of the form πk = AND(pk1, pk2, . . . , pkr),
where each pkh ∈ P . SO2 flushes the content of qi to qj, resulting in
qj = OR(πk, q

′

j), where q′j is the state of qj before applying the rule. SO3

first flushes qi to qj, then qj to qi, and then interchanges the roles of qi and
qj. In other words, SO3 results in qj = NOR(πk, q

′

j).
Using all of the three computational subsequences defined above yields

Boolean functions representable by the following recursive conjunctive form

f ≡ ((. . . ((πL)αL ∨ πL−1)
αL−1 . . . ∨ π2)

α2 ∨ π1)
α1

= (¬π1 → (¬π2 → . . . (¬πL−1 → ¬παL

L)αL−1 . . .)α2)α1 , (6.26)

where πk are positive product terms, αk ∈ {0, 1}, and the notation x1 = x,
x0 = ¬x is used. Conversely, all Boolean functions of the form (6.26) can
be computed using the set of computational subsequences {SO1, SO2, SO3}.
The following Theorem is proved in our publication [62].

Theorem 28. Every Boolean function f : Bn → B can be written in
the recursive conjunctive form of Equation (6.26), where the terms πi for
i = 1, . . . , 2n are the positive product terms of n input propositions or-
dered in reversed lexicographical order, that is, π1 = AND(p1, p2, . . . pn),
π2 = AND(p2, p3, . . . , pn), π3 = AND(p1, p3, . . . , pn), . . .,
πn+1 = AND(p1, p2, . . . , pn−1), . . ., π2n−2 = p2, π2n−1 = p1, and π2n = F is
the logical constant false.

Proof. Follows immediately from Theorem 31.

Corollary 29. All Boolean functions f : Bn → B can be synthesized using
two work memristors and thus only one auxiliary memristor.

The reason for leaving the proof of Theorem 28 to Section 6.4 is that the
proof is constructive, and it will be formulated in the case of multi-input
implication logic, which is practically more important than the synthesis
method discussed here. Moreover, the resulting computational sequence is
optimized in Section 6.4.1 by a procedure resembling the Karnaugh map
and the Quine-McCluskey algorithm. This procedure, with some changes
that are discussed in [89], can also be used to reduce the length of the of the
recursive conjunctive form (6.26).

Example 30. Continuing Example 26, the parity function S(p1, p2, p3) can
be written in the recursive conjunctive form as

S ≡ (¬π1 → (¬π2 → (¬π3 → (¬π4 →
→ (¬π5 → (¬π6 → (¬π7 → ¬π0

8)
1)1)0)1)1)0)1, (6.27)

63

where

π1 = AND(p1, p2, p3), π2 = AND(p2, p3), π3 = AND(p1, p3),

π4 = AND(p1, p2), π5 = p3, π6 = p2, π7 = p1, and π8 = F.

As was the case with the NAND–form, this expression cannot be reduced.
Assuming that initially a = r = 0, the corresponding computational sequence
has length 30. To see this, suppose that at some point of the computation
q1 = z and q2 = 0, where {q1, q2} = {a, r}. In order to have q1 = ¬π → z,
one needs first to perform the implications pi → q2 corresponding to the
input propositions in π (SO1), then to perform q2 → q1, and finally to
set q2 = 0 (SO2). For example, 5 computational steps are required for
q1 = ¬π1 → z. Moreover, each inversion except ¬π0

8 requires two additional
computational steps according to the subsequence SO3. In total, the number
of computational steps required to synthesize S using two work memristors
is

5 + 4 + 4 + 4 + 3 + 3 + 3
︸ ︷︷ ︸

¬πi→

+2 + 2
︸ ︷︷ ︸

inv.

= 30.

6.4 Multi-input implication logic

Apparently, a practical problem with the synthesis methods discussed so far
is the relatively large number of computational steps required to synthe-
size a given Boolean function. However, the lengths of the computational
sequences can be substantially reduced with a multi-input implication oper-
ation, as will be shown in the following. In [54] we noted, that implication
operations of the form

OR(pi1, pi2, . . . pik)→ a (6.28)

can be realized in a single computation step by applying the voltage vcond
on all of the memristors in the OR–clause simultaneously as depicted in
Figure 6.5. As long as the on/off conductance ratios of the memristors
are large enough compared to the number of simultaneously used input
memristors, the multi-input implication operation is available.

In order to maximally benefit from the multi-input implication opera-
tion, one would like to express Boolean functions in a form which consists
mainly of multi-input implications, whose OR–clauses contain as many input
variables as possible. Moreover, the number of implication operations should
be minimized in order to minimize the total number of computational steps.
These requirements are satisfied by the following Theorem, which combines
results from our publications [64,89], and presents a multi-input implication
form for Boolean functions.

64

m2 m4m1 m3

vsetvcond

m4 = OR(m1,m2)→ m4

R0

vcond HZ

Figure 6.5: A multi-input implication operation yielding m4 =
OR(m1,m2)→ m4. The driver of memristor m3 is set to a high impedance
state.

Theorem 31. Every Boolean function f : Bn → B can be written in the
recursive multi-input implication form

f ≡
(
σ1 →

(
σ2 → . . .

(
σL−1 → σαL

L

)αL−1 . . .
)α2
)α1

, (6.29)

where the terms σk for all k = 1, . . . , L are OR–clauses of positive (i.e., not
inverted) input variables of the form

σk = OR(pi1, pi2, . . . , pik).

Proof. Let P = {p1, p2, . . . , pn} be the set of input variables of a Boolean
function f : Bn → B. First, all possible OR–clauses of positive input
variables are ordered in a reversed lexicographical order, that is, σ1 =
OR(p1, p2, . . . , pn), σ2 = OR(p2, p3, . . . , pn), σ3 = OR(p1, p3, . . . , pn), . . .,
σn+1 = OR(p1, p2, . . . , pn−1), . . ., σL−2 = p2, σL−1 = p1, and σL = T, where
L = 2n and T denotes logical constant true.

Denote the value of f(0, 0, . . . , 0) by α1 ∈ {0, 1}. Now f can be written
in the form

f ≡ (σ1 → f ′)α1 , (6.30)

where f ′ : Bn → B is some Boolean function. Equation (6.30) follows from
the following facts:

1. σ1 = 0 if and only if p1 = p2 = . . . = pn = 0

2. 0→ q = 1 for all q ∈ {0, 1}

3. If σ1 = 1, the truth value of the right hand side expression of Equa-
tion (6.30) depends on f ′.

Next concentrate on f(1, 0, . . . , 0). The OR–clause σ2 = 0 if and only if
p2 = p3 = . . . = pn = 0, but p1 can be either 0 or 1. Since the case with all

65

zeros was already dealt with σ1, the OR–clause σ2 corresponds to the input
vector (1, 0, . . . , 0). It follows as above that

f ≡ (σ1 → (σ2 → f ′′)α2)α1 , (6.31)

where α2 = 1 if f(1, 0, . . . , 0) = f(0, 0, . . . , 0) and 0 otherwise.

Next, define the set of input vectors

{xi ∈ {0, 1}n|i = 1, . . . , L}

by the rule

xi(j) = 0 ⇐⇒ pj ∈ σi, (6.32)

where xi(j) denotes the jth component of the vector xi and pj ∈ σi means
that the input proposition pj occurs in the OR–clause σi. For example x1 =
(0, 0, . . . , 0) and xL = (1, 1, . . . , 1). Let then bi = f(xi) for all i = 1, . . . , L,
and let αi = 1 − XOR(bi, bi−1) for all i, where b0 = 1. Now, by a similar
reasoning than above with σ1 and σ2, one obtains

f ≡
(
σ1 →

(
σ2 → . . .

(
σL−1 → σαL

L

)αL−1 . . .
)α2
)α1

. (6.33)

Remark 32. One auxiliary memristor is required to synthesize all Boolean
functions with the multi-input implication logic. However, the only purpose
of the auxiliary memristor is to invert the intermediate result at given points
of the computation, and thus if some additional CMOS circuitry can be used
to invert the state of the result memristor then no auxiliary memristors are
required.

Example 33. The parity function S(p1, p2, p3) can be written in the multi-
input implication logic form as

S ≡ (σ1 → (σ2 → (σ3 → (σ4 →
→ (σ5 → (σ6 → (σ7 → σ0

8)
1)1)0)1)1)0)0, (6.34)

where

σ1 = p1 ∨ p2 ∨ p3, σ2 = p2 ∨ p3, σ3 = p1 ∨ p3, σ4 = p1 ∨ p2,

σ5 = p3, σ6 = p2, σ7 = p1, and σ8 = T.

As before, this expression cannot be reduced. The corresponding computa-
tional sequence has length 13, since each implication operation → takes one
computational step, and each inversion takes two computational steps.

66

6.4.1 Reducing the disjunctive form

The synthesis methods described in this chapter which are based on the
2–depth NAND form or the conjunctive normal form benefit from the con-
ventional reduction procedures such as the Karnaugh map or the Quine-
McCluskey algorithm. Similar procedure for the recursive multi-input im-
plication form (6.29) would be very useful, as the constructive proof of The-
orem 31 uses the maximal number of 2n − 1 multi-input implication oper-
ations to synthesize any Boolean function f : Bn → B. In the following, a
reduction procedure from our publication [89] is presented.

To motivate this procedure, consider a Boolean function f : {0, 1}n →
{0, 1} that satisfies

f(0, 0, . . . , 0) = f(1, 0, . . . , 0). (6.35)

By the proof of Theorem 31, f can be written in the form

f ≡ (σ1 → (σ2 → f ′′)α2)α1 . (6.36)

However, now α2 = 1 − XOR(f(0, 0, . . . , 0), f(1, 0, . . . , 0)) = 1. This allows
to rewrite Equation (6.36) as

f ≡ (σ1 → (σ2 → f ′′)1)α1

= ((¬σ1) ∨ (¬σ2) ∨ f ′′)α1

= (¬σ2 ∨ f ′′)α1

= (σ2 → f ′′)α1 , (6.37)

since σ1 = p1 ∨σ2. Thus the disjunctive term σ1 can be eliminated, and the
number of implication operations is reduced by one.

This simplification procedure is generalized as follows. Let the sets P (σi)
for i = 1, . . . , L = 2n be defined as

P (σi) = {x ∈ {0, 1}n|x(j) = 0 if pj ∈ σi}. (6.38)

For example, P (σ1) = {(0, 0, . . . , 0} and P (σ2) = {(0, 0, . . . , 0), (1, 0, . . . , 0)}.
Perform then the following steps.

1. Initialize k = 1 and Q = {0, 1}n.

2. While Q 6= ∅, denote Si = P (σi) ∩ Q for all i = 1, . . . , L. Choose
among the sets Si a set Sj with maximal cardinality which satisfies

f(x) = c ∀x ∈ Sj,

where c is a constant (either 0 or 1). Set Q = Q \ Sj, bk = c, rk = j,
and k = k + 1.

Repeat this step until Q = ∅.

67

0 10 20 30 40 50 60
0

2000

4000

6000

8000

10000

12000

14000

Number of required implications

N
um

be
r

of
 e

xp
re

ss
io

ns

No implication reduction
Reduced single−input implications
Reduced multi−input implications

Mean ≈ 24

Mean = 55Mean ≈ 12

Figure 6.6: Distributions of lengths of computational sequences required for
Boolean functions with four variables.

3. Denote the number of terms bk obtained above as K. Set b0 = 1.
Calculate αk = 1 − XOR(bk, bk−1) for every k = 1, . . . ,K. While
αK = 1, set K = K − 1.

Now the Boolean function f can be written in the form

f ≡ (σr1 → (σr2 → . . . (σrK−1
→ σαK

rK)αK−1 . . .)α2)α1 . (6.39)

Note the following:

i) In step 2) a set Sj always exists. To see this, let x ∈ Q have a minimal
Hamming weight, and let σ be the corresponding disjunctive term (cf.
proof of Theorem 31). Then P (σ) ∩Q = {x}.

ii) In step 3) the reduction of terms can be made since σL = T and
q → T = T regardless of the value of q.

iii) The possible term (σ → T0)0 in Equation (6.39) simplifies to σ.

Remark 34. The reduction procedure described above can be modified for
the single-input implication method discussed in Section 6.3. Figure 6.6
shows the numbers of computational steps required for synthesizing Boolean
functions with four variables, with and without using the reduction procedure.

68

6.4.2 NAND–OR method

As the final synthesis method described in this chapter, a multi-input method
using complementary representation of variables is presented. In this NAND–
OR synthesis method [64] the idea is to write a Boolean function f : Bn → B
in the “inverted conjunctive normal form”

f ≡ NAND(o1, . . . , ok), (6.40)

where each oi is an OR-clause of variables and their negations. The compu-
tation of the value of f can then be performed as a sequence

o1 → r, o2 → r, . . . , ok → r, (6.41)

where r is the result memristor and the operations oi → r are multi-input
implication operations of the form (6.28). As the OR–clauses contain input
variables and their negations, these must be available for the implication
operation. In practice, one may use the complementary representation dis-
cussed in Subsection 6.2.1, in which case no auxiliary memristors are needed,
but then two result memristors r1 and r2 must be used in order to maintain
the representation. An alternative solution is to use n auxiliary memristors,
and to store the negations of the input variables to these memristors at the
beginning of the computation. This solution requires n additional computa-
tional steps when compared to the complementary version, but may reduce
the overall number of memristors in an implication circuit almost to half, as
the auxiliary memristors form a shared resource that can be used in subse-
quent Boolean computations with new sets of input and result memristors.

Example 35. The parity function S3(p1, p2, p3) can be written in the NAND–
OR form as

S3 ≡ NAND(OR(p1, p2,¬p3),OR(p1,¬p2, p3),
OR(¬p1, p2, p3),OR(¬p1,¬p2,¬p3)). (6.42)

Thus the corresponding computational sequence has the following five steps:

OR(p1, p2,¬p3)→ r1, OR(p1,¬p2, p3)→ r1,

OR(¬p1, p2, p3)→ r1, OR(¬p1,¬p2,¬p3)→ r1, r1 → r2,

if complementary representation of all variables is used. When n = 3 auxil-
iary memristors is used, the computational sequence is

p1 → a1, p2 → a2, p3 → a3, OR(p1, p2, a3)→ r,

OR(p1, a2, p3)→ r, OR(a1, p2, p3)→ r, OR(a1, a2, a3)→ r,

a1 = a2 = a3 = 0.

When the auxiliary memristors are all reset simultanously, this approach
requires eight computational steps.

69

Method CR MI # Aux. memr. # Steps

NAND 2 32
Complementary NAND X 0 21
Recursive 1 30
Recursive multi-input X 1 13
NAND–OR with n aux. memr. X n 8
NAND–OR X X 0 5

Table 6.2: Comparison of the presented synthesis methods. CR and MI
refer to using complementary representation and multi-input implication
respectively. The entry # Steps corresponds to the number of computational
steps required to synthesize the parity function S3.

6.5 Summary of the synthesis methods

In the above, several different synthesis methods for memristive implication
logic were presented. In Table 6.2 their properties are summarized, and the
number of computational steps — implications and resets — required for
computing the parity function S3 are given. The number of required compu-
tational steps depends strongly on whether or not multi-input implication
and complementary representation of variables can be used. The availability
of multi-input implication depends on the on-off ratio of the devices, while
complementary representation doubles the number of memristors.

6.5.1 Worst-case algorithmic complexities

The complementary NAND–OR method requires at most 2n−1 + 1 steps.
This follows from the fact that the minimum number of OR–clauses in the
conjunctive normal form of a Boolean function and its complement equals
2n−1. Moreover, one computational step is required for maintaining the
complementary representation of the result of the computation. When a
non-complementary version with n auxiliary memristors is used, the worst-
case number of computational steps is 2n−1 + n + 1, as each of the input
variables must to be implicated to the corresponding auxiliary memristor.

The complementary 2–depth NAND–method requires at most (n+2)2n−1+
1 operations. This follows from the above and the fact that each clause in
the 2–depth NAND–form contains n propositions, that is, variables or their
negations.

The non-complementary 2–depth NAND–method requires at most
(2n + 2)2n−1 operations. This follows from the fact that representing each
proposition inside a NAND clause requires on average (1/2) · 1+ (1/2) · 3 =
2 computational operations — each variable requires 1, and each negated
variable requires 3 computational operations.

70

The multi-input recursive method requires at most 3(2n − 1) computa-
tional operations, corresponding to the case αi = 0 for all i. Without multi-
input, all the positive product terms must be constructed as sequences of
implications thus requiring in total at most (8 + n)2n−1 − 4 computational
steps. This follows from the fact that each positive product term of length
i requires i implications and a reset operation. Since

n∑

i=1

(i+ 1)

(
n
i

)

= 2n + n2n−1 − 1, (6.43)

the maximum number of computational steps equals

3(2n − 1) + 2n + n2n−1 − 1 = (8 + n)2n−1 − 4. (6.44)

One may thus conclude that asymptotically the NAND–OR method and
the recursive multi-input method belong to the same complexity class, while
the other synthesis methods are asymptotically more complex.

Figure 6.7 shows the numbers of computational steps required for synthe-
sizing Boolean functions with four variables, when no reduction procedure
is used. Results for the NAND, complementary NAND, and NAND-OR
methods were obtained by choosing the minimum of the numbers of steps
required to synthesize a Boolean function and its complement.

6.6 Limitations and improvements

Even when the multi-input operation and the complementary representation
of variables are used, the foremost disadvantage of memristive implication
logic is the necessity of performing the computations as a sequence of op-
erations. Sequences take processing time, and require rather complicated
control signals, which must be stored into and retrieved from some addi-
tional memory. On the other hand, an advantage of stateful logic is that
no long-range data transfer is required, as the computation is performed
directly at the memory.

Another major limitation is the lack of multi-output operations. Indeed,
suppose that one would like to perform simultanously the implication op-
erations m2 → m3 and m2 → m4 in the circuit of Figure 6.5. This is not
possible, since as initially m3 = 1, it follows that the voltage vset is driven on
the horizontal wire, and thus the voltage over m4 is insufficient to program
it to the on-state. In [42], a fan-out method which copies the state of a
memristor to the states of other memristors was proposed. However, this
method uses switches to divide the horizontal wire into smaller pieces, and
thus trades off some of the density available in the stateful logic circuit.

As was noted in Remark 32, multi-input implication logic benefits from
the addition of a CMOS subcircuit which implements the inversion of the

71

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5
x 10

4

Number of required computational operations

N
um

be
r

of
 B

oo
le

an
 e

xp
re

ss
io

ns

NAND
NAND (complementary representation)
Recursive (multi−input)
NAND−OR (complementary multi−input)

Figure 6.7: Distributions of the total numbers of implication and reset oper-
ations required for computing the values of all Boolean functions with four
inputs. The maximum number of computational operations required by the
NAND–OR method equals 9.

state of a memristor, as this eliminates the need for auxiliary memristors.
One could also consider other auxiliary circuits to shorten the computational
sequences. In [84], Pershin and di Ventra suggest adding a capacitor to the
common horizontal line of the circuit depicted in Figure 6.1. This allows to
store intermediate results of the computing as the charge of the capacitor
and it also shortens the computational sequences.

For example, to compute AND(m1,m2), one charges the capacitor for a
short time first through the memristor m1 and then through the memristor
m2. Then the capacitor is connected to the memristor m3, which is initially
at state m3 = 0. If both of the memristors m1 and m2 are in the conducting
state, m1 = m2 = 1, the voltage across the capacitor becomes large enough
to switch the state of m3. In all other cases the voltage across the capacitor
is too small to change the state of m3.

This approach reduces the number of computational steps, and thus
seems promising for practical applications. Moreover, Pershin and di Ven-
tra suggest the capacitor to be replaced by a memcapacitor, whose state can
evolve during the computation thus yielding an additional computational re-
source. However, it seems that such hybrid circuits may not cope as well
with the physical variances of the memristors as the “pure” memristive im-
plication logic does. For example, in the computation of the AND-function

72

m1 m2 m2 := m1 6← m2

0 0 0
0 1 1
1 0 0
1 1 0

Table 6.3: The truth table of converse non-implication, which is imple-
mented by choosing vcond > 0 and vset < 0.

described above, a mismatch of 100% in the value of the conductance at the
on-state of a memristor will ruin the computation. Indeed, if the conduc-
tance of the memristor m1 in state m1 = 1 is twice of its nominal value, the
charge in the capacitor becomes large enough to switch m3 even if m2 is in
off-state. In pure memristive implication logic, even as large mismatches as
the above may be tolerated, as long as the on/off conductance ratio is large
enough.

In any case, to make memristive implication logic truly worthwhile, it
should be parallelized as suggested in [12,84]. This idea is further discussed
in Chapter 8.

6.7 Converse nonimplication

To conclude this chapter, the use of rectifying binary memristors for stateful
logic is discussed. As noted in Section 6.1, rectifying memristors are required
to enable the stateful logic operation which corresponds to the following
choice of the driving voltages:

0 < vcond < V T , −V T < vset < 0, and vset − vcond < −V T . (6.45)

When rectification is used to prevent negative currents in the circuit of Fig-
ure 6.1, it follows that m2 is programmed to the off-state exactly when
m1 = 1. The corresponding logical connective is called converse nonimpli-
cation, denoted by the symbol 6←, and its truth table is given in Table 6.3.
The resulting state of m2 can now be written as

m2 := m1 6← m2 = AND(¬m1,m2). (6.46)

The truth table of converse nonimplication equals that of material im-
plication when the logical interpretations of the memristors’ states are in-
terchanged, or when in the truth table zeros are substituted with ones and
vice versa. Therefore the synthesis results described in Sections 6.2 and 6.3
can be straightforwardly translated for converse nonimplication. However,
the multi-input operation for converse nonimplication is not as useful as it

73

was for implication logic, since

OR(m1, . . . ,mk) 6← m2 = AND(¬m1, . . . ,¬mk,m2), (6.47)

that is, only AND-clauses result from multi-input converse nonimplication.
A practical advantage of memristive implementation of converse nonim-

plication is that the keeper subcircuit described in Section 6.1 is no more
required. This follows from the fact that the programming voltage vset never
interferes with the conditional voltage vcond due to the rectification. This
fact has another, very significant corollary: in contrast to the memristive
implication operation, converse nonimplication allows for multi-output op-
erations. Indeed, a multi-output converse nonimplication operation is per-
formed simply by driving the programming voltage vset on multiple mem-
ristors simultaneously. This allows for example copying the negated state of
a memristor simultaneously to multiple memristors. Multi-output converse
nonimplication will be further discussed in Section 8.3 which describes the
parallelization of memristive stateful logic.

74

Chapter 7

Memristive Crossbars

So far in this thesis circuits and systems consisting of only small numbers of
memristors have been considered. However, one of the main driving forces
of memristor technology is the prospect of crossbar architectures with very
large numbers of memristive devices.

This chapter discusses the design and operation of memristive crossbar
arrays. First, general properties of a memristor crossbar are described in
Section 7.1. Section 7.2 presents two different approaches to interface CMOS
circuitry with a memristive crossbar. In particular, in Subsection 7.2.1 a
demultiplexer architecture is briefly described, while the rest of Section 7.2
concentrates on the CMOS/molecular hybrid approach, as it is currently the
most promising interface design. Section 7.3 concludes this chapter with an
investigation on write and read operations in a memristive crossbar.

7.1 Memristive crossbar

A memristive crossbar is depicted in Figure 7.1. It is a 2D array, which
consists of two perpendicular nanowire layers. The nanowires act as the top
and bottom electrodes of memristors, and they can be patterned for example
by e-beam lithography complemented with reactive ion etching, and lift-off
processing for the upper nanowire layer [34,43,57,105]. A typical nanowire
half pitch of the nanowires in the reported physical memristive crossbars so
far is in the range 30 nm−100 nm. The memristive material is laid between
the two nanowire layers, and as a result, a memristor is formed at each
crosspoint of two nanowires. Some significant advantages of a memristive
crossbar structure are listed in the following.

• The memristive crossbar is a memory structure whose each memory
cell consists of a single device.

• It has the highest possible device integration density 1/(4F 2
nano). Here

75

Figure 7.1: Memristive crossbar. Here the horizontal and vertical nanowire
layers are depicted in gray, whereas the memristive layer is depicted in light
blue.

Fnano is the lithographic feature size, or half-pitch, of a nanowire, which
can be potentially scaled down to a few nanometers [34,107].

• The crossbar structure is self-aligned: only the dimension between the
two electrodes of a memristor needs to be cricitically controlled [34].

Only a few fabricated large-scale memristive crossbar arrays have been
reported so far. In [16], a metal-oxide memory with a capacity of 64 Mb was
presented. To my best knowledge this is the largest memristive memory
crossbar that has been reported so far. In [34] Jo et al. described the
fabrication process of a 1 kb crossbar array consisting of the M/a-Si/p-Si
-memristors, which were discussed in Section 3.3.2. An advantage of a M/a-
Si/p-Si type memristor is that it is fabricated using standard semiconductor
materials, and therefore it is CMOS compatible. Moreover the a-Si switching
medium allows high-yield fabrication: for the 1 kb crossbar the reported
yield was 98% [34].

7.2 Interfacing memristive crossbars with CMOS

circuitry

Since memristors are passive devices, nanowires must be driven from outside
of the crossbar. This can be realized by complementing the memristive
crossbar array with a CMOS layer that provides signal restoration and gain.
The large feature size of the CMOS layer compared to the considerably
smaller one of the nanowire crossbar does not need to be a problem, since
the number of memristors in the nanowire crossbar is quadratic with the
number of nanowires to be driven, as can be seen from Figure 7.1. In this
section, two different interfacing approaches, namely, the demultiplexer and
the CMOL architectures, are described.

76

u1 u2 u3 d1 d2 d3

VDD GND

vn1

vn2

Figure 7.2: Nanowire demultiplexer using field-effect-transistors as the junc-
tion components. Microwires are depicted as the wide vertical gray lines,
while the nanowires are depicted as the horizontal black lines. The FETs
are depicted as white circles; microwires supplying the rail voltages are con-
nected by vias to the nanowires.

7.2.1 Demultiplexers

Demultiplexer architectures for interfacing memristive crossbars with CMOS
circuitry were first studied in [15,22,120]. By definition, a demultiplexer is
a logic component that uses a small number M of input address lines to
select exactly one of N output data lines [99]. A demultiplexer for driving
the nanowires of a memristive crossbar can be implemented as a crossbar
structure consisting of microwires and nanowires. At chosen junctions of a
microwire and a nanowire there exists an electrical component which is used
to control the voltage on the nanowire.

Two nanowire demultiplexers, one for each of the rail voltages VDD and
GND, are depicted in Figure 7.2. Here the components located at some of
the junctions of microwires and nanowires are assumed to be field-effect-
transistors (FETs), which are gated by the microwires. The FETs reside
on the nanowires and are connected in series so that all the FETs located
on a given nanowire must be gated in order to pass a rail voltage onto that
nanowire. For example, a high voltage on the microwires u1 and u2 passes
the rail voltage VDD onto the nanowire n1.

Other demultiplexer architectures based on nanoscale resistors and diodes
have been proposed for example in [99]. In general it is advantageous that
the microwire-nanowire junction components have nonlinear I − V char-
acteristics [99]. Furthermore, coding theory can be used to decide opti-
mal junction patterns for these components, as has been considered in [51]
and [90].

77

HORIZONTAL NW COLUMN ACCESS

VERTICAL NW COLUMN ACCESS

H
O

R
IZ

O
N

T
A

L
N

W
 R

O
W

 A
C

C
E

S
S

V
E

R
T

IC
A

L
N

W
 R

O
W

 A
C

C
E

S
S

Figure 7.3: Layout of a CMOL circuit. The CMOS cells are depicted as
square tiles, with circular interfaces to the nanowire crossbar. The nanowire
crossbar is depicted as a mesh of line segments; notice that only part of the
crossbar is depicted to make the CMOS layer visible. Each CMOS cell is
addressed by four microwires which are connected to the address decoders
depicted at the perimeters of the circuit. The four-line addressing is used
in order to independently control the horizontal and the vertical nanowires
via the switches shown in Figure 7.4 b). Although not depicted here, there
exists a memristor at each crossing of the nanowires. The abbreviation NW
stands for nanowire.

7.2.2 CMOL-type architectures

In the CMOS/molecular hybrid [71] (CMOL) architecture the memristive
crossbar is fabricated on top of a layer of CMOS cells. The cells are com-
prised of pass-transistors, CMOS-to-crossbar pins, and inverters. Each of
the horizontal nanowires is connected to the input of one of the inverters,
while the vertical nanowires are similarly connected to the outputs of the
inverters. The memristive crossbar is slightly rotated with respect to the
CMOS layer so that each nanowire can be electrically connected to exactly
one pin extending up from the CMOS layer [100]. An abstract view of the
memristive CMOL architecture is depicted in Figure 7.3.

Figure 7.4a) provides a more detailed view of the pins connecting the
CMOS layer to the memristive crossbar. As can be seen, the pins must
grow thinner towards the nanowires, and the tips of the pins are of the same
size with the nanowire half-pitch. Such a design may pose some difficulties

78

a) b)

nanowire

microwires used for
addressing the CMOS cell

CMOS

Figure 7.4: Memristive CMOL architecture. a) A nanowire crossbar on top
of a CMOS layer. The CMOS pins are depicted as red and blue circles. The
red pins are connected to the lower layer or the crossbar, while the blue
pins are connected to the upper layer. b) A CMOS cell used in the CMOL
architecture, consisting of two pass transistors, CMOS pins, and an inverter.

to the fabrication, and may require also nanoscale alignment. Possible so-
lutions to these problems are described later in this section, where the field
programmable nanowire interconnect architecture and the CMOL variant
with segmented nanowires are presented.

A CMOS cell used in the CMOL architecture is depicted in Figure 7.4b).
Each cell is addressed by four microwires which are connected to the address
decoders depicted in Figure 7.3. The four-line addressing is used in order
to independently control the horizontal and the vertical nanowires. Any
memristor in the crossbar can be selected by an appropriate choice of a
horizontal and a vertical nanowire. Addressing in CMOL architecture is
discussed in more detail in Subsection 7.2.3.

Example 36. Assuming that the crossbar consists of rectifying binary mem-
ristors, the CMOL architecture can be used to implement wired-OR logic
as depicted in Figure 7.5. In this example it is assumed that the vertical
nanowires are connected to the horizontal nanowire by memristors that are
in the high-conductance state. Then the voltage on the horizontal nanowire
equals the OR of the voltages on the vertical nanowires, and this result is
inverted at the CMOS cell thus yielding NOR(A,B). Here it is also assumed
that there exists a resistive path to ground at the input of this inverter to

79

B

A

NOR(A,B)

Figure 7.5: Using a CMOL architecture for wired-OR logic.

enable such resistive logic. Wired-OR and inversion make the CMOL archi-
tecture functionally complete, since all Boolean functions can be synthesized
by using only OR-gates and inverters.

The pins on the surface of the CMOS layer are distributed uniformly,
which makes CMOL an extremely dense architecture. However, the aligment
of the nanoscale pins poses also a challenge for fabrication. Moreover, due to
the non-complementary nature of the wired-OR logic, a low supply voltage
VDD is required to keep the static power dissipation within reasonable limits.
An initial estimate for a large-scale CMOL supply voltage VDD is about 0.3
V, which is lower than projected for CMOS circuits by the International
Technology Roadmap for Semiconductors (ITRS) through the year 2020 [1,
100].

To overcome the aforementioned challenges, a generalization of the CMOL
architecture called the Field Programmable Nanowire Interconnect (FPNI)
was proposed by Snider and Williams in [100]. In FPNI, logic is performed
at the CMOS layer, and only signal routing is realized by the memristive
crossbar. Accordingly, other logical primitives than just inverters are needed
at the CMOS layer. In FPNI, the memristive crossbar is connected to CMOS
logic components such as AND and OR gates, latches and buffers — in prin-
ciple, any multi-input logic gate could be used. To facilitate the fabrication,
the nanowires are suggested to form CMOS feature sized pads, to which the
CMOS pins are connected to. A FPNI-type nanowire layer is depicted in
Figure 7.6.

Remark 37. To simplify the nomenclature, in the rest of this thesis any
architecture consisting of a memristive crossbar fabricated on top of an array

80

Figure 7.6: FPNI-type nanowire crossbar. Instead of nanoscale CMOS pins,
larger pads are formed onto the nanowires. The CMOS cells are shown by
black square tiles. Although not shown here, they can contain arbitrary
CMOS logic circuitry.

of CMOS cells is called CMOL-type, regardless of the design of the cells or
the CMOS pins.

7.2.3 Addressing in a CMOL-type architecture

As noted above, the addressing of a memristive crossbar is established in a
CMOL-type architecture by two sets of row and column decoders and pass
transistors. The four-wire addressing allows to select any pair of a horizontal
and a vertical nanowire. This selection is then used for reading from and
writing to the memristive crossbar as is further described in Section 7.3.2.

Suppose that the CMOS cells be arranged as a
√
N×
√
N grid consisting

of in total N cells. Then 4
√
N microwires are required for addressing the

cells. To retain unique addressing of memristors, the memristive crossbar
can then have at most N2 memristors; one for each crosspoint of N hor-
izontal and N vertical nanowires, where each nanowire is connected by a
via to a CMOS cell. In practice, the number of memristors within a single
memristive crossbar is determined by the nanowire pitch, and is typically
smaller than N2 — this and the effect of segmenting the nanowires on the
number of memristors is discussed in the next subsection.

A limitation of this addressing scheme is that only a single horizontal and
a single vertical nanowire can be selected at a time. Indeed, a simultaneous

81

selection of two CMOS cells that are not on the same CMOS row or column
unavoidably leads to the selection of two undesired CMOS cells. This re-
striction to a single-junction selection may not be a problem in pure memory
architectures such as the ones discussed in Section 8.1, but in other appli-
cations it would be advantageous to be able to select multiple nanowires
at once. For example, parallel implication logic described in Section 8.3
benefits significantly from multi-input and multi-output operations.

A direct, although area consuming, solution to this problem is to dupli-
cate the CMOS wiring and the pass transistors to allow additional address-
ing. Another straighforward solution is to add a local memory bit to each
of the CMOS cells to indicate whether or not those cells should participate
into the driving of the nanowires. These bits can be written in row-parallel
manner — one CMOS cell row at a time — thus requiring at most

√
N

programming cycles for the whole CMOS layer.

7.2.4 Segmented nanowires

In the initial version of CMOL architecture [71], interface pins to the upper
nanowire layer were supposed to pass between nanowires on the lower level.
This approach requires precise nanoscale aligment and poses challenges for
the fabrication. To facilitate the fabrication, in [102] an improved version of
the CMOL architecture was proposed, in which the upper-layer pins inten-
tionally interrupt the lower-layer nanowires. In theory, such a modification
improves the circuit yield substantially, raising its theoretical upper bound
to 100% even without any nanoscale aligment [102].

In the following it is assumed that both of the nanowire layers consist of
segmented nanowires. This mitigates the fabrication requirements even fur-
ther and is well-suited for computing architectures that operate with locally
connected processor elements, as is for example the case with the Cellular
Neural Networks discussed in Chapter 8. In principle, such segmentation re-
duces the density of the crossbar, as the connectivity domains of the CMOS
cell become smaller. A countermeasure to this density reduction is pre-
sented in Section 7.2.5, where the vertical stacking of memristive crossbars
is discussed.

In the left inset of Figure 7.7 a few different choices for the placement
of nanowire segments with respect to CMOS cells are presented. Here the
CMOS cell half-pitch is assumed to be F . For the simplicity and replicability
of the connectivity domain it is assumed that each upper layer nanowire is
centered on a blue pin as depited in Figure 7.7, and that these nanowires end
just before a lower level pin depicted by red circles. Moreover, to simplify the
geometry, it is assumed that a nanowire segment does not pass horizontally
across any other upper level vias. Now the upper half of the nanowire
segment corresponds to the hypotenuse of a right-angled triangle, whose

82

Figure 7.7: CMOL-type memristive crossbar with segmented nanowires.
Left inset: different nanowire segments corresponding to different choice
of the parameter k. Right inset: The connectivity domain of single vertical
nanowire, with k = 3, is depicted by solid black polygons.

shorter edges have lengths F and F (1+2k), where k is an integer. Choosing
the length d of a nanowire segment corresponds to fixing the parameter k,
as

d = 2F
√

1 + (1 + 2k)2. (7.1)

The tilting angle α of the memristive crossbar now equals

α = arctan(1 + 2k), (7.2)

and as can be seen from right the inset of Figure 7.7, the number γ of
memristors on a single nanowire segment equals

γ = 2(k2 + (k − 1)2 − 1). (7.3)

Ignoring the clipping effect at the fringe of the memristive crossbar which
results from the fact that the nanowire segments at the fringes have smaller
connectivity domains, this implies that altogether γN memristors can be
addressed with the 4

√
N microwires at the CMOS layer. The larger the

parameter k, the larger the number of addressed memristors, and corre-
spondingly the smaller the required feature size Fnano of the memristive
crossbar.

Remark 38. The tilting angle of the memristive crossbar can also be written
in the form

α = arcsin(Fnano/βF), (7.4)

where ξ > 1 is a dimensionless constant, whose value depends on the CMOS
cell complexity [102]. As shown in [107], the number of memristors on a

83

single segmented nanowire crossbar using this notation equals

N(βF/Fnano)
2. (7.5)

7.2.5 Vertical stacking of memristive crossbars

In [107], Strukov and Williams suggest vertical stacking of multiple memris-
tive crossbars on top of the CMOS layer. They note that some of the major
problems related generally to vertical stacking in integrated circuits do not
necessarily apply here, as no active components are situated on the vertical
stack. Their main idea, as illustrated in Figure 7.8, is to translate the con-
nectivity domains of the CMOS cells while ensuring that only one memristor
in all of the crossbars can be addressed by any allowed four-dimensional ad-
dress. As a result, a vertical stack of M memristive crossbars allows for
addressing γMN memristors, when the clipping effect at the fringes of the
crossbar is neglected.

Translating the connectivity domain requires via translation layers. Us-
ing the notation introduced in the previous section, each upper level via
could be translated at each via translation layer a length of 2F (2k − 1) in
the horizontal direction to the right and a length of 4F in the vertical direc-
tion downwards as depicted in Figure 7.8, while the lower level vias should
not be translated at all.

Strukov and Williams predict that over the long term at least of the
order M = 100 memristive crossbars could be vertically stacked with the
feature size Fc = 10 nm yielding a theoretical memory density as high as
100 terabits per square centimeter.

7.3 Accessing and programming memristors within
a crossbar

In this section it is assumed that an interface between the CMOS layer
and the memristive crossbar is established, and that this interface allows
for driving all of the nanowires independently and simultaneously to a cho-
sen voltage. This best-case scenario assumption is used to investigate the
inherent performance limitations of a memristive crossbar. First, in Subsec-
tion 7.3.1, the so-called half-select problem and a related sneak current phe-
nomenon in memristive crossbars are discussed. Subsection 7.3.2 describes
different schemes for writing to and reading from a memristive crossbar, and
Subsection 7.3.3 addresses the problem of nanowire resistance.

84

Layer L + 1

Layer L + 2

Layer L

Figure 7.8: Translation of the connectivity domain in the vertically stacked
crossbar structure by lower level via translation. The blue circles represent
the vias from a single CMOS cell to layers L, L+1 and L+2 of the memristive
crossbar stack. The connectivity domains resulting from the translation are
depicted as gray polygons. Each of these domains corresponds to a different
set of CMOS cells connected to horizontal nanowires as depicted by the red
circles in Figure 7.6.

85

Figure 7.9: Illustration of the half-select problem. The leftmost vertical
nanowire is driven with a positive write or read voltage, and the first hori-
zontal nanowire is set to ground. A sneak current path, depicted as a dashed
line, driving the other vertical nanowires and disturbing the read operation
on the first horizontal nanowire is formed.

7.3.1 Half-select problem and sneak paths

The half-select problem is inherent to all memristive crossbar structures.
This problem arises when a memristor is selected by driving the nanowires
between which the device is located. Then all the other memristors con-
nected to these nanowires are subject to the same voltage biases, and are
defined as half-select cells [115].

As an example of the half-select problem, consider the crossbar circuit
depicted in Figure 7.9, and suppose that the memristor at the upper left
corner of the crossbar should be programmed to the on-state. For this, the
leftmost vertical nanowire is driven to a programming voltage Vprog, while
the first horizontal nanowire is set to ground, and all the other nanowires are
left floating. Now the memristors on the driven nanowires are half-selected,
and a sneak current path is formed from the driven vertical nanowire to
the middle vertical nanowire. Now the middle vertical nanowire is biased
towards Vprog, and the second memristor on the first horizontal nanowire
may be programmed inadvertently.

Read sneak current paths denote a similar phenomenon as discussed
above in the case when a memristor’s state is read. Indeed, currents flowing
through the sneak paths may disturb the measuring of the current through
the selected memristor. In Figure 7.9, a read sneak current path disturbing

86

the read operation of the upper left memristor is depicted by the dashed
line.

There are several solutions to these problems. One is to use rectifying
memristors such as the one discussed in Subsection 3.3.3 to allow current
flow only to one direction in the crossbar. Another solution is to use specific
biasing schemes which do not allow nanowires to float. Such schemes are
discussed in detail in the following.

7.3.2 Writing to and reading from a memristive crossbar

This subsection considers different write and read configurations of a mem-
ristive crossbar as suggested in [26,68,111]. Using the nomenclature common
in memory architecture literature, the horizontal and vertical nanowires of
the crossbar are called word lines and bit lines, respectively. The write and
read configurations are

(W) To program a memristor, a V/2 writing scheme is used, where the se-
lected word line is biased at a programming voltage Vprog, the selected
bit line is grounded, and all the unselected word lines and bit lines are
biased at Vprog/2.

(R) To read a memristor’s state, the selected word line is biased with a
non-destructive read voltage Vread, and all the other word lines and
bit lines are grounded. The bit line currents are then fed to sense
amplifiers, which act as current-to-voltage converters, to determine
the state of the selected memristor.

In the read operation (R), all memristors on the selected word line dis-
sipate power. To reduce this power dissipation, the read currents should
be minimized, which implies that the memristors should have as high re-
sistance as possible. To further reduce the power dissipation, other read
configurations have been proposed [26], two of which are presented below.

(R’) Select one word line and ground one bit line corresponding to the
memristor to be accessed. Ground the other word lines and leave the
other bit lines floating.

(R”) Select one word line and ground some of the (e.g., every 5th) bit lines
simultaneously. Ground the other word lines and leave the other bit
lines floating.

These two read configurations suffer from an RC delay due to the capacitive
coupling of the floating nanowires. It is important that all the word lines
except the selected line are grounded to prevent the existence of sneak cur-
rents in the memristive crossbar, which would disturb reading the correct
current at the bit line.

87

worst-case cell

Figure 7.10: Effect of nanowire resistance in accessing memristors in a cross-
bar. Here the top-right memristor is accessed with the least voltage since it
is the furthest from the drivers.

However, even with no sneak current paths, not all of the memristors
in the crossbar are accessed with equal programming or read voltage. The
reason to this is the nonzero resistance of the nanowires. Its effect on the
write and read operations is discussed in the following subsection.

7.3.3 Nanowire resistance

The worst-case selected memristor under the write and read operations is
the one that sees the smallest voltage across it when accessed [68]. Voltage
reduction in selected memristors results from the voltage division due to the
nonzero resistance of the nanowires. In Figure 7.10 the worst-case selected
memristor is depicted; it is the device at the rightmost junction of a selected
word line, when the drivers driving the horizontal nanowires are assumed to
be located at the left ends of the nanowires.

During the write operation, the worst-case selected memristor sees the
smallest voltage across it when all the other memristors on the word line
are in the on-state. This is because the voltage drop along the word line is
maximized by the large current flow.

As reported in [68], the fidelity of the read operation depends on the
selected memristor’s state, on the specific device parameters, and on the
states of the other memristors in the crossbar. It was found that if the
selected memristor is in the on-state, the read operation performs the worst
when all the other memristors on the selected word line are in the off-state
and all the other memristors in the crossbar are in the on-state. On the other

88

hand, if the selected memristor is in the off-state, the worst case happens
when all the other memristors in the crossbar are in the on-state, as is the
case with the write operation.

The maximum size of the memristive crossbar depends on the perfor-
mance of the worst-case cell. The conclusion given in [68] is that to maximize
the memristive crossbar size, one needs to minimize its power consumption.
Thus the on-state and off-state resistance values of the memristors must be
scaled up, while simultaneously keeping the on/off conductance ratio suf-
ficiently large. However, this may degrade the write and read speeds of
the circuit. Moreover, only uniformly distributed binary data should be
stored into the memory in order to improve the reliability of the read oper-
ation [111].

89

90

Chapter 8

Memristor Applications

This chapter presents various applications of memristive computing. Sec-
tions 8.1 and 8.2 discuss digital memristive memory and reconfigurable logic,
which are some of the most commercially viable applications described in
this chapter. Section 8.3 presents how the memristive stateful logic opera-
tions of Chapter 6 can be parallelized to implement logical vector operations
within memristive crossbars. Section 8.4 describes two memristive chaotic
circuits, and Sections 8.5 and 8.6 conclude this chapter with a discussion on
memristive neural and cellular nanoscale networks.

8.1 Digital memory

The prospect of fabricating highly dense nonvolatile digital memories is the
main driving force of memristor technology [105]. A few different design
candidates for a memristive implementation of a Resistive Random Access
Memory (RRAM) have been proposed. Probably the simplest to implement
is the 1T1R architecture [14], where a memory cell consists of a CMOS
transistor and a memristor which are connected in series. The transistor
is used to select the memory cell while the memristor is used to store one
or multiple bits of information. Since this architecture requires a transistor
for each memory cell, it cannot provide as high a memory density as the
demultiplexer [23] or CMOL [101, 103, 105] architectures, whose memory
cells consist of single memristors.

In the CMOL RRAM architecture, the CMOS layer is used for coding,
decoding, line driving, sensing and input/output functions [105]. The CMOS
cell in this architecture has the simplest possible structure and consists of
two pass transistors. Since demultiplexers have architectural challenges such
as the need for nonlinear devices for the microwire-nanowire interfacing, it
seems likely that the CMOL RRAM will overcome the demultiplexer design.

To make a CMOL-type memory defect tolerant, memory array reconfigu-

91

ration — bad bit exclusion — together with error correction code techniques
have been proposed [101]. However, when using a computationally afford-
able repair most reconfiguration protocol complemented with Hamming-
code error correction, only a defect rate of the order of 0.1% can be tolerated
while attaining an order-of-magnitude advantage in density when compared
to conventional CMOS memory architectures [101]. This defect rate can
be increased to a more practicable 2% when the Hamming error-correction
codes are replaced by the much more powerful BCH codes [103]. Such a
defect rate has already been attained in [33], where the fabrication of a 1
kb memristive crossbar memory array was reported.

As noted in [105], it is natural to expect quick progress in CMOL type
RRAM technology due to its very attractive density scaling properties.

8.2 Reconfigurable logic circuits

Amemristive CMOL circuit can be used to implement reconfigurable Boolean
logic circuits such as Field Programmable Gate Arrays (FPGAs) [105].
Memristive crossbars are advantageous in the implementation of FPGA–like
circuits, since memristors can act as configuration-bit flip-flops and associ-
ated data-routing multiplexers, as proposed in [114]. Since more than 90%
of the area in contemporary FPGAs is consumed by the SRAM-based con-
figuration bits [105], a memristive implementation can yield much higher
logic gate density than is available in a pure CMOS implementation. An-
other advantage in a memristive CMOL implementation is that since the
memristors are non-volatile, the FPGA retains its state when unpowered.

From the fabrication point of view, the requirements for the memristors
in an FPGA implementation are rather relaxed, as typically only a small
fraction of the devices are in ON state, and their states need not be changed
rapidly [105]. With appropriate defect-finding and control circuitry, the
redundant data paths in the memristive crossbar allow for highly defect-
tolerant operation. Indeed, if a memristor or a nanowire does not function
properly, it can be bypassed [114] by choosing an alternative route. The first
fabricated CMOL-type memristive reconfigurable logic circuit was reported
in [114].

8.3 Parallel stateful logic

Parallel stateful logic, as proposed by our research group in [63], enables
the implemention of bitwise vector operations on the columns and rows of
a memristive crossbar. As described in Section 7.3.1, rectifying memristors
are used to prevent the half-select problem and stray currents to arise within

92

m m

m

m

m

m

2 3

5

8

6

9

m

m

m

1

4

7

vv v

v

v

v

21 3

4

5

6

Figure 8.1: Parallel stateful memristor logic within a crossbar.

the crossbar. Figure 8.1 illustrates a parallel implementation of the stateful
logic circuit presented in Figure 6.1.

Parallel stateful logic could be useful for example in image processing,
where local filtering operations are applied simultanously on the pixel ma-
trix. Another possible application is the emulation of binary neural network
-type processing within a memory, such as the Willshaw associative mem-
ory model described in Section 9.3. For example, it is straighforward to
implement some basic operations of hyperdimensional arithmetic [39] with
parallel stateful logic. Hyperdimensional arithmetic is a cognitive comput-
ing method which allows to create data structures within an associative
memory.

8.3.1 Column-wise operations

For columnwise stateful logic operations the horizontal nanowire drivers (v4,
v5, and v6 in Figure 8.1) are set to high impedance, as are the vertical drivers
of those nanowires not participating in the stateful logic operation. Other-
wise the implication and converse nonimplication operations are performed

93

as described in Chapter 6. For example, to obtain in parallel







m3 := m2 → m3

m6 := m5 → m6

m9 := m8 → m9

the nanowires should be driven to v2 = vcond, and v3 = vset, while the drivers
of the horizontal nanowires and v1 should be set to high impedance, v1 =
v4 = v5 = v6 = HZ. The rectification prevents the current flowing through
m1 in the “wrong” direction. If in this example the memristors were not
rectifying, a stray current path would be formed through m2 m1 m4,
disturbing the implication operation m6 := m5 → m6.

8.3.2 Row-wise operations

Analogously to the above, to implement row-wise implication and converse
nonimplication operations, all the vertical drivers (v1, v2, and v3 in Fig-
ure 8.1) and the horizontal drivers of the not participating nanowires are set
to high impedance. However, in row-wise operations it is necessary to re-
verse the polarities of the conditional and programming voltages, assuming
that the ground voltage equals 0 V.

For example, consider the parallel implementation of the implication
operations







m7 := m4 → m7

m8 := m5 → m8

m9 := m6 → m9

in the crossbar circuit of Figure 8.1. These operations are performed by
setting v1 = v2 = v3 = v4 = HZ, v5 = −vcond, and v6 = −vset. To jus-
tify these choices of conditional and programming voltages, consider first
the operation m7 := m4 → m7. Since m4 = 1 and the series resistance
satisfies R0 ≫ RON, the voltage on the leftmost vertical nanowire is pulled
close to −vcond. It follows that the voltage across m7 approximately equals
vset − vcond < V T , and consequently m7 remains in the off-state. This is
in accordance with the truth table of material implication presented in Ta-
ble 6.1. On the other hand, since m5 = 0 the voltage on the middle vertical
nanowire is close to 0. Therefore the voltage across m8 approximately equals
vset, thus m8 is programmed to the on-state.

Remark 39. In the parallel operations described above, computations are
performed bitwise over all bits in the chosen rows or columns. In practice
it is necessary to be able to operate on selected bits in vectors while keeping
other bits unchanged. This can be achieved by driving the rows or columns
corresponding to the nonparticipating bits to a voltage which depends on the

94

operation being performed. For example for columnwise material implication
these rows are driven to vcond, while for columnwise converse nonimplication
they are driven to ground voltage.

8.3.3 Example: Parallelized synthesis of a Boolean function

In Section 6.5 it was shown that with multi-input implication logic using
complementary representation of variables, up to 2n−1 + 1 computational
steps were required to synthesize an n-input Boolean function. To demon-
strate the power of the multi-output converse nonimplication operation and
parallelized stateful logic, in the following it is shown that the correspond-
ing upper limit of operations is linear in n when parallel stateful operations
within a memristive crossbar are used for the synthesis. Naturally, in re-
turn for the exponential speed-up, the amount of memristors required in
this method is exponential with n.

Consider the evaluation of the Boolean function S3(p, q, r) = p + q + r
(mod 2) within a 5 × 4 crossbar, where the inputs and the result of the
function are represented by the states of the memristors on the bottom row
of the crossbar. A natural description of such a crossbar is given as a 5× 4
matrix, and initially the crossbar is assumed to be in the configuration









1 1 1 0
1 1 1 0
1 1 1 0
1 1 1 0
p q r 0









. (8.1)

The function S3 can be written in the form

S3 ≡NOR(AND(p, q,¬r),AND(p,¬q, r),
AND(¬p, q, r),AND(¬p,¬q,¬r)), (8.2)

which provides a way to synthesize it using parallelized stateful logic. First
the contents of the AND-clauses are synthesized by six multi-output converse
nonimplication operations on chosen columns of the crossbar, while keeping
the other columns unchanged. The first two computational steps are used
to modify the column containing p as follows:

7→









¬p 1 1 0
¬p 1 1 0
1 1 1 0
1 1 1 0
p q r 0









7→









¬p 1 1 0
¬p 1 1 0
p 1 1 0
p 1 1 0
p q r 0









.

95

Another four multi-output operations on columns containing q and r are
used to obtain

47→









¬p ¬q r 0
¬p q ¬r 0
p ¬q ¬r 0
p q r 0
p q r 0









.

Now, a multi-input implication operation on the first four rows followed by
a multi-input implication operation on the rightmost column yield

7→









¬p ¬q r AND(p, q,¬r)
¬p q ¬r AND(p,¬q, r)
p ¬q ¬r AND(¬p, q, r)
p q r AND(¬p,¬q,¬r)
p q r 0









7→









¬p ¬q r AND(p, q,¬r)
¬p q ¬r AND(p,¬q, r)
p ¬q ¬r AND(¬p, q, r)
p q r AND(¬p,¬q,¬r)
p q r S3(p, q, r)









.

On the whole, eight computational steps were required to synthesize
S3, and a constant number of auxiliary steps are required to initialize the
crossbar in the form (8.1). In general, for an arbitrary n-input Boolean
function f : {0, 1}n → {0, 1}, the synthesis of the contents of the AND-
clauses takes 2n steps, while the rest of the computation is performed in a
small constant number of steps. The number of memristors required in the
crossbar is clearly at most of the order n2n, depending on the synthesized
function.

8.4 Chaotic circuits

Chaotic circuits taking advantage of the memristor dynamics have been pre-
sented in the literature for example in [8,24,31]. As noted in [76], memristive
chaotic circuits have been proposed to be used in various applications, rang-
ing from cryptography to medical purposes such as seizure detection. This
section describes two chaotic memristor circuits, of which the latter is based
on our publication [60]. In order to rigorously prove that these circuits truly
are chaotic, very specific memristor models with no parameter variations
are used. Certainly, one could obtain qualitatively similar dynamics with
physical memristors, but so far no chaotic circuits using passive thin-film
memristors have been demonstrated.

96

L

R2

R1

C1C2
v2 v1

-G m
+

-

+

-

i

Figure 8.2: Memristive Chua’s oscillator.

8.4.1 Memristive Chua’s oscillator

The nonlinear Chua’s oscillator [31] consisting of two resistors, two capaci-
tors, an inductor, a negative resistor, and a flux-charge memristor is depicted
in Figure 8.2. Its canonical configuration, without a memristor, is known
to have a chaotic attractor [19], and using the following specific memristor
model assures [31] that the memristive circuit has one also:







i = M(w)v =

{

av if |w| < 1

bv otherwise

ẇ = v

(8.3)

where a and b are positive constants, M(w) is the memristance of the mem-
ristor, and the state variable w is allowed to take any real value. Since the
conductance of this device is not a monotonic function of w when a 6= b, it
is strictly speaking a flux-charge memristor or a memristive system, when
the nomenclature of Chapter 2 is used, but not a memristor in terms of
Definition 4.

The memristive Chua’s oscillator satisfies the following set of differential
equations: 





v̇1 = ((v2 − v1)/R1 +Gv1 −M(w)v1)/C1,

v̇2 = ((v1 − v2)/R1 − i)/C2,

i̇ = (v2 −R2i)/L,

ẇ = v1,

(8.4)

which, by changing and renaming of variables, can be simplified into






ẋ = α(y − x+ ξx−M(w)x),

ẏ = x− y + z,

ż = −βy − γz,

ẇ = x.

(8.5)

97

−5

0

5

−101
−4

−2

0

2

4

x

y

w

Figure 8.3: Chaotic attractor of the memristive Chua’s oscillator.

By choosing the values of the parameters as suggested in [31], α = 10,
β = 13, γ = 0.35, ξ = 1.5, a = 0.2, and b = 0.8, one obtains a dynamical
system with a chaotic attractor as shown in Figure 8.3.

The chaotic double scroll attractor resembles the one which is present
in a Lorenz oscillator [73]. The Lorenz oscillator can be described by a set
of three differential equations having two nonlinear terms. In comparison,
Chua’s oscillator is described by a set of four differential equations having a
single nonlinear term.

8.4.2 Memristive logistic map

The logistic map f : [0, 1] → [0, 1], L(x) = 4x(1 − x) is an archetypal
example of a simple non-linear function having chaotic iterative behaviour.
The iteration of L, L(k)(x) ≡ L(L(. . . (L(x)))), is unpredictable due to its
sensitivity on initial conditions, it is indecomposable, and its periodic points
form a dense subset of [0, 1]. Originally proposed in [75], the logistic map was
designed to capture the dynamics of a animal population with reproduction
and starvation. The following presents a memristive implementation of the
logistic map, as originally described in our publication [60].

A memristive system suitable for computing the memristive logistic map

98

V0

m1 m2

Figure 8.4: Memristors connected in series for self-terminating copying.

can be defined as follows:







v = αri

ṙ =

{

λv if |v| > vT and 0 < r < 1

0 otherwise,

(8.6)

where r is the state of the system, the parameters satisfy α > 0 and λ < 0,
and the constant vT > 0 is the threshold voltage of the system. At a given
state r the system acts as a linear resistor whose resistance is R(m) = αr.
Since λ < 0, the resistance of the system decreases (increases) if a sufficiently
large positive (negative) voltage is set across it. Notice that in this specific
model the smaller the state r, the more conductive the system is. This
system is a memristor according to Definition 4, when w = 1/r is chosen as
its state variable.

Consider now two memristors, m1 andm2 connected in series as depicted
in Figure 8.4, and assume that r1 > r2, or, written in another way, R(m1) >
R(m2). Setting the voltage V0 = 2vT across this circuit now yields perfect
self-terminating copying of the state r2 to memristor m1 as explained in
Section 5.1.1.

Let now V0 = 2vT2 and let vT1 = (k/(k + 1))V0, where vT i denotes the
threshold voltage of the ith memristor. Then the programming of m1 stops
when the voltage V across it equals

V =
R(m1)

R(m1) +R(m2)
V0 =

k

k + 1
V0. (8.7)

This equality holds if and only if R(m1) = kR(m2), or in other words, if
and only if r1 = kr2. Thus this memristive circuit can be used to copy the
state of m2 to m1 while simultaneously multiplying the result by k.

A memristive circuit which computes the logistic map is depicted in
Figure 8.5. It consists of three memristors, three switches and an unity
buffer. The voltages V1 and V2 are used to unconditionally program the
memristors to state r = 0 or r = 1.

Let the threshold voltages satisfy

vT1 = (4/5)V0, vT2 = vT3 = (1/2)V0, (8.8)

99

V0

m1 m2

V1 V2

1 m3

Figure 8.5: A memristive circuit for iterative computing of the logistic map.

V0

m1 m2

1
m3

Figure 8.6: Simultaneously copying r1 = c as the state of m2 and 1 − r1 =
1− c as the state of m3.

and let the initial states of the memristor be r1 = c, r2 = 1, and r3 =
0, where c ∈ (0, 1) can be chosen arbitrarily. The circuit is operated by
iterating the following four steps:

1. Let the switches be configured so that the circuit corresponds to Fig-
ure 8.6. Then, r1 is copied as the state of m2 while the state of m3

is programmed into the reverse direction by an equal amount. As a
result of this step, r1 = c, r2 = c, and r3 = 1− c.

2. Program m1 into the high-resistance state r1 = 1, while keeping the
states of the memristors m2 and m3 unperturbed.

3. Configure the switches so that the circuit corresponds to Figure 8.7.
Now the parallel resistance of the memristors m2 and m3 is copied
as the resistance of m1 and is simultanously multiplied by 4, since
vT1 = (4/5)V0. The parallel resistance value is

R(m2|m3) =
R(m2)R(m3)

R(m2) +R(m3)

=
α2c(1− c)

α
= αc(1 − c). (8.9)

100

V0

m1 m2

m3

Figure 8.7: Self-terminating multiplication resulting in r1 = 4r2r3 when
r2 + r3 = 1.

Thus, after this step the state of m1 equals r1 = 4c(1 − c).

4. Finally, program the memristors m2 and m3 back to their initial states
r2 = 1 and r3 = 0.

In other words, the four operation steps above perform one iteration of the
chaotic logistic map L(x) = 4x(1−x), and store the value of the iteration as
the resistance state of the memristor m1. Now, repetitive iteration of these
procedures results in a chaotic orbit of r1.

8.5 Neuromorphic hardware

Neuromorphic architectures, which are inspired by the functionality and cir-
cuitry of the nervous system, are particularly well-suited to be implemented
as CMOL circuits. In these architectures the neuronal somas are imple-
mented by CMOS components, while the intercellular communication —
the axons and the dendrites — and the synapses between neurons are real-
ized using memristive nanowire crossbars [97]. Example 40 illustrates such
an artificial neuron.

Example 40. Consider the simple artificial neuron presented in Figure 8.8.
An operational amplifier is used to create a virtual ground to one end of the
memristors, while the other ends are driven with voltages Vin1, Vin2, and
Vin3. Although this neuron has only three inputs, in general the number
of inputs can be arbitrary. The currents flowing through the memristors
are summed, and the total amount of current is represented by the voltage
Vx which controls the voltage dependent voltage source. The output of this
neuron is represented by the voltage Vout.

If each of the memristors has an instantaneously linear I-V behavior

ij = G(wj) · v, (8.10)

where wj denotes the state variable of the memristor mj, and G(w) is the
instantaneous conductance of the device — also known as the memductance

101

−

+

Vout
Rref

Vin1

Vin2

Vin3

Vx

m
1

m2

m 3

Figure 8.8: A simple CMOS artifical neuron with memristive synaptic in-
puts.

— it follows that

Vx ∝
∑

j

G(wj) · Vin,j. (8.11)

Thus the input voltages are multiplied by the memductances, and the sum
of these products is represented by the voltage Vx. In other words Vx rep-
resents the inner product of the vectors Vin = (Vin1, Vin2, Vin3) and G =
(G(w1), G(w2), G(w3)).

The output Vout of the neuron is typically a sigmoidal function of Vx. On
the whole, the operation of this artificial neuron corresponds to the defini-
tion of the so-called perceptron model [74], except that only positive synap-
tical weights G(w) are considered here, as conductance is always a positive
quantity. In a neural network architecture, the input voltages would corre-
spond to the outputs of other artificial neurons. A crucial point here is that
the memristors realize a synaptic multiplication operation, which would take
much more area if realized by CMOS circuitry. It depends on the application
of the neural network whether or not continuous weights are needed, or if
multi-level or binary synapses suffice.

Remark 41. An important special case of the synaptic multiplication pre-
sented in (8.10) is achieved, when the each of the voltages Vin across the
memristors belong to the binary set {0, VR}, where VR is a read voltage. This
corresponds to the case of binary neurons — for example spiking neurons —
that have only two output values. Then (8.10) holds regardless of the I-V
behavior of the memristor, since the read current is either zero when Vin = 0,
or can be written in the form ij = (ij/VR) · VR, where ij/VR ≡ G(wj).

As a result, each binary neuron computes inner product Vin ◦G of the
binary activation vector Vin and the generally continuously valued synaptical
weight vector G. This specific type of inner product will be crucial in the
design of the memristive associative memories discussed in Chapter 9.

In a CMOL architecture, the memristive synaptic connections can be

102

implemented physically above the CMOS neurons thus freeing up die area.
In principle, synaptic densities comparable to biological nervous systems
could be attained. For example, a memristor feature size of F = 50 nm
yields a synaptic density of 1010 memristive synapses per square centimeter,
which is comparable to that of the human cortex [96]. Moreover, each CMOS
neuron can be connected to thousands of other neurons, thus enabling similar
connectivity as that found in biological neural networks. Similar synaptic
density could be attained by using other technologies such as floating gates,
but there the synaptic connections would consume area from the neurons at
the CMOS layer, if 3D integration were not used.

CMOL-type neuromorphic architectures such as the one described above
are called CrossNets, and they were first proposed by Likharev et al. in [69].
Topologies of CrossNets are usually divided into two categories: the feed-
forward flossbar topology and the recurrent inbar topology. Examples of
the two topologies are depicted in Figure 8.9. An advantage of the inbar
topology over the flossbar topology is that it allows greater flexibility to the
size and form of CMOS somas due to their greater physical separation [108].
The flossbar topology can readily be used to implement a multilevel per-
ceptron, while the inbar topology can be used to implement a Hopfield-type
neural network, as is briefly discussed in Chapter 9.

Traditionally in CrossNets the synaptic two-terminal devices are as-
sumed to be bistable. Therefore analog synaptic weights must be emulated
by two crossbars of size k × k which yields 2k2 + 1 different conductance
levels, as one of the crossbars is used for positive synaptic connections and
the other for negative connections [109].

There are two different approaches to program the synaptic weights of
a CrossNet. One is to learn the weights in a separate homomorphic net-
work, which can be implemented for example in software. Once the learning
phase is completed, the weights are copied into the CrossNet. This ap-
proach may be impractical for large networks due to the substantial amount
of required computing time, and due to the fact that such learning does not
easily provide fault-tolerance against device failures in the memristive cross-
bar. Another approach is to learn the weights online, for example through
the backpropagation algorithm used in a multilevel perceptron, or the outer
product learning rule used in the Hopfield network. These different learning
approaches and their potential merits are thoroughly discussed in [108].

8.6 Cellular Neural Networks

Originally defined in 1988 by Chua and Yang [21], the Cellular Neural Net-
works constitute a class of information processing systems, which are made
of massive aggregates of regularly spaced circuit clones, called cells that

103

Figure 8.9: Examples of CrossNet topologies. Left: flossbar, right: inbar.
Possible input and output connections of the central somas are indicated
by arrows. In principle, the connections in either topology can be realized
as uni- or bidirectional, but typically the flossbar topology is feedforward,
and the inbar topology is recurrent, as illustrated. Note that the synaptic
devices corresponding to the connections are not depicted.

communicate with each other only through their nearest neighbours. The
CNN paradigm differs from conventional neural networks by allowing arbi-
trary nonlinearities for the cells and the intercellular communication. For
example, a CNN cell may match the pattern of its neighbours’ outputs with
a predefined pattern and output the result as a logical value. On the other
hand, the CNN paradigm also differs from the conventional notion of a cel-
lular automaton, since a CNN in general operates in real time, with analog
values. Moreover, in general the functionality — or the rule — of the cells
is allowed to vary from cell to cell and change during computation. A con-
ceptual picture of a CNN processor is depicted in Figure 8.10. Here each
cell, depicted by a square, is connected to its nearest neighbours.

In a memristive implementation of a CNN processor, the intercellular
connections are implemented by memristive crossbars. This allows for neigh-
borhoods whose sizes are restricted only by the corresponding sizes of the
connectivity domains of the nanowires, as explained in Section 7.2.2. The
motivation for using memristive crossbars is the same than with the more
conventional neural networks discussed in Section 8.5: the area consuming
inter-cellular communication network can be lifted from the CMOS layer,
thus allowing for a larger number of cells within the same die are. The mem-
ristive CNN cell designs presented in this section were originally proposed
in our publications [54,55,59].

104

mE

mN

mSdt

PROCESSING
UNIT

MEMORY &

mW

∫

Figure 8.10: A conceptual CNN processor with memristors for neighbour-
hood connections.

+
−C Rx Iy(i,j;k,l) Iu(i,j;k,l)... Ey(i,j)

+
− Eu(i,j)

vx(i,j) vy(i,j)vu(i,j)

Iz

Figure 8.11: The standard CNN cell, modified from [20].

8.6.1 Standard memristive CNN

In the original paper defining cellular neural networks [21], a two-dimensional
network of M×N cells arranged in M rows and N columns was investigated
as a practically significant case. All cells in this CNN are identical to the
one depicted in Figure 8.11. In fact, this network architecture has become
canonical in the CNN literature, and is referred as the standard CNN [20].

Definition 42 (Modified from [20]). Mathematically, a standard CNN is
a M × N rectangular array of cells C(i, j) located at coordinates (i, j),
i = 1, 2, . . . ,M , j = 1, 2 . . . , N . Each cell C(i, j) satisfies the

1. State equation

ẋi,j = −axi,j +
∑

(k,l)∈Ni,j

A(i, j; k, l)yk,l

+
∑

(k,l)∈Ni,j

B(i, j; k, l)uk,l + zi,j, (8.12)

105

where a ≥ 0 is a constant and xi,j, yi,j, ui,j , zi,j ∈ R are called the
state, output, input, and threshold of the cell C(i, j), respectively. The
coefficient matrices A(i, j; k, l) and B(i, j; k, l) are called the A- and B-
templates, respectively, and N(i, j) is a collection of coordinates called
the neighborhood of cell C(i, j).

2. Output equation

yi,j = g(xi,j) =
1

2
|xi,j + 1| − 1

2
|xi,j − 1|, (8.13)

which is essentially a truncated identity function with the minimum
and maximum values of −1 and 1, respectively. It is called the standard
nonlinearity.

3. Initial conditions xi,j(0) for all i ∈ [1,M] and j ∈ [1, N].

Figure 8.12 shows a standard CNN cell using memristors for the neigh-
borhood connections. The cell’s input is VU . Although only five neighbour-
hood connections per template — the A template is drawn in black and the
B template in gray — are drawn, in general the neighbourhoods could be
much larger. When the cell is configured for computation, the switches s8a
and s8b are opened and closed, respectively, and the switch s7 is closed to
allow integration of the input currents. Notice that the cell’s output voltage
CNN OUT is bounded by the supply voltages of the operational amplifier,
and hence approximates the standard nonlinearity. There is no additional
node for the cell state as it is also represented by CNN OUT.

The cell’s output is buffered by inverting and noninverting unity gain
buffers to represent both positive and negative neighbourhood connections.
The current±Imem(VCNN OUT) flowing through a neighbourhood connection
in the case of the generic analog memristor model equals

±Imem = ±αw sinh(βVCNN OUT), (8.14)

where w ∈ [0, 1] is the state of the corresponding memristor. The linearity
of the I-V relationship of the memristor depends on the parameters α and
β; a perfectly linear relationship would correspond to the standard CNN of
Definition 42.

Template programming

The templates are programmed with the continuous monitoring method
described in Section 4.2.2. For example, the following procedure is used to
program the A template’s negative self-feedback memristor, which is denoted
by m in Figure 8.12. The switches that are not mentioned are assumed to
be open, and GND = 0.

106

-
+

RP

s4

s5

s6

GND

VDD-∆

1

-1

N

N

S

S

EW

EWs1nA

s1pA

s3

VSS

s2

VDD

VSS+∆

GLOBAL

s7

s8a

S

R

Q

Q

PROG
+
-

s9a

s9b

RCs8b

Vp

IN CNN_OUT

OPA_OUT

N

EW

N

1

-1

VU

EW

S

S

s1nB

s1pB

m

Figure 8.12: A standard memristive CNN cell, which is simplified so that the
state x equals the output y, that uses the continuous monitoring method of
Section 4.2.2 to program the memristors. The circuitry for the computing
part and the A template connections are depicted in black, whereas the
input node VU and the B template connections are depicted in gray. Both
the templates have self-feedback connections.

107

1. First m is programmed to a non-conductive state. For this, the control
voltage PROG is set to logical 1 in order to close the switch connected
to the SR-latch, and the switches s1nA, s3, s5, s8a, and s9b are closed.
The control voltage GLOBAL is set to −(VDD − VSS − ∆). This
configuration is maintained for a sufficiently long time to allow the
state of the memristor to reach w ≈ 0 regardless of its initial value.

2. To program the memristor into a predefined state, the following config-
uration is used. The control voltage GLOBAL is set to a value −Vref ,
where I = Vref/Rp is the current through the memristor at its desired
state, when the voltage across it is VDD − VSS − ∆ . The switch s3
is opened, and the switches s2 and s6 are closed. Now the output Q
of the SR-latch flips from the logical 0 to 1 as the memristor’s state
reaches the desired value.

Remark 43. Memristors are programmed at a constant voltage ±(VDD −
VSS − ∆). Thus the magnitude of the auxiliary voltage ∆ > 0, and the
magnitudes of the supply voltages determine the programming rate of the
memristors.

Remark 44. A lookup table may be required to map a desired template
value to the control voltage PROG. This is due to the I − V nonlinearity of
memristors, as the voltages used in computing are lower than the ones used
for programming.

A sketch of the memristive template layer is depicted in Figure 8.13.
Local memristive memory, not shown in the cell circuit of Figure 8.12, is
added to enable local memory and possible stateful logic computations. The
advantage of using such a local memory and logic unit is further discussed
in Section 8.6.3.

Unlike in transistor-based CNN realizations that convey template pat-
terns in parallel as global voltages, different template matrix entries need
to be programmed sequentially. Furthermore, even the programming of a
specific template entry requires a sequence of operations as is described next.

Suppose that the neighbourhoods of the cells consist only of nearest
neighbours, and consider the programming of the memristors corresponding
to the positive northern neighborhood connections of the A template. All
of these connections cannot be programmed simultaneously, since some of
the cells must drive the programming voltage VDD while some other cells
need to compare the memristor’s current with the GLOBAL signal as dis-
cussed above. It is not enough to perform the programming in only two
steps, since this would lead to unwanted programming of the southern con-
nections. Moreover, there needs to be also horizontal separation of the cells
participating in the programming to avoid unwanted programming of the

108

CMOS

TOP LAYER
MEMRISTORS

MEMRISTORS
VIA

VIA

PIN PIN PIN PIN

BOTTOM LAYER

GLOBAL WIRES

VIA

Figure 8.13: Memristive crossbar layers for one template layer (left) and
local memory and logic (right). Each CNN cell has pins corresponding to
blue and red circles and triangles. The global wires are driven by signals that
allow programming and logic of the memristors forming the local memory.

109

Driver cell

Comparison cell

Programmed connection

Figure 8.14: Sequential programming of the northern connections of the A
template.

horizontal connections. As a result, six programming steps, as depicted in
Figure 8.14, are required in order to program a single entry in all of the tem-
plate matrices. Even more steps are required if the neighbourhoods of the
cells are larger — for example, if they contain second nearest neighbours.

To cope with this inherent slowness of the template programming, the
continuous monitoring method of Section 4.2.2 is used. Cyclical program-
ming would yield a simpler cell structure with the expense of a longer pro-
gramming time. A possible remedy to the long programming times of the
templates is the vertical stacking of memristive crossbars described in Sec-
tion 7.2.5, as it would allow for a large number of preprogrammed templates
to be used in computation.

8.6.2 Memristive binary CNN

Restricting the computation of a CNN to only binary values obviously sim-
plifies the cell circuitry and allows signal restoration. In the following, a
binary — or black-and-white — CNN with bistable memristors for neigh-
bourhood connections and local memory and logic [54] is presented. The
state equation of a binary CNN cell is the OR function of its neighbours’
outputs, which can be seen as a restriction of the linear combination (8.12)
to binary values.

The binary CNN cell shown in Figure 8.15 consists of the memristive
neighbourhood connections, the work memristors for local memory and
stateful logic, a keeper subcircuit previously discussed in Section 6.1 to fa-
cilitate the stateful logic operations, two sets of access circuits controlled by
row and column decoding signals, and a driver subcircuit which drives the
cell output Y to its neighbours, when activated by the RUN signal. The

110

VIMP4
VIMP2 VIMP3

Vbias1

work memristors

Rout

Cout

Rin

Cin

 AB

MASK

Vprog1
Vprog2

Vbias2

VIMP1

VSS

neighbour connections

X Y

VSS

KEEP
VSS

RUN

keeper

Y OUT

m1 m2 m3 m4

selfSENW

Figure 8.15: Structure of a memristive binary CNN.

control signal AB can be used to separate the state node X from the output
node Y. For this implementation, rectifying memristors should be used in
order to prevent stray-currents from arising in the nanowire crossbars.

This cell architecture is suitable for processing binary templates which
do not require threshold logic. It allows for asynchronous computation, and
a very dense implementation of a CNN processor as a cell consists only of
15 CMOS transistors. Also, as was the case with the memristive standard
CNN, space-dependent templates are readily available.

In the following, the programming and the local memory of this CNN
cell are described. A binary CNN application is discussed in Section 8.6.3.

Programming the neighbourhood connections

Thememristors used for neighbour connections (N, S, W, E and self-feedback
connections are drawn) connect the output nodes OUT to the state nodes
X.

Each cell has two sets of row and column decoding signals, which are
denoted by Rin, Cin, Rout, and Cout. The control signal MASK can be used
to make the programming conditional on the output Y of the CNN cell.
The control voltages Vprog1 and Vprog2 decide the programming voltage and

111

polarity. For example, to program the self-feedback memristor to the on-
state, all of the row and column decoding signals of the cell and MASK are
set high, and the programming voltages are chosen such that the voltage
across the memristor Vprog2 − Vprog1 is sufficiently large. As discussed in
Section 8.6.1, the template programming must be performed sequentially.

If the control signal MASK is low, the voltage at the output node Y
affects the writing of template values: if Y is low, the programming voltage
Vprog1 is not conveyed to the state node X, preventing the programming. On
the other hand, if voltage at Y is high, template programming is possible.
This feature can be used to create the so-called transient mask : no incoming
connections are programmed into the ON state if Y is low. The transient
mask is a special case of space dependent template programming whose
operation depends on the intracellular memory.

Intracellular memory

Figure 8.15 also shows four local memristors that are used for local memory
and stateful logic. This local memory unit can be used to combine results
from previous computations, and to affect the selection of the subsequent
templates. A large local memory can be afforded due to memristors’ small
footprint. It should be noted that the local memristors do not get pro-
grammed unintentionally when the template memristors are programmed,
because the control voltages VIMP1, . . ., VIMP4 are kept in the middle of the
voltage range in order to keep the voltage across the local memory memris-
tors below a programming threshold.

8.6.3 CNN Universal Machine: computing with waves

The memristive implementations of the standard and binary CNNs in the
previous subsections are instances of the CNN Universal Machine [20, 91],
which is a general analog-and-logic array computer. The most important
features of the universal machine are the ability to apply several space-
dependent templates simultaneously and sequentially, and the availability of
intracellular memory and logic. The instructions of the universal machine
correspond to spatial-temporal waves traversing the CNN array [91, 92].
These waves can interfere, diffract and annihilate with other waves and
the input flows of the CNN.

Wave-type logic computing

In the following, a CNN wave-type algorithm for evaluating an arbitrary
Boolean function on a specific input is presented. Here only the general ideas
are described; a more formal treatment can be found in our publications [61,

112

PROPAGATED INPUTSINPUT STATES

Figure 8.16: Initializing the evaluation of a Boolean function f : Bn →
B, where n = 40 and the number of disjunctive clauses t = 40 in the
conjunctive normal form. Left inset: Initially, the values of the variables of
f are represented by the states on the northernmost row of the CNN. Right
inset: The values are propagated over the whole processor.

67]. The purpose of this subsection is to provide a simple example of wave-
type computing — the reader may notice some resemblance with this method
to the one discussed in Section 8.3 on parallel implication logic.

A standard CNN model is assumed, where each of the cells has at least
one bit of local memory. The self-feedback constant a is fixed to a = 0 in all
of the processing steps described in the following. The input values of the
Boolean function are represented by the binary states of the northernmost
row of the CNN— a black pixel stands for 1 and a white pixel for 0. The first
rule assigned to the CNN corresponds to propagating these values across the
whole processor, and it can be written in the binary case as an A template
as

A1 =





0 1 0
0 0 0
0 0 0



 , z = −0.5.

Here the centermost entry of A1 corresponds to the cell itself, and all the
rest entries correspond to the cells at that position relative to the cell. This
first step of the computation is illustrated in Figure 8.16.

Let the Boolean function f be given in the conjunctive normal form. In
the CNN representation of f , each of the disjunctive clauses corresponds to
a row of the CNN, and each cell on a row corresponds to a specific input
variable of the Boolean function, as depicted in the left inset of Figure 8.17.
Say, for example, that the second disjunctive clause of f contains the non-
inverted variable p1, and that the fourth disjunctive clause of f contains the
inverted variable p3, that is,

f ≡ (. . .) ∧ (p1 ∨ . . .) ∧ (. . .) ∧ (. . . ∨ ¬p3 ∨ . . .) ∧

113

BOOLEAN FUNCTION
AS BRANCHING CELLS

COINCIDING INPUTS
AND BRANCHING CELLS

Figure 8.17: Representing a Boolean function by branching cells. Left in-
set: The noninverted branching cells are drawn in black while the inverted
branching cells are drawn in white. Nonbranching cells are drawn in gray.
Right inset: Each cell whose current state corresponds to the type of the
branching cell is set to 1, while the states of all the other cells are set to 0.

Then, using the intracellular memory, the first cell on the second row is
marked as a noninverted branching cell, and the third cell on the fourth row
is marked as an inverted branching cell. Next the previously propagated
input wave is compared with the branching cells. Each cell whose current
state corresponds to the type of the branching cell is set to 1, while the
states of all the other cells are set to 0, as illustrated in the right inset of
Figure 8.17.

Next, a wave is propagated eastwards by the rule

A2 =





0 0 0
1 0 0
0 0 0



 , z = −0.5.

An illustration of this rule on a specific Boolean function and its input is
depicted in the left inset of Figure 8.18. Ultimately, only the rows whose
corresponding disjunctive clauses evaluate to zero are left white, while all
the rest of the rows have a black cell at the eastern end of the row. Finally,
the results of the evaluations of the disjunctive clauses are propagated south
by the rule

A3 =





0 1 0
0 1 0
0 0 0



 , z = −1.5,

as illustrated in the right inset of Figure 8.18. The result of the evaluation
of the Boolean function can be read from the south-eastern corner of the

114

EVALUATION OF
DISJUNCTIVE CLAUSES

CONJUNCTION OF
DISJUNCTIVE CLAUSES

Figure 8.18: Evaluating the disjunctive clauses in parallel, and finally taking
their conjunction for the result. Left inset: Eastward propagation for eval-
uating the disjunctive clauses. Right inset: Conjunction of the disjunctive
clauses by the transient mask. The result of the evaluation is read from the
south-eastern corner of the CNN, where white corresponds to 0 and black
to 1. In this example, the result is 0.

CNN, in the example the result is 0. Indeed, a Boolean function f evaluates
to zero if and only if at least one of its disjunctive clauses has value zero.

Remark 45.

• The CNN can be divided into non-interfering subsections with the tran-
sient mask. This allows the computation of multiple Boolean functions
simultaneously as is discussed in [61]. Such parallel computing is de-
picted in Figure 8.19, which shows measurements from the MIPA4k
CNN processor.

• The utilization of gray-scale cells and local memory allows to compress
the representation of the Boolean function as is described in [67]. Mea-
surements from the CNN processor MIPA4k [88] configured for gray
scale processing are shown in 8.20. For technical reasons, the binary
values of the four three steps are inverted in this experiment.

• All the propagation rules used for the evaluation can be performed asyn-
chronously.

115

1. 2.

3. 4. 5.

Figure 8.19: Parallel computing of Boolean functions using the transient
mask. Measurements from the MIPA4k CNN processor.

116

Figure 8.20: Measurements from the MIPA4k CNN processor configured in
gray scale mode of operation, corresponding to Figures 8.16, 8.17, and 8.18.
For technical reasons, the first four computing steps are performed on in-
verted values of Boolean variables, and the cell states are then inverted in
the fifth step.

117

118

Chapter 9

Memristive Associative
Memories

In this chapter various memristive implementations of a neuromorphic mem-
ory structure called the associative memory are considered. In contrast to
random access memories, where the information is stored to and retrieved
from explicitly given locations, in associative memories the information is
retrieved through a search: given an input vector one wants to obtain the
stored vector that has been previously associated with the input. Such a
search typically requires computations of many thresholded sums of bit-
wise correlations between the input vector and the contents of the memory.
In a parallel hardware implementation of a large-scale associative memory
one thus needs many such sum-and-threshold units, which in neuromorphic
terms can be regarded as artificial neurons.

In pure CMOS implementations of associative memories the artificial
neurons must share die area with the memory elements, which can be for
example SRAM or flash memory cells. In contrast to this, in a CMOL
implementation the memory elements, memristors, are located above the
CMOS layer, which frees up CMOS die area and enables more artificial
neurons to be fabricated in CMOS. As noted in Subsection 8.5, a memristor
feature size of F = 50 nm yields a synaptic density of 1010 memristive
synapses per square centimeter, which is comparable to that of the human
cortex [96].

The prospect of scaling up the capacities of associative memories is the
prime motivation of this chapter, as it would allow for architectures which
due to their complexity cannot be simulated in real-time in software using
conventional CMOS memory architectures. In particular, throughout this
chapter it is assumed that the word length L of the memory input — and
output — is very large, of the order of thousands of bits. Such a memory ar-
chitecture would be well suited for example for real-time pattern recognition

119

in natural images, which would be useful in autonomous robotics, to name
one particular field of application. Moreover, there is a reason to believe
that the associative memory in the brain uses high-dimensional input and
output data [39], and thus such a memory may be needed for implementing
a whole-brain model such as the one discussed in [96]. The assumption of
very wide wordlengths distinguishes the considerations of this chapter from
some of the proposals of memristive associative memories in the literature,
where associations were modelled using only a few memristors [85,94].

This chapter is organized as follows. Section 9.1 discusses the basic prin-
ciples of associative memories including different data representations and
memory capacities. In Section 9.2 the autoassociative content-addressable
memory (ACAM) architecture is considered, and its memristive implemen-
tation is presented. In Section 9.3 memristive implementations of a certain
class of associative memory structures called sparse distributed memories are
considered. Finally, a summary and discussion of the memristive associative
memory architectures disussed in this chapter is presented in Section 9.4.
The main reference for this chapter is our publication [65].

9.1 Definitions and architectures

9.1.1 Associative memory

Let ui and vi, where i = 1, . . . ,M be binary vectors of length L. An
associative memory can store a set of associations ui → vi between these
vectors. Formally this means that when the memory is searched by a vector
z, it returns the vector vi (or just the index i) whose index i minimizes the
Hamming distance

dH(z,ui) =
L∑

j

(z(j) − ui(j))
2. (9.1)

Here x(j) denotes the jth element of x.
A memory satisfying the definition above is called heteroassociative, and

besides simply storing key-value pairs, it can also be used to store sequences
of vectors provided that the key and value vectors have the same length. A
sequence is formed by letting the value of a previous pair to be the key of
the next pair. When ui = vi for all i, the memory is called autoassociative,
and it allows for pattern completion or error correction.

An early review and system-theoretical formulation of associative infor-
mation structures was given in [47]; notably also physical realizations of
content-addressable and distributed memory structures were presented in
this monograph. Furthermore, a first broad review and analysis of content-
addressable memories and their hardware implementations was presented

120

in [48]. Further discussions on the theoretical basis of the memory architec-
tures considered in this work can be found for example in [30,37,41,49,113].

9.1.2 Data representation

Throughout this chapter the vector length L is assumed to be very large, in
the order of thousands of bits. Furthermore, all stored vectors are assumed
to be either sparse or dense. A sparse vector contains only a small fraction
of ones, for example 50 ones out of a total of L = 10000 bits, while in dense
binary vectors the numbers of zeros and ones are close to L/2. Raw data
is often inherently dense, and compressed data is dense, since it contains a
maximal amount of information. These examples easily point out the need
for associative memory architectures storing dense input patterns.

The usefulness of sparse representation may be understood by consid-
ering a data processing method called dimensionality reduction. In this
scheme a dense vector, for example a gray-scale bitmap image, is mapped
into a sparse vector whose non-zero coordinates contain most of the variance
in the original data. Sparse representation is suitable for pattern recognition
and completion, since the non-zero entries correspond to specific features in
the data. For example in sparse coding of natural images [81], the basis
functions correspond to oriented local structures.

It is known that the neural activity in parts of the brain is sparse [6]. In
the visual and auditory cortex this may serve pattern recognition, but sparse
activity of neurons is also beneficial in terms of metabolic efficiency [6]. This
suggests that sparse representation may be useful in reducing the power
consumption of hardware implementations of associative memories.

9.1.3 Unary and distributed architectures

Neural associative memory architectures can be divided into two categories:
unary – also known as grandmother cell – architectures and distributed ar-
chitectures [9]. In the former, each stored vector is allocated to a specific
neuron which activates only when a vector close to it is given as input to
the network. It follows from this that the number of neurons N is the upper
limit to the number of binary vectors M the network can store, that is,
M ≤ N . In practice a unary associative memory can be implemented as a
lookup table or as a content-addressable memory as discussed in Section 9.2.

In distributed memory architectures, multiple neurons are activated for
each input. In principle this enables storing more input vectors than there
are neurons in the network, that is, it is possible that M > N . The upper
limit for the number of vectors that can be retrieved without errors depends
not only on the memory architecture but also on the data distribution of
the input vectors. When operating with sparse vectors the storage capacity

121

Table 9.1: Network capacities of associative memory architectures.
Architecture CD CS

Autoassociative CAM 1 N/A
Willshaw memory N/A 0.69
Sparse Distributed Memory 0.15 ≥ 0.69

of the network may be much greater than N when N is large. Memristive
implementations of two distributed memory architectures are proposed in
Section 9.3.

9.1.4 Capacities of associative memories

The network capacity C of an associative memory is defined as the maximum
quantity of stored information per synapse [46]. By definition C is always
non-negative, and for binary synapses it satisfies C ≤ 1. To calculate the
vector capacity M which is the number of vectors that can be stored into
the memory, one needs to know C, the total number of synapses S, and the
information content in a single vector I, assuming that the input vectors are
independent and contain an equal quantity of information. Then

M = CS/I. (9.2)

For example, in the case of a square associative memory with N neurons,
the number of synapses equals S = N2. If logarithmically sparse vectors of
length L = N are used, each vector contains I ≈ log(N)2 bits of information.
Then the vector capacity of the memory equals

M ≈ CN2/ log2(N). (9.3)

On the other hand, if dense vectors are stored, then I = N and

M = CN. (9.4)

For example, with N = 106, one obtains N2/ log2(N) ≈ 5 × 109, which
shows that the vector capacity M depends strongly on the distribution of
the input data.

In Table 9.1 the network capacity values of the associative memories
discussed in this chapter are presented. These results were adopted from
references [38, 41, 46]. Here CD and CS denote the capacity for dense and
sparse data vectors, respectively. Notice that sparse vectors are not con-
sidered for the autoassociative content-addressable memory (ACAM), while
Willshaw memory is assumed to operate only on sparse vectors.

122

9.1.5 Literature review of memristive associative memories

Memristive associative memories have been presented in literature in [5,
25, 85, 94, 110]. Of these the most relevant to this chapter is [110], which
discusses the implementation of a classic associative memory architecture
called the Hopfield network [30] as a CrossNet circuit. This implementa-
tion requires analog synaptic weights, which are proposed to be realized
as small crossbars of binary devices, and it yields a vector capacity of
M = 0.118L [108]. Being a CMOL-based neuromorphic network, this ar-
chitecture closely resembles the ones described in Sections 9.2 and 9.3. The
Hopfield network has several disadvantages when compared to the mem-
ory designs described in this chapter. As noted above, the capacity of the
memory is directly proportional to the length of the input vector. With
the memristive ACAM described in Section 9.2 or the Sparse Distributed
Memory discussed in Section 9.3 this is not the case, as their capacities de-
pend on the number of rows in the memory matrices, and can therefore be
chosen independently from the input vector length. Moreover, the Hopfield
network is a dynamical system, whose artificial neurons need to communi-
cate with each other multiple times during an associative search in order
to find the equilibrium state that corresponds to the output of the search.
In contrast to this, the memory structures described in this chapter yield
the output of a search in a single step. The capacity of a Hopfield network
using dense input vectors equals that of a similarly sized SDM, while on
logarithmically sparse vectors the capacities of a Hopfield network and the
Willshaw memory described in Section 9.3 are roughly the same [46]. There-
fore it can be concluded that the associative memory architectures presented
in this chapter are better suited for a memristive implementation than the
Hopfield network, but yield the same or higher capacities.

Memristive implementations of a content-addressable memory (CAM)
have been proposed in [5] and [25]. The CAM is a computer memory ar-
chitecture which compares input search data against a table of stored data,
and returns the address of the matching data [82]. It is not an associative
memory as defined in the context of this chapter, as it recognizes an input
only if it exactly matches a stored vector (or an explicitly defined part of
that vector). Therefore despite its name, the design of the autoassociative
CAM in Section 9.2 differs significantly from the ones described in [5, 25].

In [85] and [94] the dynamics of analog memristors are used to create
associative responses in small scale memristive circuits. For example [85]
presents a three memristor circuit, whose dynamics are reminiscent of the
famous Pavlov’s experiment. These considerations differ considerably from
the approach taken in this chapter, as the main interest in the following is
to investigate memristive associative memories with very large capacities.

123

−

+

Rref

Vout

V1 V2 Vj VL

... Ij
...

Figure 9.1: A memristive circuit for computing the inner product b◦a. The
elements of the binary vector b are represented by the voltages Vj ∈ {0, VR},
j = 1, . . . , L, whereas the elements of the real-valued vector a are represented
by the currents Ij. The voltage Vout is directly proportional to the value of
the inner product.

9.2 Memristive autoassociative CAM

Recall from Remark 41 that the inner product between a binary vector and
a continously valued vector can be easily computed as a current sum using
memristors, binary voltage inputs, and a virtual ground. In Figure 9.1, such
an inner product circuit is depicted. This subcircuit is a crucial part in the
associative memory architectures described in this chapter.

9.2.1 Autoassociative CAM

An autoassociative CAM (ACAM) [9] compares input search data against
a table of stored data, and returns the addresses of the stored data which
are nearest to the input data in Hamming distance. Since ACAM is a unary
architecture, its vector capacity equals M = N , where N is the number
of memory rows, independent of the distribution of the input data. In
this section dense representation of data is assumed; associative memories
operating on sparse data are considered in Section 9.3.

Let the contents of the memory be represented by a binary matrix U ,
whose rows ui correspond to the stored vectors, and let z be the input vector
for the associative search. Therefore the search should yield the indices i for

124

which the Hamming distance H(z,ui) is minimized. Since

H(z,ui) = ||z||2 − 2z ◦ ui + ||ui||2, (9.5)

it follows that the vector ui that minimizes the Hamming distance is the one
which maximizes the inner product z ◦ ui. Indeed, since the vector length
L is large and the vectors were assumed to be dense, it follows that

||z||2 ≈ ||ui||2 ≈ L/2. (9.6)

For the hardware implementation it is very convenient that the inner product
is sufficient for measuring the distance between two vectors: due to this only
ones, and not zeros, need to matched in the input vector and the stored
vectors.

9.2.2 Implementation of a memristive ACAM

Consider a CMOL-type implementation of an ACAM whose memory ele-
ments are binary memristors, as depicted in Figure 9.2. The contents matrix
U is represented by the conductances of the memristors in the memristive
crossbar. The vertical nanowires are used for communicating the input and
output vectors, and comparison of input and stored vectors is performed over
the horizontal nanowires. All of the nanowires are interfaced with CMOS
blocks as depicted in Figure 9.2(b) — the vertical nanowires are interfaced
with driver blocks (DB), while the horizontal nanowires are interfaced with
comparison blocks (CB).

In general the length L of an input vector and the number N of the
stored vectors need not be equal. Consider for example the case N > L.
This corresponds toN horizontal and L vertical nanowires, and thusN−L of
the CMOS cells consist only of a comparison block depicted in Figure 9.2(b).
Notice here that the word cell is used instead of a neuron, since each of the
CMOS cells has also local memory latch and inputs of multiple global signals,
and therefore contains more functionality than a generic artificial neuron.
This choice of terminology is maintained in Section 9.3 where the CMOS
cell is extended to function as part of the Sparse Distributed Memory. In
the following the operation of the proposed memristive ACAM is presented
in detail.

Storing a vector

When a binary vector u is stored into the memory, an available row of the
ACAM is chosen. The corresponding horizontal nanowire is driven to a
negative voltage −Vprog, and the vertical nanowires are driven sequentially
to voltages corresponding to the bits of u: the jth vertical nanowire is driven

125

VERTICAL NW (NANOWIRE)

Rdri

C
dri

Rcomp

C
com

p

H
O

R
IZ

O
N

T
A

L
N

W

CMOS to VERT. NW VIA

CMOS to HORIZ. NW VIA

MEMRISTOR

V
E

R
T

O
C

A
L

N
W

 R
O

W
 A

C
C

E
S

S
VERTICAL NW COLUMN ACCESS

H
O

R
IZ

O
N

T
A

L
N

W
 R

O
W

 A
C

C
E

S
S

HORIZONTAL NW COLUMN ACCESS

VthVgnd

DB

CB

a) b)

WR

RDY

RDY

RDMRDM SR

Figure 9.2: Schematic of the memristive ACAM. (a) High-level view of the
memory architecture. (b) A single CMOS cell.

to a positive voltage Vprog if the corresponding bit uj = 1, and to ground
otherwise. The voltage Vprog is chosen to satisfy

Vprog < V T < 2Vprog, (9.7)

where V T is the programming threshold of the memristor. This assignment
of voltages programs the bits of the input vector as the resistances of the
memristors on this row of the nanowire crossbar: value zero is represented as
a memristor in the OFF-state, and value one is represented by a memristor
in the ON-state. If the row has been used previously, one may first initialize
it by driving a large negative voltage across the corresponding memristors.
The selection of the nanowires is accomplished with the CMOS microwires
denoted by Cdri, Rdri, Ccomp and Rcomp, as is depicted in Figure 9.3a).
In particular, Rdri controls the switch connecting Cdri to the latch in the
driver block, while Ccomp controls the switch connecting Rcomp either to
the CMOS circuitry in the comparison block or directly to the horizontal
nanowire, depending on the selected global configuration of the memory
circuit.

Search operation

When the memristive ACAM is searched by a binary vector z, the driver
blocks are used to drive the vertical nanowires to voltages corresponding to z:
the jth vertical nanowire is driven either to a positive voltage Vread if zj = 1,
or to ground if zj = 0. For this, the search vector must be sequentially stored
into the driver block latches before the search as depicted in Figure 9.3(b),

126

VERTICAL NW (NANOWIRE)

Rdri

C
dri

Rcomp

C
com

p

H
O

R
IZ

O
N

T
A

L
N

W

VthVgnd

DB

CB

a)

VERTICAL NW (NANOWIRE)

Rdri

C
dri

Rcomp

C
com

p

H
O

R
IZ

O
N

T
A

L
N

W

VthVgnd

DB

CB

b)

RDM=1RDM=1 WR=1

Figure 9.3: Memristive ACAM CMOS cell configured for the write-in op-
erations. (a) Storing the input vector as the states of the memristors on a
horizontal nanowire. The programming of the memristors is performed by
driving the vertical nanowires sequentially by voltages {Vprog,GND} corre-
sponding to the input bits, and by driving the selected horizontal nanowire
at a constant negative voltage −Vprog. The horizontal nanowires not at-
tending to this operation can be connected to ground, or they can be left
floating. On these nanowires the memristors are not programmed, as the
voltage across them does not exceed their programming threshold. (b) For
the search operation, the input vector bits are stored into the latches at the
driver blocks.

127

VERTICAL NW (NANOWIRE)

Rdri

C
dri

Rcomp

C
com

p

H
O

R
IZ

O
N

T
A

L
N

W

VthVgnd

DB

CB

a)

VERTICAL NW (NANOWIRE)

Rdri

C
dri

Rcomp

C
com

p

H
O

R
IZ

O
N

T
A

L
N

W

VthVgnd

DB

CB

b)
RDM =1 RDY =1 RDM=1 SR=1

Figure 9.4: Memristive ACAM CMOS cell configured for the read-out op-
erations. (a) Search operation. The input vector bits are driven to the
vertical nanowires by the driver block latches. The horizontal nanowires
are connected to virtual ground, and the incoming current is measured and
thresholded. The result of the threshold comparison can be read from the
Rcomp microwire. (b) Read-out of a stored vector. A selected horizon-
tal nanowire is driven with a read voltage, and the vertical nanowires are
connected to the virtual grounds. The incoming currents from the vertical
nanowires are thresholded, and the results are stored into the latches at the
driver blocks, from where they can be read out.

since the addressing scheme does not allow providing data to all vertical
nanowires simultaneously. Indeed, there are

√
N address lines for the N

driver blocks. The currents coming in from the horizontal nanowires to the
virtual ground of the comparison cells are then measured and thresholded
with a negative threshold voltage Vth, which should not be confused with
the memristor programming threshold V T . As described in the beginning of
this section, the voltage at the input of the comparator represents the value
of an inner product z ◦ ui. Thus the horizontal nanowires whose currents
exceed the threshold value correspond to the rows of the ACAM which are
within a desired distance of the search vector. The result can be read from
the output of the comparator, as depicted in Figure 9.4(a).

In general, multiple stored vectors u may be close enough to the search
vector z to be selected during the search. The number of selected vectors u
depends on the threshold voltage Vth which can be correspondingly adjusted,
for example in a logarithmic search, to yield k vectors u closest to z.

128

Reading out

The read-out of a vector ui is achieved by driving the corresponding hori-
zontal nanowire while simultanously measuring the currents at the vertical
nanowires. In Figure 9.4(b) the read-out operation is depicted. The value
corresponding to a bit in the stored vector is written into the driver block’s
latch, from which it can be driven onto the Cdri microwire.

9.2.3 Simulation of the ACAM cell

To demonstrate the operation of the proposed memristive memory design,
the ACAM cell was simulated with SPICE. In the simulation the binary
memristor model described in Section 3.4 was applied with parameters
RON = 10 MΩ, ROFF = 100 MΩ, V T = 1.5 V, and a switching time of
approximately 50 ns. For simplicity only one memristor was included in
this simulation — that located at the crosspoint of the horizontal and ver-
tical nanowires connected to the simulated cell — and therefore the search
operation corresponds to finding whether or not the input bit equals the
stored bit. The memristor is assumed to be initially in the OFF-state.

The values of the control voltages are depicted in the top subfigure of
Figure 9.5. The four subfigures below it show the voltages of the DB latch
and Rcomp. The simulation consists of three parts.

From 0 s to 0.5 µs the cell is configured for storing a bit to the memristor,
as depicted in Figure 9.3a). The value of the stored bit is driven to DB at
time 0.1 µs, while Rcomp is driven to −1 V at time 0.3 µs. If the bit to
be stored is one, the voltage across the memristor exceeds its programming
threshold voltage, which programs the memristor to the ON-state.

The search operation, corresponding to Figs. 9.3b) and 9.4a), is per-
formed from 0.5 µs to 1.0 µs. The input bit is driven to DB at time 0.6 µs,
and the result of the search can be read from Rcomp at time 0.8 µs.

The cell is configured for read-out of the stored bit, as depicted in Fig-
ure 9.4b), from 1.0 µs to 1.5 µs. Rcomp is used to drive a read voltage of
1 V across the memristor, and the result is stored to DB. The read-out can
take place from 1.3 µs on.

9.3 Sparse distributed memory architectures

As demonstrated by the network capacities given in Table 9.1, the associa-
tive memory architecture used in any given application should depend on
the distribution of the stored data. If dense data is used, autoassociative
content-addressable memory as described in the previous section is recom-
mended. For operation with sparse data, sparse distributed memories are
preferred.

129

0 0.5 1 1.5

0

1

Time (µs)

C
o
n
tr

o
l

S
ig

n
a
ls

0 0.5 1 1.5
−1

0

1

S
to

re
d
 =

 0
S

e
a
rc

h
 =

 0

0 0.5 1 1.5
−1

0

1

S
to

re
d
 =

 0
S

e
a
rc

h
e
d
 =

 1

0 0.5 1 1.5
−1

0

1

S
to

re
d
 =

 1
S

e
a
rc

h
e
d
 =

 0

0 0.5 1 1.5
−1

0

1

Time (µs)

S
to

re
d
 =

 1
S

e
a
rc

h
e
d
 =

 1

RD
M

RD
Y

SR

WR

DB

Rcomp

Search Read−out

Figure 9.5: SPICE Simulation of a memristive ACAM cell using the binary
memristor model. From 0 s to 0.5 µs the cell is configured for storing a
binary value to this memristor. From 0.5 µs to 1 µs it is configured for the
search operation, and from 1 µs to 1.5 µs it is configured for the read-out of
the value of the memristor. Here the search operation equals the correlation
of the stored bit and a searched bit, as only one memristor is considered for
simplicity. Top inset: Control signals RDM, RDY, SR and WR as a function
of time. Other insets: Voltages at the DB and Rcomp nodes. The result of
the search operation can be read from Rcomp at time T = 0.8 µs, while the
result of the read-out can be read from DB at time T = 1.3 µs.

130

These are artificial neural-net associative memories that can be seen
as associative generalizations of the conventional random-access memory
(RAM). In contrast to RAM, where each address refers to its own memory
location, addresses to sparse distributed memories activate multiple mem-
ory locations. This yields a distributed representation of the input address,
which is used in the subsequent read and write operations in the memory:
the data vector that is associated with an address is stored in multiple lo-
cations. In the following the memristive implementations of two distributed
memory architectures: the Willshaw memory and the Sparse Distributed
Memory (SDM) are presented. SDM can be seen as a generalization of the
Willshaw memory with analog weights and an auxiliary memristive ACAM-
type read-only memory which is used to make the size of the memory – and
therefore also its capacity – independent of the input vector length.

9.3.1 Memristive Willshaw memory

The Willshaw memory [113] is a neuromorphic heteroassociative memory,
which uses binary synapses and stores sparse data vectors. As the ACAM,
its contents can be represented by a binary matrix, which is denoted by W .
A key-value pair u → v of two sparse column vectors of lengths L and N ,
respectively, is stored into the memory by updating the matrix W according
to the outer-product rule

W := OR(W,vuT). (9.8)

As noted in Section 9.1.1, autoassociation is achieved by setting u = v. If
the stored vectors are sparse and have K ones, the vector capacity of the
Willshaw memory equals

M ≈ 0.69(N/K)2. (9.9)

Since the number of ones in the matrix W never decreases when storing a
new vector into the memory, one should use sparse representation of data
in order to limit the amount of overwriting of previously stored data. In
the information theoretical sense the maximum capacity of this memory is
obtained when K = log2(N), as is shown in [46].

The search of a Willshaw memory is performed as L thresholded inner
products between the rows of W and the search vector z:

v(j) = H(wj ◦ z−Θ), (9.10)

where Θ is a threshold value and H is the Heaviside function

H(a) =

{

1 a ≥ 0

0 a < 0.
(9.11)

131

The optimal choice of the threshold depends on the types of bit errors present
in the address z. In the original Willshaw model [113] the threshold Θ =
∑

zi was specified; this threshold is optimal in the case where z contains
only miss-type errors, that is, only values zi = 0 are potentially erroneous.

The only difference between the search operation of the Willshaw mem-
ory and that of the ACAM is the distribution of the input data. Indeed,
with the Willshaw memory the search vector is sparse, and thus the thresh-
old should be smaller than with the ACAM. Storing vectors is also performed
very similarly to the ACAM, the only difference being that in the Willshaw
memory the input is stored on multiple rows simultaneously. Therefore the
memristive ACAM architecture described in Section 9.2 and depicted in
Figure 9.2 implements also the Willshaw memory. As a conclusion, this
memory architecture should be configured as an ACAM when dense vectors
are used, and as a Willshaw memory when sparse vectors are used.

9.3.2 Structure and operation of a Sparse Distributed Mem-
ory

The Sparse Distributed Memory (SDM) is an artificial-neural-net associative
memory whose circuit resembles that of the cerebellar cortex [37]. It also
resembles the conventional RAM architecture more than the Willshaw mem-
ory does, as it uses an explicit address vector along with a word-in vector. A
high-level view of the SDM architecture is depicted in Figure 9.6. It consists
of two parts: a memristive ACAM-type read-only address matrix A, and
a Willshaw-type content matrix C, whose elements are integer counters of
small absolute value. The binary address matrix is used to produce a sparse
activation vector y, which indicates rows of the content matrix used in the
store and retrieve operations.

A vector z is stored into SDM by incrementing the jth counters of all
activated rows if zj = 1, and by decrementing them otherwise. The retrieve
operation is performed by columnwise summing of contents of activated
rows of the content matrix and by thresholding the result, thus yielding
w = H(Cy), where H is the Heaviside step function (9.11). In other words
the read operation works as with the Willshaw memory, whereas the write
operation differs in that the value of the counter is not binary and it is al-
lowed also to decrease. It has been shown that five-bit counters with values
in [−16, 15] are sufficient for practical operation of the SDM [37]. Reduc-
ing the range of the counter reduces the capacity of the memory – SDM
works even with one-bit counters but then only the most recently stored
data can be retrieved reliably. As the counters are implemented by analog
memristors it follows that the capacity of the memristive SDM depends on
the multilevel programming capability of the memristors. In particular, the
programming rate of the state variable should be approximately constant at

132

a fixed programming voltage pulse, and the number of allowed state variable
values should be large. The generic analog memristor model described in
Section 3.4 satisfies these requirements, as does for example the physical
memristor reported in [32].

ADDRESS REG

x 1 0 1 ... 0 0 1

N
 r

ow
s

A

ADDRESS MATRIX

DECODER

N addresses

0
0

0 0

0 0

0
0 0
0 0

0

0 0

0 1 1
1 1
1 1

1 1
1 1 1

1

1
1 1 1

1

1 1
1

1
Distance
measure

d

Activations

y
0
0

0

0

1

1

L columns

N
 r

ow
s

C

CONTENTS MATRIX

0 2 −2 4 2 −2
1−1 3 1 5−3
0 2 −4 2 4 4

4 2 4 6 −4 0
0 2 −2 0 0 2
1 3 1 −1 0 1

WORD−OUT REG

z

0 1 0 1 1 1

WORD−IN REG
0 1 0 1 1 1

w

STORAGE

d(a,x) (d)ϕ

Figure 9.6: A high-level view of the SDM. The address vector x is compared
with the rows of the address matrix A for example with respect to their
Hamming distance, resulting in the distance measure vector d. Threshold-
ing d gives the activation vector y, which is used to activate the corre-
sponding rows in the content matrix C. In the search operation, these rows
are summed element-wise, and the result is thresholded yielding the output
vector w. When the input vector z is stored into the memory, the corre-
sponding activated counters on the content matrix rows are incremented or
decremented as explained in the text above.

If the address register and the word-in register coincide then the SDM
functions as an autoassociative memory. This gives rise to improved error-
correction, as the word-out vector can be seen as a corrected version of
the original input, and can be fed back as the input vector for an iterated
search [37]. When the address register and the word-in register do not
coincide but have the same length L, the feedback loop from the word-
out register to the address register establishes a heteroassociative memory
structure capable of storing sequences, as was described in Subsection 9.1.1.
Also in this case there is iterative error-correction: an erroneously begun
sequence converges to the stored one [37]. A mix of autoassociative and

133

heteroassociative functionality is obtained by using a word-in register of
length L + K, and by copying the contents of the address register as the
first L bits of the word-in register. When storing a vector, the last K bits of
the word-in register can be arbitrary. Now a search can be iterated as in the
autoassociative case, but in addition to the corrected address vector, one
obtains another binary vector of length K, which gives a heteroassociation
between the address vector and the word-in vector. This mode of operation
of an SDM is thoroughly analyzed in [95].

In the following, a memristive implementation of an autoassociative
SDM, for which the lengths of the address and word-in register both equal
L, is presented. A major difference between the SDM and Willshaw memory
architectures is that the capacity of the SDM is not limited by the input
vector length L. This is because the address matrix yields a sparse activa-
tion vector whose length N is independent of L, and this activation vector is
used as the locations to store the word-in vector in the Willshaw-type con-
tent matrix. Thus one can design an SDM for which N ≫ L, and since the
vector capacity M of the SDM is a function of N , it is possible that M ≫ L.
However, M depends heavily on the distribution of the word-in data. When
it is dense, the capacity of the SDM is of the order M = 0.15N [38]. On
the other hand when the word-in data and the activation pattern are log-
arithmically sparse, the capacity is much higher, at least of the order of a
Willshaw memory of that size,

M ≈ 0.69LN

log(L) log(N)
, (9.12)

the exact number depending among other things on the range of the counters
in the content matrix and the required fidelity of the retrieval operation.

9.3.3 Implementation of a memristive SDM

Figure 9.7 shows the schematic of a memristive SDM cell. CMOS circuitry is
used to implement the address register, the distance vector d, the activation
vector y, the word-out register, and the word-in register. The address and
content matrices are mapped to two vertically stacked memristive crossbars,
as this layout allows for efficient utilization of silicon area. The address
matrix is mapped to a crossbar array of binary memristors as in the ACAM,
and the content matrix is mapped to a crossbar array of analog memristors.
Compared to the ACAM implementation shown in Figure 9.2, the CMOS
cell has been appended with a latch for bitwise storing of the activation
pattern y, and with multiple switches for selecting between the use of the
address matrix and the content matrix, and furthermore between the write
and read phases of the content matrix.

The search of the address matrix is depicted in Figure 9.8. During this
phase the SDM cell is configured as an ACAM cell, and the the search

134

VERTICAL LAYER 1 NW

Rdri

C
dri

R
co

m
p

C
com

p

H
O

R
IZ

O
N

T
A

L
LA

Y
E

R
 1

 N
W

DB

VthVgnd

CB RDZ

RDZ

RDY

RDY

VERTICAL LAYER 2 NW

H
O

R
IZ

O
N

T
A

L
LA

Y
E

R
 2

 N
W

RDY

WRZ

WRY

Y

CMOS to VERT. NW LAYER1 VIA

CMOS to HORIZ. NW LAYER1 VIA

CMOS to VERT. NW LAYER2 VIA

CMOS to HORIZ. NW LAYER2 VIA

LAYER 1 MEMRISTOR

LAYER 2 MEMRISTOR

WRZ

0VP

WRZ

WRZ

WRM

Figure 9.7: CMOS cell of the memristive SDM. This layout extends the
CMOS cell of Figure 9.2(b) by an interface to a second nanowire layer and
some required CMOS logic for the operation of the memory architecture.
The iterative search of SDM is obtained by closing the switch WRM and
copying the result of the search from the latch Y to the input latch in the
driver block DB. Then a new search can be conducted with the updated
search vector.

135

R
co

m
p

Ccomp

VthVgnd
CB

Y

DB

R
co

m
p

Ccomp

VthVgnd
CB

Y

DB

a) b)

X

R
dr

i

Cdri

DB

X

Figure 9.8: SDM cell configured as an ACAM for the address matrix search.
(a) Storing the input vector as the states of the memristors on a horizontal
nanowire. Using this configuration, the input vector bits can also be stored
into the latch at the driver block. (b) The search operation. In contrast to
the configuration depicted in Figure 9.3(b), the result of the search is stored
to the latch Y .

operation is conducted as explained in Section 9.2. In contrast to Figure 9.2,
the thresholded result which identifies the active rows in the SDM Decoder
is stored into the latch Y instead of a direct read-out. This result is used to
read and write the content matrix. The retrieval of data from the content
matrix is depicted in Figure 9.9(a). The latched result Y is used to drive the
second-layer horizontal nanowire, while the second-layer vertical nanowire
is connected to the virtual ground at the input of the operational amplifier.
As noted in the previous subsection, the retrieval is achieved by thresholded
matrix product w = H(Cy), where the matrix C consists of non-negative
analog values, and the vector y is binary. Thus the inner product method
described in Section 8.5 can be applied here. Notice that the threshold
voltage Vth should be proportional to the number of rows selected by address
matrix search, and to count the number of selected rows, additional analog
CMOS circuitry needs to be used. For example, each activated CMOS
cell can drive a constant current on a global microwire, and by measuring
the sum current one obtains the number of activated rows. However, for
simplicity this part of the CMOS cell circuitry has been omitted from the
schematic of Figure 9.7.

Writing to the content matrix is performed by applying a voltage pulse
on those second-layer horizontal nanowires which are selected by the address
matrix search explained above. The direction of the programming is deter-
mined by the word-in vector which must be written bitwise to the latches

136

at the driver blocks in advance. The configuration of the memristive SDM
cell during the writing of the content matrix is depicted in Figure 9.9(b).

9.3.4 Simulations and error analysis

The main difference in the operation of the proposed implementations of the
SDM and the ACAM is the programming of the analog weights representing
the SDM counters. The fidelity of the retrieve operation depends on the
accuracy of the programming of the analog memristors — the retrieve op-
eration itself is simply implemented by the inner product method described
in the beginning of Section 9.2. Simulations of the ACAM cell presented
in Subsection 9.2.3 apply here for the search and retrieve operations; in the
following a simulation of programming the analog memristor located at the
crosspoint of the second level horizontal and vertical nanowires contacted
to the simulated cell is presented. Furthermore, the effect of mismatched
programmming rates of analog memristors on the capacity of the SDM is
shown.

In Figure 9.10 voltage waveforms during the write operation are shown.
Here Z denotes the voltage at the driver block latch and corresponds to the
value of a single bit of the word-in vector, Y is the voltage at the comparison
block latch corresponding to a single bit of the activation vector, and VP is
a square wave voltage signal used to program the analog memristors. The
voltage signal VP is propagated onto the second-layer horizontal nanowire
only if Y = 1, that is, if the corresponding SDM row is selected at the SDM
Decoder. If Y = 0, the second-layer horizontal nanowire is tied to ground.
Moreover, due to an appropriate choice of the memristor’s programming
threshold, it is programmed only when the polarity of VP is different from
the polarity of Z. Thus the direction of the programming depends on the
value of Z, that is, on the value of the corresponding bit of the word-in
vector. The amount of change in the state of a memristor when programmed
is determined by the amplitude and wavelength of VP .

The accuracy of the counters depends on the characteristics of the ana-
log memristors. The proposed write operation does not guarantee an in-
teger change in the counter value, as the amount of programming step is
affected by several nonidealities, including device-to-device mismatch in the
programming thresholds among the analog memristors. On the other hand,
as the write operation is distributed over multiple second-layer horizontal
nanowires corresponding to rows in the content matrix, the individual vari-
ations may average out. The advantage of the proposed design is that pro-
gramming can be performed in parallel for each memristor on a given row,
and simultaneously for all rows. If in practice the accuracy of this pulse-
based programming is not enough, the cyclical programming described in
Subsection 4.2.2 can be used. However, cyclical programming requires mul-

137

R
co

m
p

Ccomp

VthVgnd
CB

Y

DB

R
co

m
p

Ccomp

VthCBR
dr

i

Cdri

Vgnd

Y

0VP
Z

DB

a) b)

Figure 9.9: SDM CMOS cell configured for reading and programming the
content matrix. (a) retrieval operation. The result of the address matrix
search is driven from the Y latch to the second-layer horizontal nanowire,
while the second-layer vertical nanowire is connected to virtual ground. The
currents coming in from the second-layer vertical nanowires are measured
and thresholded, and the result of the retrieval operation can be read from
the Rcomp microwire. (b) Incrementing and decrementing the counters in
the content matrix. The rows selected for this operation are determined by
the result of the address matrix search stored into latch Y . The direction
of programming is determined by the bit values Z stored into the latch
at the driver block. Global square wave voltage signal VP is used for the
programming.

138

0 1 2 3 4 5 6 7 8

0

0.5

1

Time (µs)

V
ol

ta
ge

 (
V

)

0 1 2 3 4 5 6 7 8

−1.5

0

1.5

Time (µs)

V
ol

ta
ge

 (
V

)

0 1 2 3 4 5 6 7 8
0

0.5

1

Time (µs)

S
ta

te
 v

ar
ia

bl
e

w

mem

V
mem

Y
Z

Figure 9.10: SPICE Simulation of the programming of an analog memristor
in the content matrix. Top inset: different combinations of the latch voltages
Y and Z. Middle inset: voltage across a simulated analog memristor within
the content matrix. Bottom inset: state variable w ∈ [0, 1] of the memristor
during the programming. Programming takes place when the memristor is
selected by the activation signal Y , while the direction of the programming
depends on the value of the word-in bit Z. Square wave voltage signal VP

used in this simulation had DC value of 0.5 V, amplitude of 1.0 V and
frequency of 5 MHz. The generic analog memristor model described in
Section 3.4 was used with parameters α = 1× 10−3, β = 1× 10−2, η = 0.27,
and λ = 10, corresponding to a programming threshold of approximately
V T = 1.1 V at the timescale of 1 µs.

139

tiple programming cycles per device, and cannot be easily applied to all
memristors in the content matrix simultaneously.

Figure 9.11 shows simulation results for the effect of inaccurate pro-
gramming on the capacity of an SDM. In the simulations, a varying num-
ber of dense binary input vectors were stored in the content matrix with
L = N = 211 using logarithmically sparse activation patterns, correspond-
ing to the theoretical vector storage capacity M = 0.15N . This capacity is
defined as the number of vectors storable in the memory with a bit error
probability PE = 0.005. Pulse-based programming of the memristors was
assumed with 32 nominal states. Errors in the programming phase were
approximated by assuming that the magnitude of state change in program-
ming a memristor is drawn from the normal distribution N (1, σ2

P). These
magnitudes were assumed to be different for each memristor in the content
matrix, but fixed for a given memristor. The state value of each mem-
ristor was limited to [−16, 15]; note that due to the random variation in
the programming, not all devices have exactly 32 distinct states within this
programming interval. This simulation indicates that the SDM is not very
sensitive to error in programming the counter values: a 10% standard de-
viation of the programming magnitude has negligible effect on the bit error
probability in the content matrix, and a standard deviation of over 80% is
required to reduce the vector capacity by a factor of 0.5.

9.4 Discussion on hardware requirements

Recall from Section 9.2 that an important basic operation in the consid-
ered memory implementations is the computation of inner products between
vectors as current sums over nanowires. It is thus relevant to consider the
resolution with which it is necessary to distinguish between the magnitudes
of these current sums in practical circuits. Suppose the input vector length
L = 10000. The inner product of two independent dense vectors u and v is
modeled by the binomial distribution B(n, p) with n = 10000 and p = 0.5.
The standard deviation of this distribution is

√

np(1− p) = 50, and for ex-
ample, less than a thousand-millionth of vectors v in {0, 1}L have an inner
product with u smaller than 4700. In other words, if two vectors have an
inner product smaller than 4700 or greater than 5300, it is highly probable
that they are not sampled independently from the uniform distribution. To
discriminate between inner product values of 5000 and 4700, one needs to
be able to distinguish the corresponding current sums with the analog cir-
cuitry. Thus the analog circuitry must have at least a five-bit resolution,
as L/25 ≈ 300. On the other hand, if sparse data vectors are used, some
tens of input currents are summed together, and even small variations in the
input currents should be distinguished. Again, a resolution of five bits, or

140

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

σ
P

P
E

0.1M
0.2M
0.3M
0.4M
0.5M
0.6M
0.7M
0.8M
0.9M
M

Figure 9.11: Probability of bit error PE vs. standard deviation σP of the
programming error in the SDM content matrix, simulated for L = N =
211, nominal memristances integer-valued in [−16, 15], and number of stored
vectors from 0.1M to M , where M = 0.15N ≈ 307.

32 different current levels, seems like a reasonable choice when L = 10000.

Consider then the area required by the single CMOS SDM cell of Fig-
ure 9.7. Each cell consists of multiple switch transistors, four inverters, and
two operational amplifier subcircuits. When a modern CMOS process is
applied, the analog circuits in the cell require most of the area. The area
of the analog CMOS circuits is governed by their accuracy requirements, as
random variation reduces with increasing transistor area, and can be accu-
rately predicted for a given circuit [45]. However, it must be noted that the
random variation in memristors is not yet well understood. As the targeted
computing accuracy is affected by the combined variation in CMOS and
memristors, only rough area estimations are possible at this point. For a
density estimation of the proposed memristive associative memory architec-
ture, assume that a CMOS cell area of 20×20 µm2 and a memristor footprint
of 50× 50 nm2 yield sufficient accuracy for the analog current summing and
thresholding. These estimates yield a CMOS cell density of 2.5 × 105 cells
per square centimeter, and a synaptic density of 6.25× 1010 memristors per
square centimeter. The chosen memristor footprint is the size of the digital
memristor reported in [36], whereas the analog memristor reported in [32]
is approximately four times larger. The smallest analog memristor reported
so far is [2], with an active switching area less than 20 nm2, but this work

141

is very recent, and no thorough description of this device has yet been pub-
lished. In any case, since the implementations of the ACAM and Willshaw
memories require only binary memristors, they could be fabricated at the
estimated density using current technology.

From the fabrication point-of-view, there are some challenges in the pro-
posed memristive associative memory architecture. One point of concern is
the requirement for unbroken, relatively long nanowires. This requirement
comes up also with conventional memristive RRAM-architectures, and it
must be solved if such large-scale architectures are to be realized. Another
problem may lie in the mismatch and non-linear programming among the
analog memristors needed for the implementation of the Hopfield network
and the SDM. The analog memristor in [32] seems to be suitable for these
memories, but so far no large-scale crossbar of such memristors has been
reported. Another possible solution is to use multiple binary memristors to
emulate an analog weight, as was originally proposed for the implementation
of CrossNets [70].

As mentioned in Section 9.2, in general an ACAM, a Willshaw memory,
or an SDM need not have an equal number L of columns, or bits of the search
vector, and rows N , or memory locations. The considered memristive imple-
mentation yields in this case a rectangular N ×L nanowire crossbar. As the
aspect ratio of a chip is limited in practice, this proposes a layout problem
in order not to waste silicon area. Vertical stacking of nanowire crossbars
and via translation [107] might present a solution to this; further consid-
eration is left for future research, however. Similarly the capacities of the
considered associative memory architectures may benefit from additional,
vertically stacked memristive crossbars.

142

Chapter 10

Conclusion

This thesis considers the principles of memristive computing. This is a
timely topic as the first memristive memory chips are predicted to become
commercially available within the next few years. The results presented in
this work indicate that memristors are well-suited for complementing CMOS
circuitry also in computational tasks.

The level of abstraction in the treatment of memristive computing in-
creased throughout the thesis, so that the first chapters were focused on the
theoretical and physical foundations of a single memristor, while Chapters 8
and 9 proposed system-level architectures that significantly benefit from the
characteristics of memristive devices. The middle part of this thesis, Chap-
ters 4 through 7, described elementary programming and read operations of
digital and analog memristors. All the considerations based on the contri-
butions of our research group are theoretical, as we currently do not have
access to fabricated memristive circuitry. However, we plan to begin the
experimental validation of our work by the end of year 2012. This will be
crucial for refining our ideas on memristive computing.

In the following I identify some common features of those computing
architectures which by the results of this thesis seem to profit from a mem-
ristive implementation.

In large-scale integrated systems memristors are most likely located within
nanowire crossbars, as such array structures mitigate the nanoscale aligment
problem in fabrication. For interfacing the crossbars with active CMOS cir-
cuitry, the CMOL architecture is the most prominent candidate. In CMOL-
type architectures, CMOS cells are used to drive the nanowires of the cross-
bar, and hence to access the memristors at the crosspoints of the wires. To
take full computational advantage of this design, the CMOS cells should
form a parallel processing architecture, in which memristors would be used
both as memory elements and as programmable connections between the
cells. As examples of such processing architectures, various implementa-

143

tions of artificial neural networks were considered in this thesis in Chapters 8
and 9. Certainly, other parallel processing architectures such as Networks-
on-Chips could be implemented also as CMOL-type architectures. The first
memristive computing architectures to be commercially available are likely
to be field-programmable gate arrays, which were discussed in Section 8.2,
since they benefit significantly from lifting the configuration bits from the
CMOS circuitry to the memristive layer. In a memristive FPGA, CMOS
cells contain the logic gates, while wiring is implemented by the memristive
crossbar.

It is also possible for the memristors themselves to perform logic opera-
tions as was investigated in detail in Chapter 6 and Section 8.3. Memristive
stateful logic can help to reduce the amount of logic circuitry needed at the
CMOS cells, thus allowing for higher cellular densities at the CMOS layer.
It is yet unclear to what extent stateful logic can replace more conventional
logic in this type of computing within memory, and there are some funda-
mental open problems in its implementation. For example, it would be very
useful if stateful logic could be completely parallelized so that multiple inde-
pendent operations could be performed at once within a CMOL architecture.
Another important question is how the control logic required for performing
the stateful operations could also be implemented by memristors. In addi-
tion to parallel stateful logic within a CMOL architecture, another possible
application area of stateful logic is in printed and organic electronics, where
transistors consume significantly more area than memristors.

Analog memristors are considered in several parts of this thesis, as they
allow for simple circuit realizations of continuous-valued processing. Phys-
ically however, analog memristors are typically larger than digital memris-
tors, and correspondingly yield memristive crossbars with fewer devices. The
computational effect of this tradeoff between the number of states in a single
device and the total number of devices is hard to estimate before large-scale
analog memristor crossbars are fabricated. Analog memristors seem to be
very useful in certain applications, for example some mixed-mode architec-
tures such as the sparse distributed memory of Chapter 9 benefit consid-
erably from their use. At the moment, however, it seems likely that the
first large-scale memristive architectures will use digital memristors with a
few different conductance states, and thus analog devices must be emulated
with digital memristors.

In a large-scale CMOL-type architecture the data input and output may
become a bottleneck, as the number of memristors is typically very much
larger — ideally, the fourth power of — the number of CMOS addressing
wires. It is beneficial then that processing is performed as close to the
memristive devices as possible. A future remedy for the data transfer prob-
lem may be 3D integration, which would allow bringing the data to the
CMOS cells in parallel. For example, a neuromorphic hardware mimicking

144

the functionality of the ventral stream [10] in the brain could consist of a
3D integrated stack of a pixel-parallel camera processor [88], an interme-
diate feature processing circuit and an associative memory used for object
recognition.

The next decades will show the impact of memristive computing. Similar
computational principles to the ones described in this thesis can certainly be
used for other upcoming resistive memory technologies such as the phase-
change memory. There are indisputable advantages in performing computa-
tion as close to memory as possible. A new level of parallelism will become
available once intra-chip communication and computational tasks can be
realized with programmable nanoscale components which do not consume
area at the CMOS layer.

145

146

Bibliography

[1] International technology roadmap for semiconductors 2010. Available
online at http://www.itrs.net.

[2] Adam, G., Alibart, F., Gao, L., Hoskins, B., and Strukov,

D. B. Fighting variations in Pt/TiO2−x/Pt and Ag/A-Si/Pt memris-
tive devices. Extended abstract in Nature Conference on Frontiers in
Electronic Materials: Correlation Effects and Memristive Phenomena,
2012.

[3] Afifi, A., Ayatollahi, A., and Raissi, F. STDP implementation
using memristive nanodevice in CMOS-nano neuromorphic networks.
IEICE Electronics Express 6, 3 (2009), 148–153.

[4] Alibart, F., Gao, L., Hoskins, B. D., and Strukov, D. B.

High precision tuning of state for memristive devices by adaptable
variation-tolerant algorithm. Nanotechnology 23 (2012).

[5] Alibart, F., Sherwood, T., and Strukov, D. B. Hybrid
CMOS/nanodevice circuits for high throughput pattern matching ap-
plications. In Proceedings of 2011 NASA/ESA Conference on Adaptive
Hardware and Systems (AHS) (2011), pp. 279–286.

[6] Baddeley, R. An efficient code in V1? Nature 381 (1996), 560–561.

[7] Bandyopadhyay, A., Serrano, G. J., and Hasler, P. Adaptive
algorithm using hot-electron injection for programming analog com-
putational memory elements within 0.2% of accuracy over 3.5 decades.
IEEE Journal of Solid-State Circuits 41 (2006), 2107–2114.

[8] Bao, B. C., Liu, Z., and Xu, J. P. Steady periodic memristor
oscillator with transient chaotic behaviours. Electronics letters 46, 3
(2010), 237–238.

[9] Baum, E. B., Moody, J., and Wilczek, F. Internal representa-
tions for associative memory. Biological Cybernetics 59, 4-5 (1988),
217–228.

147

[10] Bear, M. F., Connors, B. W., and Paradiso, M. A. Neuro-
science: Exploring the Brain. Lippincott Williams & Wilkins; Third
edition, 2006.

[11] Bi, G., and Poo, M. Synaptic modification by correlated activity:
Hebb’s postulate revisited. Annu. Rev. Neurosci. 24 (2001), 139–166.

[12] Borghetti, J., Snider, G. S., Kuekes, P. J., Yang, J. J., Stew-

art, D. R., and Williams, R. S. Memristive switches enable state-
ful logic operations via material implication. Nature, 464 (2010), 873–
876.

[13] Chang, T., Jo, S.-H., Kim, K.-H., Sheridan, P., Gaba, S., and

Lu, W. Synaptic behaviors and modeling of a metal oxide memristive
device. Applied Physics A 102 (2011), 857–863.

[14] Chen, A., Haddad, S., Wu, Y.-C., Fang, T.-N., Lan, Z.,

Avanzino, S., Pangrle, S., Buynoski, M., Rathor, M., Cai,

W., Tripsas, N., Bill, C., VanBuskirk, M., and Taguchi, M.

Non-volatile resistive switching for advanced memory applications. In
Proceedings of the IEEE International Electron Devices Meeting, 2005.
IEDM Technical Digest. (2005), pp. 746–749.

[15] Chen, Y., Jung, G., Ohlberg, D., Li, X., Stewart, D., Jeppe-

sen, J., Nielsen, K., Stoddart, J., and Williams, R. Nanoscale
molecular-switch crossbar circuits. Nanotechnology 14 (2003), 462–
468.

[16] Chevallier, C. J., Siau, C. H., Lim, S. F., Namala, S. R.,

Matsuoka, M., Bateman, B. L., and Rinerson, D. A 0.13µm
64Mb multi-layered conductive metal-oxide memory. In Proceedings of
the 2010 IEEE International Solid-State Circuits Conference (2010),
pp. 260–261.

[17] Chua, L. O. Memristor - the missing circuit element. IEEE Trans-
actions on Circuit Theory, CT-18, 5 (1971), 507–519.

[18] Chua, L. O., and Kang, S. M. Memristive devices and systems.
Proceedings of the IEEE, 64, 2 (1976), 209–223.

[19] Chua, L. O., and Lin, G.-N. Canonical realization of Chua’s circuit
family. IEEE Transactions on Circuits and Systems 37, 7 (1990), 885–
902.

[20] Chua, L. O., and Roska, T. Cellular Neural Networks and Vi-
sual Computing: Foundations and Applications. Cambridge University
Press, 2005.

148

[21] Chua, L. O., and Yang, L. Cellular neural networks: Theory. IEEE
Transactions on Circuits and Systems Vol. 35, 10 (1988), 1257–1272.

[22] DeHon, A. Array-based architectures for FET-based, nanoscale elec-
tronics. IEEE Transactions on Nanotechnology 2, 1 (2003), 23–32.

[23] DeHon, A., Goldstein, S. C., Kuekes, P. J., and Lincoln,

P. Nonphotolithographic nanoscale memory density prospects. IEEE
Transactions on Nanotechnology 4, 2 (2005), 215–228.

[24] Driscoll, T., Pershin, Y., Basov, D., and Ventra, M. D.

Chaotic memristor. Applied physics A 102, 4 (2011), 885–889.

[25] Eshraghian, K., Cho, K.-R., Kavehei, O., Kang, S.-K., Ab-

bott, D., and Kang, S.-M. S. Memristor MOS content addressable
memory (MCAM): Hybrid architecture for future high performance
search engines. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 19, 8 (2011), 1407–1417.

[26] Flocke, A., and Noll, T. G. Fundamental analysis of resistive
nano-crossbars for the use in hybrid nano/CMOS-memory. In Pro-
ceedings of the 33rd European Solid-State Circuits Conference (2007),
pp. 328–331.

[27] Gray, P. R., Hurst, P. J., Lewis, S. H., and Meyer, R. G.

Analysis and Design of Analog Integrated Circuits. Wiley; 5th edition,
2009.

[28] Ho, Y., Huang, G. M., and Li, P. Dynamical properties and design
analysis for nonvolatile memristor memories. IEEE Transactions on
Circuits and Systems I: Regular Papers (2010).

[29] Hodgkin, A., and Huxley, A. A quantitative description of mem-
brane current and its application to conduction and excitation in
nerve. The Journal of Physiology 117 (1952), 500–544.

[30] Hopfield, J. J. Neural networks and physical systems with emer-
gent collective computational abilities. Proceedings of the National
Academy of Sciences of the USA 79, 8 (1982), 2554–2558.

[31] Itoh, M., and Chua, L. O. Memristor oscillators. International
Journal of Bifurcation and Chaos 18, 11 (2008), 3183–3206.

[32] Jo, S. H., Chang, T., Ebong, I., Bhadviya, B. B., Mazumder,

P., and Lu, W. Nanoscale memristor device as synapse in neuro-
morphic systems. Nano Lett., 10 (2010), 1297–1301.

149

[33] Jo, S. H., Kim, K. H., Chang, T., Gaba, S., and Lu, W. Si
memristive devices applied to memory and neuromorphic circuits. In
Proceedings of the IEEE International Symposium on Circuits and
Systems, ISCAS 2010 (2010), pp. 13–16.

[34] Jo, S. H., Kim, K.-H., and Lu, W. High-density crossbar arrays
based on a Si memristive system. Nano Letters 9, 2 (2009), 870–874.

[35] Jo, S. H., Kim, K. H., and Lu, W. Programmable resistance
switching in nanoscale two-terminal devices. Nano Lett., 9 (2009),
496–500.

[36] Jo, S. H., and Lu, W. CMOS compatible nanoscale nonvolatile
resistance switching memory. Nano Letters 8, 2 (2008), 392–397.

[37] Kanerva, P. Sparse Distributed Memory. MIT Press, Cambridge,
Mass., 1988.

[38] Kanerva, P. Sparse distributed memory and related models. In As-
sociative Neural Memories: Theory and Implementation, M. H. Has-
soun, Ed. New York: Oxford University Press, 1993, pp. 50–76.

[39] Kanerva, P. Hyperdimensional computing: An introduction to com-
puting in distributed representation with high-dimensional random
vectors. Cognitive Computation, 1, 2 (2009), 139–159.

[40] Karnaugh, M. The map method for synthesis of combinational logic
circuits. Trans. AIEE, Commun. & Electron. 72, 1 (1953), 593–598.

[41] Keeler, J. D. Comparison between Kanerva’s SDM and Hopfield-
type neural networks. Cognitive Science 12 (1988), 299–329.

[42] Kim, K., Shin, S., and Kang, S.-M. Stateful logic pipeline ar-
chitecture. In Proceedings of the IEEE International Symposium on
Circuits and Systems, ISCAS 2011 (May 2011), pp. 2497–2500.

[43] Kim, K.-H., Gaba, S., Wheeler, D., Cruz-Albrecht, J. M.,

Hussain, T., Srinivasa, N., and Lu, W. A functional hybrid
memristor crossbar-array/CMOS system for data storage and neuro-
morphic applications. Nano Letters, 1 (2011), 389–395.

[44] Kim, K.-H., Hyun Jo, S., Gaba, S., and Lu, W. Nanoscale resis-
tive memory with intrinsic diode characteristics and long endurance.
Applied Physics Letters 96, 5 (Feb. 2010).

[45] Kinget, P. R. Device mismatch and tradeoffs in the design of analog
circuits. IEEE Journal of Solid-State Circuits 40 (2005), 1212–1224.

150

[46] Knoblauch, A., Palm, G., and Sommer, F. T. Memory capacities
for synaptic and structural plasticity. Neural Computation 22 (2010),
289–341.

[47] Kohonen, T. Associative Memory. Springer-Verlag, 1977.

[48] Kohonen, T. Content-Addressable Memories. Springer-Verlag, 1980.

[49] Kramer, M. A. Autoassociative neural networks. Computers and
chemical engineering 16 (1992), 313–328.

[50] Kuekes, P. Material implication: Digital logic with memristors. A
presentation in the Memristor and Memristive Systems Symposium at
UC Berkeley, 2008.

[51] Kuekes, P. J., Robinett, W., Roth, R., Seroussi, G., Snider,

G., and Williams, R. S. Resistor-logic demultiplexers for nanoelec-
tronics based on constant-weight codes. Nanotechnology 17 (2006),
1–10.

[52] Lai, S. Current status of the phase change memory and its future.
In Proceedings of the IEEE International Electron Devices Meetings,
2003 (2003).

[53] Laiho, M., and Lehtonen, E. Arithmetic operations within
memristor-based analog memory. In Proceedings of the 12th Inter-
national Workshop on Cellular Nanoscale Networks and Their Appli-
cations (CNNA) 2010 (2010).

[54] Laiho, M., and Lehtonen, E. Cellular nanoscale network cell with
memristors for local implication logic and synapses. In Proceedings of
the IEEE International Symposium on Circuits and Systems, ISCAS
2010 (2010), pp. 2051–2054.

[55] Laiho, M., Lehtonen, E., and Lu, W. Memristive analog arith-
metic within cellular arrays. In Proceedings of the IEEE International
Symposium on Circuits and Systems, ISCAS 2012 (2012).

[56] Laiho, M., Lehtonen, E., Russell, A., and Dudek, P. Memris-
tive synapses are becoming reality. In the newsletter of the Institute
of Neuromorphic Engineering, 2010.

[57] Lee, M.-J., Lee, C. B., Lee, D., Lee, S. R., Chang, M., Hur,

J. H., Kim, Y.-B., Kim, C.-J., Seo, D. H., Seo, S., Chung, U.-

I., Yoo, I.-K., and Kim, K. A fast, high-endurance and scalable
non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x

bilayer structures. Nature Materials 10 (2011), 625–630.

151

[58] Lehtonen, E., and Laiho, M. Stateful implication logic with mem-
ristors. In Proceedings of the 2009 IEEE/ACM International Sympo-
sium on Nanoscale Architectures, NANOARCH 2009 (2009), pp. 33–
36.

[59] Lehtonen, E., and Laiho, M. CNN using memristors for neigh-
borhood connections. In Proceedings of the 12th International Work-
shop on Cellular Nanoscale Networks and Their Applications (CNNA)
(2010), pp. 1–4.

[60] Lehtonen, E., Laiho, M., and Poikonen, J. H. A chaotic mem-
ristor circuit. In Proceedings of the 12th International Workshop on
Cellular Nanoscale Networks and Their Applications (CNNA) (2010).

[61] Lehtonen, E., Poikonen, J. H., and Laiho, M. A CNN ap-
proach to computing arbitrary Boolean functions. In Proceedings of
the IEEE International Symposium on Circuits and Systems, ISCAS
2010 (2010), pp. 2295–2298.

[62] Lehtonen, E., Poikonen, J. H., and Laiho, M. Two memristors
suffice to compute all Boolean functions. Electronics Letters, 3 (2010),
239.

[63] Lehtonen, E., Poikonen, J. H., and Laiho, M. Applications and
limitations of memristive implication logic. In Proceedings of the 13th
International Workshop on Cellular Nanoscale Networks and Their
Applications (CNNA 2012) (2012).

[64] Lehtonen, E., Poikonen, J. H., and Laiho, M. Implication logic
synthesis methods for memristors. In Proceedings of the IEEE Inter-
national Symposium on Circuits and Systems, ISCAS 2012 (2012).

[65] Lehtonen, E., Poikonen, J. H., Laiho, M., and Kanerva, P.

Memristive associative memories. submitted to IEEE Transactions on
Very Large Scale Integration (VLSI) Systems (2012).

[66] Lehtonen, E., Poikonen, J. H., Laiho, M., and Lu, W. Time-
dependency of the threshold voltage in memristive devices. In Proceed-
ings of the IEEE International Symposium on Circuits and Systems,
ISCAS 2011 (2011), pp. 2245–2248.

[67] Lehtonen, E., Poikonen, J. H., Poikonen, J. K., and Laiho,

M. Grayscale CNN computation of Boolean functions. In Proceedings
of First IEEE Latin American Symposium on Circuits and Systems
(LASCAS) (2010), pp. 200–203.

152

[68] Liang, J., and Wong, H.-S. P. Cross-point memory array with-
out cell selectors – device characteristics and data storage pattern
dependencies. IEEE Transactions on Electron Devices 57, 10 (2010),
2531–2538.

[69] Likharev, K., Mayr, A., Muckra, I., and Türel, O. CrossNets:
high-performance neuromorphic architectures for CMOL circuits. An-
nals Of The New York Academy Of Sciences 1006 (2003), 146–163.

[70] Likharev, K. K. CrossNets: Neuromorphic hybrid
CMOS/nanoelectronic networks. Science of Advanced Materials
3 (2011), 322–331.

[71] Likharev, K. K., and Strukov, D. B. CMOL: Devices, circuits,
and architectures. In Introducing Molecular Electronics, G. Cuniberti,
G. Fagas, and K. Richter, Eds. Berlin: Springer, 2005, pp. 447–478.

[72] Linares-Barranco, B., and Serrano-Gotarredona, T. Ex-
ploiting memristance in adaptive asynchronous spiking neuromorphic
nanotechnology systems. In Proceedings of the 9th IEEE Conference
on Nanotechnology, IEEE-NANO 2009 (2009), pp. 601–604.

[73] Lorenz, E. N. Deterministic nonperiodic flow. Journal of the Atmo-
spheric Sciences 20 (1963), 130–141.

[74] MacKay, D. J. C. Information Theory, Inference and Learning
Algorithms. Cambridge University Press, 2003.

[75] May, R. M. Simple mathematical models with very complicated
dynamics. Nature 261 (1971), 459–467.

[76] Mazumder, P., Kang, S. M., and Waser, R. Memristors: De-
vices, models, and applications. Proceedings of the IEEE 100, 6 (2012),
1911–1919.

[77] McCluskey, E. J. Minimization of Boolean functions. Bell. Syst.
Tech. Journal 35, 5 (1956), 1417–1444.

[78] Mellor, C. HP’s faster-than-flash memristor at least two
years away. The Register, 07/09/2012. Available online at
http://www.theregister.co.uk/2012/07/09/hp memristor and photons/,
2012.

[79] Micron Technology, Inc. Micron announces
availability of phase change memory for mobile de-
vices. A press release, 07/18/2012. Available online at
http://investors.micron.com/releasedetail.cfm?ReleaseID=692563,
2012.

153

[80] Mohr, P., Taylor, B., and Newell, D. Codata recommended
values of the fundamental physics constants: 2006. Reviews of Modern
Physics, 80 (2008), 633–730.

[81] Olshausen, B. A., and Field, D. J. Emergence of simple-cell
receptive field properties by learning a sparse code for natural images.
Nature 381 (1996), 607–609.

[82] Pagiamtzis, K., and Sheikholeslami, A. Content-addressable
memory (CAM) circuits and architectures: A tutorial and survey.
IEEE Journal of Solid-State Circuits 41, 3 (2006), 712–727.

[83] Pänkäälä, M., Laiho, M., and Hasler, P. Compact floating-
gate learning array with STDP. In Proceedings of International Joint
Conference on Neural Networks, IEEE-IJCNN 2009 (2009), pp. 2409–
2415.

[84] Pershin, Y. V., and DiVentra, M. Neuromorphic, digital and
quantum computation with memory circuit elements. Proceedings of
the IEEE 100, 6, 2071–2080.

[85] Pershin, Y. V., and Ventra, M. D. Experimental demonstra-
tion of associative memory with memristive neural networks. Neural
Networks 23 (2010), 881–886.

[86] Pickett, M. D., Strukov, D. B., Borghetti, J. L., Yang, J. J.,

Snider, G. S., Stewart, D. R., and Williams, R. S. Switching
dynamics in titanium dioxide memristive devices. Journal of Applied
Physics 106 (2009), 074508–074508–6.

[87] Pierret, R. F. Semiconductor Device Fundamentals. Addison Wes-
ley, 1996.

[88] Poikonen, J. H., Laiho, M., and Paasio, A. MIPA4k: A 64x64
cell mixed-mode image processor array. In Proceedings of the IEEE In-
ternational Symposium on Cirucits and Systems, ISCAS 2009 (2009),
pp. 1927–1930.

[89] Poikonen, J. H., Lehtonen, E., and Laiho, M. On synthesis of
Boolean expressions for memristive devices using sequential implica-
tion logic. IEEE Transactions on computer-aided design of Integrated
Circuits and Systems (2012).

[90] Robinett, W., Snider, G. S., Stewart, D. R., Straznicky, J.,

and Williams, R. S. Demultiplexers for nanoelectronics constructed
from nonlinear tunneling resistors. IEEE Transactions on Nanotech-
nology 6, 3 (2007), 280–290.

154

[91] Roska, T. Cellular wave computers for brain-like spatial-temporal
sensory computing. IEEE Circuits and Systems Magazine, 5, 2 (2005),
5–19.

[92] Roska, T. Cellular wave computers for nano-tera-scale technology
– beyond Boolean, spatial-temporal logic in million processor devices.
Electronics Letters Vol. 43, 8 (2007), 427–429.

[93] Scharfetter, D. L., Ko, P.-K., and Jeng, M.-C. BSIM: Berkeley
short-channel IGFET model for MOS transistors. IEEE Journal of
Solid State Circuits 22, 4 (1987), 558–566. Transistor models available
online at http://www-device.eecs.berkeley.edu/bsim/.

[94] Sinha, A., Kulkarni, M. S., and Teuscher, C. Evolving
nanoscale associative memories with memristors. In Proceedings of
the 11th IEEE International Conference on Nanotechnology (2011),
pp. 860–864.

[95] Snaider, J., and Franklin, S. Extended sparse distributed mem-
ory. In Proceedings of the Biological Inspired Cognitive Architectures
2011 (2011).

[96] Snider, G., Amerson, R., Carter, D., Abdalla, H., Qureshi,

M. S., Lveill, J., Versace, M., Ames, H., Patrick, S., Chan-

dler, B., Gorchetchnikov, A., and Mingolla, E. From
synapses to circuitry: Using memristive memory to explore the elec-
tronic brain. Computer 44, 2 (2011), 21–28.

[97] Snider, G. S. Self-organized computation with unreliable, memris-
tive nanodevices. Nanotechnology 18 (2007).

[98] Snider, G. S. Spike-timing-dependent learning in memristive nan-
odevices. In Proceedings of the 2008 IEEE/ACM International Sympo-
sium on Nanoscale Architectures, NANOARCH 2008 (2008), pp. 85–
92.

[99] Snider, G. S., and Robinett, W. Crossbar demultiplexers for
nanoelectronics based on n-hot codes. IEEE Transactions on Nan-
otechnology 4, 2 (2005), 249–254.

[100] Snider, G. S., and Williams, R. S. Nano/CMOS architectures
using a field-programmable nanowire interconnect. Nanotechnology,
18, 3 (2007).

[101] Strukov, D. B., and Likharev, K. K. Prospects for terabit-scale
nanoelectronic memories. Nanotechnology 16 (2005), 137–148.

155

[102] Strukov, D. B., and Likharev, K. K. A reconfigurable architec-
ture for hybrid CMOS/Nanodevice circuits. In Proceedings of the 2006
ACM/SIGDA 14th international symposium on Field programmable
gate arrays (2006), pp. 131–140.

[103] Strukov, D. B., and Likharev, K. K. Defect-tolerant architec-
tures for nanoelectronic crossbar memories. Journal of Nanoscience
and Nanotechnology 7 (2007), 151–167.

[104] Strukov, D. B., Snider, G. S., Stewart, D. R., and Williams,

R. S. The missing memristor found. Nature 453 (2008), 80–83.

[105] Strukov, D. B., Stewart, D. R., Borghetti, J., Li, X., Pick-

ett, M., Ribeiro, G. M., Robinett, W., Snider, G., Strachan,

J. P., Wu, W., Xia, Q., Yang, J. J., and Williams, R. S. Hybrid
CMOS/memristor circuits. In Proceedings of the IEEE International
Symposium on Circuits and Systems, ISCAS 2010 (2010), pp. 1967–
1970.

[106] Strukov, D. B., and Williams, R. S. Exponential ionic drift: fast
switching and low volatility of thin-film memristors. Applied Physics
A 94 (2009), 515–519.

[107] Strukov, D. B., and Williams, R. S. Four-dimensional address
topology for circuits with stacked multilayer crossbar arrays. Pro-
ceedings of the National Academy of Sciences of the United States of
America 106, 48 (2009), 20155–20158.

[108] Türel, O. Devices and circuits for nanoelectronic implementation of
artificial neural networks. PhD dissertation, Stony Brook University,
2007.

[109] Türel, O., Lee, J. H., Ma, X., and Likharev, K. K. Archi-
tectures for nanoelectronic neural networks: New results. In Pro-
ceedings of the European Symposium on Artificial Neural Networks
(ESANN’04) (2004), pp. 28–30.

[110] Türel, O., Muckra, I., and Likharev, K. Possible nanoelec-
tronic implementation of neuromorphic networks. In Proceedings of
the International Joint Conference on Neural Networks, 2003 (2003),
pp. 365–370.

[111] Vontobel, P. O., Robinett, W., Kuekes, P. J., Stewart,

D. R., Straznicky, J., and Williams, R. S. Writing to and read-
ing from a nano-scale crossbar memory based on memristors. Nan-
otechnology 20, 42 (2009).

156

[112] Whitehead, A. N., and Russell, B. Principia Mathematica. Cam-
bridge University Press, 1927 (2nd edition).

[113] Willshaw, D. J., Buneman, O. P., and Longuet-Higgins, H. C.

Non-holographic associative memory. Nature 222 (1969), 960–962.

[114] Xia, Q., Robinett, W., Cumbie, M. W., Banerjee, N., Car-

dinali, T. J., Yang, J. J., Wu, W., Li, X., Tong, W. M.,

Strukov, D. B., Snider, G. S., Medeiros-Ribeiro, G., and

Williams, R. S. Memristor – CMOS hybrid integrated circuits for
reconfigurable logic. Nano Letters Vol. 9, 10 (2009), 3640–3645.

[115] Xu, C., Dong, X., Jouppi, N. P., and Xie, Y. Design implications
of memristor-based RRAM cross-point structures. In Proceedings of
the Conference and Exhibition on Design, Automation and Test in
Europe (DATE) 2011 (2011), pp. 1–6.

[116] Yang, J. J., Pickett, M. D., Li, X., Ohlberg, D. A. A., Stew-

art, D. R., and Williams, R. S. Memristive switching mechanism
for metal/oxide/metal nanodevices. Nature Nanotechnology, 3 (2008),
429–433.

[117] Yang, Y., Gao, P., Gaba, S., Chang, T., Pan, X., and Lu,

W. Observation of conducting filament growth in nanoscale resistive
memories. Nature Communications 3 (2012).

[118] Yi, W., Perner, F., Qureshi, M. S., Abdalla, H., Pickett,

M. D., Yang, J. J., Zhang, M.-X. M., Medeiros-Ribeiro, G.,

and Williams, R. S. Feedback write scheme for memristive switch-
ing devices. Applied Physics A 102 (2011), 973–982.

[119] Young, H. D., and Freedman, R. A. University Physics with
Modern Physics, 12th Edition. Addison Wesley, 2007.

[120] Zhong, Z., Wang, D., Cui, Y., Bockrath, M., and Lieber, C.

Nanowire crossbar arrays as address decoders for integrated nanosys-
tems. Science 302 (2003), 137–139.

157

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 1
 same as current

 1
 1

 D:20120404144858
 708.6614
 B5
 Blank
 498.8976

 1
 Tall
 602
 331

 CurrentAVDoc

 SameAsCur
 AfterCur

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 6.929 x 9.843 inches / 176.0 x 250.0 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20120404144858
 708.6614
 B5
 Blank
 498.8976

 Tall
 1
 0
 No
 675
 317

 None
 Left
 2.8346
 0.0000

 Both
 1
 AllDoc
 78

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 10
 169
 168
 169

 1

 HistoryList_V1
 qi2base

