
Portland State University
PDXScholar
Electrical and Computer Engineering Faculty
Publications and Presentations Electrical and Computer Engineering

4-2017

Fast and Accurate Sparse Coding of Visual Stimuli with a Simple,
Ultra-Low-Energy Spiking Architecture
Walt Woods
Portland State University, wwoods@pdx.edu

Christof Teuscher
Portland State University, teuscher@pdx.edu

Let us know how access to this document benefits you.
Follow this and additional works at: http://pdxscholar.library.pdx.edu/ece_fac

Part of the Electrical and Computer Engineering Commons

This Pre-Print is brought to you for free and open access. It has been accepted for inclusion in Electrical and Computer Engineering Faculty
Publications and Presentations by an authorized administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.

Citation Details
Woods, W., & Teuscher, C. (2017). Fast and Accurate Sparse Coding of Visual Stimuli with a Simple, Ultra-Low-Energy Spiking
Architecture. arXiv:1704.05877

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PDXScholar

https://core.ac.uk/display/37772361?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://pdxscholar.library.pdx.edu?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F364&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pdxscholar.library.pdx.edu/ece_fac?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F364&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pdxscholar.library.pdx.edu/ece_fac?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F364&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pdxscholar.library.pdx.edu/ece?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F364&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=http://pdxscholar.library.pdx.edu/ece_fac/364
http://pdxscholar.library.pdx.edu/ece_fac?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F364&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F364&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:pdxscholar@pdx.edu

Fast and Accurate Sparse Coding of Visual Stimuli
with a Simple, Ultra-Low-Energy Spiking

Architecture
Walt Woods and Christof Teuscher

Department of Electrical and Computer Engineering
Portland State University, Portland, OR, USA

{wwoods, teuscher}@pdx.edu

Abstract—Memristive crossbars have become a popular means
for realizing unsupervised and supervised learning techniques.
Often, to preserve mathematical rigor, the crossbar itself is
separated from the neuron capacitors. In this work, we sought to
simplify the design, removing extraneous components to consume
significantly lower power at a minimal cost of accuracy. This
work provides derivations for the design of such a network,
named the Simple Spiking Locally Competitive Algorithm, or
SSLCA, as well as CMOS designs and results on the CIFAR and
MNIST datasets. Compared to a non-spiking model which scored
33% on CIFAR-10 with a single-layer classifier, this hardware
scored 32% accuracy. When used with a state-of-the-art deep
learning classifier, the non-spiking model achieved 82% and our
simplified, spiking model achieved 80%, while compressing the
input data by 79%. Compared to a previously proposed spiking
model, our proposed hardware consumed 99% less energy to
do the same work at 21× the throughput. Accuracy held out
with online learning to a write variance of 3% and a read
variance of 40%. The proposed architecture’s excellent accuracy
and significantly lower energy usage demonstrate the utility of
our innovations. This work provides a means for extremely low-
energy sparse coding in mobile devices, such as cellular phones,
or for very sparse coding as is needed by self-driving cars or
robotics that must integrate data from multiple, high-resolution
sensors.

Index Terms—sparse coding, locally competitive algorithm,
memristors, neuromorphic architecture, low-power

I. INTRODUCTION
Sparse coding, accomplished through algorithms that en-

code an input stimulus in a new basis with few non-zero
elements, has been shown to yield excellent image classifi-
cation accuracy [1]. These algorithms have also been shown
to reduce the learning time required for backpropagation, a
popular training method for neuromorphic architectures [2].
Since there are few non-zero elements, sparse coding also
provides a means for minimizing the bandwidth required to
transfer sensor data amongst multiple processors, or to store
that data in long-term storage. These algorithms have gained
traction in recent years partially thanks to the discovery of
these benefits as well as biological evidence that the V1 visual
layer in mammalian cortices performs similar functionality [3],
[4].

In addition to benefits for machine learning, the implemen-
tation of neuromorphic algorithms, of which sparse coding
algorithms are a subset, on custom Application-Specific In-
tegrated Circuits (ASICs) has been a wildly popular area of

study largely in thanks to the development of programmable,
variable-resistance nanodevices, named memristors, that can
be used to realize the synapses needed in a more compact,
energy efficient form [3]–[9].

Our work extends from the Locally Competitive Algorithm
(LCA) proposed by Rozell et al. in 2008, an optimal solver for
the sparse coding problem [10], coupled with Oja’s rule, used
to repeatedly tune the dictionary towards an optimal solution
for a set of training inputs [11]. The sparse code from the
LCA was passed to a supervised layer, which was trained to
classify the stimulus either as the value of a handwritten digit
or the type of object in a tiny image: MNIST and CIFAR-10,
respectively [12], [13]. This approach leverages the transfor-
mation of input data from its native space to a decorrelated
space via the LCA, and then uses traditional machine learning
techniques to classify the stimulus based on its decorrelated
representation. We have used this approach in the past [7]. In
practice, there are several benefits to this approach: improved
accuracy due to the stability of the decorrelated representation
(an effect similar to dropout), and the ability to compress
the input stimulus between the measuring device and the
identification layer. A single frame of HD video data consists
of approximately 6.2Mbit of information, which the LCA can
compress down to 1.6Mbit, a 74% reduction, at an RMSE of
5.8%, or down to 1.0Mbit, an 86% reduction, at an RMSE of
7.0%. For video surveillance systems or autonomously driving
vehicles, this means that several cameras could be wired into
a single, high-speed, low-energy sparse coding device, greatly
reducing the needed communication bandwidth for the system.

The LCA provides competition amongst inputs to minimize
the number of active outputs and simultaneously maximize
the fidelity of the reconstruction produced. The exact function
minimized by the LCA, with the input stimulus as s, the sparse
code as a, the reconstruction as ŝ, and a cost function C(·)
based on the sparse thresholding that yielded a, is written as:

E(t) =
1

2
||s(t)− ŝ(t)||2 + λ

∑
m

C(am(t)). (1)

E(t) is minimized when an Ordinary Differential Equation
(ODE) derived by Rozell et al. reaches its steady state:

ar
X

iv
:1

70
4.

05
87

7v
1

 [
cs

.E
T

]
 1

9
A

pr
 2

01
7

u̇m(t) =
1

τ

bm(t)− um(t)−
∑
n 6=m

Gm,nan(t)

 . (2)

While an effective equation, prior attempts at implementing
the LCA directly in hardware have suffered from a few
details which prevented an efficient implementation. The most
obvious comes from the inhibition term in Eq. (2): each
output column depends on all other output columns. For a
naive implementation, and indeed the one chosen by Rozell’s
group and presented in Shapero et al. [14], this implies
O(N2) hardware scaling: doubling the number of output
elements quadruples the required hardware. Additionally, a
low-power implementation of the dot product in the ODE is
non-trivial: it had to either be implemented digitally, or using
next-generation components like memristors. While variable-
resistance nanodevices like memristors can compute a dot
product using little power themselves, to make the compu-
tation accurate would require a virtual ground, a very power-
hungry configuration [15].

In this work we set out to provide a low-power, hardware-
friendly realization of an LCA-like algorithm that used a
spiking framework. To maximize power savings, the model
was simplified and the drawbacks of that simplification were
investigated. Spikes were utilized to save power; the efficacy of
spikes for power saving was explored. The proposed architec-
ture has been named the Simple Spiking Locally Competitive
Algorithm (SSLCA). The SSLCA was compared with both
the original LCA’s ODE as well as their later spiking work
in Shapero et al. Both the MNIST and CIFAR-10 datasets
were used for the comparison. Through these comparisons,
we found that our proposal demonstrated excellent power and
scaling qualities. It is our hope that this work provides the
basis for efficient sparse-coding hardware in next-generation
computers and robotics.

II. RELATED WORK

Due to the development of nanodevices that can function as
hardware synapses, such as memristors, and the popularity of
neuromorphic algorithms, there has been a lot of prior work
relating to ASICs for neuromorphic sparse coding architec-
tures. The relative performance of these in terms of energy
efficiency and throughput are shown in Fig. 1.

The original work on LCAs was Rozell et al., 2008 [10].
Rozell et al. sought to improve upon prior sparse coding
algorithms by deriving an optimal expression to both mini-
mize the sparse equation (Eq. (1)) and smooth the generated
sparse representation when given time-varying input. Their
work derived an ODE that solved both of these problems.
However, a hardware implementation of this ODE would
scale with O(N2) operations as an artifact of its inhibitory
term (Eq. (2)). Furthermore, digital implementations would
require many iterations to stabilize the ODE, while analog
implementations would require constant, voltage-scaled inputs,
and a power-hungry virtual ground for each output neuron

104 105 106 107 108

Ops/s

10−12

10−11

10−10

10−9

10−8

10−7

J/
In

p
u

t

Knag 2015

This work

Shapero 2012

Shapero 2013

Fig. 1: Comparison of the SSLCA’s energy efficiency and throughput,
presented in this work, with previous state-of-the-art results. One “Op,” or
operation, is the complete generation of a sparse code from a single set of
inputs; we used this metric as it is scale-invariant (doubling the number of
input elements processed in parallel would not affect this quantity).

[7]. The LCA was implemented using analog signals and sub-
threshold currents on a Field Programmable Analog Array
(FPAA) with floating gates in 2012 by Shapero et al., a
group including C. Rozell [16]. While it demonstrated power
consumption scaling of only O(N

√
N), the required hardware

still scaled as O(N2), and convergence was relatively slow,
occurring after 240 µs.

These drawbacks were addressed to some extent later by
Shapero et al. in 2013 [14]. That work extended the origi-
nal LCA to a spiking architecture, referred to in this work
as the Spiking Locally Competitive Algorithm (SLCA). The
motivation for spiking largely seems to have stemmed from
biology: all biological systems appear to use spiking rather
than constant signals [3], [4], [17]. Spiking models have also
long been believed to consume less power, and to exhibit
additional computational power due to their stochasticity [18]–
[20]. The validity of leveraging spikes to save power is
discussed further in Section IV-A2 of this work. In their work,
Shapero et al. showed that their SLCA consumed more power
than their LCA at small sizes, but that their SLCA scaled only
as the desirable O(N), and would consume less power than
the LCA at large network sizes. Additionally, they reduced
the convergence time to 25 µs, nearly 90% faster than their
LCA with a throughput of 40 kOps/s. However, the required
hardware still scaled as O(N2).

Other spiking networks optimized for sparse coding have
been published, such as SAILnet, introduced by Zylberberg
et al. in 2011 [21]. ASICs using this architecture have been
studied, with a substantial reduction in power compared to
the approach presented by Shapero et al. Knag et al. [22]
were capable of using the SAILnet architecture to process
images using only 48 pJ/input for their inference logic with
a throughput of 0.55MOps/s, or using 176 pJ/input with
a throughput of 4.8MOps/s, 120× as fast as Shapero et
al. Their design was CMOS-based, and utilized a decreased
resolution for weight storage: 4 bits per excitatory or inhibitory

weight. This decision has been justified in a number of prior
works dealing with how much accuracy is needed for sparse
coding algorithms to perform well [7], [23]. Like the LCA,
SAILnet uses a direct inhibitory weight between each pair of
output neurons, yielding a scaling complexity of O(N2).

The closest family of algorithms that does not exhibit
O(N2) scaling is Spike-Timing-Dependent Plasticity (STDP).
STDP exploits what is known as “Hebbian” learning, where
input spike events that occur at the same time as an output
spike event become more likely to trigger that output spike
event. The common idiom for this behavior is, “neurons that
fire together, wire together.” In effect, each output neuron
learns to activate when a correlated set of inputs fires together.
This is very similar to what happens in sparse coding, where a
neuron responds to a specific pattern in the input. The primary
difference is that STDP makes no effort to preserve the
information found in the input; that is, it is not a compressive
algorithm. Rather, the purpose of STDP is to flag which
features are present in the input and how prevalent they are,
without regard for the other features present. Sparse coding,
on the other hand, will suppress output of a feature that
is already represented by a combination of other features.
Both techniques are a form of unsupervised learning, except
sparse coding requires some inhibitory terms while STDP does
not. This gives STDP the desirable quality of O(N) scaling.
Due to its excellent scaling properties, STDP was used in
one of the earliest attempts to replicate the features found
in mammalian visual cortices [3], has been explored as an
autoencoder [24], and has been used to generate unsupervised
features for digit classification on the MNIST digit database
[5]. STDP is also one of the dominant architectures researched
using next-generation nanodevices such as memristors [4]–[6],
[8], [9], [17]. The downside of omitting inhibition is that more
output neurons are required; with 50 neurons, prior research
showed that STDP achieved 80% accuracy on MNIST, while
a sparse coding layer using LCA achieved 85% [5], [7].

Recent work by Sheridan et al. showed that their group
has manufactured memristive crossbars and applied voltage
across the network to calculate the similarity coefficients in the
LCA equations [25]. The implementation of the actual LCA
in Sheridan et al. was performed on a traditional computer
reading data from the crossbar; our work extends their work by
proposing a means of implementing the entirety of the LCA on
the same chip as the memristive crossbar with few additional
components. The Sheridan et al. work also advocated using
a Winner-Take-All (WTA) approach to training the weight
matrix. While effective, using WTA was motivated largely by
the supposition that a single neuron’s firing would dominate
the response to most stimuli; however, with inhibition and
larger, more complicated inputs, this is not the case.

III. MODEL
In light of issues with previous hardware implementations

and the potential benefits of sparse coding algorithms dis-
cussed in Sections I and II, we set out to develop the sim-
plest architecture for sparse coding that would exhibit O(N)
scaling, utilize inhibition, and emphasize low-power operation.

Row Header

Spikes

Input spikes

Is any neuron
firing?

Row Header

Row Header

Output

C
olum

n
H

eader

C
olum

n
H

eader

C
olum

n
H

eader

Fig. 2: High-level architecture for the SSLCA. During inference, input spikes
pass through a Row Header. Voltage is forwarded from the Row Headers to
a nanowire crossbar with memristors at each junction. Current is allowed to
pass through each memristive junction and is used to charge or discharge an
LIF neuron in each Column Header (Fig. 3). When any LIF neuron spikes,
an output spike is propagated and inhibitory forces are passed back through
the crossbar to the Row Headers. The count of output spikes across any given
time window describes the sparse code for the input pattern seen during that
time window.

While any device whose resistance can be modified in-situ
would suffice, memristors from Lu et al.’s group were chosen
due to their nanoscale form factor and ability to be fabricated
in tight crossbars [25]. These devices additionally exhibit a
low on:off ratio, which has been associated with devices that
possess better long-term storage and analog qualities [15],
[25].

As an initial step, we established that the chosen architecture
should fit the form shown in Fig. 2. Assuming good accuracy
could be derived, such an architecture would be sufficient for
implementing sparse coding with the desired traits. Such an
architecture would clearly exhibit O(N) scaling. Inhibition
could be implemented with a backwards-pass through the
same crossbar used to charge the output neurons. Low-power
operation would stem from the simplicity of the architecture,
its good scaling properties, and an innovation on the way the
neurons were integrated into the architecture.

Neurons in this architecture differ from previously proposed
architectures. Like prior work, the Column Headers implement
Leaky-Integrate-and-Fire (LIF) neurons [8], [14]; in contrast
to those architectures, the LIF neurons both accrue charge
and discharge via the crossbar in relation to the current input.
In addition to requiring fewer components, this configuration
has proven more tolerant of un-normalized receptive fields, a
phenomenon discussed in Section III-A.

Inference with this architecture begins with input spikes
reaching the Row Headers. Input spikes were chosen due
to biological inspiration, the promise of lower power con-
sumption, and also partially because memristors exhibit vastly
different resistances at different voltages; using spikes rather
than voltage-scaled inputs helps to avoid this situation [15].
Additionally, keeping both the input and output to the al-
gorithm as spiking helps increase the homogeneity of the
system. This enables the architecture to encode not only an

input stimulus but also e.g. the output of an STDP algorithm.
Upon reaching the Row Headers, spikes are converted into
voltages - one of Vcc or 0V - which are applied to the
nanowire crossbar. At each crossbar junction, a memristive
device provides resistance between the Row Headers and the
Column Headers. The resistance of each device is set such
that, at Vcc, it is between Rmin and Rmax. The pattern of
conductances formed by these memristive devices in each
column are the Receptive Field (RF) of the corresponding
neuron. An input pattern aligning with this field will trigger
an output spike in this column before any other column.
Current flows through these memristive devices into or out
of the capacitor in each Column Header. When one of the
Column Header capacitors reaches a given threshold, that
column generates an output spike, and current flows from that
column back through the corresponding memristive devices
into the Row Headers to re-charge inhibitory forces. Once the
output spike event finishes, the process repeats.

The derivation of necessary parameters was broken down
into two stages: calculations without inhibition, and an exten-
sion of those calculations to incorporate inhibition. This divide
was necessary to ensure the solution was tractable, and had
the added benefit of deriving two versions of the architecture
which were used to demonstrate the benefits of inhibition.
A. Uninhibited SSLCA

To begin the derivation for the Uninhibited SSLCA, we start
with the equation for Rozell et al.’s LCA, Eq. (2), and remove
the inhibitory term. What remains is a leaky dot product, with
no O(N2) scaling problem. However, the resulting equation
also no longer possesses optimality guarantees. Oja’s rule,
used in this work to train each neuron’s RF, can be used to
somewhat remedy the missing inhibitory term by adjusting
multiple RFs to work together to reconstruct the input without
inhibition [11]. However, even with this compensation, using
a leaky dot product for sparse coding would be difficult in
hardware due to the angle property of the dot product between
two vectors:

X ·Y = |X||Y|cos(θ). (3)

From Eq. (3), a larger magnitude in either vector could
be used to compensate for a larger difference in angle. In
other words, a maximally-conductive RF would generate more
current than an RF that is a better match. Prior works have
solved this issue by normalizing each RF [25]. However,
we decided to solve this problem by creating a negative
stimulus via inactive input channels. The current through
these channels would be proportional to the RF, meaning that
missing activity where the RF is conductive would lead to
a higher penalty. This is the reason that capacitors in this
network are placed directly on the crossbar, rather than behind
a diode or equivalent.

Using the layout from Fig. 2, the Row Headers for the
uninhibited SSLCA are simple passthroughs, and the Column
Headers are simply a capacitor and a Schmitt trigger that
drains all capacitors once any one neuron’s voltage exceeds

Vfire volts. The partial derivative of any neuron’s voltage is
therefore:

C
∂Vneuron

∂t
=
∑
i

(Vi − Vneuron)Gi, (4)

where C is the capacitance of the capacitor, Vneuron is the
current voltage of that capacitor, Vi is the ith input’s voltage
(one of Vcc or 0V depending on whether it is currently spiking
or not), and Gi is the conductance of the memristive device
connecting the nanowires of the ith Row Header and the
neuron in question’s Column Header.

Assuming an input row i spikes to voltage Vcc with a mean
activity of Ki (on for Ki, off for 1−Ki), and is grounded the
rest of the time, this can be reduced via the Laplace transform
to:

Q1 =
∑
i

Gi,

Q2 = Vcc
∑
i

KiGi,

C
∂Vneuron

∂t
= Q2 −Q1Vneuron,

Vneuron(t) =
Q2

Q1
(1− e

−tQ1
C) + Vneuron,t=0e

−tQ1
C , (5)

where Vneuron,t=0 is the neuron’s voltage at t = 0. Q1,
the column’s total conductance, and Q2, a matching metric
between the stored RF and the input pattern, arise as intuitive
factors that affect the neuron’s state. To establish the necessary
values for C and Vfire, Q1 and Q2 need to be derived in a way
that produces good results for the network’s “average case.”
Empirically, we found that assuming both the input and stored
RF have binary elements (even for analog problems) produced
the best results: the K values are either 1 or 0, while the G
values are either the minimum or maximum conductance of
our memristive devices.

The resulting calculation for Q1 and Q2, required to de-
termine both the network’s trigger voltage Vfire and neuron
capacitance C, is described in Algorithm 1. Though these
calculations are based on a single sample of Q1 and Q2, our
results showed that the network still worked well outside of
these “average cases” (Section IV).

Sparse coding being the goal of this architecture, we also
make the assumption that any spike event will reset all neuron
charges to 0V, implying that each output spike only encodes
input activity seen since the end of the previous output spike.
The downside to this assumption is that the architecture
becomes a one-hot system: a pattern of simultaneously-firing
output spikes becomes impossible. Superficially, this is in
contrast to some other work on stochastic computation with
spiking neurons [18]–[20]. The network still encodes stochas-
tic information in a single output spike: the input pattern
represented is stochastic due to the input spikes’ duty cycles,
and as such the corresponding output is stochastically selected.
By not allowing a pattern of simultaneous output spikes, the

number of representable input patterns in a single event is
reduced. However, due to this stochasticity, we have found
that collecting multiple output spikes over a period of time
results in a stochastic pattern of output activity that accurately
represents the input. This is functionally identical to the trade-
off of memory for time in computation; we are reducing
the memory of the momentary output of our architecture in
exchange for longer runtime. For sparse coding, where the
resulting code often needs to be stored or otherwise buffered,
this is not an issue.

With the above assumption, all Vneuron,t=0 = 0, and
Eq. (5) can be rearranged to calculate C based on some
Q1, Q2, Vfire, and tfire, where Vfire and tfire are the de-
sired voltage and time at which an output spiking event should
occur given the input and stored RF parameters that produce
Q1 and Q2:

C =
−tfireQ1

ln
(
1− Vfire Q1

Q2

) . (6)

As tfire can be calculated from the desired hardware
clock rate and number of spikes per patch, the remaining
parameters needed to fully specify the uninhibited SSLCA
are Vfire, Q1, and Q2. Our experiments yield good results
when Vfire is calculated based on a thresholded max voltage
from Eq. (5) with a Q1 and Q2 calculated for the desired
minimum RF that the resulting sparse code can represent, and
when the Q1 and Q2 for the calculation of C come from
an average case of the data set used with the network. The
exact procedure followed to calculate these values is described
in Algorithm 2. The algorithm requires knowledge of the
expected average value of a stored receptive field, Rfavg , as
well as an idea of the minimum input intensity that should
trigger an output spike, Rfleast. After scanning across many
different combinations of these variables, we discovered that
setting Rfleast = (1 − e−1)Rfavg typically yields optimal
results; this relation was used throughout this work.

Following Algorithm 2, and substituting the resulting values
into Eq. (6), all parameters for constructing the uninhibited
network are defined, and the network might be built. Applying
voltage spikes to the input lines of magnitude Vcc with a
maximum duty cycle of Kmax will cause the best-matching
column to spike for tspike seconds; collecting these spikes
across a window of time (e.g. 10(tfire+tspike) for an average
of 10 spikes) will produce a reasonable reconstruction of the
input based on the network’s receptive fields. Results with the
uninhibited SSLCA can be found in Section IV.
B. Adding Inhibition to the SSLCA

One of the original requirements deduced at the beginning
of Section III was the need for inhibition. Prior works have
shown the need for inhibition in an effective sparse coding
system [5], [7], and Section IV-A3 of this work demonstrates
this as well. While works such as that of Shapero et al.
implemented inhibition by using additional hardware between
each pair of neurons [14], leading to O(N2) scaling, the
SSLCA is designed in a way that allows for O(N) scaling.

Algorithm 1: Process used to determine Q1 and Q2 given stored RF of
average, relative conductance Rfstored and a matching input of average,
relative intensity Rfinput.

Input: Rfstored, the average, relative conductance of the stored RF.
This value must be on the interval (Gmin

Gmax
, 1];

Rfinput, the average, relative intensity of all inputs;
Gmin, the minimum conductance of a crossbar device;
Gmax, the maximum conductance of a crossbar device;
Kmax, the proportion of time spent at Vcc for an input signal

spiking at its maximum rate;
N , the number of inputs to the network.

Output: Q1, Q2
begin

// Assumes that the stored RF consists
entirely of elements at Gmax or Gmin, and
that the input pattern matches, but with a
scaled intensity of

Rfinput

Rfstored
.

gmin ← Gmin
Gmax

;

Ih ← Rfstored−gmin
1−gmin

; // Portion of inputs
at max-intensity.

Il ← 1− Ih;
Q1 ← NGmaxRfstored;
Q2 ← NVccGmaxKmax

Rfinput

Rfstored

(
Ih + Ilg

2
min

)
.

end

Algorithm 2: Recommended process for selecting Vfire, Q1, and Q2,
required for the calculation of C from Eq. (6).

Input: Rfavg , the desired average, relative conductance of a stored
RF. This value must be on the interval (Gmin

Gmax
, 1];

Rfleast, the smallest average, relative input intensity is
expected to trigger an output spike;

Gmin, the minimum conductance of a crossbar device;
Gmax, the maximum conductance of a crossbar device;
Kmax, the proportion of time spent at Vcc for an input signal

spiking at its maximum rate;
N , the number of inputs to the network.

Output: Q1, Q2, Vfire
begin

Vfire ← (1− e−1)Q2
Q1

, with Q1, Q2 from Algorithm 1 applied
to Rfstored = Rfavg , Rfinput = Rfleast, other parameters
matching;
Q1, Q2 ← Q1, Q2 from Algorithm 1 applied to
Rfstored = Rfavg , Rfinput = Rfavg .

end

Instead of additional hardware, a percentage of the SSLCA’s
running time is dedicated to calculating inhibitory forces.
Whenever an output spike is generated, current is passed
from the corresponding column back through the SSLCA’s
crossbar and is used to charge capacitors in the Row Headers.
Intuitively, the charges on these capacitors indicate how well
represented the corresponding input signal is in the current re-
construction; overrepresented input signals will be suppressed.
This is implemented through the Row and Column Headers
shown in Fig. 3.

The Column Header for the Inhibited SSLCA is identical
to that of the Uninhibited SSLCA: a standard LIF neuron
setup, with the state capacitor connected directly (through a
transmission gate) to the nanowire crossbar rather than being
buffered. A crude schmitt trigger setup ensures that all output
capacitors drain and adequate inhibition charge flows back

Row Header

Column Header

cbIn

!trainHigh

trainLow!trainAny

Training Subsection

!firingAny

spikeIn

Inhibition Subsection

cbOut
!trainLow trainHigh

!firingMe

!firingAny & !trainingAny

firingAny

Vfire

fireMe

toutSpike ≈ f(RC)

4W2W

2W

3W

Inhibition Logic

CBLOW

CHARGE

SPIKE

3W
3W

SPIKE CBLOW

CHARGE

Inhibition Logic Module

!firingAny

Fig. 3: The Row and Column headers needed to add inhibition to the SSLCA.
The Row Header’s responsibilities are to stop input spikes from reaching the
crossbar when they are inhibited, and to keep track of the current state of the
inhibitory forces. An Inhibition Logic Module is diagrammed as broken out
from the main circuit for space reasons. The CHARGE port is responsible
for sinking current from the crossbar when an output spike has occurred, and
in turn charges the capacitor in the Inhibition Logic Module which prevents
subsequent spikes from applying a voltage on the crossbar. After enough input
spikes occur, the capacitor becomes sufficiently drained to apply voltage to
the crossbar once more. The Column Header is much simpler and uses a
transmission gate to direct current to and from the neuron’s state capacitor.
When any neuron fires, the capacitor is drained, and in the same column, Vcc
is applied to the crossbar. A simple RC circuit cleaned up by several NOT
gates is responsible for the output spike.

through the crossbar with each output spike.
The Row Header is more complicated, but the important

aspect is that a capacitor storing the inhibition state discharges
whenever an input spike arrives, and charges whenever an
output spike occurs. The capacitor is charged through the
crossbar junctions; the resistor for discharging the capacitor
is the one in the labeled Inhibition Logic Module, and is
referred to as Rinhib. The stored inhibition state, when above
Vcc

2 , prevents input spikes from reaching the crossbar. Vcc

2 is
chosen as it maximizes the linearity of the inhibitory response,
since both charging and discharging occur at the same point
on the exponential function (Eq. (7)).

Calibrating this architecture requires specifying both the
capacitor, Cinhib, and the resistor, Rinhib, in the Inhibition
Logic Module (Fig. 3). Ideally, a sparse coding algorithm
should produce a stable, one-hot response to an input that
exactly matches any of the stored RFs, and should combine
several outputs when representing inputs that do not match
a stored RF exactly. For simplicity, we focused on tuning the
inhibitory components of the network to an input that matches

the stored conductance of an RF, similarly to Algorithms 1
and 2. Additionally, we make room for inhibition in the spike
cycle by using a neuron capacitance of Ccb = f(C), where
C is from Eq. (6). Using Rcb as the equivalent resistance of
the memristive device used to charge the inhibitory force, and
Rinhib as the resistance in the Inhibition Logic Module, we
can write a few equations to describe the inhibition voltage
Vi for a specific input i both before an output spiking event
(Vi,pre) and after an output spiking event (Vi,post):

A =
1

RcbCinhib
,

B =
Ki

RinhibCinhib
,

Vi,pre = Vi,0e
−tfireB ,

Vi,post = Vcc + (Vi,pre − Vcc)e−tspikeA, (7)

where tspike is the duration of an output spike, Ki is the
portion of the time that the input being tracked is active, and
Vi,0 is the voltage after an output spike. For a stable system
with a uniform firing rate, Vi,0 = Vi,post, and we are left with:

Vi,0 = Vcc +
(
Vi,0e

−tfireB − Vcc
)
e−tspikeA

=
Vcc
(
1− e−tspikeA

)
1− e−tfireB−tspikeA

. (8)

With the inhibition voltage after a spike defined, one issue
remains: so long as Vi,0 > Vcc

2 , the desired tfire will no longer
match tfire without inhibition. There is always a period of
time during which input spikes are inhibited, inflating tfire.
We label this period of time as tinhib, and rewrite tfire as
tinhib + tcollect, allowing Eq. (8) to be rewritten and a second
equation for Vi,0 to be written by integrating backwards to Vi,0
from Vcc

2 . These two equations are then combined to make a
single equality, the solution of which indicates adequate values
for Rinhib and Cinhib:

Vi,0 =
Vcc
(
1− e−tspikeA

)
1− e−tcollectB−tspikeA

,

Vi,0 =
Vcc
2
etinhibB ,

Vcc
2
etinhibB =

Vcc
(
1− e−tspikeA

)
1− e−tcollectB−tspikeA

. (9)

Unfortunately, this formulation leaves two new variables,
tinhib and tcollect. Additionally, were we to use the original
capacitance calculated in Eq. (6), we would miss the desired
tfire due to the added time for inhibition. To solve all of
these problems, we set Ccb = f(C) = C

2 . tcollect is then
solved for using the new neuron capacitance Ccb and Q1, Q2

from Algorithm 1 using Rfstored = Rfinput = Rfavg.
tinhib is then solved by subtracting tcollect from tfire. The
remaining variable, Rinhib, is solved for by taking the log
of both sides of the above equality (Eq. (9)), squaring the
result, and minimizing the resulting function via Python’s
scipy.optimize.minimize, ensuring a near-zero result [26].

TABLE I: Example Parameters for Inhibited Network

Row N Rfavg Gmin (µS) Gmax (µS) Vfire (mV) Ccb (fF)
1 192 0.40 4.8 19 87 1200
2 192 0.40 0.48 1.9 87 120
3 192 0.40 0.048 0.19 87 12
4 192 0.40 0.048 1.9 130 120
5 192 0.40 0.048 19 140 1200
6 48 0.40 4.8 19 87 290
7 48 0.60 4.8 19 120 430
8 48 0.80 4.8 19 130 580

Examples of the results from Algorithm 2 plus the inhibition
transformations (Ccb = f(C)) can be seen in Table I. Notably,
N = 192 corresponds to an input image of dimension
8×8×3, while N = 48 corresponds to an input dimension of
4×4×3. Row 1 is similar to the settings used in most of our
experiments. While Ccb = 1200fF is significant, this number
could be greatly reduced by future memristive technologies
with greater resistance (rows 2 and 3). Rows 4 and 5 highlight
that a higher ratio of Gmax to Gmin results in a higher
Vfire, which would be helpful to overcome the comparator’s
input offset voltage and would allow the algorithm to better
represent zero weights in each neuron’s RF; both of these
would increase the algorithm’s effectiveness. A lower Gmax

may be artificially imposed on the network if the circuit
designer wants less capacitance and is willing to sacrifice some
of the accuracy that comes from a high Gmax to Gmin ratio.
Rows 6 through 8 demonstrate the effects of fewer inputs,
and of varying Rfavg , the expected average stored RF in the
network. As written, Rfavg is also treated as the average input
to the network; for very low Gmax to Gmin ratios, this might
not make sense, and the actual average input value should be
added as a separate input to Algorithm 2 and used in the final
calculation of Q1 and Q2 to correct for the difference.

To validate this network design, we investigated different
parameters other than Rfavg for Rfstored and Rfinput when
optimizing the inhibitory response. Figure 4 demonstrates the
results of this: while different combinations require different
values of Rinhib to be completely accurate, choosing a single,
median value works well in practice.

C. Training
The networks we used were trained using the ADADELTA

algorithm in tandem with Oja’s rule across two epochs of the
training data, an identical approach to our prior work [7], [11],
[27]. Briefly, Oja’s rule is that a neuron’s receptive field will
change proportionally to its output activity multiplied by the
difference between the original input and the LCA’s recon-
struction. When considering the reconstructions for Oja’s rule,
we used the ratio of the conductance of each memristive device
to Gmax, the maximum expected conductance of a crossbar
device. This approach limited the minimum representation
of each input element in an RF to the on/off ratio of the
memristive device. For our experiments, we used the Yang
et al. device which featured an on/off ratio of around 0.25
at 0.7V [15]. We also tried training without this limitation
(allowing the learned weight to drop all the way to 0, even
though the device conductance would be set to 0.25), but

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Rfstored

0.0

0.2

0.4

0.6

0.8

1.0

R
f
in
p
u
t

Rfstored = Rfinput
30000

45000

60000

75000

90000

105000

120000

Fig. 4: Values ofRinhib needed to achieve the desired spike rate with different
Rfstored and Rfinput values (the spike rate scales with the ratio of Rfinput

over Rfstored). Ideally, the resulting plot would be flat, indicating a single
value of Rinhib is sufficient for all cases. Since it is not flat, areas with
larger than the chosen Rinhib will spike slower than expected, and areas
with a smaller value will spike faster. In practice, we use Rfavg for both
(the blue line); receptive fields with a high stored value and a low input will
under-spike, which should not be an issue as those regions should be better-
covered by another neuron.

did not find such a change to impact accuracy, although it
did affect the Root-Mean-Square Error (RMSE) between the
input and the reconstruction. Since the logical minimum does
not affect the programmed conductance, this makes sense: the
resulting sparse code is unchanged. The benefit of training
with a non-zero minimum representable value is that the
training could be done using only the memristive crossbar,
without supplemental memory.

Homeostasis was used during training to encourage the
network to use all available neurons, similar to prior work
by Querlioz et al. [28]. If a neuron had not produced an
output spike after several patches, Vfire was lowered for that
neuron to encourage it to spike. This behavior was disabled
for evaluating accuracy and RMSE.

For this work, all conductances were represented as analog
values. We have conducted prior research that assumed a lower
resolution of conductances would be achievable [7]. Generally,
currently available literature has shown that memristors might
be trained within 1% of a target resistance [29], which is much
better than the 4-bit resolution needed for good performance
with neuromorphic algorithms [7], [23].

D. Models Used for Power and Accuracy Comparisons
The SSLCA was simulated algorithmically based on the

above equations and algorithms. The simulator was written as
a hybrid event/time-based simulator based on the maximum
of the next predicted spiking event and a small window of
time (2× 10−18 s). Unless otherwise specified, our algorithm
was configured to collect an average of 10 spikes per input,
based on Fig. 5. Accuracy was computed with a Single-
Layer Perceptron (SLP) network that was trained to associate
resulting sparse codes with the category that generated them.
This setup is efficient to compute, but does not rival the

accuracy of a state-of-the-art deep learning architecture. That
was investigated in Section IV-A3.

While crossbar and capacitor power were calculated through
these simulations, comparator power for the column headers
was derived by simulating the 5GHz comparator from Xu et
al. 2011 at 4GHz using a 0.7V power supply, implemented
with 45 nm CMOS transistors using the Predictive Technology
Model published by Zhao et al. in 2006 [30], [31]. It was found
that, per column, this setup added 2.2 µW.

Since we used Xu et al.’s comparator at 4GHz, we config-
ured the networks for an average spike accumulation period
(tfire) of 0.8 ns and an output spike duration (tspike) of 0.2 ns.
Input spikes were considered with a minimum period of 0.4 ns
and an active duty cycle of Kmax = 0.5 unless otherwise
noted.

E. Example Code Availability
The simulation implementation used in this work was made

available on Github at https://github.com/wwoods/tlab_sslca.

IV. RESULTS

The SSLCA, SLCA, and LCA were tested with two different
data sets to demonstrate the relative performance of the
SSLCA. Reported RMSE values were generated as though
zero were representable, and accuracies were from an SLP
(discussed in Section III-C). Experiments were run either
12 times, or until ±10% accuracy was achieved with 95%
confidence as per [32].

To show that our assumptions and simplifications did not
result in significantly worse accuracy than the algorithms from
which the SSLCA was derived, all results were compared
with both the LCA and Shapero et al.’s SLCA. An accuracy
comparison across different numbers of spikes can be seen
in Fig. 5. The LCA implementation is from equation (3.1) of
Rozell et al.’s paper [10]; the SLCA implementation consisted
of equations (5)-(7) in Shapero et al.’s paper [14]. Note that
only the outputs of the SLCA network are spiking, while its
inputs are constant voltages. Our work deals with both spiking
inputs and outputs.

Power numbers for the LCA come from (13) of Shapero et
al.’s 2012 work and scale as O(N

√
N) [16]. Power numbers

for the SLCA come from Shapero et al.’s 2013 work, and
as that work included no built-in Vector Matrix Multiplier
(VMM) as our algorithm does, we added the power from a
memristor-based VMM to its figures [14]. The throughputs of
each of those architectures were several orders of magnitude
lower than the SSLCA’s (Fig. 1).

A. CIFAR-10
The first dataset, CIFAR-10, consisted of 60 000 32 × 32

RGB images, each containing one of 10 classes of objects
[13]. For faster simulation and to demonstrate the scalability
of each algorithm, these were scaled down to both 3× 3 and
8×8. As the CIFAR-10 dataset contains equal numbers of each
class, a simple accuracy was used to evaluate each algorithm’s
abilities.

5 10 15 20 25
Spikes

0.10

0.15

0.20

0.25

0.30

0.35

0.40

R
M

S
E

5 10 15 20 25
Spikes

10

15

20

25

30

35

%
C

or
re

ct

Shapero et al. 2×
Shapero et al. 0.5×
SSLCA w/o Inhibition 2×
SSLCA w/o Inhibition 0.5×
SSLCA with Inhibition 2×
SSLCA with Inhibition 0.5×
LCA 2×
LCA 0.5×

LCA SLCA SSLCA w/o Inhib SSLCA w/ Inhib

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

P
ow

er
(W

)

0.5×
2.0×

Fig. 5: Comparison of the LCA [10], SLCA [14], and the SSLCA on
CIFAR-10 scaled to 8× 8; suffixes indicate completeness (2× indicates 384
neurons, while 0.5× indicates 96 neurons). While the SLCA achieves lower
RMSE with significantly more spikes (around 100), for practical numbers of
spikes the SSLCA produced much better results. The LCA performed better
classification with fewer output neurons because it had slightly less output
activity, which with a shallow classifier is more effective. A lower RMSE is
more important for deep learning, seen in Fig. 12. While the LCA displayed
promising power statistics for this problem, its throughput was four orders of
magnitude smaller.

1) Accuracy: Compared to an optimal, analog implementa-
tion of the LCA, the SSLCA with inhibition matched perfor-
mance on the 8×8 rescale of CIFAR-10 with a 3% relative loss
in accuracy (33% vs 32%; Fig. 6). The uninhibited SSLCA
always produced a worse reconstruction than its inhibited
counterpart, although for low Rfavg (and correspondingly a
higher number of spikes per patch) its classification accuracy
was better with the simple SLP classifier. The trained network
had an average spike count of 8 even though the architecture
was configured for 10 spikes. The spike duty cycles were
Kin = 0.5 and Kout = 0.2.

The performance seen on the 3× 3 and 8× 8 rescales are

https://github.com/wwoods/tlab_sslca

0.3 0.4 0.5 0.6 0.7 0.8
Rfavg

10

15

20

25

30

35

%
C

or
re

ct

0.3 0.4 0.5 0.6 0.7 0.8
Rfavg

0.100
0.125
0.150
0.175
0.200
0.225
0.250

R
M

S
E

0.3 0.4 0.5 0.6 0.7 0.8
Rfavg

4

6

8

10

12

14

#
S

p
ik

es

SSLCA w/ Inhibition

SSLCA Uninhibited

LCA

CIFAR-10 Avg

Fig. 6: SSLCA accuracy targeting 10 spikes on CIFAR-10 rescaled to 8× 8
with and without inhibition, compared to LCA. Lower Rfavg tended to
produce lower RMSE due to increased activity in the resulting sparse code,
and increased spike count (since the input intensity is greater than the
target, spikes happen more frequently than calibrated). Inhibition ubiquitously
reduced the RMSE, although with an SLP, its classification accuracy was less
than the uninhibited version for darker receptive fields. See Section IV-A3 for
the impact of RMSE when using a deep classifier.

compared in Fig. 7. In both instances, the performance of the
LCA is approached by the SSLCA. However, the value of
Rfavg that optimizes accuracy is not obvious based on the
problem’s statistics; using the dataset average works well for
the 3 × 3 case, but the 8 × 8 case requires a smaller Rfavg
in order to encourage more output activity, which translates
into higher accuracy. At values of Rfavg approaching the
memristive device’s minimum, the algorithm breaks down.
This result can be explained through Eq. (6) and Algorithm 2:
small Rfavg results in a lower Q1 and thus a smaller C,
reducing the smoothing of input spike activity and in turn
producing less consistent patterns of output spikes.

Another facet investigated was how different K factors
(spike duty cycles) affected the overall classification accuracy
of the system. The result is shown in Fig. 8; generally, a higher
input duty cycle Kin performed better, and a lower output
duty cycle Kout performed better. Intuitively this makes sense:
larger duty cycles for input spikes means that more spikes are
expected to work together when forming a single output spike;
smaller duty cycles for output spikes means more time spent
collecting input spikes, and thus each output spike represents
a better average of the input spikes triggering it.

Device variability was also considered. Previous work has
shown that memristive devices can be tuned within 1% of
a desired resistance [29]. Another work has demonstrated
significant variance from one read to the next [33]. To test how

0.3 0.4 0.5 0.6 0.7 0.8
Rfavg

10

15

20

25

30

35

%
C

or
re

ct

0.3 0.4 0.5 0.6 0.7 0.8
Rfavg

0

2

4

6

8

10

#
O

u
tp

u
ts

A
ct

iv
e

SSLCA 8× 8

SSLCA 3× 3

LCA 8× 8

LCA 3× 3

CIFAR-10 Avg

Fig. 7: A look at the difference between CIFAR-10 scaled to 3×3 and 8×8.
In both cases, the SSLCA approached the LCA’s accuracy. Unfortunately, the
required setting of Rfavg to maximize accuracy is not intuitive. The lower
plot shows the sparsity of the output for each configuration; like the original
LCA’s λ threshold, a combination of the Rfavg parameter of the SSLCA
and the number of spikes collected may be used to control the sparsity of the
output.

0.2 0.4 0.6 0.8
Kin

0.0

0.1

0.2

0.3

0.4

0.5

K
o
u
t

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

30.0

Fig. 8: CIFAR-10 spike accuracy with different spike duty cycles. High duty
cycles for input spikes and low duty cycles for output spikes are the most
accurate, but require more power (Fig. 11).

the SSLCA performed with imperfect hardware, we imple-
mented three types of conductance deviations: read deviation,
write deviation using offline training, and write deviation with
online training. Read deviation was re-calculated after every
output spike to better simulate the time-varying nature of
read randomization, and varied the effective conductance of
a device uniformly by ±0% to 80% (a standard deviation of
0% to 46%). Write deviation with offline training consisted
of training the model without variance, and then varying

0 10 20 30 40
% Read Deviation

0.2

0.4

0.6

0.8

1.0
N

or
m

a
li

ze
d

A
cc

u
ra

cy

0.0 2.5 5.0 7.5 10.0 12.5 15.0
% Write Deviation (Online)

0.2

0.4

0.6

0.8

1.0

N
or

m
a

li
ze

d
A

cc
u

ra
cy

0 20 40 60 80 100
% Write Deviation (Offline)

0.2

0.4

0.6

0.8

1.0

N
or

m
a

li
ze

d
A

cc
u

ra
cy

CIFAR-10 3× 3

CIFAR-10 8× 8

MNIST 14× 14

Fig. 9: The effects on the SSLCA of conductance variability during each
read cycle (the period of time between two output spikes), during each
write cycle (online training), or when a weight matrix learned offline is
written to the memristive crossbar (offline training). Our results showed that
unmitigated write deviations become serious for online algorithm stability
after 3%. However, using offline training or modifying the training approach
as previously reported helps significantly [7]. For CIFAR-10 3 × 3, 8 × 8,
and MNIST 14× 14, Rfavg = 0.46, 0.425, 0.35, respectively.

the conductance uniformly by ±0% to 180% (not allowed
to drop below 0 S; a standard deviation of 0% to 104%).
Write deviation with online training was applied after each
application of Oja’s rule, and modified the target conductances
uniformly by ±0% to 30% (a standard deviation of 0%
to 17%). These results can be seen in Fig. 9. Neither read
variability nor offline-trained write variability were found to
have a significant impact. However, for online training, write
variability could be tolerated only up to 3%. Even though
this is below the 1% empirical demonstration by Alibart et
al. [29], prior work on imperfect updates has indicated that
sensitivity to these deviations might be further mitigated with
a more aggressive training regimen [7].

2) Power: The inhibited SSLCA exhibited extremely low
power consumption; at the optimal Rfavg = 0.43, the con-
sumption was just 2.34 pJ/input (Fig. 10) with a throughput
of 100MOps/s. Compared with prior work such as Knag et
al., whose lowest energy consumption was 48 pJ/input, this
was a 95% reduction in energy consumption for 180× the
throughput during inference [22]. At their high throughput
(310MHz), the SSLCA exhibited a 99% reduction in energy

0.3 0.4 0.5 0.6 0.7 0.8
Rfavg

0.02

0.04

0.06

0.08

0.10

0.12

0.14

P
ow

er
(W

)

SSLCA w/ Inhibition

SSLCA Uninhibited

Fig. 10: Power for 8×8 CIFAR-10. Inhibition produced lower, more consistent
power consumption due to its suppression of input spikes. Higher values
of Rfavg , which encourage the network to learn more conductive RFs,
consumed more power accordingly.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Kin

0.125
0.130
0.135
0.140
0.145
0.150
0.155
0.160

R
M

S
E

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Kin

10

15

20

25

30

35

%
C

or
re

ct

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Kin

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

P
ow

er
(W

)

SSLCA

LCA

Fig. 11: Power and accuracy trade-offs on CIFAR-10 with varied Kin. LCA
power shown represents only a voltage-scaled crossbar, to directly compare
spiking and non-spiking approaches. Spiking always consumed less power
than a voltage-scaling approach, a combination of the dataset having a high
average input and the spiking algorithm utilizing inhibition of input signals
(see Fig. 10 for the effects of inhibition on power consumption).

consumption with a still substantially improved 21× through-
put.

Spiking architectures are often considered to produce power
savings, though the extent of these savings has been a topic
of discussion for some time [18]; we investigated that claim
in Fig. 11. Except for very large duty cycles, the spiking
architecture’s crossbar used less power than the non-spiking,
voltage-scaled crossbar. With a spiking implementation like
the SSLCA, where input spikes are suppressed during an
output spike, we would have expected the spiking to con-
sume less power so long as (1 − Kout)Kin < Rfinput.

This is a result of average power scaling with the square
of voltage versus linearly with a duty cycle. The SSLCA
surpasses this expectation due to the additional input spike
suppression implemented through the inhibition mechanism.
Interestingly, the standard deviation for the SSLCA’s power
was also substantially lower, probably as a result of columns
in the SSLCA not being grounded, unlike the LCA, which
sinks all current into a virtual ground [7], [15].

3) Information Retention for Deep Learning: While an
SLP might be used in practice due to the simplicity of its
implementation, it does not adequately express the depth of
the information contained in the input dataset. To determine
how much useful information was retained by both the LCA
and SSLCA encodings, we used these architectures to encode
augmented CIFAR-10 input images using convolutions of
different sizes. The convolved, sparse coded input images
were then passed as input to a state-of-the-art deep learning
architecture, the DenseNet-BC, presented by Huang et al. in
2016 [34]. This network architecture consists of a number of
dense blocks that each halve the scale of the input data; within
each dense block are many more layers, each accepting as
input all previous layers within the dense block. Using this
setup with 3 dense blocks and parameters L = 190, k = 40,
Huang et al. achieved 96.54% accuracy on CIFAR-10 (with
data augmentation) [34]. See Huang et al. for more further
details on these parameters.

We tested our architecture by dividing the input CIFAR-10
image into non-overlapping patches of S × S, and encoding
each patch using either the LCA or the SSLCA. For example,
S = 4 implies that the 32× 32 CIFAR-10 image was broken
into 8× 8 non-overlapping regions of 4× 4; each region was
then sparse coded, and the resulting “image” consisting of
all such encodings was passed to the DenseNet. For the 2×
networks with S = 4, this means that rather than receiving
each image as a 32 × 32 × 3 spatial array, we passed in an
8 × 8 × 96 spatial array. For the 0.5× networks, the spatial
array passed would only have a depth of 24. The SSLCA was
configured with Rfavg = 0.45.

In order to allow each DenseNet a similar amount of
expression for its classification, we parametrized the DenseNet
so that the final dense block would output a 4 × 4 spatial
array; the original paper’s final block output an 8 × 8 array.
To accomplish this, each DenseNet had a number of dense
blocks B = −1+log2

32
S . To hold the number of computations

that each DenseNet performed roughly equivalent, we chose
L = 40, k = 12, and the number of filters on the initial
convolution before the first dense block was k0 = 6S2B rather
than 16. The limitation of this approach is that the number
of tunable parameters becomes significantly larger with larger
values of S, creating a greater potential for overfitting.

Rather than 300 epochs with mini-batches of 64 samples, we
used 150 epochs and mini-batches of 32 samples to train these
networks. We trained using stochastic gradient descent, with
an initial learning rate of 0.1; after 75 epochs this was reduced
to 0.01, and after 112 epochs this was further reduced to 0.001.
Simulations were done with keras; the DenseNet implementa-

LCA SSLCA w/o Inhibition SSLCA w/ Inhibition

0.00

0.02

0.04

0.06

0.08

0.10

0.12

R
M

S
E

LCA SSLCA w/o Inhibition SSLCA w/ Inhibition

65

70

75

80

85

90

95

%
C

or
re

ct

0.5×
2.0×
Raw pixels

Fig. 12: Comparison of different algorithms and different completenesses at
S = 4. The SSLCA is capable of matching the accuracy of the LCA when a
deeper classifier is used.

2 4 8
S

0

20

40

60

80

100

%
C

o
m

p
re

ss
io

n

50

60

70

80

90

%
C

or
re

ct

LCA

SSLCA w/o Inhibition

SSLCA w/ Inhibition

Fig. 13: Comparison of each algorithm at different encoding scales S. The left
(lighter) of each pair of bars is the “% Compression;” the right (solid) bar of
each pair is the “% Correct.” Inhibition is always good with a deeper classifier,
with slightly less compression. The LCA does not change significantly due
to a fixed λ threshold parameter; the SSLCA might achieve a similar effect
by collecting more spikes, but this would slow the algorithm’s throughput.

tion can be found at https://github.com/titu1994/DenseNet, and
keras can be found at https://github.com/fchollet/keras. Each
accuracy measurement was the result of a single trial, so some
stochasticity is embedded in the reported results. They are
nonetheless internally consistent. Results are shown in Figs. 12
and 13.

On the raw CIFAR-10 data, these conditions produced a
classification accuracy of 92%. With the analog LCA S =
4, the DenseNet achieved a classification accuracy of 82%,
compressing the data down by 75%. The SSLCA produced an
accuracy of 80% with 79% compression. Compression was

https://github.com/titu1994/DenseNet
https://github.com/fchollet/keras

0.3 0.4 0.5 0.6 0.7 0.8
Rfavg

10

20

30

40

50

60

70

80

90

%
C

or
re

ct

0.3 0.4 0.5 0.6 0.7 0.8
Rfavg

0.004

0.006

0.008

0.010

0.012

P
ow

er
(W

)

SSLCA w/o Bias

SSLCA w/ 0.35 Bias

LCA

Fig. 14: Results of MNIST scaled to 14×14. Since MNIST has a much lower
average input value than CIFAR, a bias needed to be applied to compensate for
the additional current lost from the neurons back into the crossbar (Eq. (5)).
Since a bias also increased the duty cycle of each input signal, more power
was consumed.

calculated by doubling the number of active neurons used to
encode each patch, as both an index and value need to be sent
in a sparse code, and dividing by the number of input elements
represented.

For different values of S, the LCA maintained similar
compression factors, due to the threshold λ being held constant
with an increasing number of inputs, leading to more active
outputs (Fig. 13). In contrast, the SSLCA’s sparsity comes
from the number of spikes collected, which was fixed at
10 for all experiments. Thus, for larger patch sizes, more
and more sparse representations were created, resulting in
lower accuracy but higher compression. These parameters
are all configurable and could be used to trade off between
accuracy and compression, but these values were chosen as
they produced roughly equivalent compression at S = 4. If
the input dataset has greater covariance, then the accuracy loss
would be lower for higher compression rates. Inhibition was
always beneficial with a deeper classifier, and each increase
in accuracy aligned with lower RMSE without exception.

B. MNIST
The second dataset, MNIST, consisted of 70 000 28 × 28

grayscale images, each containing a single, centered, hand-
written digit [12]. Again for faster simulations, this dataset
was scaled down to 14 × 14. The test set contains an equal
number of each digit class, so a simple accuracy was tabulated
for each algorithm.

1) Accuracy: The SSLCA as defined up to this point
performed notably worse on MNIST than the non-spiking
LCA (Fig. 14). Unlike CIFAR, which has an average input
value of 0.47, MNIST has an average input value of only

0.13. Since the SSLCA was designed deliberately to include a
leak current through the crossbar, this lower input intensity
could not sustain neuron charge reliably, leading to more
random patterns of input events being encoded in each output
spike. We found that applying a bias signal, by redefining
the duty cycle of each input signal from Kmaxkinput to
Kmax(bias+(1−bias)kinput), we could remedy this problem
while preserving the power gains of the SSLCA architecture.
For MNIST, we found that a bias of 0.35 boosted perfor-
mance from 77% correct classification up to 84%, versus a
performance of 88% by an optimal, analog LCA. The MNIST
experiments’ responses to write deviations were not found to
be significantly different than the CIFAR experiments’, shown
in Fig. 9.

2) Power: The power savings on MNIST, even with the
bias, were in-line with those found for CIFAR: 0.9 pJ/input
for 100MOps/s. Note that the increased power savings com-
pared to CIFAR (which consumed 2.34 pJ/input) were due to
the lower relative number of outputs to inputs: additional neu-
rons are more expensive than additional input lines (partially
due to the comparator, though mostly due to the crossbar).
While the cost of additional inputs is different from the cost
of additional columns, the SSLCA still demonstrates O(N)
scaling in both dimensions.

As seen in Fig. 14, a non-spiking approach might consume
less power on MNIST due to the low Rfavg of the dataset.
On the other hand, the power presented for the LCA does
not include inhibitory logic, unlike the SSLCA: it would be
difficult to include inhibition logic without closing the already-
narrow margin.

V. CONCLUSION
Our work demonstrated that memristive devices with a low

on:off ratio could be used for fast, low-power sparse coding,
with in-situ learning, as long as their conductances can be set
within ±3%. We improved upon a previously published all-
CMOS ASIC with 21× the throughput using 99% less energy
per input. The quality of the resulting sparse codes were also
evaluated with a state-of-the-art deep learning network, and
were shown to reduce relative accuracy by only 2.4% while
compressing the input data by 79%. These figures could be ad-
justed for higher accuracy and lower compression. We showed
that even datasets with low input activity, such as MNIST,
could be properly represented through the use of a bias. The
proposed SSLCA architecture was demonstrated to be very
resistant to device variations, particularly when used with
offline training. Sparse coding algorithms such as the SSLCA
could be used to greatly reduce communication bandwidth
between visual sensors and other processing algorithms, such
as deep-learning networks. This architecture has applications
in robotics and self-driving cars as well as surveillance and
next-generation computers.

ACKNOWLEDGEMENT

This work was supported by the National Science Foun-
dation under award # 1028378 and by DARPA under award
HR0011-13-2-0015. The views expressed are those of the

author(s) and do not reflect the official policy or position of
the Department of Defense or the U.S. Government. Approved
for public release, distribution is unlimited.

REFERENCES

[1] A. Coates, A. Y. Ng, and H. Lee, “An analysis of single-layer networks
in unsupervised feature learning,” International Conference on Artificial
Intelligence and Statistics, pp. 215–223, 2011.

[2] H. B. Ammar, K. Tuyls, M. E. Taylor, K. Driessens, and G. Weiss,
“Reinforcement learning transfer via sparse coding,” Proceedings of the
11th International Conference on Autonomous Agents and Multiagent
Systems, no. Aamas, pp. 4–8, 2012.

[3] T. Masquelier and S. J. Thorpe, “Unsupervised learning of visual
features through spike timing dependent plasticity,” PLoS Computational
Biology, vol. 3, no. 2, pp. 0247–0257, 2007.

[4] C. Zamarreño-Ramos, L. A. Camuñas-Mesa, J. A. Pérez-Carrasco,
T. Masquelier, T. Serrano-Gotarredona, and B. Linares-Barranco, “On
Spike-Timing-Dependent-Plasticity, Memristive Devices, and Building
a Self-Learning Visual Cortex,” Frontiers in Neuroscience, vol. 5, no.
MAR, pp. 1–22, 2011.

[5] D. Querlioz, W. S. Zhao, P. Dollfus, J.-O. Klein, O. Bichler, and
C. Gamrat, “Bioinspired networks with nanoscale memristive devices
that combine the unsupervised and supervised learning approaches,”
in Proceedings of the 2012 IEEE/ACM International Symposium on
Nanoscale Architectures - NANOARCH ’12, pp. 203–210. New York,
New York, USA: ACM Press, 2012.

[6] S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and
W. Lu, “Nanoscale Memristor Device as Synapse in Neuromorphic
Systems,” Nano Letters, vol. 10, no. 4, pp. 1297–1301, 2010.

[7] W. Woods, J. Bürger, and C. Teuscher, “Synaptic Weight States in a Lo-
cally Competitive Algorithm for Neuromorphic Memristive Hardware,”
IEEE Transactions on Nanotechnology, vol. 14, no. 6, pp. 945–953,
2015.

[8] M. Payvand and L. Theogarajan, “Exploiting local connectivity of
CMOL architecture for highly parallel orientation selective neuromor-
phic chips,” Proceedings of the 2015 IEEE/ACM International Sym-
posium on Nanoscale Architectures, NANOARCH 2015, pp. 187–192,
2015.

[9] C. H. Bennett, D. Chabi, T. Cabaret, B. Jousselme, V. Derycke, D. Quer-
lioz, and J. O. Klein, “Supervised learning with organic memristor
devices and prospects for neural crossbar arrays,” Proceedings of the
2015 IEEE/ACM International Symposium on Nanoscale Architectures,
NANOARCH 2015, pp. 181–186, 2015.

[10] C. J. Rozell, D. H. Johnson, R. G. Baraniuk, and B. A. Olshausen,
“Sparse coding via thresholding and local competition in neural
circuits.” Neural Computation, vol. 20, no. 10, pp. 2526–63, 2008.

[11] E. Oja, “Simplified neuron model as a principal component analyzer,”
Journal of Mathematical Biology, vol. 15, no. 3, pp. 267–273, 1982.

[12] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[13] A. Krizhevsky, “Learning Multiple Layers of Features from Tiny Im-
ages,” . . . Science Department, University of Toronto, Tech. . . . , vol. 44,
no. 8, pp. 1–60, 2009.

[14] S. Shapero, C. Rozell, and P. Hasler, “Configurable hardware integrate
and fire neurons for sparse approximation,” Neural Networks, vol. 45,
pp. 134–143, 2013.

[15] W. Woods, M. M. A. Taha, S. J. Dat Tran, J. Burger, and C. Teuscher,
“Memristor panic - A survey of different device models in crossbar
architectures,” Proceedings of the 2015 IEEE/ACM International Sym-
posium on Nanoscale Architectures, NANOARCH 2015, pp. 106–111,
2015.

[16] S. Shapero, A. S. Charles, C. J. Rozell, and P. Hasler, “Low Power
Sparse Approximation on Reconfigurable Analog Hardware,” IEEE
Journal on Emerging and Selected Topics in Circuits and Systems,
vol. 2, no. 3, pp. 530–541, 2012.

[17] T. Serrano-Gotarredona, T. Masquelier, T. Prodromakis, G. Indiveri,
and B. Linares-Barranco, “STDP and STDP variations with memristors
for spiking neuromorphic learning systems.” Frontiers in neuroscience,
vol. 7, no. February, p. 2, 2013.

[18] W. Maass, “To Spike or Not to Spike: That Is the Question,”
Proceedings of the IEEE, vol. 103, no. 12, pp. 2219–2224, 2015.

[19] S. Habenschuss, Z. Jonke, and W. Maass, “Stochastic Computations
in Cortical Microcircuit Models,” PLoS Computational Biology, vol. 9,
no. 11, p. e1003311, 2013.

[20] T. J. Hamilton, S. Afshar, A. van Schaik, and J. Tapson, “Stochastic
Electronics: A Neuro-Inspired Design Paradigm for Integrated Circuits,”
Proceedings of the IEEE, vol. 102, no. 5, pp. 843–859, 2014.

[21] J. Zylberberg, J. T. Murphy, and M. R. DeWeese, “A Sparse Coding
Model with Synaptically Local Plasticity and Spiking Neurons Can
Account for the Diverse Shapes of V1 Simple Cell Receptive Fields,”
PLoS Computational Biology, vol. 7, no. 10, p. e1002250, 2011.

[22] P. Knag, J. K. Kim, T. Chen, and Z. Zhang, “A Sparse Coding Neural
Network ASIC With On-Chip Learning for Feature Extraction and
Encoding,” IEEE Journal of Solid-State Circuits, vol. 50, no. 4, pp.
1070–1079, 2015.

[23] T. Pfeil, T. C. Potjans, S. Schrader, W. Potjans, J. Schemmel,
M. Diesmann, and K. Meier, “Is a 4-Bit Synaptic Weight Resolution
Enough? Constraints on Enabling Spike-Timing Dependent Plasticity
in Neuromorphic Hardware,” Frontiers in Neuroscience, vol. 6, no.
JULY, pp. 1–19, 2012.

[24] K. S. Burbank, “Mirrored STDP Implements Autoencoder Learning in
a Network of Spiking Neurons,” PLOS Computational Biology, vol. 11,
no. 12, p. e1004566, 2015.

[25] P. M. Sheridan, C. Du, and W. D. Lu, “Feature Extraction Using
Memristor Networks,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 27, no. 11, pp. 2327–2336, 2016.

[26] E. Jones, T. Oliphant, P. Peterson et al., “SciPy: Open source scientific
tools for Python,” 2001–, [Online; accessed 2016-08-17].

[27] M. D. Zeiler, “ADADELTA: An Adaptive Learning Rate Method,”
arXiv, p. 6, 2012.

[28] D. Querlioz, O. Bichler, P. Dollfus, and C. Gamrat, “Immunity to device
variations in a spiking neural network with memristive nanodevices,”
IEEE Transactions on Nanotechnology, vol. 12, no. 3, pp. 288–295,
2013.

[29] F. Alibart, L. Gao, B. D. Hoskins, and D. B. Strukov, “High precision
tuning of state for memristive devices by adaptable variation-tolerant
algorithm.” Nanotechnology, vol. 23, no. 7, p. 075201, 2012.

[30] Y. Xu, L. Belostotski, and J. W. Haslett, “Offset-corrected 5GHz
CMOS dynamic comparator using bulk voltage trimming: Design and
analysis,” in 2011 IEEE 9th International New Circuits and systems
conference, pp. 277–280. IEEE, 2011.

[31] W. Zhao and Y. Cao, “New Generation of Predictive Technology Model
for Sub-45nm Design Exploration,” in 7th International Symposium on
Quality Electronic Design (ISQED’06), pp. 585–590. IEEE, 2006.

[32] M. R. Driels and Y. S. Shin, Determining the Number of Iterations for
Monte Carlo Simulations of Weapon Effectiveness. Naval Postgraduate
School, 2004.

[33] R. Degraeve, A. Fantini, N. Raghavan, L. Goux, S. Clima,
B. Govoreanu, A. Belmonte, D. Linten, and M. Jurczak, “Causes
and consequences of the stochastic aspect of filamentary RRAM,”
Microelectronic Engineering, vol. 147, pp. 171–175, 2015.

[34] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten, “Densely
Connected Convolutional Networks,” arXiv preprint, pp. 1–12, 2016.

	Portland State University
	PDXScholar
	4-2017

	Fast and Accurate Sparse Coding of Visual Stimuli with a Simple, Ultra-Low-Energy Spiking Architecture
	Walt Woods
	Christof Teuscher
	Let us know how access to this document benefits you.
	Citation Details

	I Introduction
	II Related Work
	III Model
	III-A Uninhibited SSLCA
	III-B Adding Inhibition to the SSLCA
	III-C Training
	III-D Models Used for Power and Accuracy Comparisons
	III-E Example Code Availability

	IV Results
	IV-A CIFAR-10
	IV-A1 Accuracy
	IV-A2 Power
	IV-A3 Information Retention for Deep Learning

	IV-B MNIST
	IV-B1 Accuracy
	IV-B2 Power

	V Conclusion
	References

