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Abstract

Computing systems that are capable of performing human-like cognitive tasks have been

an area of active research in the recent past. However, due to the bottleneck faced by

the traditionally adopted von Neumann computing architecture, bio-inspired neural network

style computing paradigm has seen a spike in research interest. Physical implementations

of this paradigm of computing are known as neuromorphic systems. In the recent years,

in the domain of neuromorphic systems, memristor based neuromorphic systems have

gained increased attention from the research community due to the advantages offered by

memristors such as their nanoscale size, nonvolatile nature and power efficient programming

capability. However, these devices also suffer from a variety of non-ideal behaviors such as

switching speed and threshold asymmetry, limited resolution and endurance that can have

a detrimental impact on the operation of the systems employing these devices. This work

aims to develop device-aware circuits that are robust in the face of such non-ideal properties.

A bi-memristor synapse is first presented whose spike-timing-dependent plasticity (STDP)

behavior can be precisely controlled on-chip and hence is shown to be robust. Later, a

mixed-mode neuron is introduced that is amenable for use in conjunction with a range of

memristors without needing to custom design it. These circuits are then used together to

construct a memristive crossbar based system with supervised STDP learning to perform a

pattern recognition application. The learning in the crossbar system is shown to be robust

to the device-level issues owing to the robustness of the proposed circuits. Lastly, the

proposed circuits are applied to build a liquid state machine based reservoir computing

system. The reservoir used here is a spiking recurrent neural network generated using

an evolutionary optimization algorithm and the readout layer is built with the crossbar

system presented earlier, with STDP based online learning. A generalized framework for the

v



hardware implementation of this system is proposed and it is shown that this liquid state

machine is robust against device-level switching issues that would have otherwise impacted

learning in the readout layer. Thereby, it is demonstrated that the proposed circuits along

with their learning techniques can be used to build robust memristor-based neuromorphic

systems with online learning.
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Chapter 1

Introduction

1.1 Motivation

For many years, researchers have been trying to develop and implement computing systems

which could potentially follow the operation of the mammalian brain in terms of data

processing with the aim to be able to deploy them in cognitive applications such as pattern

recognition and classification [24]. Biological neural systems (particularly the brain) possess

the ability to process massive amounts of data at high speeds while consuming very less

power/energy. To be able to perform similar tasks using a computer, with the ever increasing

amount of data to be handled, traditional computing which is based on von Neumann

architecture is facing the wall in terms of data latency and excessive power dissipation, among

other things [43]. This is because this architecture of computing stores data separately (from

the processing unit) and relies on the efficiency of memory access to speed up operations. This

is in contrast to the in-memory style computing model of biological nervous systems wherein

the signals are propagated among neurons, which act as the main processing units and the

strength of these signals passing between them is determined by the strength of the synapses

connecting these neurons. Hence, in the recent times there has been a shift of interest

to use this topology/paradigm of computing model especially for cognitive applications

(similar to those performed by biological systems). However, in order to implement cognitive

applications, software-based approaches for neural network realization are power hungry and

demanding in terms of computing resources [76]. Therefore, hardware implemented neural

1



networks that mimic biological neural systems using neuron circuits to encode information in

the form of discrete spikes with synapses forming their interconnections have seen increased

interest.

Various circuit techniques have been adopted so far to implement and realize neuromor-

phic systems (hardware realization of neural networks and systems). These systems comprise

of two major processing units: neurons and synapses. Electrical synapses were proposed

using resistors [32], capacitors [67], floating gate transistors [85] and static random access

memories (SRAMs) [66, 96]. However, these implementations do not have a synapse that is

non-volatile and can be programmed in a continuous (analog) fashion efficiently [1]. In 2008,

a non-volatile two-terminal resistance switching device was experimentally demonstrated in

[103] and this has been called the memristor. The behavior of this device was linked to the

theoretical conceptualization of the memristor device in [26]. This device has been shown

to be suitable for use as a synapse and also has been shown to be able to implement the

bio-inspired local learning rule of spike-timing-dependent plasticity (STDP) [14, 100, 46].

This device’s striking features such as its nanoscale size (with the potential to provide bio-

plausible dense connectivity [107]), non-volatile nature and its analog programmability [2]

with low power consumption has lead to large spread interest in memristive neuromorphic

systems.

Recently, a variety of memristor-complementary metal oxide semiconductor (CMOS)

based hybrid neuromorphic systems have been developed and even demonstrated experi-

mentally by many groups in the literature for typical neuromorphic applications such as

pattern recognition [25, 98, 81, 56, 5, 117]. Many other works have designed and simulated

memristive neuromorphic systems with online learning such as [82, 76, 28, 23, 122, 99, 75,

27, 33, 120, 71, 74, 60]. However, many of such implementations have large circuit area

overhead to implement synaptic plasticity and to perform online learning. Some of them

employ different spike shapes at the input and output of neurons leading to only single step

potentiation/depression (instead of the bio-inspired multi-step STDP) and also need extra

circuits/silicon area for producing extra spike shapes [82].

Additionally, contemporary memristor devices suffer from a wide range of non-ideal

characteristics such as switching speed asymmetry (typically switching in the resistance
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decrease direction is much faster compared to that of the resistance increase direction),

switching threshold asymmetry (voltage threshold for switching being not equal in either

direction), low resolution of resistance states (not being able to achieve sufficient number of

stable resistance levels in between both the possible extremes), low endurance (number of

switching cycles the device can endure without significant degradation of properties) and the

varying device resistance and switching properties across the multitude of available devices

in the literature.

All of the above mentioned non-ideal properties can detrimentally affect a memristor-

based system and they must be accounted for during circuit design. This work primarily

focuses on designing device-aware efficient neuromorphic circuits that are robust when faced

with such non-idealities. Designing systems with such circuits can help them cope with such

robustness related issues.

1.2 Research Scope and Goal

The work in the domain of memristor based neuromorphic systems can be broadly classified

into three categories: devices, circuits and systems. The work and design goals in each

category is dependent on the efficiency and limitations imposed by the other categories.

These inter-dependencies must be understood and also be carefully considered for efficient

design of memristive neuromorphic systems. The scope of this work primarily encompasses

the circuits and systems aspect of this domain. The scope of this work is illustrated in Fig.

1.1. Also, while working to develop efficient circuits and systems the goal here is to be wary

of challenges imposed by device limitations and their potential impact on circuit and system

operation.

The primary goal of this work is to develop device-aware circuits for memristive synapses

and neurons. The design process of these circuits must take into account the above mentioned

device-level non-ideal behavior that is prevalent in contemporary memristor devices. This

implies that these circuits must be robust in the face of such non-ideal or deviant behavior

of memristor devices. Also, in doing so, the developed circuits must have efficient circuit

level implementation and operation that is on par with the state-of-the-art.
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The goal in terms of synapses is to have a synaptic implementation that can act as either

excitatory or inhibitory and can undergo online learning without the need for any local

control circuitry. This means that no special control blocks must be needed at the synapse

level to perform online learning (which would otherwise nullify the density advantage offered

by memristors and possibly make a crossbar configuration infeasible). Also, the synaptic

online learning must be controllable and robust with respect to device level issues mentioned

above.

Figure 1.1: Scope of the research work presented here.

For the neuron design, the goal is to make it generic enough such that when the synapse

device type is changed, the neuron must not be required to undergo re-design. This implies

that the goal is to make the neuron’s accumulation rate tunable on-chip so that it may not

be needed for it to be custom designed for a given device and it may be tuned to work for

a range of devices. This would make the neuron applicable to a plethora of device types

currently available.

Finally, it is aimed to demonstrate the robustness of the developed circuits at the system

level. Neuromorphic systems such as crossbar based learning systems and even bigger systems

such as reservoir computing systems are aimed to be developed using the proposed circuits.
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The goal at the system level is to show that these circuits can be utilized to develop efficient

memristive neuromorphic systems and that they are robust against prevalent device level

issues.

1.3 Research Contribution

The research contributions of this work can be enumerated as below:

• A bi-memristor synapse is designed that is capable of being both excitatory and

inhibitory without synapse level control circuits. No additional control blocks are

needed to determine the potentiation or depression condition for the synapse. With

this synapse, an STDP scheme is designed with spikes shaped such that they are

discrete in both time and voltage. The primary advantage of using such spikes is that

the designer has a control over both the bias voltage and the time period and they can

be tuned on-chip to desired values. This implies that flux input to the synapse during

learning may be precisely controlled.

• The proposed synapse’s STDP characteristics are shown to be controllable with a clock.

By choosing an appropriate clock frequency, it is shown that the magnitude of STDP

weight updates may be controlled precisely and fine tuned. Also, it is demonstrated

that by modulating the duty cycle of the clock signal used, the device level issues

such as switching speed asymmetry may be rectified and mitigated, which would have

otherwise crippled the STDP characteristics.

• A mixed-mode neuron is proposed which is generic in terms of the devices with which

it can be used. The major advantage offered by this neuron design is that its design

and implementation is a one-time process and does not need to be custom designed

to suit the specific memristor device under consideration for the given application. It

is shown that this neuron’s accumulation can be tuned on chip and can be made to

work with devices with a variety of resistance values. In this manner the proposed

neuron eliminates the need for custom designing and/or re-design of neurons for a
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specific memristor and/or application which can prove costly in terms of design and

fabrication time, effort and cost.

• A memristive crossbar system with supervised STDP based learning using the proposed

circuits is shown. In this crossbar, the bi-memristor synapse is used at each crosspoint.

A winner-takes-all (WTA) logic block is also designed for the output neuron stage to

determine the ‘winning’ neuron (based on the highest accumulation among neurons)

when an application is run on this system.

• The crossbar system’s learning and operation is analyzed for various device level issues

such as switching speed and threshold asymmetry, endurance and change of memristor

device used in the synapse. It is demonstrated that this system can cope with them

and is hence robust against such issues.

• A liquid state machine based reservoir computing system is built using the proposed

circuits. This system has the distinction of using evolutionary optimization (EO)

generated spiking recurrent neural networks in the reservoir and uses a simple and

robust STDP based online learning in the readout layer. The reservoir topology

generation process is streamlined by the use of EO algorithm here. Also, the

use of STDP learning based memristive crossbar leads to a compact and efficient

implementation of the readout layer, which plays a critical role in the reservoir

computing system.

• A generic hardware framework for the implementation of the reservoir computing

system is proposed. Using this hardware framework, any random topology of the

system may be realized.

• The memristive reservoir computing system’s learning is analyzed under the presence

of device level switching issues in the readout layer. It is shown that by virtue of using

the proposed circuits, the system is robust and that it can cope with such issues, which

would have otherwise affected it adversely.
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1.4 Dissertation Overview

The rest of this dissertation is organized as follows: Chapter 2 gives a brief background

of memristor devices and the memristor switching model used here. It also provides a

literature review about the prior work on memristive synapses and neurons. Chapter 3

presents the proposed bi-memristor synapse and also analyzes its STDP behavior under

various conditions such as clock frequency change and switching speed asymmetry. Chapter

4 presents the proposed on-chip tunable (generic) mixed-mode neuron circuit. Chapter 5

presents a crossbar based system for pattern recognition application using the proposed

synapse and neuron. It also demonstrates that the system is robust owing to the use of

the proposed circuits. Chapter 6 presents a liquid state machine based reservoir computing

system using the proposed synapse and the crossbar system as the readout layer. Lastly,

Chapter 7 summarizes all of the work described here and presents the possible directions for

related future work.
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Chapter 2

Background

2.1 Memristors

In this section, the background of memristor devices is discussed. First, the concept of

memristor devices and their operation principle is described and later the switching model

used in this work is presented.

2.1.1 Basics of Memristors

In 1971, Leon O. Chua had proposed in his paper [26], that there must be six one-to-

one relations amongst the four basic circuit parameters, namely voltage (V ), current (I),

charge (Q) and flux (φ). While relationships between voltage & current, charge & voltage

and current & flux are defined by resistance, capacitance and inductance respectively, the

relation between voltage & flux and current & charge is obtained from their fundamental

definitions (charge is the time integral of current while flux linkage is the time integral

of voltage). However, there was a missing link between charge and flux. This concept is

illustrated in Fig. 2.1. Based on this, Chua postulated that a fourth fundamental passive

device (without internal power supplies) must exist. This is considered fundamental because

it cannot be constructed by any combination of the other fundamental elements namely

resistors, capacitors and inductors. This two terminal device was named a memristor since

it acts as a resistor with memory.
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In 2008, a team at HP Labs [103] experimentally demonstrated a passive two-terminal

(titanium oxide based) resistive switching device that had the properties of a memristor

as predicted by Chua. Such memristive devices have since been physically realized and

resistive switching has been demonstrated using several types of materials such as oxides

[12, 40, 64, 116, 84, 30, 80, 49], chalcogenides [58, 72, 59], silicon-based [18, 50, 57], organic

materials [13], ferroelectric materials [21, 73, 47, 15, 41], carbon nanotubes [46, 83, 4], etc.

Additionally, volatile memristors have also been discussed [69, 68, 123, 6]. Memristors are

particularly attractive for applications such as non-volatile memory arrays and as synapses

for neurmorphic systems because of their nanoscale size and their ability to be arranged in

a crossbar fashion as shown in Fig. 2.2, thus potentially providing dense connectivity [77]

between pre- and post-neurons in a neuromorphic system.

Memristors are essentially resistors whose resistance can be altered by subjecting them

to a certain amount of voltage or current flux. This is done by applying a net voltage bias

across the device for a certain period of time. When this bias is above a certain threshold,

known as the switching threshold voltage (Vth), the memristor’s resistance changes and the

device is said to have switched. The memristor’s resistance can have any value between

two extremes known as the low resistance state (LRS) and the high resistance state (HRS).

These values are dependent on the type of device under consideration (for example, based

on the material used and the switching mechanism involved) and its physical dimensions of

implementation. The switching of the device in the HRS to LRS direction is known as the

positive direction and the switching parameters applicable to this direction appear with a

subscript p. Similarly, switching in the LRS to HRS direction is called the negative direction

and the parameters applicable here are denoted with a subscript n. It may be noted that

memristors are typically insulators in their as-fabricated state and need a one-time forming

step to bring them to a conducting/switching state [8]. The physics of switching mechanism

in memristors is dependent on the specific material stack (top and bottom electrodes and the

switching layer between them) used for the device and and could be unipolar (switching in

both directions with same voltage bias polarity) or bipolar (switching in opposite directions

needs opposite bias polarity) based on the operating conditions. A review of such mechanisms

can be found in [104].
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Figure 2.1: The four basic circuit parameters and the relations between them.

Figure 2.2: An illustration of the (dense) crossbar configuration offered by memristors.
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2.1.2 Memristor Switching Model

Various memristor models have been developed ever since they have been discovered, in

order to be able to use them for simulation and design purposes. The proposed models

thus far are primarily of two types: physics-based and behavioral models. While physics-

based models are limited by the scanty development of physical explanation of the switching

process in memristors, behavioral models are accurate, amenable to parameter extraction

and provide good convergence for simulation purposes. Behavioral models use an internal

state variable that depends on applied voltage/current bias. Another relation then links it

to the memristor’s resistance. However, as the state variable may not be readily measurable,

this method may not be parameter extraction friendly.

In [9], a model based on instantaneous resistance as state variable was proposed and

this has been used in this work. This is advantageous because resistance may be obtained

from the I-V curves of the device characterization data. This model can be mathematically

expressed as follows:

dM

dt
=


−CLRS(V (t)−Vtp

Vtp
)PLRSfLRS(M(t)), V (t) > Vtp

CHRS(V (t)−Vtn
Vtn

)PHRSfHRS(M(t)), V (t) < Vtn

0, otherwise,

(2.1)

where C and p are the speed and non-linearity parameters, respectively. fHRS and fLRS

are the window functions to define the resistance change plateauing near to the edges. The

equation for the window function is as follows.

f(M(t)) =


1

1+e
M(t)−θHRSHRS

βHRS∆r

, V (t) < Vtn

1

1+e
θLRSLRS−M(t)

βLRS∆r

, V (t) > Vtp

(2.2)

Where ∆r = HRS −LRS and θ & β are fitting parameters of the window function that

define the start of the plateauing and the transition slope thereafter, respectively.
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2.2 Related Work on Memristive Synapses

Memristive synapses have been proposed in a wide variety of literature. In [46], a memristor

based synapse and its weight update scheme based on STDP have been implemented using

pulse width modulation, which is exponentially dependent on the time difference between the

pre- and post-neuron spikes. A similar technique was proposed in [100] using time division

multiplexing (TDM) of pulses. However, these techniques need additional peripheral circuits

(local to the synapse) that keep track of the relative timing of the spikes of the pre- and post-

neuron. A similar technique based on spike tracking to perform the needed weight update

was proposed in [75]. This technique suffers from the same issues as above. In [76], a 1T1R

synapse was proposed and an STDP scheme for it was proposed. However, the transistor

used as a gating device eliminates the density advantage obtained by employing nanoscale

memristors in a given design.

In [51, 27, 33, 120] a single memristor device is used as a synapse and careful shaping of

the neuron spike is used to obtain online learning. The pre-neuron spikes in this case are

differently shaped as compared to that of the feedback spikes of the post-neuron. However,

this scheme would need different circuits to generate different spikes, thus adding to the area

overhead of the neurons. In [38], discrete voltage levels based spikes were used. However,

this technique could only implement a positive (excitatory) synapse because it used a single

memristor and current only flows in a single direction.

In [97], analog spikes were designed and used to perform STDP. Also, the dependence of

the STDP characteristics on the spike shape was analyzed. Negative (inhibitory) synapses

were also demonstrated by inverting the spike shape. In [54], the neuron was configured as

having a positive or negative weight by using a second generation current conveyor circuit.

In both of the techniques above, the sign of the synapse weight is based on the neuron, but

not intrinsic to the synapse. In [1, 48], a bridge configuration of four memristors was used as

the synapse and it was shown that it can have both positive and negative weights. however,

this method needed a differential amplifier to infer the synaptic weight information into a

proportional current.
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For a compact implementation of synapses capable of acting as both excitatory and

inhibitory, two-memristor based synapses have been proposed in multiple works. In [98],

two memristors driving opposite currents has been proposed. However, the devices here

always switched only in a single direction (to tackle the problem of switching asymmetry

and abrupt switching in resistance decrease direction), thereby needing a ‘sleep cycle’ to

reset the devices for continual operation at the system level. In [34], a synapse based on two

devices was shown, but STDP was not the focus here, and required complex weight update

circuitry.

In [19, 3, 20], a twin memristor synapse was proposed that used digital spikes for

operation. However, this scheme needed an additional peripheral circuit (‘control block’)

per synapse to determine the relative timing of the pre- and post-neuron before a weight

update was performed. A quad memristor based synapse was presented in [90] to tackle

asymmetric switching wherein all of the devices switch only in one direction, but it needed

bulky control blocks local to the synapse to determine the state of the synapse during each

learning cycle. Moreover, the use of a control block local to the synapse eliminates the density

advantage obtained with the use of memristors and also renders the crossbar implementation

infeasible.

Additionally, the above schemes do not account for the other prevalent issues of today’s

devices such as asymmetry of switching speed and/or threshold, limited resistance resolution

and switching endurance [87]. These issues can hamper the operation of memristor based

neuromorphic systems and must be accounted for at the circuit level.

The work presented here proposes a bi-memristor synapse that circumvents the above

described issues related to synapse realization. This synapse utilizes two memristors (to be

able to realize both positive and negative weights) and has a weight update scheme that

does not require any local control circuitry. Additionally, the spike shapes utilized here are

on-chip controllable and are shown to implement an STDP that is robust against device level

switching issues.
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2.3 Related Work on Neuron Design

The neuron is another key component of neuromorphic systems (apart from synapse).

Many models for neuron behavior have been proposed, as reviewed comprehensively in [42].

However, most of the spiking neuromorphic systems mentioned therein utilize an analog

integrate and fire (IAF) neuron [60]. This neuron operates by integrating the incoming

current (from the synapses) and accumulating the resulting charge. The ‘accumulated’

voltage is compared to a threshold voltage. When this accumulation exceeds the threshold,

the neuron ‘spikes’. However, with the IAF neuron, the rate of accumulation is a function

of the capacitor value used therein. Hence, the neuron must be custom designed for the

specific memristor used as the synapse in a given system. Changing the memristor (without

changing the rest of the CMOS design) is often desired with neuromemristive systems in

order to experiment with several memristor kinds for a given system. In such a case, the

IAF neuron must be changed each time, needing a re-design and a re-fabrication of the

front-end-of-line (FEOL) as well, which can prove expensive due to the lithographic mask

costs involved.

This work proposes a mixed-mode neuron that overcomes this issue of custom designing

a neuron for a specific memristor. The proposed neuron’s accumulation rate can be tuned

on-chip and hence is applicable for use with a variety of memristor devices without having

to design for a specific one and without the need for a re-design. This makes it generic in

terms of the devices with which it can operate and eliminates the need for re-design when

the synaptic device changes.
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Chapter 3

Bi-Memristor Synapse

3.1 Synapse Circuit Design

The proposed synapse here [88, 89] consists of two memristors connected between a pre-

and a post-neuron as shown in Fig. 3.1(a). In [19] a similar twin-memristor synapse was

presented. However, the design there needed control circuitry local to synapse to determine

the time difference between pre- and post-neuron spikes for learning. The synapse proposed

in this work eliminates the need for such additional circuit overhead. The bi-memristor

synapse here operates in two modes: accumulation and learning. While the post-neuron is

accumulating, if the pre-neuron generates a spike, post-neuron’s S1 & S2 are closed and it

accumulates incoming current as depicted in Fig. 3.1(b). The pre-neuron applies opposite

polarity spikes on nodes 1 and 2 while the node on the post-neuron end is biased to a virtual

ground. This results in currents that flow in opposite directions in the synapse memristors

Mp and Mn, and the resultant current into post-neuron is given by:

i = iMp − iMn = (Gp −Gn)Vspike (3.1)

Hence, synaptic weight, given by its effective conductance is:

Geff = Gp −Gn =
1

Mp

− 1

Mn

(3.2)
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Figure 3.1: (a) The proposed bi-memristor synapse connecting the pre- and post-neuron.
(b) The synapse while the pre-neuron is spiking and the post-neuron is in accumulation
phase. (c) The synapse when both neurons are in spiking phase.
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This current coming into the post-neuron is accumulated therein, and it spikes when the

accumulation is greater than threshold. Upon spiking, the post-neuron’s S1 & S2 open and

S3 & S4 close, giving rise to the topology in Fig. 3.1(c). Also, the neuron not only propagates

its spikes to its output synapses, but also sends feedback spikes to its input synapse(s). When

this occurs, the synapse enters the learning phase, in which both the memristors are biased

with spikes on their both ends, leading to a potential weight change depending on the timing

of the spikes.

The dependence of the effective voltage bias across the memristors on the relative timing

of the neurons’ spikes was simulated and is shown in Fig. 3.2. As shown in Fig. 3.2(a),

during a potentiation condition, Mp has a resultant positive potential across it, greater than

the switching threshold. Similarly, Mn has a net negative voltage across it. Therefore, Mp

decreases and Mn increases, resulting in an increase of Geff as shown in (3.2). The new net

conductance G′eff can be expressed as follows:

G′eff =
1

Mp −∆M
− 1

Mn + ∆M

=
1

Mp

(
1− ∆M

Mp

) − 1

Mn

(
1 + ∆M

Mn

)
=

1

Mp

[
1 +

∆M

Mp

+
(∆M

Mp

)2

+ ....
]
− 1

Mn

[
1− ∆M

Mn

+
(∆M

Mn

)2

− ....
]

=
1

Mp

− 1

Mn

+ ∆M
( 1

M2
p

+
1

M2
n

)
+ ∆M2

( 1

M3
p

− 1

M3
n

)
+ ....

= Geff + ∆M (G2
p +G2

n) + ∆M2 (G3
p −G3

n) + ....

(3.3)

Hence, for potentiation, the net conductance increment is given by:

∆G = G′eff −Geff

= ∆M (G2
p +G2

n) + ∆M2 (G3
p −G3

n) + ....
(3.4)

Similarly, during a depression condition, the post-neuron spike occurs before that of the

pre-neuron. In this case, the net bias across Mp and Mn is reversed (compared to potentiation

case) shown in Fig. 3.2(b). Hence, in this case Mp increases and Mn decreases resulting in
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Figure 3.2: The impact of the pre- and post-neuron spikes’ temporal relation on the
consequent bias across the memristors for (a) potentiation and (b) depression.

an effective decrease of Geff . The conductance decrement here can be expressed as:

∆G = −[∆M(G2
p +G2

n)−∆M2(G3
p −G3

n) + ....] (3.5)

The above equations (3.4) and (3.5) for ∆G resemble an exponential function’s series

expansion, where ∆M is the variable. From Section 2.1.2, it may be seen that the

memristance change can be expressed as ∆M = kV p, where V is the net bias applied

on the memristor and k is a switching constant. Therefore, the incremental conductance

change may be expressed as:

∆G = k1V
p + k2V

2p + k3V
3p + ... (3.6)

It can be seen that in the equation (3.6) above, ∆G resembles an exponential dependence

on the net bias V. Also, it may be noted that in Fig. 3.2 voltage levels change linearly with

time steps. Therefore, a net bias V that changes linearly depending on ∆T = tpost − tpre
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(the time difference between the pre- and post-neurons’ spikes) is applied across the devices.

Hence, ∆G has an exponential dependence on ∆T , thus displaying an exponential STDP

characteristic.

3.2 Spike Generator Block

Fig. 3.3 depicts the neuron’s block diagram. It consists of a spike generator block in addition

to the core neuron circuit. When the neuron accumulates, S3 & S4 open while S1 & S2 close,

giving rise to a summation of input currents from the synapse. This leads to an effective

current inflow into the neuron, leading to an accumulation. This accumulation upon crossing

the threshold, leads to the neuron spike, during which it is in its refractory period. During

the refractory period, the spikes are propagated forward to the output synapses and are also

fed back to the synapses at its input by virtue of closing S3 & S4 and opening S1 & S2.

Figure 3.3: Block diagram of the neuron circuit for the proposed synaptic operation.

Fig. 3.4 shows the spike generator block used in the neuron. It shows two switch groups,

one to control Mp and one for Mn. The switch controls are taken from the D-flip flop outputs

(Q1-Q5). Each one of these outputs controls a switch in the group as shown in Table 3.1.
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Figure 3.4: Circuit diagram of the spike generator block.

Upon the receipt of a neuron spike, SP1 & SN1 will be first to close. At subsequent clock

edges, one of Q1-Q5 will be HIGH, leading to the closure of one of the switches in each group

(while the others will remain open). During the time when a switch is closed, the output

is biased with the voltage supplied at that switch. These supply voltages may be produced

on-chip or may come from off-chip. When there is no spike, the switch SD will be closed,

thereby applying a mid-rail GND bias to help mitigate sneak currents issue.

Table 3.1: The dependence of the switches’ activity on the flip-flop outputs and the
resultant output voltage.

Flip-Flop output ‘HIGH’ Switch Closed Output Voltage
Q1 SP1, SN1 -Vb4, Vb4
Q2 SP2, SN2 Vb4, -Vb4
Q3 SP3, SN3 Vb3, -Vb3
Q4 SP4, SN4 Vb2, -Vb2
Q5 SP5, SN5 Vb1, -Vb1

None SD GND
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3.3 STDP Behavior

3.3.1 Characteristic STDP Behavior

In order to study the characteristic STDP property of the synapse, simulations have been

performed in Cadence Virtuoso using Spectre as the simulator in it. The CMOS portions

were implemented using a 65nm design kit and a Verilog-A model for the memristor

model in Section 2.1.2 was developed. For this simulation, the following memristor device

parameters have been used: HRS = 12KΩ, LRS = 2.5KΩ, Vtp = 0.6V, Vtn = −0.6V, θHRS =

0.85, θLRS = 1.6, βHRS = 0.07, βLRS = 0.07, CHRS = 9.5 × 109, CLRS = 9.5 × 109, PHRS =

2, PLRS = 2. These values are based on a fit of the proposed memristor model to the

device presented in [105] wherein the device was experimentally shown to be switching with

intermediate states.

The setup in Fig. 3.5 has been used to simulate the STDP behavior, consisting of synapses

S1 and S2 interconnecting the neurons N1-N3 and N2-N3, respectively. The synapse S2 is

set to its highest weight state so that N2’s spike event leads to a large enough accumulation

in N3 to make it spike as well. Thus N3 spike timing is fixed and that of N1 is varied to

obtain STDP in S1 synapse. The initial weight of S1 is set to zero, by making Mp=Mn. The

results of the STDP performed by using a clock frequency of 50MHz is shown in Fig. 3.6.

Figure 3.5: The circuit topology used for simulating STDP character of the synapse.
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Figure 3.6: The simulated STDP property of the proposed synapse.

3.3.2 Impact of Clock Frequency

As shown in Fig. 3.2, the neuron’s spike length in time is dependent on the clock frequency

used. The higher the clock period, the longer time the voltage bias is applied across the

synapse during learning, leading to a higher ∆M during learning. Therefore, by choosing

an appropriate value of the frequency of the clock in the system we can change/control the

STDP amount in the synapse. Fig. 3.7 shows the simulated behavior for the dependence of

STDP on the clock frequency used. It can be observed that a low clock frequency (high clock

period) results in higher ∆G and a steeper STDP curve, whereas the reverse happens for

higher clock frequency. Also, at high frequencies, where ∆M becomes small, the magnitude

of the higher order terms in Equation (3.4) become negligible, hence reducing it to: ∆G ≈

(G2
p + G2

n)∆M = k∆M , indicating a linear STDP character. This trend is also evident in

Fig. 3.7 at higher clock frequencies.
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Figure 3.7: Dependence of STDP characteristics of the proposed synapse on the clock
frequency used.

3.3.3 Impact of Device Switching Rate Asymmetry

The resistance switching mechanism in memristors is fundamentally different in the resistance

increase direction and in the decrease direction. For many devices, this results in the

switching occurring at a faster rate in one of the directions. This difference in switching

speeds in either direction can be upto two orders of magnitude [35, 11] and this property can

prove detrimental for learning purposes since it uses both directions of switching. When this

asymmetry is large, the faster switching direction will see much larger steps of resistance

change and will tend to dominate the synaptic weight change. These high increments in

synaptic weight cripple the STDP characteristics as shown in Fig. 3.8 and also affect the

resolution of ∆G during learning, thus having a detrimental impact on the final weights

learnt by a system.
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Figure 3.8: Impact of the device’s switching speed asymmetry on STDP. Here X =
CLRS/CHRS.

The detrimental impact of switching asymmetry can be alleviated by modifying the

voltage flux applied in the direction of fast switching. The discretized spike shape utilized

here lends itself to this kind of flux modulation applied to the memristor devices. This is done

by duty cycle modulation of the spike shape. Fig. 3.10 shows the simulations for the case

when decrease of resistance is faster compared to resistance increase (CLRS > CHRS). In this

case, the neuron’s output spikes (propagated to the onward synapses) that are responsible

for accumulation are left unaltered, whereas only the feedback spikes (sent to the input

synapses) are modulated. Fig. 3.10 shows the spikes shapes after modification and Fig. 3.9

shows the rectified STDP behavior of the synapse after the use of this duty modulation. The

reasoning for the shaping of these spikes is as follows: during learning, memristance decrease

occurs when a positive bias is applied across it. Such a bias requires a positive bias from

the pre-neuron end and a negative bias from the post-neuron end. Therefore, the negative

24



voltage part of the feedback spikes from the post-neuron is modulated in time to provide

less flux as shown in Fig. 3.10. To generate this modulation, S3 and S4 are controlled to be

open when the bias is to be shortened in time. To achieve this curtailing in time, its control

signal (‘Fire’ signal in Fig. 3.4) is logically ANDed with a duty cycle modulated clock. A

modulation in the duty cycle can be achieved from a given system clock using a delay circuit

as in [63]. Using this circuit, a original clock can be delayed (say ‘d-CLK’) and then logical

operation (d-CLK⊕CLK)·CLK gives us the desired duty modulated clock. Therefore, by

virtue of using the spikes shapes employed here, one can mitigate the effects of switching

rate asymmetry.

Figure 3.9: STDP reverting to normalcy after duty modulated pulses are used.
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Figure 3.10: Use of duty modulated pulses in the feedback spikes of post-neuron to
mititgate switching speed asymmetry impact for (a) Potentiation (b) Depression.
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Chapter 4

Mixed-Mode Neuron

In this chapter, the design of an on-chip tunable mixed-mode neuron is presented. First, the

functioning of the conventional and widely used integrate and fire neuron is analyzed in the

context of applying it for use with multiple types of memristors. Later, the proposed neuron

design is presented and its operation is explained.

4.1 Problem with Integrate and Fire Neuron

Traditional IAF neurons perform ‘accumulation’ from the input current by using a capacitive

integrator and store the resulting voltage as Vmem as shown in Fig. 4.1. The accumulated

voltage can be written as Vmem = − 1
RinCint

∫ t

0
Vindt. The magnitude of this Vmem is dependent

on the Cint; with higher capacitance resulting in lower magnitude of Vmem. Therefore, this

indicates that Cint value needs to be calculated and customized for the synapse (Rin) being

used. Currently a wide variety of memristor devices exist and are being used for system

level applications. This means that for every new memristor device type, the neuron and/or

the system needs to be custom designed. To study this further, three devices are considered

here with widely varying resistance values as shown in Table 4.1. These devices have all

been experimentally shown to have switching characteristics with stable intermediate states

between LRS and HRS.

Fig. 4.2 shows the neuron’s response when it was designed to work with Mem2. The

input synapse is set to have five discrete weights (set as Gmax/x, where x=1-5 and Gmax =
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Table 4.1: The memristance values used here for neuron tunability study.

Mem1[105] Mem2[61] Mem3[44]
LRS 2.5kΩ 15kΩ 250kΩ
HRS 12kΩ 150kΩ 2.5MΩ

Figure 4.1: A typical integrate and fire (IAF) neuron’s integrator circuit.

1
LRS
− 1

HRS
) and it can be seen here that the accumulation rate is proportional to the synapse

weight; with higher weights (darker shades in Fig. 4.2) resulting in faster accumulation. The

neuron designed here was used with the other memristor types. When Mem1 is used, since

its resistance is below that of Mem2, it inputs more current. For this high current, the

capacitor designed for Mem2 proves too low for Mem1, leading to high accumulation rates

and subsequently high Vmem to work with. On the contrary, when Mem3 was used here,

because Mem3 has higher resistance than Mem2, the input current to the neuron was very

low. The designed capacitor for Mem2 turned out to be too high for for this device, thereby

resulting in too low accumulated voltages to detect and decipher.

The above analysis indicates that this neuron needs to be custom designed to work for

a specific memristor device. Owing to the large variety of contemporary memristor device

types that exist in literature, and each of them having its own advantages, the design and

development of systems that utilize these devices consists of custom design and re-fabrication

28



Figure 4.2: The ‘accumulated’ Vmem in the IAF neuron for various device types. For each
device type, various synpase weights were simulated. Here, lighter color shade implies a
lower synaptic weight and a darker shade is for a higher weight.

of a system for new memristors, which can prove expensive in terms of the time to design,

the needed designer effort and the fabrication expenses (for the lithographic masks). To

circumvent such a limitation, a mixed-mode neuron with on-chip tunability is proposed here

that can adapt to a variety of devices.

4.2 Proposed Mixed-Mode Neuron

The block diagram of the proposed mixed-mode neuron is shown in Fig. 4.3. The incoming

synaptic current is converted into an n-bit digital value by the analog block (n=3 here),

proportionate to its magnitude. The ‘digital block’ accumulates and holds this digital value.
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This value is then compared with an input digital threshold value and a spike is generated

when the threshold is exceeded by the stored digital value.

Figure 4.3: The proposed mixed-mode neuron’s two constituent blocks.

4.2.1 Analog Block

The details of the analog block of the mixed-mode neuron are depicted in Fig. 4.4. It contains

a transimpedance amplifier, to convert the input synaptic current iin into a corresponding

voltage Vmem (it may be noted here that Vmem is negative because the operational amplifier is

employed in an inverting configuration). Vmem is provided to a ‘dynamic CMOS block’ that

encodes this voltage based on comparison with some input reference voltages. For high input

current magnitude, Vmem is high in magnitude and hence a high digital value is assigned.

It must be noted that since Vmem value generated here is a function of the tunable resistor

Rtune, it may be realized using tunable MOS devices (in linear region) such that Rtune may

be tuned to provide consistent Vmem for a given abstract synaptic weight independent of the

synapse’s implementation. Hence, with on-chip tunability this mixed-mode neuron can work

with a wide variety of devices and have the same accumulation for all of them, without the

need for a re-design.

The dynamic CMOS block (Fig. 4.5) comprises of transistor pairs acting as dynamic

circuits, each of which is responsible for determining if the input current is within a certain

range. Each pair of transistors consist of a ‘pre-charge’ and a ‘discharge’ transistor, which
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Figure 4.4: Circuit design of the analog block used for digital encoding.

Figure 4.5: The dynamic CMOS based circuit for digital encoding of the Vmem. Here,
x=1-7. The ENx nodes’ states are used for encoding as delineated in Table 4.2.
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perform the function of charging and discharging the evaluation node, respectively. During

the first half of a clock period, the pre-charge transistor charges up the evaluation node.

During the second half of the clock period, this transistor is switched OFF. The discharge

transistor takes-in Vmem as its gate voltage and is provided with a (input) reference voltage

at its source terminal. Thus, Vmem primarily determines if this transistor switches ON or

OFF. When Vmem is high enough in magnitude, it switches ON this transistor and discharges

that node. Various Vref values are graded such that Vref1 < Vref2 < ... < Vref7. Thus, for

various synaptic currents, various Vmem values are generated. The higher the current, the

more negative the Vmem gets, the tougher it is for the transistor to turn ON. Therefore, the

number of fully discharged nodes will be less by the time the evaluation phase ends. This

indicates that for a high input current, less evaluation nodes discharge and for low currents,

more nodes discharge. At the end of the evaluation phase, the combinational logic block

takes-in the status information from the nodes and encodes into a digital value as shown in

Table 4.2. Fig. 4.6 presents the simulation results for the evaluation nodes for the case of a

‘100’ as the encoded digital value. It may be seen here that only EN1−3 are fully discharged.

Also, Fig. 4.7 shows that when the memristor type is changed in the synapse, Rtune is tuned

on-chip such that the nodes display the same discharge characteristics. This result illustrates

that the mixed-mode neuron can be tuned on-chip to produce the same behavior for various

memristor devices without the need for re-design.

Table 4.2: The digital encoded values versus the number of discharged nodes.

Nodes Discharged Encoded Value
EN1−7 000
EN1−6 001
EN1−5 010
EN1−4 011
EN1−3 100
EN1−2 101
EN1 110
None 111
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Figure 4.6: Simulation waveforms for the dynamic nodes for the case of a ‘100’ encoded
value. Note here that EN1−3 are completely discharged.

Figure 4.7: Waveforms of the nodes for the three memristor types in the synapse with the
tuning of the neuron’s accumulation.
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4.2.2 Digital Block

The encoded values from the analog block are input to a ‘digital block’ wherein the

‘accumulate and compare’ operations are performed in the digital mode. A block diagram

of this digital portion of the neuron is shown in Fig. 4.8. The digital accumulation here

is compared to an input threshold (also a digital value) and a spike is produced based on

the comparison result. Also, when the digital adder has an overflow condition, a spike

is produced. The comparator here determines both the comparison result with the input

threshold and also keeps a check on the overflow condition of the adder, and decides if a

spike must be generated. When the comparator indicates that a spike must be produced,

the registers are RESET for the whole length of the refractory period of the neuron.

Figure 4.8: Block diagram for the digital portion of the proposed neuron.
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4.3 Neuron Test Structures

A test structure is a standalone circuit entity designed with the aim of performing various

characterization tests on it. It is usually designed as a single circuit (without any peripherals

as much as possible) and connected to input/output (i/o) probe pads directly. Test signals

are directly provided to the circuit to perform its characterization using the i/o pads. For

the neuron design presented above, four test structures having circuits [91] bearing close

resemblance to it were designed and fabricated in CMOS 65nm technology. The details of

each of these test structures are presented as follows. A more detailed explanation of the

physical layout of these test structures (including their pin out) along with their testing

strategies and test results can be found in Appendix A.

4.3.1 Analog Block Test Structure

A test structure to test the analog block by itself (without the digital block cascading it)

was developed. This analog block’s circuit design is conceptually similar to that described

in Section 4.2.1 and is same as that presented in [91]. The schematic of the test structure is

shown in Fig. 4.9. As seen in this figure, this test structure comprises of the analog block of

the neuron driven by a resistive synapse. A resistive synapse has been used here to have a

completely CMOS based design. The synaptic weight here is set to a positive value and since

it is a resistor based synapse, its weight is fixed here (determined by the resistors’ values).

This positive weight synapse drives positive current into the analog block. The block then

encodes this current based on the values of the voltage references used (which influence the

dynamic CMOS evaluation nodes inside it). Testing can be performed on this test structure

by changing the reference voltages to change the discharging pattern among the evaluation

nodes, thereby resulting in different encoded values. Fig. 4.10 shows the layout for this test

structure.
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Figure 4.9: The block diagram of the analog block test structure.

Figure 4.10: The layout of the analog block test structure.
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4.3.2 Mixed-Mode Neuron Test Structure with Single Resistive

Synapse

In this test structure the analog block is combined with the digital block to form the complete

mixed-mode neuron. This test structure’s block diagram is shown in Fig. 4.11. Here, as can

be seen, the neuron has one resistive synapse (with positive weight) at the input. This input

synapse will drive positive current into the neuron. Based on the reference voltages applied,

the digital encoding varies. This leads to digital accumulation in the digital block. Based

on the digital threshold applied, the neuron will produce a spike. It will produce this spike

more frequently for a lower threshold and vice versa. Also, for a given threshold, the spiking

frequency is dependent on the encoding performed by the analog block inside it. For higher

encoding, the spike is expected to occur more often and vice versa. The layout for this test

structure is shown in Fig. 4.12. Note that in Fig. 4.11, the output ‘Fre’ is the spike output

of the neuron and ‘Fire’ is one clock cycle delayed version of this spike.

Figure 4.11: The block diagram of the mixed-mode neuron test structure with one resistive
synapse.
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Figure 4.12: The layout of the mixed-mode neuron test structure with one resistive synapse.
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4.3.3 Mixed-Mode Neuron Test Structure with two Resistive

Synapses

In this test structure (shown in Fig. 4.13), the mixed-mode neuron has two resistive synapses

at its input. The purpose of having this test structure is to test the operation of the neuron

with multiple input synapses. Note that in this case since resistive synapses have been used,

their weight is fixed. Each synapse here has the same positive weight as was in the previous

test structure. Since the enable signal (‘Fpre’) for each synapse is different, each of them

may be independently enabled and tested with the neuron. The layout for this test structure

is shown in Fig. 4.14.

Figure 4.13: The block diagram of the mixed-mode neuron test structure with two resistive
synapses.
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Figure 4.14: The layout of the mixed-mode neuron test structure with two resistive
synapses.
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4.3.4 Mixed-Mode Neuron Test Structure with a Memristive

Synapse

In this test structure, as shown in Fig. 4.15, the neuron has a memristor based synapse at

the input. It consists of two memristors (instead of resistors as in the above test structures)

along with their forming/programming circuits. These circuits are necessary to carry out

an initial forming step [7] on the memristors, which brings them from the as-fabricated

insulating state to the LRS state. They may then be programmed to the desired state by

the same forming/programming circuit. In this case the memristors may be programmed

such that Mp is in LRS and Mn is in HRS, to give a positive weight. The accumulation in

the digital neuron can then be tested as was done for the case with resistive synapses. The

layout for this test structure is shown in Fig. 4.16.

Figure 4.15: The block diagram of the mixed-mode neuron test structure with memristive
synapse.
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Figure 4.16: The layout of the mixed-mode neuron test structure with memristive synapse.
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Chapter 5

Pattern Recognition System

In this chapter, the above described designs of synapse and neuron are used to construct

a crossbar based system with online STDP based (supervised) learning. This system is

simulated and tested for a pattern recognition application. The proposed system’s design is

described as follows.

5.1 Crossbar Structure and Operation Scheme

The block diagram of the system built here is shown in Fig. 5.1. It is comprised of two layers

of neurons interconnected by memristive synapses, thus forming a crossbar configuration.

The input layer of neurons Ni1...p produce an input spike pattern depending on the input data.

These input spikes lead to current flow in the crossbar synapses, resulting in accumulation

in the output neurons No1...q . Later, the winner-takes-all (WTA) logic takes-in accumulated

values from the output neurons, to select the neuron with the highest accumulation among

them.

Fig. 5.2 shows the details of the WTA block. The operation principle of the WTA is as

follows: bit values accumulated in the output neurons are processed individually, with the

most significant bit (MSB) having highest priority. If the value in neuron Nom is b2mb1mb0m ,

where b2m is the MSB, it will be declared as the winner if b2m = 1 and no other output

neuron’s MSB is equal to 1, that is,
∑r=q

r=1,r 6=m b2r = 0. In case any one of the b2{1..q}−m bits

are equal to 1, or in case all of b2{1..q} are 0, the next lower significant bit b1m is compared
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Figure 5.1: The proposed crossbar based system for pattern recognition applications. It
may be particularly noted how the proposed synapse is used here at each crosspoint.

with b1{1..q}−m in a similar way. Again, if b1m = 1 and in case any of b1{1..q}−m is 1 or if all of

b1{1..q} are 0, the process proceeds to b0m .

To realize the above described logic, accumulation bits from the output neurons are made

to drive some MOS switches in the WTA block as shown in Fig. 5.2. At each bit bx (x=1,2,3)

position, all of these switches’ resistances are parallely connected. As described earlier, for

decision making at individual neuron level, three cases are to be evaluated: (i) whether all

neurons’ bits are 0 at that position, (ii) or whether one of the neuron’s bit is 1, and (iii) or

if more than one neuron’s bits has a 1 at that position. Such a global comparison result is

combined with each neuron’s local accumulation to determine if it was the winner. In order

to make such comparison at each bit position in hardware, switches (1X size) at individual
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Figure 5.2: The proposed WTA circuit for decision making based on digital bit comparison
at each bit position and later using it for neurons’ spike decision.

bits drive current into a bit comparison block, shown in Fig. 5.3. Here there are other

switches that drive currents in opposite direction and the summation of these currents into

the block is used to identify the bit comparison result. The switch Q1 is 1.5X in size and

determines if multiple neurons have a 1. If so, two or more switches will be ON and the

total incoming current will be positive and hence d1 is 0 and it will be equal to 1 if one or

none of the neurons have 1 at this position. Q0 is 0.75X in size and determines whether at

least one neuron has a 1. Similarly to above, d0 is 0 if at least one neuron has a 1 and is 1

if none have a 1. Therefore, after considering the results both the comparisons done above,

cx (x=1,2,3) is evaluated which tells us the number of neurons with a 1. cx is equal to 1 if
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Figure 5.3: Circuit for bit comparison at each bit position.

and only if one neuron has a 1 per column and is 0 if more than one or none have a 1. This

bit count information at all the bit positions is input to the individual output neurons’ spike

decision blocks. Here, a combinational logic (shown in Fig. 5.4) determines if the neuron

has to spike (i.e., if it is the winner), as explained earlier: a neuron wins if c2 = 1 and its

b2 = 1. If c2 = 0, similar conditions are checked for the next bit position and so on. To

validate the concept presented here, the proposed WTA logic was implemented in Cadence

Virtuoso and a test case simulation’s results are presented in Table 5.1. 10 digital values

(coming from accumulations in 10 neurons) are input to the logic and it can be seen that

the logic correctly ‘chose’ the highest value and did not choose anyone when more than one

neurons had the highest value.

Depending on the results provided by the WTA logic for each neuron (about whether it

is the winner or not), the signal No−spk in Fig. 5.2 controls the feedback switches (S3 & S4)

at each neuron. Since only one neuron (among all the output neurons) will spike (if at all

there is a spike), only the ‘winning’ neuron will generate and apply a feedback spike (leading

to STDP based learning in the crossbar synapses). Moreover, since the spike propagation is
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Figure 5.4: The output neuron’s spike decision circuit.

gated locally at each neuron (by No−spk), a single spike generator block can be used by all

of the output neurons, thus helping reduce the hardware costs and enhancing the scalability

of the system at large.

Table 5.1: The WTA logic’s simulation results under two conditions (1) one output neuron
has the highest value (left) (2) more than one with the highest value (right).

Neuron Accumulation Spike Decision
No1 001 0
No2 010 0
No3 001 0
No4 100 0
No5 110 1
No6 011 0
No7 001 0
No8 010 0
No9 100 0
No10 011 0

Neuron Accumulation Spike Decision
No1 001 0
No2 111 0
No3 001 0
No4 100 0
No5 010 0
No6 011 0
No7 001 0
No8 111 0
No9 100 0
No10 011 0
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5.2 Training

To simulate and validate the crossbar based system (Fig. 5.1) and its operation as described

above, its behavioral modeling was done using Python language (see Appendix B). In this

work, a handwritten digits data set from the UCI Repository [31] is used with this system

as the application. It is comprised of 8x8 size input patterns representing the digits 0 to

9. These patterns have input elements with values between 0 to 16. This dataset used here

contains 3823 digit patterns for training and another set of 1797 patterns for testing. Because

the inputs are 8x8 sized patterns and comprise of 10 classes, the system has 64 input and

10 output neurons, one each for every input matrix element and a digit class, respectively.

In this work, the matrix values have been downsampled to the range 0 to 7 such that 0-1 is

encoded as 0, 2-3 as 1 and so on, as shown in Fig. 5.5.

For training the crossbar weights, the input data is converted into a spike train following

a temporal rule on when the spikes must occur, as shown in Fig. 5.5. The downsampled

values for the input data are used to calculate the delays (in multiples of clock periods) in

producing the corresponding input neuron’s spike. The input neuron receiving a value of

x spikes after x clock periods (ti + x) as shown in that figure. Also, a supervised learning

model is used here, implying that class labels for inputs are read into the simulator and the

corresponding output neuron (for the input class) is made to spike, in order for learning to

happen through STDP in the crossbar. Whenever an input is provided to the system, the

corresponding output neuron is made to spike before the training time period begins (ti−1)

and after it ends (time ti+1). Note that the spikes used in this work contain four different

positive voltages occurring over a span of four clock periods, implying that STDP can be

facilitated at a synapse for up to four clock periods of time difference between the neurons’

spikes. Hence, based on the first spike of the output neuron, the synapses with inputs of

the range 0-3 will be depressed, with the 0-input leading to most magnitude of depression.

Similarly, synapses with inputs of the range 4-7 will be potentiated due to the second output

spike (occurring at the end of training phase). It is noticeable here that the 1st spike of the

output neuron does not influence potentiation and vice-versa because the time separation is

too large for an overlap to occur.
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Figure 5.5: The downsampling of input values and the consequent spike encoding used at
the input neuron layer.

For the purpose of learning operation on the crossbar system, the whole 3823 patterns

in the training set are used. The crossbar synapses are initialized to zero weight at the start

of the training (Mp = Mn = HRS). With the progress of learning, synapses are subject to

potentiation and depression cycles. The learnt weight attained by a synapse in due course

is dependent on the relative number of potentiation and depression cycles that it undergoes.

For example, synapses whose inputs were predominantly in the 4-7 range, undergo more

potentiation than depression, and they eventually attain a high positive weight. The contrary

occurs to synapses whose inputs were predominantly in the 0-3 range. Also, for synapses

whose inputs were about the same from both the ranges, their weight settles in between
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the either extremes. Fig. 5.6 demonstrates this property wherein the learnt weights of the

synapses on all columns of the crossbar are plotted as digit patterns.

Figure 5.6: The weights attained by the crossbar synapses after the learning phase. The
colorbar (at the bottom right) displays the conductance scale in µS.

5.3 Testing

The crossbar after being trained as described above must be ‘tested’ for accuracy using the

1797 input patterns from the testing part of the dataset. When inputs are applied, currents

flow through each column, leading to accumulation in the corresponding output neurons.

Based on the accumulation therein, WTA logic here plays the role of an arbiter to determine

the ‘winner’. In case only one output neuron has the most accumulation, it is considered the

winner and the corresponding label is checked against the input label to validate the testing

under consideration. In case there is a mismatch, or if the WTA block was unable to choose

a single winner neuron, then the particular input test case is said to failed the test. Fig.

5.7 shows the graph for accuracy of the crossbar system plotted against the training epochs.

The recognition accuracy here reaches its maximum value by the end of one training epoch

and it remains saturated thereafter. The accuracy of classification seen here is comparable

to the 83% reported in earlier works [87] using the same dataset and a similar system design.
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Figure 5.7: The accuracy of recognition versus training epochs .

Moreover, in this work only a mere STDP based supervised learning rule on a single layer

crossbar was used, wherein the final weights achieved in the crossbar are directly dependent

on the STDP property used. This lets us analyze the robustness of the proposed circuits at

the system level, as will be demonstrated in Section 5.4. Additionally, the confusion matrix

for this system and this dataset is shown in Fig. 5.8. It is evident from this figure that the

inference of digits was mostly correct (boxes along the diagonal have high values). Also, the

commonly misinterpreted bits were 8 and 1, which may be caused by the similarity in the

conductance of the central synapses of both these patterns as seen in Fig. 5.6. Also, the

digit 1 was confused with 2 and 5 with 9, which can be similarly be understood as being due

to the similar placement of the high weight synapses in these patterns.
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Figure 5.8: Confusion matrix obtained during the testing.

5.4 Performance Analysis

In this section, the system described above has been simulated under a variety of practical

non-ideal situations and the results are presented to demonstrate the robustness of the

proposed synapse and the mixed-mode neuron designs under such situations.

5.4.1 Impact of Clock Frequency

As seen in Fig. 3.7, the weight update magnitude during STDP in this work is a function of

the frequency of the clock used. It was shown there that use of a high frequency clock results

in small ∆G and vice-versa. This influence of clock frequency on the ∆G during STDP and
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thereby its impact on the learning of this pattern recognition system was studied here and

is shown in Fig. 5.9.

Figure 5.9: The crossbar learning behavior as a function of the clock frequency.

Fig. 5.9 shows that at high frequencies, the systems takes more epochs for learning, which

is understandable due to the diminished ∆G during STDP. This indicates that the learning

rate can be increased by lowering the frequency. However, if one reduced the frequency too

much, the learning behavior does not saturate smoothly. This is because low frequency leads

to large ∆G during STDP resulting in reduced granularity of learnt weights.

Based on the above discussion, we can say that there is a trade-off between learning

speed of the system and learnt weights’ precision. Therefore, this implies that a suitable

design frequency must be chosen for this kind of system. In this work, 50MHz is adopted

because the system attains its maximum accuracy after the first epoch in this case and
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curve remains smooth thereafter. This discussion also implicitly points us to another critical

device property: resolution of resistance. It can be seen that a low resolution of weights leads

to poor precision and granularity of weights during learning. Therefore, it is needed that

devices are engineered to provide as many stable resistance states as possible between their

extremes. The techniques presented here enhance this capability by providing the designer

a circuit level control over the resolution. By choosing an appropriate clock frequency, the

designer can control and/or tune the increments in weights.

5.4.2 Impact of Device Switching Asymmetry

Switching Speed Asymmetry

Section 3.3.3 demonstrated that switching speed asymmetry at the device level can lead to

uncontrolled changes in STDP and hence a crippled STDP behavior. This effect is shown at

the system level in Fig. 5.10 and Fig. 5.11.

Figure 5.10: The effect of switching speed asymmetry on the system’s recognition accuracy.
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Figure 5.11: An example of the impact of switching speed asymmetry on the learnt weights
in the crossbar. The pattern ‘0’ is shown here.

This figure indicates that as the switching rate in the device gets more and more

asymmetric, the classification accuracy deteriorates accordingly. As Section 3.3.3 also

demonstrated, by employing duty modulated signals in the feedback spikes, the effect of

asymmetry in switching can be mitigated. This is shown at the application level in Fig.

5.10. In addition, Fig. 5.11 shows how the learnt synaptic weights in the crossbar will be

hampered in the presence of this effect and how they are rectified after applying the remedy

technique described above.

Switching Threshold Asymmetry

Apart from switching speed asymmetry, the other significant and commonly occurring

deviant behavior is the switching threshold asymmetry. The change in memristance during

switching, ∆M , is dependent on the overdrive V − Vt applied to it. Therefore, if Vt in both

the directions are not equal, the overdrive in one direction will be less than the other, leading

to less change in that direction. This leads to unequal ∆M in both directions. This can

have adverse effect on the synapse’s STDP characteristics and thereby on the system level

learning. This is shown in Fig. 5.12. Here, both the types of switching asymmetries are

simulated and their rectification is applied independently and also in conjunction. It may be
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noticed that a combination of both these non-idealities proves very detrimental to system’s

functioning and that it has failed quickly due to their impact.

Figure 5.12: The impact of switching speed and threshold asymmetry on the system’s
accuracy.

The neuron spikes used in this work comprise of discretized time steps and also the voltage

values. This provides the flexibility of carefully choosing and/or tuning these parameters

as needed for the application at hand. This implies that in the face of switching threshold

asymmetry, one can compensate for the reduced overdrive by tuning the spike voltage used

for learning. This is shown in Fig. 5.13. In this illustration, | Vtn |>| Vtp |, which is typically

the case. So the effective negative bias across the device needs to be raised to compensate for

the high Vtn. During the learning phase, a negative bias is applied (on Mp for depression and
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Figure 5.13: Feedback spike voltage modification to remedy threshold asymmetry effects.

on Mn for potentiation) by virtue of applying a negative potential from pre-neuron and a

positive one from post-neuron’s feedback spike. Therefore, as a compensation technique, the

positive voltage in the feedback is raised. In addition to this, in the presence of both types

of switching asymmetries, both of the remedy techniques described individually above may

be adopted together to mitigate such effects. Such a simulation result is shown in Fig. 5.12.

Here it is demonstrated that by using the combined compensation techniques, accuracy can

be restored to its original value which would otherwise go down all the way to zero (as seen

in the blue surface plot).
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5.4.3 Impact of Memristor Device Change

It was illustrated earlier in Chapter 4 that with a ‘fixed/rigid’ neuron that is specifically

designed to work for a given memristive synapse, a re-design is needed before it can be used

with a new device type, else the neuron will fail to ‘adapt’ to new memristors. This property

is illustrated at the system level in Fig. 5.14.

Figure 5.14: The accuracy of the system is retained for various memristor types used,
owing to the tunability of the proposed neuron. Here, ‘without tuning’ implies a simulation
run with a neuron designed for a given device (2.5KΩ − 12KΩ here), but used with other
two memristor types.

The used neuron here was designed for the 2.5KΩ− 12KΩ memristor and simulated for

the other two memristors without tuning its accumulation rate. The figure indicates that

the system failed to achieve its task for this case. Later, the neuron’s accumulation rate was
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tuned to ‘adapt’ for each new device type that was used and it can be seen that the task

was accomplished successfully and the accuracy was restored. This was made possible by

the use of a tunable transimpedance amplifier in the proposed neuron in this work. This

underscores the fact that the proposed neuron can be tuned on-chip to adapt to a variety

of memristors in the back-end-of-line without having to change the core silicon design, thus

saving prototyping costs for this technology and its development process.

5.4.4 Impact of Switching Endurance

Reliable, repeatable and consistent switching behavior between the LRS and HRS of the

memristor is a desired quality. However, with repeated switching cycles occurring to the

device, it tends to lose its ability to reproduce its initial behavior. This is referred to as

the switching endurance, which typically manifests itself as a degradation of the LRS and

HRS values of the memristor [116, 22, 79]. This often culminates in the diminishing of

the switching window HRS/LRS of the memristor [22]. This property was modeled at

the system level by changing the LRS and HRS values from their original ones, with an

increase for LRS and a decrease for HRS. Fig. 5.15 depicts that for the case of a rigid

neuron, the accuracy gradually falls. However, for the tunable neuron proposed in this work,

its accumulation rate can adjusted in accordance with the changing LRS and/or HRS and

consequently the accuracy can be revived as seen in that figure. Also, in this analysis, at

45% degradation of LRS and HRS of the 2.5KΩ − 12KΩ device, the HRS/LRS ratio is

less than 2 and hence the accuracy starts to roll off. Therefore, this analysis illustrates that

the proposed neuron can be tuned to cope with the detrimental impact of limited switching

endurance of the memristor devices.

5.4.5 Resolution of Mixed-Mode Neuron

As shown earlier, the neuron encodes its input current into an ‘n’ bit digital value and

performs accumulation/threshold comparison in the digital mode. The influence of the

choice of this encoding resolution on the accuracy is shown Fig. 5.16. The accuracy starts

to saturate beyond n≥3 and is equal to 80%, 84% and 84.75% for n=3, n=4 and n=5,
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Figure 5.15: The accumulation tunability of the neuron used to remedy the impact of the
device’s switching endurance (shown here as % degradation from their original value).

respectively. In order to keep the hardware costs to a minimum, n=3 was chosen in this

work since there was not much improvement in accuracy beyond it. Moreover, in [87], 83%

recognition accuracy was reported for the same dataset. Hence, the accuracy obtained here

is competent with that in literature, given that the primary focus here is on robustness.

5.4.6 Area Overhead and Energy Consumption

The physical design (layout) of the neuron was done using a 65nm kit and the area estimation

of the layout is shown in Table 5.2. The proposed mixed-mode neuron occupies less silicon
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Figure 5.16: The impact of neuron’s resolution ‘n’ on the accuracy.

area than a conventional IAF neuron (employed in [19]) that consists of hardware-costly

capacitors (of upto a few pF) [91].

Table 5.2: Area overhead for the neurons’ physical design

This Work Integrate and Fire Neuron [91, 19]
Layout Area (µm2) ∼ 1400 (65nm) ∼ 2000 (65nm)

Moreover, as the crossbar increases in size for other applications and/or if the used

memristor has lower resistance, column currents increase leading to larger integrator

capacitors in the IAF neuron. Additionally, if the neuron’s layout changes significantly across
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devices and/or applications, the overall floorplan of a system might also need considerable

changes. Therefore, the mixed-mode neuron proposed in this work offers a small and fixed

layout design without the need for change across implementations.

To evaluate the energy cost of the proposed mixed-mode neuron, its energy consumption

per spike per synapse is shown in Table 5.3 and is compared to the other reported values in

the literature. It can be noticed that this neuron consumes lesser energy that most others

in the literature. Also, the IAF neuron in [19] used a synapse with resistance close to the

device Mem1 here (2.5kΩ-12kΩ) and had more energy consumption, thus proving the energy

efficiency of the proposed neuron.

Table 5.3: Energy consumption of neurons during spiking

Energy (pJ/Spike/Synapse) Synapse condition used
This work 1.05 250kΩ-2.5MΩ
This work 2.4 15kΩ-150kΩ
This work 8.1 2.5kΩ-12kΩ

[19] 23.07 2kΩ-10kΩ with digital spike
[115] 9.3 1000 synapses with 1MΩ each
[39] 36.7 70Ω-670Ω
[17] 11-0.1 1kΩ-1MΩ

5.4.7 Other Design Considerations

The spikes utilized in this work are discrete in terms of the voltage levels they consist of, which

helps boost the noise robustness and scalability of a system. When larger crossbars are used

for bigger neuromorphic applications, the parasitic resistance of the crossbar interconnects

(used for the columns) increases. To reduce this resistance impact and the possible voltage

drops, the interconnects could be made wider. But this will also lead to an increase in

the parasitic capacitance due to the interconnect which is in addition to the diffusion-

related capacitance contributed by the MOS devices connected to this interconnect. This

implies that in using an analog spike (such as those based on exponentially damping shapes)
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there will be a charge sharing issue between the parasitic capacitors of the crossbar and the

spike generating circuit. This problem is circumvented by the use of a capacitor free spike

generation concept here. The use of constant voltage pulses and careful on-chip tunability

of the spike voltage levels provides the advantage of being able to tackle system level issues

post-fabrication too.

Additionally, the WTA logic proposed here introduces less area overhead per neuron at

the output layer (making it scalable). Since only one of the output neurons spikes, the spike

generation circuit may be shared amongst all of them. Apart from being scalable, the system

design presented here also helps alleviate sneak currents issue [124, 62] in the crossbar owing

to its half-bias scheme. The power rails used here have a VDD (positive)-VSS (negative)

scheme. As shown in Section 3.2, the proposed neurons’ outputs are held to a mid-rail

voltage (GND in this case) when there is no spike. Similarly, the column nodes are biased at

a ‘virtual GND’ by the output neurons. This implies that the crossbar is biased to mid-rail

potential in an ‘idle’ state, thus alleviating sneak currents.
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Chapter 6

Memristor-Based Reservoir

Computing

In this section, the crossbar based system design presented in the earlier section is applied

to build a bigger neuromorphic system implementing the concept of reservoir computing.

6.1 Background of Reservoir Computing (RC)

Feed forward neural networks have been thoroughly developed and used in machine learning

tasks. However, they are primarily capable of approximating static (non-temporal) input

data. For working with temporal data, recurrent neural networks (RNNs) are better equipped

as they consist of feedback connections too. However, training these networks is an involved

process and can be very slow [93]. Reservoir computing is a paradigm that taps the advantage

offered by RNNs in terms of data processing while overcoming the need for complex training

process. As Fig. 6.1 illustrates, an RC system comprises of three layers, of which the

‘reservoir’ receives the inputs u(t) from the input layer and transforms it into a higher

dimensional space. The reservoir layer’s output (indicated as x(t)) is connected to the

‘readout layer’ via the weights denoted as Wout. The readout layer performs the final stage

of processing and its output is the result of classification.

During the operation of the RC system, only the output weights Wout are modified by a

learning procedure, whereas the weight matrix of the reservoir itself (which is an RNN) is
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Figure 6.1: The illustration of a reservoir computing system consisting of three layers:
input layer, reservoir layer and the readout layer.

left unchanged after they are randomly initialized and implemented. Hence, the primary

advantage of the RC framework is that the RNN part of the system is left untrained,

thus circumventing the need to go through a computationally intensive and slow training

process. The concept of reservoir computing when implemented with neural networks can

have two kinds of realizations: liquid state machines (LSMs) and echo state networks (ESNs).

ESNs comprise of artificial neurons performing the computation, whereas LSMs are more

biologically inspired and employ spiking neurons with recurrent connections in a way that

makes it more likely for spacially closer neurons to be connected.

An added advantage of the RC framework is that it can be realized using a wide variety

of physical systems. Such a physical implementation can provide fast processing of input

information while minimizing the learning cost involved. The following section summarizes

the existing literature on physical RC.
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6.2 Related Work on Physical RC

Any system that offers rich dynamics and has the capability of non-linearly mapping the

inputs to a higher dimension can be utilized to realize RC. Reservoir computing has been

implemented using a variety of physical systems offering rich dynamics. These systems

include: neural network based systems [92, 95, 112], delayed dynamical systems [10, 55],

cellular automata [119], photonic systems [111, 110], spintronics based systems [108, 70] and

mechanical systems [109, 37]. A more detailed review of this is presented in [106]. The

concentration in this work is on building RC systems based on spiking recurrent neural

networks in the neuromemristive domain, which are suitable for VLSI implementation for

applications such as embedded systems [102].

A range of literature has presented purely CMOS based RC designs. In [118], an echo

state network was implemented on an FPGA and was thus digital CMOS based. In [78]

liquid state machines completely based on digital designs were presented and an architecture

for their implementation was proposed that was reconfigurable. In [121] a digital LSM with

bio-inspired learning in the readout layer was presented and a performance analysis was

presented on this for various design and operating conditions in [45]. A power optimized

digital system similar to the earlier one was presented in [113]. However, these systems

are all digital CMOS circuits based, which are area intensive. They typically need a lot

of silicon real estate owing to the bulky circuits they need such as registers and/or other

memory arrays.

Since memristor is a nanoscale device, memristive alternatives for reservoir computing

have been explored. One of the first works to dicuss the possibility of a memristive RC

system was [53]. In this work, a network of memristors was built to act as the reservoir. A

regular mesh configuration of memristors was proposed in [16] and was shown to be tolerant

to variations. RC was shown physically using memristor devices in [29]. All of the above

techniques had used some topology consisting of a network of memristors as the reservoir.

They did not explore memristive neural networks as the reservoir.

In [65], epiliptic seizure detection application was shown using ESN employing memristor

based neurmorphic circuits. A similar work was presented in [52], where two versions of it
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were considered: digital and mixed-signal. In [36] RC based on memristive crossbars was

proposed wherein two crossbars were used for weight implementation. One of the crossbars

here realizes the reservoir layer weights, whereas the other is for readout layer weights.

An RC based on ESN with ‘least mean square’ approach for learning in the readout was

presented in [114]. However, all of the so far mentioned works utilized ESNs for RC systems,

but not the bio-inspired (spiking neurons based) LSMs. In [101], a memristor based LSM

was presented. However, the implementation here was area intensive because it used ‘heavy’

circuits such as ADCs and DACs.

6.3 Memristor-Based RC

In this work, the focus is on building a simple memristive neuromorphic circuit based LSM

for RC realization. The reservoir layer here is built with spiking recurrent neural networks

and the readout layer comprises of a memristive crossbar layer where the synapse is the

bi-memristor synapse presented in Chapter 3. A striking feature of the work here is that the

weights in the reservoir layer are based on memristors being programmed to their extremes.

This implies that analog (intermediate) weights between extremes are not considered, thus

making the system simpler and more reliable. In the readout layer, which is the only place

where training takes place, it is based on the STDP scheme presented earlier. This scheme

is simpler to realize compared to the other complex approaches in the literature as explained

earlier. Additionally, this training in the readout layer is shown to be robust to device level

switching issues, owing to the robust circuits employed here.

6.3.1 Memristive Neuromorphic Circuits Based LSM

As explained earlier, the reservoir in this work is a memristor based spiking recurrent

neural network (SRNN). However, to determine the optimal SRNN network, several

hyperparameters of the network such the number of neuron and synapses and their

interconnections must be determined. To simplify the search process for the best parameters,

an evolutionary optimization (EO) based genetic algorithm has been employed here [86].

This EO algorithm works as follows: it initially generates a ‘population’ of networks based
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on some starting hyperparameters chosen by the user. Based on how good these generated

networks are in performing the given application, they are given a ‘fitness score’. A set of

crossovers and mutations are carried out on the best performing networks to generate the

next generation of networks and this process continues. The final goal of this algorithm is

to find a network topology that performs well as a reservoir on the given application.

This optimal SRNN produced by running the EO algorithm is used as reservoir and

provided with the inputs (u(t)) for the given application. The output spikes from the

reservoir constitute the inputs to the readout layer. These spikes lead to current flow in

the synapses of the readout crossbar and accumulation takes place in its output neurons. As

with the pattern recognition task in Chapter 5, learning here in the readout layer is through

supervised STDP approach and a WTA scheme is utilized during testing to calculate the

accuracy of classification.

6.3.2 Framework for Implementation of Memristor-based RC

In this subsection, a generic hardware framework for the implementation of the proposed

memristor based reservoir computing system is proposed. Using this framework, any given

network topology for the reservoir system may be implemented. The RC system as presented

in Fig. 6.1 can be divided into three parts: (1) Input layer, (2) Reservoir layer and (3)

Readout Layer. The hardware framework for each of these is discussed as follows.

Input Layer

The input layer design here is based on the input encoding scheme used. In this work, a

‘binning’ based encoding scheme has been used [94]. This input encoding works as follows:

in a given dataset, each data element has certain ‘attributes’ that represent it. Each of these

attributes has a certain range of values that it can assume. By choosing ‘n’ number of bins,

the range of values attainable by the attributes is partitioned into n divisions. A total of n

neurons are earmarked in the input layer for each input attribute. For a given input value

of an attribute, depending on the subdivision it falls into (in the range of possible values),

the corresponding input neuron (among the available n) is made to spike. Therefore, for a
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total of (say) m input attributes in a given dataset, if the number of bins is n, there must

be a total of m*n input neurons, with n neurons allocated per attribute. The block diagram

for the implementation of this input scheme is shown in Fig. 6.2.

Figure 6.2: The block diagram for a generic framework for input layer implementation.
Here, m is the number of input attributes in the dataset and n is the number of bins chosen.

As can be seen from Fig. 6.2, the input neurons are divided into groups of n neurons,

each of them allocated for one attribute of the input dataset. There are m copies of such

groups for m input attributes. It is here assumed that the inputs are available in a digital

encoded format (after processing by a digital computer). Each input data value is encoded

into a digital value (based on its value and the number of bins). This digital value is input
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to the decoders above. The decoder triggers the corresponding input neuron among the n

and hence results in an input spike.

Reservoir Layer

To implement the reservoir layer, a framework known as the memristive dynamic adaptive

neural network array (mrDANNA) [19] is proposed here, as shown in Fig. 6.3. This

architecture consists of mrDANNA cores, with each of them containing a neuron and several

synapses. These synapses may be programmed to a desired weight. By connecting several

cores together, connections can be established between neurons with user defined synaptic

weights at the input of each neuron. Thus, such connections between cores leads to the

realization of any given spiking neural network topology. This can help implement a given

reservoir configuration generated by algorithms such as EO.

Figure 6.3: The mrDANNA architecture suitable for implementing a given reservoir
network topology.
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Readout Layer

The readout layer is realized with the memristive crossbar based on STDP learning as

described in Chapter 5. This system receives inputs from the reservoir. Supervised STDP

based online learning has been used here in this readout layer. For testing purposes, the

WTA block acts as the arbiter to decide the ‘winner’ neuron. The readout layer is shown in

Fig. 6.4.

Figure 6.4: The memristive crossbar structure used here as the readout layer.

71



The Complete System

The complete system comprising of the above blocks is shown in Fig. 6.5. It may be noted

here that system is reconfigurable and is amenable for implementation of any given topology

of a reservoir computing system.

Figure 6.5: The block diagram of the complete reservoir computing system.

6.3.3 Simulation Results

For simulating the reservoir system, a high level simulation model for the network and the

system was developed using C++ and Python. ‘Wisconsin Breast Cancer (WBC)’ and ‘EEG’

datasets have been used here. The WBC dataset (from the UCI machine learning repository

[31]) comprises of 9 input attributes that describe various features of cell nuclei such as

radius, perimeter, area, etc. Fig. 6.6 illustrates this dataset where all the data is plotted on

the same figure. It may be noted from this figure that the data is not linearly classifiable

because the various data points for the two classes are entangled. This dataset was provided

to the software based model for the LSM proposed here and the training was performed on

the readout layer. The classification accuracy for this dataset as training progresses in the

readout layer is shown in Fig. 6.7. It may be noted that the RC system here attains an

accuracy of about 93.7%.
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Figure 6.6: The WBC dataset’s input attributes. It can be seen that the data is non-linearly
classifiable.

Similarly, the EEG dataset (which is time-series based) was also used with this setup.

This dataset consists of data representing activity in the brain, which can be used to identify

the health condition of the brain. This dataset comprises of data for healthy as well as an

epileptic brain. The RC system was used here to differentiate between these two classes of

input data. The results are shown in Fig. 6.8.

6.3.4 Effect of Device Switching Asymmetry

In the proposed RC system, learning only occurs in the readout layer. Hence, any device-level

switching issues are expected to adversely impact the recognition accuracy of this system.

This was studied for both the applications above and is shown in Fig. 6.9. It can be

seen that while switching time and threshold independently impact the learning here, their

combination has a significant impact. Here, switching rate mismatch of 50X and a threshold

mismatch of 0.2V is chosen, which is the mid-value of the range chosen for the analysis in

Fig. 5.12. Also, the techniques presented in Section 5.4.2 for switching asymmetry mitigation

were applied here and the results are shown in Fig. 6.10.
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Figure 6.7: The accuracy of classification attained for the WBC dataset as training
progresses in the readout layer.

Figure 6.8: The accuracy of classification attained for the EEG dataset as training
progresses in the readout layer.
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Figure 6.9: The impact of device switching speed and threshold asymmetry on the readout
layer learning for (a) WBC dataset (b) EEG dataset.
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Figure 6.10: The learning in the readout layer after the asymmetry rectification methods
were applied for (a) WBC dataset (b) EEG dataset.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

In conclusion, this work has addressed the hardware design of memristor based neuromorphic

systems with a focus on making them robust against any device level issues which are

prevalent among contemporary devices. This work has proposed device-aware circuit design

techniques to alleviate the adverse effects of these device level non-ideal behaviors. Through

meticulous design of synapse and neuron circuits, it was demonstrated that the detrimental

effects of device level issues can be mitigated. System level design was also shown with the

proposed circuits to demonstrate the robustness gained by the use of the proposed techniques.

The presented work can be summarized as follows:

• A bi-memristor synapse has been proposed which can implement both positive and

negative weights without any additional control circuitry local to the synapse. The

learning of the synapse is purely carried out due to the overlap of spikes at the either

end of the synapse.

• A neuron spike shape is designed which is discrete in time and voltage such that

the weight update magnitude can be carefully controlled with the spike shape. This

discretization of the spike in both ways allows us to control both of the factors that

contribute to the input voltage flux applied to the memristors.
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• The STDP character of the bi-memristor synapse is studied through simulations. The

effect of clock frequency used and device switching asymmetry on STDP behavior is

studied. It is shown that by the careful choice of clock frequency, the STDP weight

update magnitude can be adjusted and tuned and thereby the steepness of the STDP

behavior of the synapse may be controlled. Moreover, by changing the duty cycle of

the clock signals used, it is shown that the issue of switching speed asymmetry of the

memristor devices may be mitigated, which would have otherwise crippled the STDP

characteristic of the synapse.

• A mixed-mode neuron design is presented such that its accumulation rate can be tuned

on-chip. This neuron was designed so that it can be applied to work with a wide range

of memristor devices that have varying ranges for their LRS and HRS values. This

neuron will thus prevent (the otherwise needed) the requirement to custom design a

neuron to suite a specific memristor used.

• A crossbar system with a WTA scheme is presented for supervised STDP based

learning. The proposed synapse and neuron circuits are employed in the crossbar.

A detailed logic design scheme for the WTA was shown using the proposed digital

encoding based neurons. A pattern recognition application was performed using the

designed crossbar.

• To show the impact of device level issues at the system level, the pattern recognition

application on the crossbar system was simulated along with several memristor device

related issues. It is demonstrated that by virtue of using the proposed synapse and

neuron in the crossbar, the system level impact of device level issues can be mitigated.

• A memristive neuromorphic circuit based liquid state machine design is presented such

that the reservoir is generated using an evolutionary optimization based algorithm and

the readout layer is implemented by the earlier proposed crossbar system. By using

an EO based algorithm, the process of finding an optimized reservoir was streamlined

whereas the use of a memristive crossbar based readout layer leads to a hardware

efficient implementation of learning in this layer.
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• A generalized framework for the implementation of memristor spiking neural network

based reservoir computing was proposed. This layer uses binning based input

encoding scheme. A general mrDANNA architecture was proposed for the reservoir

implementation. This framework can help realize any given topology of a memristive

neural network based liquid state machine.

• The proposed reservoir system was modeled in a high level language and classification

applications were performed. The effect of memristor device switching issues on the

readout layer’s learning was analyzed at the application level. It is seen that they

impact learning in this layer (thus impacting the classification accuracy). It is also

shown that by virtue of adopting the proposed circuits and the crossbar design, this

impact can be mitigated.

7.2 Future Work

As an extension of the work presented here, the following research directions can be explored

for furthering this topic:

• Memristors often have limited resolution. This implies that they can only be

programmed to specifc number of discrete levels between their extreme values i.e.,

LRS and HRS. The crossbar based supervised learning system presented here can be

designed taking into consideration this fact. This can have a significant impact because

this will limit the resolution of the weights that are eventually learnt by the system.

• At the crossbar level implementation of pattern recognition systems, hardware effects

such as those due the parasitic resistance and capacitance of the column (interconnect)

can have a detrimental effect on their learning and operation. Hence, such system level

circuit integrity issues can be modeled and analyzed in combination with the circuits

presented in this work.

• The technique used and the circuits developed in the presented crossbar was for

supervised learning. This work can be extended to design an unsupervised learning
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system. Such systems are popular and typically employ much higher number of

columns to achieve a good accuracy. Hence, designing efficient and robust circuits

for such applications is crucial and the techniques presented here can help achieve

good robustness for such bigger systems.

• Although a single layer crossbar based pattern recognition application has been

considered here, the proposed circuit techniques may be extended and applied for

multi-layer neural network realizations.
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Neuromorphic silicon neuron circuits. Frontiers in neuroscience, 5:73. 14

[43] Jeong, D. S., Kim, K. M., Kim, S., Choi, B. J., and Hwang, C. S. (2016). Memristors for

energy-efficient new computing paradigms. Advanced Electronic Materials, 2(9):1600090.

1

[44] Jiang, L., Lv, F.-C., Yang, R., Hu, D.-C., and Guo, X. (2018). Forming-free artificial

synapses with ag point contacts at interface. Journal of Materiomics. 28

86



[45] Jin, Y. and Li, P. (2017). Performance and robustness of bio-inspired digital liquid state

machines: A case study of speech recognition. Neurocomputing, 226:145–160. 66

[46] Jo, S. H., Chang, T., Ebong, I., Bhadviya, B. B., Mazumder, P., and Lu, W. (2010).

Nanoscale memristor device as synapse in neuromorphic systems. Nano letters, 10(4):1297–

1301. 2, 9, 12

[47] Kaneko, Y., Nishitani, Y., Ueda, M., and Tsujimura, A. (2013). Neural network based

on a three-terminal ferroelectric memristor to enable on-chip pattern recognition. In 2013

Symposium on VLSI Technology, pages T238–T239. IEEE. 9

[48] Kim, H., Sah, M. P., Yang, C., Roska, T., and Chua, L. O. (2012). Neural synaptic

weighting with a pulse-based memristor circuit. IEEE Transactions on Circuits and

Systems I: Regular Papers, 59(1):148–158. 12

[49] Kim, S., Choi, S., Lee, J., and Lu, W. D. (2014). Tuning resistive switching

characteristics of tantalum oxide memristors through si doping. ACS nano, 8(10):10262–

10269. 9

[50] Kim, S., Kim, H., Hwang, S., Kim, M.-H., Chang, Y.-F., and Park, B.-G. (2017). Analog

synaptic behavior of a silicon nitride memristor. ACS applied materials & interfaces,

9(46):40420–40427. 9

[51] Kim, S., Lim, M., Kim, Y., Kim, H.-D., and Choi, S.-J. (2018). Impact of synaptic

device variations on pattern recognition accuracy in a hardware neural network. Scientific

reports, 8(1):2638. 12

[52] Kudithipudi, D., Saleh, Q., Merkel, C., Thesing, J., and Wysocki, B. (2016). Design and

analysis of a neuromemristive reservoir computing architecture for biosignal processing.

Frontiers in neuroscience, 9:502. 66

[53] Kulkarni, M. S. and Teuscher, C. (2012). Memristor-based reservoir computing. In 2012

IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH), pages

226–232. IEEE. 66

87
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J. A., Zamarreño-Ramos, C., and Masquelier, T. (2011). On spike-timing-dependent-

plasticity, memristive devices, and building a self-learning visual cortex. Frontiers in

neuroscience, 5:26. 2, 14

[61] Lu, K., Li, Y., He, W.-F., Chen, J., Zhou, Y.-X., Duan, N., Jin, M.-M., Gu, W.,

Xue, K.-H., Sun, H.-J., et al. (2018). Diverse spike-timing-dependent plasticity based on

multilevel hfo x memristor for neuromorphic computing. Applied Physics A, 124(6):438.

28

[62] Manem, H., Rose, G. S., He, X., and Wang, W. (2010). Design considerations for

variation tolerant multilevel cmos/nano memristor memory. In Proceedings of the 20th

symposium on Great lakes symposium on VLSI, pages 287–292. 63

88



[63] Maymandi-Nejad, M. and Sachdev, M. (2003). A digitally programmable delay element:

design and analysis. IEEE transactions on very large scale integration (VLSI) systems,

11(5):871–878. 25

[64] Medeiros-Ribeiro, G., Perner, F., Carter, R., Abdalla, H., Pickett, M. D., and Williams,

R. S. (2011). Lognormal switching times for titanium dioxide bipolar memristors: origin

and resolution. Nanotechnology, 22(9):095702. 9

[65] Merkel, C., Saleh, Q., Donahue, C., and Kudithipudi, D. (2014). Memristive reservoir

computing architecture for epileptic seizure detection. Procedia Computer Science, 41:249–

254. 66

[66] Moradi, S. and Indiveri, G. (2014). An event-based neural network architecture with an

asynchronous programmable synaptic memory. IEEE transactions on biomedical circuits

and systems, 8(1):98–107. 2

[67] Morishita, T., Tamura, Y., Otsuki, T., and KANO, G. (1992). A bicmos analog

neural network with dynamically updated weights. IEICE Transactions on Electronics,

75(3):297–302. 2

[68] Najem, J. S., Taylor, G. J., Armendarez, N., Weiss, R. J., Hasan, M. S., Rose, G. S.,

Schuman, C. D., Belianinov, A., Sarles, S. A., and Collier, C. P. (2019). Assembly

and characterization of biomolecular memristors consisting of ion channel-doped lipid

membranes. JoVE (Journal of Visualized Experiments), (145):e58998. 9

[69] Najem, J. S., Taylor, G. J., Weiss, R. J., Hasan, M. S., Rose, G., Schuman, C. D.,

Belianinov, A., Collier, C. P., and Sarles, S. A. (2018). Memristive ion channel-doped

biomembranes as synaptic mimics. ACS nano, 12(5):4702–4711. 9

[70] Nakane, R., Tanaka, G., and Hirose, A. (2018). Reservoir computing with spin waves

excited in a garnet film. IEEE Access, 6:4462–4469. 66

[71] Nishitani, Y., Kaneko, Y., and Ueda, M. (2015). Supervised learning using spike-timing-

dependent plasticity of memristive synapses. IEEE transactions on neural networks and

learning systems, 26(12):2999–3008. 2

89



[72] Oblea, A. S., Timilsina, A., Moore, D., and Campbell, K. A. (2010). Silver chalcogenide

based memristor devices. In Neural Networks (IJCNN), The 2010 International Joint

Conference on, pages 1–3. IEEE. 9

[73] Panchula, A. (2007). Oscillating-field assisted spin torque switching of a magnetic tunnel

junction memory element. US Patent 7,224,601. 9

[74] Park, S., Chu, M., Kim, J., Noh, J., Jeon, M., Lee, B. H., Hwang, H., Lee, B., and

Lee, B.-g. (2015). Electronic system with memristive synapses for pattern recognition.

Scientific reports, 5:10123. 2

[75] Payvand, M., Rofeh, J., Sodhi, A., and Theogarajan, L. (2014). A cmos-memristive self-

learning neural network for pattern classification applications. In Proceedings of the 2014

IEEE/ACM International Symposium on Nanoscale Architectures, pages 92–97. ACM. 2,

12

[76] Pedretti, G., Milo, V., Ambrogio, S., Carboni, R., Bianchi, S., Calderoni, A.,

Ramaswamy, N., Spinelli, A., and Ielmini, D. (2017). Memristive neural network for on-

line learning and tracking with brain-inspired spike timing dependent plasticity. Scientific

reports, 7(1):5288. 1, 2, 12

[77] Pi, S., Li, C., Jiang, H., Xia, W., Xin, H., Yang, J. J., and Xia, Q. (2019). Memristor

crossbar arrays with 6-nm half-pitch and 2-nm critical dimension. Nature nanotechnology,

14(1):35–39. 9

[78] Polepalli, A., Soures, N., and Kudithipudi, D. (2016). Reconfigurable digital design of a

liquid state machine for spatio-temporal data. In Proceedings of the 3rd ACM International

Conference on Nanoscale Computing and Communication, page 15. ACM. 66

[79] Pouyan, P., Amat, E., and Rubio, A. (2015). Statistical lifetime analysis of memristive

crossbar matrix. In 2015 10th International Conference on Design & Technology of

Integrated Systems in Nanoscale Era (DTIS), pages 1–6. IEEE. 59

90



[80] Prezioso, M., Bayat, F. M., Hoskins, B., Likharev, K., and Strukov, D. (2016). Self-

adaptive spike-time-dependent plasticity of metal-oxide memristors. Scientific reports,

6(1):1–6. 9

[81] Prezioso, M., Merrikh-Bayat, F., Hoskins, B., Adam, G. C., Likharev, K. K., and

Strukov, D. B. (2015). Training and operation of an integrated neuromorphic network

based on metal-oxide memristors. Nature, 521(7550):61. 2

[82] Querlioz, D., Zhao, W., Dollfus, P., Klein, J.-O., Bichler, O., and Gamrat, C. (2012).

Bioinspired networks with nanoscale memristive devices that combine the unsupervised

and supervised learning approaches. In 2012 IEEE/ACM International Symposium on

Nanoscale Architectures (NANOARCH), pages 203–210. IEEE. 2

[83] Radoi, A., Dragoman, M., and Dragoman, D. (2011). Memristor device based on carbon

nanotubes decorated with gold nanoislands. Applied Physics Letters, 99(9):093102. 9

[84] Rahaman, S. Z., Lin, Y.-D., Lee, H.-Y., Chen, Y.-S., Chen, P.-S., Chen, W.-S., Hsu, C.-

H., Tsai, K.-H., Tsai, M.-J., and Wang, P.-H. (2017). The role of ti buffer layer thickness

on the resistive switching properties of hafnium oxide-based resistive switching memories.

Langmuir, 33(19):4654–4665. 9

[85] Ramakrishnan, S., Hasler, P. E., and Gordon, C. (2011). Floating gate synapses with

spike-time-dependent plasticity. IEEE Transactions on Biomedical Circuits and Systems,

5(3):244–252. 2

[86] Reynolds, J. J. M., Plank, J. S., and Schuman, C. D. (2019). Intelligent reservoir

generation for liquid state machines using evolutionary optimization. In IJCNN: The

International Joint Conference on Neural Networks, Budapest. 67

[87] Saxena, V., Wu, X., Srivastava, I., and Zhu, K. (2018). Towards neuromorphic learning

machines using emerging memory devices with brain-like energy efficiency. Journal of Low

Power Electronics and Applications, 8(4):34. 13, 50, 60

91



[88] Sayyaparaju, S., Adnan, M. M., Amer, S., and Rose, G. S. (2020). Device-aware

circuit design for robust memristive neuromorphic systems with stdp-based learning. ACM

Journal on Emerging Technologies in Computing Systems (JETC), 16(3):1–25. 15

[89] Sayyaparaju, S., Amer, S., and Rose, G. S. (2018a). A bi-memristor synapse with spike-

timing-dependent plasticity for on-chip learning in memristive neuromorphic systems. In

2018 19th International Symposium on Quality Electronic Design (ISQED), pages 69–74.

IEEE. 15

[90] Sayyaparaju, S., Chakma, G., Amer, S., and Rose, G. S. (2017). Circuit techniques

for online learning of memristive synapses in cmos-memristor neuromorphic systems. In

Proceedings of the on Great Lakes Symposium on VLSI 2017, pages 479–482. 13

[91] Sayyaparaju, S., Weiss, R., and Rose, G. S. (2018b). A mixed-mode neuron with on-chip

tunability for generic use in memristive neuromorphic systems. In 2018 IEEE Computer

Society Annual Symposium on VLSI (ISVLSI), pages 441–446. IEEE. 35, 61, 103

[92] Schrauwen, B., D’Haene, M., Verstraeten, D., and Van Campenhout, J. (2008).

Compact hardware liquid state machines on fpga for real-time speech recognition. Neural

networks, 21(2-3):511–523. 66

[93] Schrauwen, B., Verstraeten, D., and Van Campenhout, J. (2007). An overview of

reservoir computing: theory, applications and implementations. In Proceedings of the

15th european symposium on artificial neural networks. p. 471-482 2007, pages 471–482.

64

[94] Schuman, C. D., Plank, J. S., Bruer, G., and Anantharaj, J. (2019). Non-traditional

input encoding schemes for spiking neuromorphic systems. In 2019 International Joint

Conference on Neural Networks (IJCNN), pages 1–10. IEEE. 68
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A Testing Methodology for the Test Structures

Several test structures for the mixed-mode neuron were presented in Section 4.3. In this

section, further details of the test structures are presented along with their connections to

the probe pads, pin-outs and the recommended testing strategies for each of these structures.

In the following sub-sections, for each of the four test structures, a pin out diagram is first

shown. Then, the types and purpose of each pin is delineated in a table. Later, a preferred

testing strategy for them is presented in a separate table. Lastly, test results are shown

where available and simulations are shown for the rest of them.

A.1 Test Setup

A probe station has been used here for probing (contacting) the probe pads to which the

test structures are connected. Fig. 1 shows the microscopic view of contacting and probing

these test structures. The layout of the chip containing the test structures is shown in Fig.

2. Looking at the chip with this view, the test structures are arranged in a grid fashion at

the top right corner. In the subsequent sections, the location of a particular test structure

on this chip is indicated using its row and column position, with the top row being the first

one and the column to the left being the first column.

Figure 1: The view through the microscope during probing of the test structures.
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Figure 2: The layout of the chip and the naming convention used here for rows and columns
of the grid for locating test structures.
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A.2 Analog Block Test Structure

The pin out for this test structure when the circuit is connected to the probe pads is shown

in Fig. 3. It may be noted that here, a 12x2 probe pad has been used and the pads

corresponding to pins for the circuit have been labeled in this figure. Pads that have been

left unnamed are floating and do not have any connection. This test structure is located at

column 1 and rows 5,6.

Figure 3: Pin out for the analog block test structure connected to the probe pads.

Table 1 shows the details of the pins for this test structure. It explains the type

(analog/digital) and direction (input/output) for each pin and also explains the purpose

and uses of them. It may be noted that the numbering of pads here is such that the VDD

pad in Fig. 3 is 1 and the numbers increase to the left and wrap around such that the pad

VSS is 24. Also, in this table, blank columns denote the floating probe pads.

In Table 2, the plan for the test of this structure is described. It may be seen here that

the threshold voltages Vbias1-3 are the key to observe ‘tuning’ of encoding by this analog

block. By changing these reference voltages inputs, the number of total discharged nodes

in this block is varied and hence the encoded bit value will change. The threshold voltages

Vbias1-3 p have an influence when there is a negative input synaptic weight, which is not

the case here. Hence, it is suggested to bias them all with 0V (VSS) for simplicity.
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Table 1: The pin description for the analog block test structure.

Pad Number Pin Name Pin type Pin Description
1 VDD Digital Input Power Rail
2 — — —
3 — — —
4 B0 Digital Output LSB of encoded bit
5 VSS 0.2 Analog DC Input Power rail for synapse input
6 VDD 0.2 Analog DC Input Power rail for synapse input
7 Vbias3 Analog DC Input Reference Voltage
8 Sign Digital Output Sign bit of endoded value
9 Vbias1 Analog DC Input Reference Voltage
10 Vbias2 p Analog DC Input Reference Voltage
11 — — —
12 — — —
13 — — —
14 — — —
15 Vbias1 p Analog DC Input Reference Volatge
16 Vbias3 p Analog DC Input Reference Voltage
17 B1 Digital Output MSB of the encoded value
18 Vbias2 Analog DC Input Reference Voltage
19 Fpre Digital Input Input Control
20 GND Analog DC Input Mid-Rail Voltage
21 CLK Digital Pulse Clock Signal
22 — — —
23 — — —
24 VSS Digital Input Power Rail
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Table 2: The suggested test plan for the analog block test structure.

Pad Number Pin Name Pin Bias
1 VDD 1.2V
2 — —
3 — —
4 B0 Output
5 VSS 0.2 0V
6 VDD 0.2 1.2V
7 Vbias3 Apply either VDD or VSS
8 Sign Output
9 Vbias1 Apply either VDD or VSS
10 Vbias2 p 0V
11 — —
12 — —
13 — —
14 — —
15 Vbias1 p 0V
16 Vbias3 p 0V
17 B1 Output
18 Vbias2 Apply either VDD or VSS
19 Fpre 1.2V
20 GND 0.6V
21 CLK Clock of any frequency with quick edges
22 — —
23 — —
24 VSS 0V
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Testing Results for the analog block test structure

The tests for this analog block test structure were performed using the fabricated chip.

The chip was put in a probe station and was probed. The necessary voltage biases were

applied to the test structure’s inputs and the outputs were recorded on an oscilloscope. The

following figures show the outputs observed for each test condition. In each such condition,

the input synaptic weight is fixed in the design by the resistive synapse. The reference

voltages are changed such that number of fully discharged evaluation nodes changes. Since

these evaluation nodes are discharged by an NMOS device, whose source terminal is driven

by the reference voltages, applying a high voltage reduces the likeliness of it switching ON.

This implies that by applying high voltage such as VDD does not switching ON this device

and hence the corresponding evaluation node will not be discharged. Whereas applying a

low voltage at the source such as VSS will switch it ON leading to the discharge of the

evaluation node. Hence, by changing the combination of the three reference voltages of this

circuit, the number of fully discharged evaluation nodes is controlled and hence the ‘tuning’

of the encoded value is achieved and demonstrated here. Note that in this case as more

evaluation nodes discharge, a higher value for the encoded value is obtained, which is in

contrast to the design described in Chapter 4. This is because of the fundamental difference

in the current to voltage transformation techniques adopted in the design presented therein

versus the one used in this circuit on the chip as described in [91]. However, there is a

conceptual similarity in the way encoding is performed and its tunability and hence these

test results serve as a good proof of concept for the proposed design.
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Figure 4: Encoded value of 000 for Vbias1-3 = 1.2V. None of the nodes discharge.

Figure 5: Encoded value of 001 for Vbias1 = 0V and Vbias2-3=1.2V. One of the nodes
discharges.

104



Figure 6: Encoded value of 010 for Vbias1-2 = 0V and Vbias3=1.2V. Two of the nodes
discharge.

Figure 7: Encoded value of 011 for Vbias1-3 = 0V. All of the nodes discharge.
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A.3 Mixed-Mode Neuron Test Structure with Single Resistive

Synapse

The pin out for this test structure is shown in Fig. 8. The description of these pins is

given by Table 3 and the test plan for this test structure is given by Table 4. This test

structure is located at column 2 and rows 5,6. It may be noted that for this test structure,

the output will be the neuron’s spike (Fre). Also, the digital accumulation in the neuron

(D2-D0) was taken-out on output pins. Fig. 9 shows a test result for this test structure.

In this case, the reference voltages applied are Vbias1=0V and Vbias2-3=1.2V, thus leading

to an accumulation of ‘001’ per each clock cycle. This leads to the neuron accumulating

this value until it reaches the threshold. This can be seen in the waveforms for D1 and D0,

which are the magnitude bits. Their values cycle between 00, 01 and 10. Upon reaching

11, they reach the maximum accumulation (which is also the threshold applied here) and

hence at that clock cycle, a spike condition is TRUE and therefore D1 and D0 are RESET

to 00 again. It may be noted that D2 always stays at 0 because it is the sign bit and since

the input is positive weight, it is always 0. For further testing of this circuit, the reference

voltages combination was changed to Vbias1-2=0V and Vbias3=1.2V, thus leading to an

accumulation of ‘010’. This can be seen in Fig. 10 wherein D1 and D0 cycle between 00 and

10 because 10+10 would lead to an overflow (spike) condition and hence their values cycle

between 00 (RESET) and 10 (accumulation). These results indicate that the accumulation

in the neuron (including the digital part of it) is working good and as expected.

Figure 8: Pin out for the mixed-mode neuron test structure with one resistive synapse,
connected to the probe pads.
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Table 3: The pin description for the mixed-mode neuron test structure with one resistive
synapse.

Pad Number Pin Name Pin type Pin Description
1 VDD Digital Input Power Rail
2 — — —
3 Th1 Digital Input Digital Threshold Bit
4 VDD 0.2 Analog DC Input Power rail for synapse input
5 Fire Digital Output Delayed Neuron Spike
6 Fre Digital Output Neuron Spike
7 CLK Digital Pulse Clock Signal
8 D2 Digital Output Sign bit of accumulation
9 D1 Digital Output MSB of accumulation
10 Vbias2 Analog DC Input Reference Voltage
11 Vbias3 p Analog DC Input Reference Voltage
12 — — —
13 Vbias1 p Analog DC Input Reference Volatge
14 Vbias2 p Analog DC Input Reference Volatge
15 Vbias1 Analog DC Input Reference Volatge
16 Vbias3 Analog DC Input Reference Voltage
17 D0 Digital Output LSB of accumulation
18 vmem reset Digital Pulse Registers’ RESET
19 Fpre Digital Input Input Control
20 GND Analog DC Input Mid-Rail Voltage
21 VSS 0.2 Analog DC Input Power rail for synapse input
22 Th2 Digital Input Digital Threshold Bit
23 Th0 Digital Input Digital Threshold Bit
24 VSS Digital Input Power Rail
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Table 4: The suggested test plan for the mixed-mode neuron test structure with one resistive
synapse.

Pad Number Pin Name Pin Bias
1 VDD 1.2V
2 — —
3 Th1 1.2V
4 VDD 0.2 1.2V
5 Fire Output
6 Fre Output
7 CLK Clock of any frequency with quick edges
8 D2 Output
9 D1 Output
10 Vbias2 apply either VDD or VSS
11 Vbias3 p 0V
12 — —
13 Vbias1 p 0V
14 Vbias2 p 0V
15 Vbias1 apply either VDD or VSS
16 Vbias3 apply either VDD or VSS
17 D0 Output
18 vmem reset Apply a one time RESET pulse at startup
19 Fpre Digital Pulse (half frequency of CLK)
20 GND 0.6V
21 VSS 0.2 0V
22 Th2 0V
23 Th0 1.2V
24 VSS 0V
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Figure 9: Test result for the neuron test structure with one resistive synapse. The reference
voltages used are Vbias1=0V and Vbias2-3=1.2V. Hence, D1 and D0 bits cycle between 00,
01 and 10 values. 11 is not seen because it is the maximum accumulation, where a spike is
supposed to occur and hence D1 and D0 are RESET to 0. Note that D2 is always 0 because
it is the sign bit here.

Figure 10: Test result for the neuron test structure with one resistive synapse, where the
reference voltages used are Vbias1-2=0V and Vbias3=1.2V. Here, an accumulation of ‘10’
can be observed and hence the D1-D0 outputs cycle between 00 and 10. Note that D2 is
always 0 because it is the sign bit here.
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It may be noted from the above test results (Fig. 9 and Fig. 10) that although the internal

digital accumulation in the neuron was working correctly and as expected, the neuron spike

output ‘Fre’ was not seen as expected. The possible reason here is a timing violation at the

input of the D-flip flop controlling this signal. Inside the digital half of the neuron, when the

spike condition is TRUE, the spike trigger signal is input to a D-flip flop such that its output

is the output spike (‘Fre’) and would hold for an entire clock period. However, due to the

slow clock rise and fall times experienced in the test setup used here (as seen in Fig. 11), the

flip flop is unable to capture its input. Fig. 12 shows the simulation for this flip flop for the

condition when the clock transition periods are slow (≥1ns). It may be seen here that there

is a clear timing violation (D-input transition occurring ahead of clock transition). Fig. 13

shows that this can be mitigated by using a test setup with a faster clock transition (≤1ns).

Figure 11: Zoomed-in screenshot from the oscilloscope showing the rise time of the clock
signal being ≈ 10ns.
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Figure 12: Simulation showing the input to the D-flip flop controlling the ‘Fre’ (spike)
output of the neuron. It may be seen that due to the slow rise time (≥1ns) of the clock
signal to the D-flip flop, there is a hold time violation at its input.

Figure 13: Simulation showing the input to the D-flip flop for the case of having a faster
clock input rise/fall time. In this case a sub nanosecond (0.1ns) rise/fall was used and it
may be seen that the hold time for the flip flop is satisfied here.
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A.4 Mixed-Mode Neuron Test Structure with two Resistive Input

Synapses

The pin out for this test structure is shown in Fig. 14. The description of these pins is given

by Table 5 and the test plan for this test structure is given by Table 6. This test structure is

located at column 3 and rows 5,6. As with the earlier test structure, the output here will be

in terms of the neuron’s spike (Fre). Also, the digital accumulation in the neuron (D2-D0)

was taken-out in this test structure also, like earlier, on output pins so that it may also be

monitored. Fig. 15 shows a test result for this test structure. In this case, the reference

voltages applied are Vbias1-2=0V and Vbias3=1.2V, thus leading to an accumulation of ‘010’

per each clock cycle. This can be seen in Fig. 15 where the signals D1-D0 cycle between

the values 00 and 10. D2 was always 0 because the input synaptic weight is designed to be

a fixed positive weight. As with the earlier test structure, the spike output ‘Fre’ here is not

seen here possibly due to the same timing issue as explained earlier. This is expected to be

rectified provided a clock with faster transition times is used.

Figure 14: Pin out for the mixed-mode neuron test structure with two resistive synapses,
connected to the probe pads.
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Table 5: The pin description for the mixed-mode neuron test structure with two resistive
synapses.

Pad Number Pin Name Pin type Pin Description
1 VDD Digital Input Power Rail
2 Fpre0 Digital Input Input Control
3 Th1 Digital Input Digital Threshold Bit
4 VDD 0.2 Analog DC Input Power rail for synapse input
5 Fire Digital Output Delayed Neuron Spike
6 Fre Digital Output Neuron Spike
7 CLK Digital Pulse Clock Signal
8 D2 Digital Output Sign bit of accumulation
9 D1 Digital Output MSB of accumulation
10 Vbias2 Analog DC Input Reference Voltage
11 Vbias3 p Analog DC Input Reference Voltage
12 — — —
13 Vbias1 p Analog DC Input Reference Volatge
14 Vbias2 p Analog DC Input Reference Volatge
15 Vbias1 Analog DC Input Reference Volatge
16 Vbias3 Analog DC Input Reference Voltage
17 D0 Digital Output LSB of accumulation
18 vmem reset Digital Pulse Registers’ RESET
19 Fpre1 Digital Input Input Control
20 GND Analog DC Input Mid-Rail Voltage
21 VSS 0.2 Analog DC Input Power rail for synapse input
22 Th0 Digital Input Digital Threshold Bit
23 Th2 Digital Input Digital Threshold Bit
24 VSS Digital Input Power Rail
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Table 6: The suggested test plan for the mixed-mode neuron test structure with two resistive
synapses.

Pad Number Pin Name Pin Bias
1 VDD 1.2V
2 Fpre0 Digital Pulse (half frequency of CLK)
3 Th1 1.2V
4 VDD 0.2 1.2V
5 Fire Output
6 Fre Output
7 CLK Clock of any frequency with quick edges
8 D2 Output
9 D1 Output
10 Vbias2 apply either a VDD or VSS
11 Vbias3 p 0V
12 — —
13 Vbias1 p 0V
14 Vbias2 p 0V
15 Vbias1 apply either a VDD or VSS
16 Vbias3 apply either a VDD or VSS
17 D0 Output
18 vmem reset Apply a one time RESET pulse at startup
19 Fpre1 Digital Pulse (half frequency of CLK)
20 GND 0.6V
21 VSS 0.2 0V
22 Th0 1.2V
23 Th2 0V
24 VSS 0V
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Figure 15: Test result for the neuron test structure with two resistive synapses, where the
reference voltages used are Vbias1-2=0V and Vbias3=1.2V. Here, an accumulation of ‘10’
can be observed and hence the D1-D0 outputs cycle between 00 and 10. Note that D2 is
always 0 because it is the sign bit here.
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A.5 Mixed-Mode Neuron Test Structure with a Memristor Based

Synapse

In this test structure, memristors are used to build the synapse instead of resistors. Hence,

they need to be first formed and programmed to a desired synaptic weight before the testing

with the neuron can be performed. The pin out for this test structure is shown in Fig. 16.

The description of these pins is given by Table 7 and the test plan for this test structure

is given by Table 8. This test structure is located at column 4 and rows 5,6. It may be

noted that for this test structure, the output will be in terms of the neuron’s spike (Fre).

Fig. 18 shows the simulation result for the forming and programming of the memristors

in the synapse. Both of the memristors are first ‘formed’ from their initial state. Later,

both of them are programmed to their HRS state. Then, Mp is programmed back to LRS,

whereas Mn stays at HRS, thus implementing a positive synaptic weight. Fig. 17 shows

the simulation result for the neuron that is driven by this memristive synapse. In this

case, the reference voltages applied are Vbias1=0V and Vbias2-3=1.2V, thus leading to an

accumulation of ‘001’ per each Fpre cycle. Note that here the result is similar to that of the

resistive synapse case of Fig. 9. This demonstrates the operation of the memristive synapse

with the neuron circuit. Further testing may be performed on this test structure by changing

the reference voltages of the neuron and/or the memristive synaptic weight.

Figure 16: Pin out for the mixed-mode neuron test structure with memristor based synapse,
connected to the probe pads.
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Table 7: The pin description for the mixed-mode neuron test structure with memristor
based synapse.

Pad Number Pin Name Pin type Pin Description
1 VDD Digital Input Power Rail
2 Vformn Digital Input Forming Pin for Mn (3.3V)
3 Vprog Digital Input Programming Pin (3.3V)
4 VDD 0.2 Analog DC Input Power rail for synapse input
5 Fire Digital Output Delayed Neuron Spike
6 Fre Digital Output Neuron Spike
7 CLK Digital Pulse Clock Signal
8 vpin Digital Input Supply Rail - 1.2V
9 GND Analog DC Input Mid-Rail Voltage
10 Vbias2 Analog DC Input Reference Voltage
11 Vbias3 p Analog DC Input Reference Voltage
12 Vbias1 p Analog DC Input Reference Voltage
13 vmem reset Digital Pulse Registers’ RESET
14 Vbias2 p Analog DC Input Reference Voltage
15 Vbias1 Analog DC Input Reference Voltage
16 Vbias3 Analog DC Input Reference Voltage
17 VDDH Digital Input Supply Rail - 3.3V
18 Th1 Digital Input Digital Threshold Bit
19 Fpre Digital Input Input Control
20 Th2 Digital Input Digital Threshold Bit
21 VSS 0.2 Analog DC Input Power rail for synapse input
22 Vformp Digital Input Forming Pin for Mp (3.3V)
23 Th0 Digital Input Digital Threshold Bit
24 VSS Digital Input Power Rail
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Table 8: The suggested test plan for the mixed-mode neuron test structure with memristor
based synapse.

Pad Number Pin Name Pin Bias
1 VDD 1.2V
2 Vformn 3.3V when forming/programming to LRS
3 Vprog 3.3V when programming to HRS (along with Vform)
4 VDD 0.2 1.2V
5 Fire Output
6 Fre Output
7 CLK Clock of any frequency with quick edges
8 vpin 1.2V
9 GND 0.6V
10 Vbias2 apply either VDD or VSS
11 Vbias3 p 0V
12 Vbias1 p 0V
13 vmem reset Apply a one time RESET pulse at startup
14 Vbias2 p 0V
15 Vbias1 apply either VDD or VSS
16 Vbias3 apply either VDD or VSS
17 VDDH 3.3V
18 Th1 1.2V
19 Fpre Digital Pulse (half frequency of CLK)
20 Th2 0V
21 VSS 0.2 0V
22 Vformp 3.3V when forming/programming to LRS
23 Th0 1.2V
24 VSS 0V
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Figure 17: Simulation result showing the ‘forming’ step for the memristors from their initial
state, followed by their programming steps.

Figure 18: Simulation result showing the accumulation and spiking in the neuron connected
to the memristive synapse.

119



B Python Code for Memristive Crossbar Based Pat-

tern Recognition Application

In this section, the Python code for modeling the memristor based crossbar (discussed in

Chapter 5) is presented. This code first instantiates a crossbar as an array of memristors

(in this case a twin array because at each crosspoint there are two memristors). Later, the

learning algorithm for the crosspoint synapses, followed by testing (for accuracy) is written.

While the training runs, testing is interlaced with it and the accuracy is plotted as the epochs

progress. Lastly, the learnt synaptic weights in the crossbar are also plotted. Comments in

the code provide further explanation for the functioning of the corresponding part of the

code. The code is as follows:

#Import nece s sa ry packages

import x l rd

import numpy as np

import matp lo t l i b . pyplot as p l t

#Memristor dev i c e parameters

HRS = 12000

LRS = 2500

Vtp = 0 .6

Vtn = −0.6

tsw p = 1e−6

tsw n = 1e−6

theta HRS = 0.85

beta HRS = 0.07

theta LRS = 1.6

beta LRS =0.07

CLRS = 1

120



CHRS = 1

P LRS = 2

P HRS = 2

#Array o f c l o ck pe r i od s .

d e l t a r r = [200 e−09, 40e−09, 20e−09, 13 .33 e−09, 10e−09, 5e−09]

#Var iab l e s used in memristor sw i t ch ing model

#I n i t i a l dev i c e r e s i s t a n c e

Rin i t = HRS

Rm = Rin i t

Rm tmp = 0

#Net p o s i t i v e v o l t a g e s p o s s i b l e a c r o s s synapse during STDP

vp1=1.0

vp2=0.9

vp3=0.8

vp4=0.7

#Net negat ive v o l t a g e s p o s s i b l e a c r o s s synapse during STDP

vn1=−1.0

vn2=−0.9

vn3=−0.8

vn4=−0.7

#Paramter needed f o r Memristor Switching Model

delR = HRS−LRS

#Memristor Switching Model

de f memr update (Rm, v , d e l t ) :
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i f ( v >= Vtp and Rm != LRS) :

Rm tmp = Rm−d e l t ∗CLRS∗( delR/ tsw p ) ∗ ( ( ( v−Vtp) /Vtp) ∗∗P LRS)

/(1+np . exp ( ( theta LRS∗LRS−Rm) /( delR ) /beta LRS ) )

i f (Rm tmp <= LRS) :

Rm tmp = LRS

e l i f ( v <= Vtn and Rm != HRS) :

Rm tmp = Rm + d e l t ∗CHRS∗( delR/ tsw n ) ∗ ( ( ( v−Vtn) /Vtn) ∗∗P HRS

) /(1+np . exp ( (Rm−theta HRS∗HRS) /( delR ) /beta HRS ) )

i f (Rm tmp >= HRS) :

Rm tmp = HRS

e l s e :

Rm tmp = Rm

Rm = Rm tmp

return Rm;

#‘ Tuning ’ parameter o f neuron . Value chosen based on range o f

cu r r en t s seen at neuron inputs . Can change t h i s to ad jus t

encoding ra t e / property

imax=6.2e−03

#Neuron model . This i s i n l i n e with the concept o f ‘ encoding ’ input

cur r ent in to d i g i t a l va lue s

de f d i g i n e u ( i t o t ,vmem) :

i f ( i t o t >0 and i t o t <0.60∗ imax ) :

vmem = 0

i f ( i t o t >=0.60∗ imax and i t o t <0.65∗ imax ) :

vmem = 1

i f ( i t o t >=0.65∗ imax and i t o t <0.70∗ imax ) :

vmem = 2
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i f ( i t o t >=0.70∗ imax and i t o t <0.75∗ imax ) :

vmem=3

i f ( i t o t >= 0.75∗ imax and i t o t <0.80∗ imax ) :

vmem = 4

i f ( i t o t >= 0.80∗ imax and i t o t <0.85∗ imax ) :

vmem = 5

i f ( i t o t >=0.85∗ imax and i t o t <0.90∗ imax ) :

vmem = 6

i f ( i t o t >=0.90∗ imax ) :

vmem = 7

i f ( i t o t <= 0) :

vmem = −1

re turn vmem;

#I n i t i a l i z i n g c ro s sba r array with i n i t i a l va lue s f o r Mp and Mn

mp arr = [ [ Rinit , Rinit , Rinit , Rinit , Rinit , Rinit , Rinit , Rinit , Rinit ,

R in i t ] ]

f o r a in range (63) :

mp arr . append ( [ Rinit , Rinit , Rinit , Rinit , Rinit , Rinit , Rinit , Rinit

, Rinit , R in i t ] )

mn arr = [ [ Rinit , Rinit , Rinit , Rinit , Rinit , Rinit , Rinit , Rinit , Rinit ,

R in i t ] ]

f o r a in range (63) :

mn arr . append ( [ Rinit , Rinit , Rinit , Rinit , Rinit , Rinit , Rinit , Rinit

, Rinit , R in i t ] )

#Array conta in ing Gef f o f a l l c r o s sba r synapses

g e f f a r r=np . z e r o s ( ( 64 , 10 ) )

#F i l e conta in ing t r a i n i n g datase t
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#Dataset e lements modi f i ed from o r i g i n a l as de s c r ibed in Sec t i on

5 .2

#Input downgraded va lues 7 thru 4 are i d e n t i f i e d here as 4 thru 1

and 3 thru 0 as −1 thru −4 f o r convenience

book = xl rd . open workbook ( ’ u c i n e w t r y t r 1 . x l sx ’ )

shee t = book . sheet by name ( ’ Sheet1 ’ )

i p a r r = [ [ shee t . c e l l v a l u e ( r , c ) f o r c in range ( shee t . n co l s ) ] f o r

r in range ( shee t . nrows ) ]

#F i l e conta in ing t e s t i n g datase t

book2 = x l rd . open workbook ( ’ u c i n e w t r y t s t 1 . x l sx ’ )

sheet2 = book2 . sheet by name ( ’ Sheet1 ’ )

t e s a r r = [ [ sheet2 . c e l l v a l u e ( r , c ) f o r c in range ( sheet2 . n co l s ) ]

f o r r in range ( sheet2 . nrows ) ]

epchs =[ ]

peracc =[ ]

count=0

#No . o f epochs o f t r a i n i n g

epochs = 5

#Parameter to choose c l o ck per iod . 20 ns (50MHz) in t h i s case

t=2

#Star t o f t r a i n i n g

f o r e in range ( epochs ) :

f o r a in range (3823) : #I t e r a t i n g through each t ran ing s e t

pattern

count += 1
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i f ( i p a r r [ a ] [64 ]==0) : #Checking the l a b e l o f the g iven

pattern

f o r b in range (64) : #Performing STDP on corre spond ing

column o f synapses

i f ( i p a r r [ a ] [ b]==4) :

mp arr [ b ] [ 0 ] = memr update ( mp arr [ b ] [ 0 ] , vp1 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 0 ] = memr update ( mn arr [ b ] [ 0 ] , vn1 ,

d e l t a r r [ t ] )

e l i f ( i p a r r [ a ] [ b]==3) :

mp arr [ b ] [ 0 ] = memr update ( mp arr [ b ] [ 0 ] , vp2 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 0 ] = memr update ( mn arr [ b ] [ 0 ] , vn2 ,

d e l t a r r [ t ] )

e l i f ( i p a r r [ a ] [ b]==2) :

mp arr [ b ] [ 0 ] = memr update ( mp arr [ b ] [ 0 ] , vp3 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 0 ] = memr update ( mn arr [ b ] [ 0 ] , vn3 ,

d e l t a r r [ t ] )

e l i f ( i p a r r [ a ] [ b]==1) :

mp arr [ b ] [ 0 ] = memr update ( mp arr [ b ] [ 0 ] , vp4 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 0 ] = memr update ( mn arr [ b ] [ 0 ] , vn4 ,

d e l t a r r [ t ] )

e l i f ( i p a r r [ a ] [ b]==−1) :

mp arr [ b ] [ 0 ] = memr update ( mp arr [ b ] [ 0 ] , vn4 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 0 ] = memr update ( mn arr [ b ] [ 0 ] , vp4 ,

d e l t a r r [ t ] )

e l i f ( i p a r r [ a ] [ b]==−2) :
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mp arr [ b ] [ 0 ] = memr update ( mp arr [ b ] [ 0 ] , vn3 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 0 ] = memr update ( mn arr [ b ] [ 0 ] , vp3 ,

d e l t a r r [ t ] )

e l i f ( i p a r r [ a ] [ b]==−3) :

mp arr [ b ] [ 0 ] = memr update ( mp arr [ b ] [ 0 ] , vn2 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 0 ] = memr update ( mn arr [ b ] [ 0 ] , vp2 ,

d e l t a r r [ t ] )

e l s e :

mp arr [ b ] [ 0 ] = memr update ( mp arr [ b ] [ 0 ] , vn1 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 0 ] = memr update ( mn arr [ b ] [ 0 ] , vp1 ,

d e l t a r r [ t ] )

i f ( i p a r r [ a ] [64 ]==1) :

f o r b in range (64) :

i f ( i p a r r [ a ] [ b]==4) :

mp arr [ b ] [ 1 ] = memr update ( mp arr [ b ] [ 1 ] , vp1 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 1 ] = memr update ( mn arr [ b ] [ 1 ] , vn1 ,

d e l t a r r [ t ] )

e l i f ( i p a r r [ a ] [ b]==3) :

mp arr [ b ] [ 1 ] = memr update ( mp arr [ b ] [ 1 ] , vp2 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 1 ] = memr update ( mn arr [ b ] [ 1 ] , vn2 ,

d e l t a r r [ t ] )

e l i f ( i p a r r [ a ] [ b]==2) :

mp arr [ b ] [ 1 ] = memr update ( mp arr [ b ] [ 1 ] , vp3 ,

d e l t a r r [ t ] )
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mn arr [ b ] [ 1 ] = memr update ( mn arr [ b ] [ 1 ] , vn3 ,

d e l t a r r [ t ] )

e l i f ( i p a r r [ a ] [ b]==1) :

mp arr [ b ] [ 1 ] = memr update ( mp arr [ b ] [ 1 ] , vp4 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 1 ] = memr update ( mn arr [ b ] [ 1 ] , vn4 ,

d e l t a r r [ t ] )

e l i f ( i p a r r [ a ] [ b]==−1) :

mp arr [ b ] [ 1 ] = memr update ( mp arr [ b ] [ 1 ] , vn4 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 1 ] = memr update ( mn arr [ b ] [ 1 ] , vp4 ,

d e l t a r r [ t ] )

e l i f ( i p a r r [ a ] [ b]==−2) :

mp arr [ b ] [ 1 ] = memr update ( mp arr [ b ] [ 1 ] , vn3 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 1 ] = memr update ( mn arr [ b ] [ 1 ] , vp3 ,

d e l t a r r [ t ] )

e l i f ( i p a r r [ a ] [ b]==−3) :

mp arr [ b ] [ 1 ] = memr update ( mp arr [ b ] [ 1 ] , vn2 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 1 ] = memr update ( mn arr [ b ] [ 1 ] , vp2 ,

d e l t a r r [ t ] )

e l s e :

mp arr [ b ] [ 1 ] = memr update ( mp arr [ b ] [ 1 ] , vn1 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 1 ] = memr update ( mn arr [ b ] [ 1 ] , vp1 ,

d e l t a r r [ t ] )

i f ( i p a r r [ a ] [64 ]==2) :

f o r b in range (64) :
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i f ( i p a r r [ a ] [ b]==4) :

mp arr [ b ] [ 2 ] = memr update ( mp arr [ b ] [ 2 ] , vp1 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 2 ] = memr update ( mn arr [ b ] [ 2 ] , vn1 ,

d e l t a r r [ t ] )

e l i f ( i p a r r [ a ] [ b]==3) :

mp arr [ b ] [ 2 ] = memr update ( mp arr [ b ] [ 2 ] , vp2 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 2 ] = memr update ( mn arr [ b ] [ 2 ] , vn2 ,

d e l t a r r [ t ] )

e l i f ( i p a r r [ a ] [ b]==2) :

mp arr [ b ] [ 2 ] = memr update ( mp arr [ b ] [ 2 ] , vp3 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 2 ] = memr update ( mn arr [ b ] [ 2 ] , vn3 ,

d e l t a r r [ t ] )

e l i f ( i p a r r [ a ] [ b]==1) :

mp arr [ b ] [ 2 ] = memr update ( mp arr [ b ] [ 2 ] , vp4 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 2 ] = memr update ( mn arr [ b ] [ 2 ] , vn4 ,

d e l t a r r [ t ] )

e l i f ( i p a r r [ a ] [ b]==−1) :

mp arr [ b ] [ 2 ] = memr update ( mp arr [ b ] [ 2 ] , vn4 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 2 ] = memr update ( mn arr [ b ] [ 2 ] , vp4 ,

d e l t a r r [ t ] )

e l i f ( i p a r r [ a ] [ b]==−2) :

mp arr [ b ] [ 2 ] = memr update ( mp arr [ b ] [ 2 ] , vn3 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 2 ] = memr update ( mn arr [ b ] [ 2 ] , vp3 ,

d e l t a r r [ t ] )
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e l i f ( i p a r r [ a ] [ b]==−3) :

mp arr [ b ] [ 2 ] = memr update ( mp arr [ b ] [ 2 ] , vn2 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 2 ] = memr update ( mn arr [ b ] [ 2 ] , vp2 ,

d e l t a r r [ t ] )

e l s e :

mp arr [ b ] [ 2 ] = memr update ( mp arr [ b ] [ 2 ] , vn1 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 2 ] = memr update ( mn arr [ b ] [ 2 ] , vp1 ,

d e l t a r r [ t ] )

i f ( i p a r r [ a ] [64 ]==3) :

f o r b in range (64) :

i f ( i p a r r [ a ] [ b]==4) :

mp arr [ b ] [ 3 ] = memr update ( mp arr [ b ] [ 3 ] , vp1 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 3 ] = memr update ( mn arr [ b ] [ 3 ] , vn1 ,

d e l t a r r [ t ] )

e l i f ( i p a r r [ a ] [ b]==3) :

mp arr [ b ] [ 3 ] = memr update ( mp arr [ b ] [ 3 ] , vp2 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 3 ] = memr update ( mn arr [ b ] [ 3 ] , vn2 ,

d e l t a r r [ t ] )

e l i f ( i p a r r [ a ] [ b]==2) :

mp arr [ b ] [ 3 ] = memr update ( mp arr [ b ] [ 3 ] , vp3 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 3 ] = memr update ( mn arr [ b ] [ 3 ] , vn3 ,

d e l t a r r [ t ] )

e l i f ( i p a r r [ a ] [ b]==1) :
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mp arr [ b ] [ 3 ] = memr update ( mp arr [ b ] [ 3 ] , vp4 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 3 ] = memr update ( mn arr [ b ] [ 3 ] , vn4 ,

d e l t a r r [ t ] )

e l i f ( i p a r r [ a ] [ b]==−1) :

mp arr [ b ] [ 3 ] = memr update ( mp arr [ b ] [ 3 ] , vn4 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 3 ] = memr update ( mn arr [ b ] [ 3 ] , vp4 ,

d e l t a r r [ t ] )

e l i f ( i p a r r [ a ] [ b]==−2) :

mp arr [ b ] [ 3 ] = memr update ( mp arr [ b ] [ 3 ] , vn3 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 3 ] = memr update ( mn arr [ b ] [ 3 ] , vp3 ,

d e l t a r r [ t ] )

e l i f ( i p a r r [ a ] [ b]==−3) :

mp arr [ b ] [ 3 ] = memr update ( mp arr [ b ] [ 3 ] , vn2 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 3 ] = memr update ( mn arr [ b ] [ 3 ] , vp2 ,

d e l t a r r [ t ] )

e l s e :

mp arr [ b ] [ 3 ] = memr update ( mp arr [ b ] [ 3 ] , vn1 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 3 ] = memr update ( mn arr [ b ] [ 3 ] , vp1 ,

d e l t a r r [ t ] )

i f ( i p a r r [ a ] [64 ]==4) :

f o r b in range (64) :

i f ( i p a r r [ a ] [ b]==4) :

mp arr [ b ] [ 4 ] = memr update ( mp arr [ b ] [ 4 ] , vp1 ,

d e l t a r r [ t ] )
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mn arr [ b ] [ 4 ] = memr update ( mn arr [ b ] [ 4 ] , vn1 ,

d e l t a r r [ t ] )

e l i f ( i p a r r [ a ] [ b]==3) :

mp arr [ b ] [ 4 ] = memr update ( mp arr [ b ] [ 4 ] , vp2 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 4 ] = memr update ( mn arr [ b ] [ 4 ] , vn2 ,

d e l t a r r [ t ] )

e l i f ( i p a r r [ a ] [ b]==2) :

mp arr [ b ] [ 4 ] = memr update ( mp arr [ b ] [ 4 ] , vp3 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 4 ] = memr update ( mn arr [ b ] [ 4 ] , vn3 ,

d e l t a r r [ t ] )

e l i f ( i p a r r [ a ] [ b]==1) :

mp arr [ b ] [ 4 ] = memr update ( mp arr [ b ] [ 4 ] , vp4 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 4 ] = memr update ( mn arr [ b ] [ 4 ] , vn4 ,

d e l t a r r [ t ] )

e l i f ( i p a r r [ a ] [ b]==−1) :

mp arr [ b ] [ 4 ] = memr update ( mp arr [ b ] [ 4 ] , vn4 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 4 ] = memr update ( mn arr [ b ] [ 4 ] , vp4 ,

d e l t a r r [ t ] )

e l i f ( i p a r r [ a ] [ b]==−2) :

mp arr [ b ] [ 4 ] = memr update ( mp arr [ b ] [ 4 ] , vn3 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 4 ] = memr update ( mn arr [ b ] [ 4 ] , vp3 ,

d e l t a r r [ t ] )

e l i f ( i p a r r [ a ] [ b]==−3) :

mp arr [ b ] [ 4 ] = memr update ( mp arr [ b ] [ 4 ] , vn2 ,

d e l t a r r [ t ] )
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mn arr [ b ] [ 4 ] = memr update ( mn arr [ b ] [ 4 ] , vp2 ,

d e l t a r r [ t ] )

e l s e :

mp arr [ b ] [ 4 ] = memr update ( mp arr [ b ] [ 4 ] , vn1 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 4 ] = memr update ( mn arr [ b ] [ 4 ] , vp1 ,

d e l t a r r [ t ] )

i f ( i p a r r [ a ] [64 ]==5) :

f o r b in range (64) :

i f ( i p a r r [ a ] [ b]==4) :

mp arr [ b ] [ 5 ] = memr update ( mp arr [ b ] [ 5 ] , vp1 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 5 ] = memr update ( mn arr [ b ] [ 5 ] , vn1 ,

d e l t a r r [ t ] )

e l i f ( i p a r r [ a ] [ b]==3) :

mp arr [ b ] [ 5 ] = memr update ( mp arr [ b ] [ 5 ] , vp2 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 5 ] = memr update ( mn arr [ b ] [ 5 ] , vn2 ,

d e l t a r r [ t ] )

e l i f ( i p a r r [ a ] [ b]==2) :

mp arr [ b ] [ 5 ] = memr update ( mp arr [ b ] [ 5 ] , vp3 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 5 ] = memr update ( mn arr [ b ] [ 5 ] , vn3 ,

d e l t a r r [ t ] )

e l i f ( i p a r r [ a ] [ b]==1) :

mp arr [ b ] [ 5 ] = memr update ( mp arr [ b ] [ 5 ] , vp4 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 5 ] = memr update ( mn arr [ b ] [ 5 ] , vn4 ,

d e l t a r r [ t ] )

132



e l i f ( i p a r r [ a ] [ b]==−1) :

mp arr [ b ] [ 5 ] = memr update ( mp arr [ b ] [ 5 ] , vn4 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 5 ] = memr update ( mn arr [ b ] [ 5 ] , vp4 ,

d e l t a r r [ t ] )

e l i f ( i p a r r [ a ] [ b]==−2) :

mp arr [ b ] [ 5 ] = memr update ( mp arr [ b ] [ 5 ] , vn3 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 5 ] = memr update ( mn arr [ b ] [ 5 ] , vp3 ,

d e l t a r r [ t ] )

e l i f ( i p a r r [ a ] [ b]==−3) :

mp arr [ b ] [ 5 ] = memr update ( mp arr [ b ] [ 5 ] , vn2 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 5 ] = memr update ( mn arr [ b ] [ 5 ] , vp2 ,

d e l t a r r [ t ] )

e l s e :

mp arr [ b ] [ 5 ] = memr update ( mp arr [ b ] [ 5 ] , vn1 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 5 ] = memr update ( mn arr [ b ] [ 5 ] , vp1 ,

d e l t a r r [ t ] )

i f ( i p a r r [ a ] [64 ]==6) :

f o r b in range (64) :

i f ( i p a r r [ a ] [ b]==4) :

mp arr [ b ] [ 6 ] = memr update ( mp arr [ b ] [ 6 ] , vp1 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 6 ] = memr update ( mn arr [ b ] [ 6 ] , vn1 ,

d e l t a r r [ t ] )

e l i f ( i p a r r [ a ] [ b]==3) :
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mp arr [ b ] [ 6 ] = memr update ( mp arr [ b ] [ 6 ] , vp2 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 6 ] = memr update ( mn arr [ b ] [ 6 ] , vn2 ,

d e l t a r r [ t ] )

e l i f ( i p a r r [ a ] [ b]==2) :

mp arr [ b ] [ 6 ] = memr update ( mp arr [ b ] [ 6 ] , vp3 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 6 ] = memr update ( mn arr [ b ] [ 6 ] , vn3 ,

d e l t a r r [ t ] )

e l i f ( i p a r r [ a ] [ b]==1) :

mp arr [ b ] [ 6 ] = memr update ( mp arr [ b ] [ 6 ] , vp4 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 6 ] = memr update ( mn arr [ b ] [ 6 ] , vn4 ,

d e l t a r r [ t ] )

e l i f ( i p a r r [ a ] [ b]==−1) :

mp arr [ b ] [ 6 ] = memr update ( mp arr [ b ] [ 6 ] , vn4 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 6 ] = memr update ( mn arr [ b ] [ 6 ] , vp4 ,

d e l t a r r [ t ] )

e l i f ( i p a r r [ a ] [ b]==−2) :

mp arr [ b ] [ 6 ] = memr update ( mp arr [ b ] [ 6 ] , vn3 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 6 ] = memr update ( mn arr [ b ] [ 6 ] , vp3 ,

d e l t a r r [ t ] )

e l i f ( i p a r r [ a ] [ b]==−3) :

mp arr [ b ] [ 6 ] = memr update ( mp arr [ b ] [ 6 ] , vn2 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 6 ] = memr update ( mn arr [ b ] [ 6 ] , vp2 ,

d e l t a r r [ t ] )

e l s e :
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mp arr [ b ] [ 6 ] = memr update ( mp arr [ b ] [ 6 ] , vn1 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 6 ] = memr update ( mn arr [ b ] [ 6 ] , vp1 ,

d e l t a r r [ t ] )

i f ( i p a r r [ a ] [64 ]==7) :

f o r b in range (64) :

i f ( i p a r r [ a ] [ b]==4) :

mp arr [ b ] [ 7 ] = memr update ( mp arr [ b ] [ 7 ] , vp1 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 7 ] = memr update ( mn arr [ b ] [ 7 ] , vn1 ,

d e l t a r r [ t ] )

e l i f ( i p a r r [ a ] [ b]==3) :

mp arr [ b ] [ 7 ] = memr update ( mp arr [ b ] [ 7 ] , vp2 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 7 ] = memr update ( mn arr [ b ] [ 7 ] , vn2 ,

d e l t a r r [ t ] )

e l i f ( i p a r r [ a ] [ b]==2) :

mp arr [ b ] [ 7 ] = memr update ( mp arr [ b ] [ 7 ] , vp3 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 7 ] = memr update ( mn arr [ b ] [ 7 ] , vn3 ,

d e l t a r r [ t ] )

e l i f ( i p a r r [ a ] [ b]==1) :

mp arr [ b ] [ 7 ] = memr update ( mp arr [ b ] [ 7 ] , vp4 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 7 ] = memr update ( mn arr [ b ] [ 7 ] , vn4 ,

d e l t a r r [ t ] )

e l i f ( i p a r r [ a ] [ b]==−1) :

mp arr [ b ] [ 7 ] = memr update ( mp arr [ b ] [ 7 ] , vn4 ,

d e l t a r r [ t ] )
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mn arr [ b ] [ 7 ] = memr update ( mn arr [ b ] [ 7 ] , vp4 ,

d e l t a r r [ t ] )

e l i f ( i p a r r [ a ] [ b]==−2) :

mp arr [ b ] [ 7 ] = memr update ( mp arr [ b ] [ 7 ] , vn3 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 7 ] = memr update ( mn arr [ b ] [ 7 ] , vp3 ,

d e l t a r r [ t ] )

e l i f ( i p a r r [ a ] [ b]==−3) :

mp arr [ b ] [ 7 ] = memr update ( mp arr [ b ] [ 7 ] , vn2 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 7 ] = memr update ( mn arr [ b ] [ 7 ] , vp2 ,

d e l t a r r [ t ] )

e l s e :

mp arr [ b ] [ 7 ] = memr update ( mp arr [ b ] [ 7 ] , vn1 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 7 ] = memr update ( mn arr [ b ] [ 7 ] , vp1 ,

d e l t a r r [ t ] )

i f ( i p a r r [ a ] [64 ]==8) :

f o r b in range (64) :

i f ( i p a r r [ a ] [ b]==4) :

mp arr [ b ] [ 8 ] = memr update ( mp arr [ b ] [ 8 ] , vp1 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 8 ] = memr update ( mn arr [ b ] [ 8 ] , vn1 ,

d e l t a r r [ t ] )

e l i f ( i p a r r [ a ] [ b]==3) :

mp arr [ b ] [ 8 ] = memr update ( mp arr [ b ] [ 8 ] , vp2 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 8 ] = memr update ( mn arr [ b ] [ 8 ] , vn2 ,

d e l t a r r [ t ] )
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e l i f ( i p a r r [ a ] [ b]==2) :

mp arr [ b ] [ 8 ] = memr update ( mp arr [ b ] [ 8 ] , vp3 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 8 ] = memr update ( mn arr [ b ] [ 8 ] , vn3 ,

d e l t a r r [ t ] )

e l i f ( i p a r r [ a ] [ b]==1) :

mp arr [ b ] [ 8 ] = memr update ( mp arr [ b ] [ 8 ] , vp4 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 8 ] = memr update ( mn arr [ b ] [ 8 ] , vn4 ,

d e l t a r r [ t ] )

e l i f ( i p a r r [ a ] [ b]==−1) :

mp arr [ b ] [ 8 ] = memr update ( mp arr [ b ] [ 8 ] , vn4 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 8 ] = memr update ( mn arr [ b ] [ 8 ] , vp4 ,

d e l t a r r [ t ] )

e l i f ( i p a r r [ a ] [ b]==−2) :

mp arr [ b ] [ 8 ] = memr update ( mp arr [ b ] [ 8 ] , vn3 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 8 ] = memr update ( mn arr [ b ] [ 8 ] , vp3 ,

d e l t a r r [ t ] )

e l i f ( i p a r r [ a ] [ b]==−3) :

mp arr [ b ] [ 8 ] = memr update ( mp arr [ b ] [ 8 ] , vn2 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 8 ] = memr update ( mn arr [ b ] [ 8 ] , vp2 ,

d e l t a r r [ t ] )

e l s e :

mp arr [ b ] [ 8 ] = memr update ( mp arr [ b ] [ 8 ] , vn1 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 8 ] = memr update ( mn arr [ b ] [ 8 ] , vp1 ,

d e l t a r r [ t ] )
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i f ( i p a r r [ a ] [64 ]==9) :

f o r b in range (64) :

i f ( i p a r r [ a ] [ b]==4) :

mp arr [ b ] [ 9 ] = memr update ( mp arr [ b ] [ 9 ] , vp1 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 9 ] = memr update ( mn arr [ b ] [ 9 ] , vn1 ,

d e l t a r r [ t ] )

e l i f ( i p a r r [ a ] [ b]==3) :

mp arr [ b ] [ 9 ] = memr update ( mp arr [ b ] [ 9 ] , vp2 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 9 ] = memr update ( mn arr [ b ] [ 9 ] , vn2 ,

d e l t a r r [ t ] )

e l i f ( i p a r r [ a ] [ b]==2) :

mp arr [ b ] [ 9 ] = memr update ( mp arr [ b ] [ 9 ] , vp3 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 9 ] = memr update ( mn arr [ b ] [ 9 ] , vn3 ,

d e l t a r r [ t ] )

e l i f ( i p a r r [ a ] [ b]==1) :

mp arr [ b ] [ 9 ] = memr update ( mp arr [ b ] [ 9 ] , vp4 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 9 ] = memr update ( mn arr [ b ] [ 9 ] , vn4 ,

d e l t a r r [ t ] )

e l i f ( i p a r r [ a ] [ b]==−1) :

mp arr [ b ] [ 9 ] = memr update ( mp arr [ b ] [ 9 ] , vn4 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 9 ] = memr update ( mn arr [ b ] [ 9 ] , vp4 ,

d e l t a r r [ t ] )

e l i f ( i p a r r [ a ] [ b]==−2) :
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mp arr [ b ] [ 9 ] = memr update ( mp arr [ b ] [ 9 ] , vn3 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 9 ] = memr update ( mn arr [ b ] [ 9 ] , vp3 ,

d e l t a r r [ t ] )

e l i f ( i p a r r [ a ] [ b]==−3) :

mp arr [ b ] [ 9 ] = memr update ( mp arr [ b ] [ 9 ] , vn2 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 9 ] = memr update ( mn arr [ b ] [ 9 ] , vp2 ,

d e l t a r r [ t ] )

e l s e :

mp arr [ b ] [ 9 ] = memr update ( mp arr [ b ] [ 9 ] , vn1 ,

d e l t a r r [ t ] )

mn arr [ b ] [ 9 ] = memr update ( mn arr [ b ] [ 9 ] , vp1 ,

d e l t a r r [ t ] )

#Evaluat ing Gef f array

f o r p in range (64) :

f o r q in range (10) :

g e f f a r r [ p ] [ q ]=(1/ mp arr [ p ] [ q]−1/mn arr [ p ] [ q ] )

#Star t o f t e s t i n g

i f ( count<= 2000) : #Chosen such that we t e s t more

f r e q u e n t l y i n i t i a l l y

i f ( count%150==0) : #Frequency with which t e s t i n g i s

performed when epochs are running

epchs . append ( count )

to t = 0

acc = 0

f o r m in range (1797) : #I t e r a t i n g through each

t e s t i n g s e t pattern
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to t +=1

cnt = 0

i t o t = np . z e r o s (10)

vmem arr = np . z e r o s (10)

#Test ing by apply ing input neuron s p i k e s to

columns

#Spikes r eve r s ed f o r negat ive input array

e lements

#Neuron with array element value +1/−1 s p i k e s

f i r s t f o l l owed by othe r s with 2 c y c l e s o f

de lay between each

#Output neuron samples column cur r en t s during

the c y c l e when +4/−4 neurons apply +0.4V

/−0.4V on Mp memristor and v i c e ver sa on Mn

#By t h i s time +3/−3 neurons apply +0.2V/−0.2V

on Mp and v i c e ver sa f o r Mn ( because o f 2

c y c l e de lay between them )

#Spikes o f +2/−2 and +1/−1 neurons would have

f i n i s h e d and t h e r e f o r e they do not

con t r i bu t e f o r synapse cu r r en t s i n to

columns

#This scheme i s chosen to reduce column

cur r en t s dur ing t e s t i n g without

compromising t e s t accuracy

#This scheme may be changed by changing de lay

between input neurons ’ s p i k e s and/ or when

the output neuron samples column cur r en t s

f o r n in range (10) :

f o r q in range (64) :

i f ( t e s a r r [m] [ q]==4) :
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i t o t [ n]+=0.4∗ g e f f a r r [ q ] [ n ]

e l i f ( t e s a r r [m] [ q]==3) :

i t o t [ n]+=0.2∗ g e f f a r r [ q ] [ n ]

e l i f ( t e s a r r [m] [ q]==2) :

i t o t [ n]+=0∗ g e f f a r r [ q ] [ n ]

e l i f ( t e s a r r [m] [ q]==1) :

i t o t [ n]+=0∗ g e f f a r r [ q ] [ n ]

e l i f ( t e s a r r [m] [ q]==−4) :

i t o t [ n]+=−0.4∗ g e f f a r r [ q ] [ n ]

e l i f ( t e s a r r [m] [ q]==−3) :

i t o t [ n]+=−0.2∗ g e f f a r r [ q ] [ n ]

e l i f ( t e s a r r [m] [ q]==−2) :

i t o t [ n]+=−0∗ g e f f a r r [ q ] [ n ]

e l s e :

i t o t [ n]+=−0∗ g e f f a r r [ q ] [ n ]

#D i g i t i z a t i o n o f column cur r en t s in output

neurons

f o r d in range (10) :

vmem arr [ d ] = d i g i n e u ( i t o t [ d ] , vmem arr [ d

] )

#WTA l o g i c at output to determine h i ghe s t

d i g i t a l va lue / ‘ winning ’ neuron

f o r r in range (10) :

i f ( vmem arr [ r ] == max( vmem arr ) ) :

cnt+=1

#Determining i f ‘ winning ’ neuron l a b e l matches

with input l a b e l

i f ( cnt==1) :

i f ( t e s a r r [m][64]==np . argmax ( vmem arr ) ) :
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acc += 1

e l s e :

acc += 0

e l s e :

acc += 0

per acc = ( acc ∗100) / to t #Accuracy

peracc . append ( pe r acc ) #Accuracy array

e l s e :

i f ( count%500==0) : #Reduced f requency o f t e s t i n g a f t e r

some ‘ s u f f i c i e n t ’ t r a i n i n g

epchs . append ( count )

to t = 0

acc = 0

f o r m in range (1797) :

to t +=1

cnt = 0

i t o t = np . z e r o s (10)

vmem arr = np . z e r o s (10)

f o r n in range (10) :

f o r q in range (64) :

i f ( t e s a r r [m] [ q]==4) :

i t o t [ n]+=0.4∗ g e f f a r r [ q ] [ n ]

e l i f ( t e s a r r [m] [ q]==3) :

i t o t [ n]+=0.2∗ g e f f a r r [ q ] [ n ]

e l i f ( t e s a r r [m] [ q]==2) :

i t o t [ n]+=0∗ g e f f a r r [ q ] [ n ]

e l i f ( t e s a r r [m] [ q]==1) :

i t o t [ n]+=0∗ g e f f a r r [ q ] [ n ]

e l i f ( t e s a r r [m] [ q]==−4) :

142



i t o t [ n]+=−0.4∗ g e f f a r r [ q ] [ n ]

e l i f ( t e s a r r [m] [ q]==−3) :

i t o t [ n]+=−0.2∗ g e f f a r r [ q ] [ n ]

e l i f ( t e s a r r [m] [ q]==−2) :

i t o t [ n]+=−0∗ g e f f a r r [ q ] [ n ]

e l s e :

i t o t [ n]+=−0∗ g e f f a r r [ q ] [ n ]

f o r d in range (10) :

vmem arr [ d ] = d i g i n e u ( i t o t [ d ] , vmem arr [ d

] )

f o r r in range (10) :

i f ( vmem arr [ r ] == max( vmem arr ) ) :

cnt+=1

i f ( cnt==1) :

i f ( t e s a r r [m][64]==np . argmax ( vmem arr ) ) :

acc += 1

e l s e :

acc += 0

e l s e :

acc += 0

per acc = ( acc ∗100) / to t

peracc . append ( pe r acc )

#Plo t t i ng accuracy curve as t r a i n i n g p r o g r e s s e s

p l t . p l o t ( epchs , peracc , ’ o− ’ , c o l o r=’ blue ’ , l i n ew id th =2.2)

p l t . yl im (0 ,100)

p l t . xl im (0 ,18000)

p l t . g r i d ( True )
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p l t . x l a b e l ( ’No . o f Learning Epochs ’ , f ontwe ight=’ bold ’ , f o n t s i z e =12)

p l t . y l a b e l ( ’ Recogni t ion Rate (%) ’ , f ontwe ight=’ bold ’ , f o n t s i z e =12)

p l t . x t i c k s (np . arange (0 ,19116 ,3823) , ( ’ 0 ’ , ’ 1 ’ , ’ 2 ’ , ’ 3 ’ , ’ 4 ’ , ’ 5 ’ ) )

#Print column cur r en t s

p r i n t ( i t o t )

#Print d i g i t i z e d va lues in output neurons

p r i n t ( vmem arr )

#Print accuracy o f f i n a l t e s t

p r i n t ( pe r acc )

#Creat ing ar rays to s t o r e l e a r n t weights as 8x8 ar rays f o r

p l o t t i n g them and v i s u a l l y s e e i n g the l e a r n t weight pat t e rn s

im0=np . z e r o s ( ( 8 , 8 ) )

im1=np . z e r o s ( ( 8 , 8 ) )

im2=np . z e r o s ( ( 8 , 8 ) )

im3=np . z e r o s ( ( 8 , 8 ) )

im4=np . z e r o s ( ( 8 , 8 ) )

im5=np . z e r o s ( ( 8 , 8 ) )

im6=np . z e r o s ( ( 8 , 8 ) )

im7=np . z e r o s ( ( 8 , 8 ) )

im8=np . z e r o s ( ( 8 , 8 ) )

im9=np . z e r o s ( ( 8 , 8 ) )

#Convert ing l e a r n t Gef f array in to 8x8 pat t e rn s

f o r a in range (8 ) :

f o r b in range (8 ) :

im0 [ a ] [ b]=1 e06∗ g e f f a r r [ b+(a∗8) ] [ 0 ]

f o r a in range (8 ) :
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f o r b in range (8 ) :

im1 [ a ] [ b]=1 e06∗ g e f f a r r [ b+(a∗8) ] [ 1 ]

f o r a in range (8 ) :

f o r b in range (8 ) :

im2 [ a ] [ b]=1 e06∗ g e f f a r r [ b+(a∗8) ] [ 2 ]

f o r a in range (8 ) :

f o r b in range (8 ) :

im3 [ a ] [ b]=1 e06∗ g e f f a r r [ b+(a∗8) ] [ 3 ]

f o r a in range (8 ) :

f o r b in range (8 ) :

im4 [ a ] [ b]=1 e06∗ g e f f a r r [ b+(a∗8) ] [ 4 ]

f o r a in range (8 ) :

f o r b in range (8 ) :

im5 [ a ] [ b]=1 e06∗ g e f f a r r [ b+(a∗8) ] [ 5 ]

f o r a in range (8 ) :

f o r b in range (8 ) :

im6 [ a ] [ b]=1 e06∗ g e f f a r r [ b+(a∗8) ] [ 6 ]

f o r a in range (8 ) :

f o r b in range (8 ) :

im7 [ a ] [ b]=1 e06∗ g e f f a r r [ b+(a∗8) ] [ 7 ]

f o r a in range (8 ) :

f o r b in range (8 ) :

im8 [ a ] [ b]=1 e06∗ g e f f a r r [ b+(a∗8) ] [ 8 ]
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f o r a in range (8 ) :

f o r b in range (8 ) :

im9 [ a ] [ b]=1 e06∗ g e f f a r r [ b+(a∗8) ] [ 9 ]

#P lo t t i ng the l e a r n t weights as image pat t e rns f o r i n s p e c t i o n

f i g , ax=p l t . subp lo t s ( )

img=ax . imshow ( im0 )

f i g . c o l o rba r ( img , ax=ax )

f i g , ax=p l t . subp lo t s ( )

img=ax . imshow ( im1 )

f i g . c o l o rba r ( img , ax=ax )

f i g , ax=p l t . subp lo t s ( )

img=ax . imshow ( im2 )

f i g . c o l o rba r ( img , ax=ax )

f i g , ax=p l t . subp lo t s ( )

img=ax . imshow ( im3 )

f i g . c o l o rba r ( img , ax=ax )

f i g , ax=p l t . subp lo t s ( )

img=ax . imshow ( im4 )

f i g . c o l o rba r ( img , ax=ax )

f i g , ax=p l t . subp lo t s ( )

img=ax . imshow ( im5 )

f i g . c o l o rba r ( img , ax=ax )
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f i g , ax=p l t . subp lo t s ( )

img=ax . imshow ( im6 )

f i g . c o l o rba r ( img , ax=ax )

f i g , ax=p l t . subp lo t s ( )

img=ax . imshow ( im7 )

f i g . c o l o rba r ( img , ax=ax )

f i g , ax=p l t . subp lo t s ( )

img=ax . imshow ( im8 )

f i g . c o l o rba r ( img , ax=ax )

f i g , ax=p l t . subp lo t s ( )

img=ax . imshow ( im9 )

f i g . c o l o rba r ( img , ax=ax )
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