78 research outputs found

    On the implementation of a Fuzzy DL Solver over Infinite-Valued Product Logic with SMT Solvers

    Get PDF
    In this paper we explain the design and preliminary implementation of a solver for the positive satisfiability problem of concepts in a fuzzy description logic over the infinite-valued product logic. This very solver also answers 1-satisfiability in quasi-witnessed models. The solver works by first performing a direct reduction of the problem to a satisfiability problem of a quantifier free boolean formula with non-linear real arithmetic properties, and secondly solves the resulting formula with an SMT solver. We show that the satisfiability problem for such formulas is still a very challenging problem for even the most advanced SMT solvers, and so it represents an interesting problem for the community working on the theory and practice of SMT solvers.Research partially funded by the Spanish MICINN projects ARINF (TIN2009-14704-C03-01/03) and TASSAT (TIN2010-20967-C04-01/03), MINECO project EdeTRI (TIN2012-39348-C02-01), Agreement Techologies (CONSOLIDER CSD 2007- 0022), Catalan Government (2009SGR-1433/34) and ESF project POST - UP II No. CZ.1.07/2.3.00/30.0041 that is co-financed by the European Social Fund and the state budget of the Czech Republic.Peer Reviewe

    Automated Reasoning

    Get PDF
    This volume, LNAI 13385, constitutes the refereed proceedings of the 11th International Joint Conference on Automated Reasoning, IJCAR 2022, held in Haifa, Israel, in August 2022. The 32 full research papers and 9 short papers presented together with two invited talks were carefully reviewed and selected from 85 submissions. The papers focus on the following topics: Satisfiability, SMT Solving,Arithmetic; Calculi and Orderings; Knowledge Representation and Jutsification; Choices, Invariance, Substitutions and Formalization; Modal Logics; Proofs System and Proofs Search; Evolution, Termination and Decision Prolems. This is an open access book

    On modal expansions of t-norm based logics with rational constants

    Get PDF
    [eng] According to Zadeh, the term “fuzzy logic” has two different meanings: wide and narrow. In a narrow sense it is a logical system which aims a formalization of approximate reasoning, and so it can be considered an extension of many-valued logic. However, Zadeh also says that the agenda of fuzzy logic is quite different from that of traditional many-valued logic, as it addresses concepts like linguistic variable, fuzzy if-then rule, linguistic quantifiers etc. Hájek, in the preface of his foundational book Metamathematics of Fuzzy Logic, agrees with Zadeh’s distinction, but stressing that formal calculi of many-valued logics are the kernel of the so-called Basic Fuzzy logic (BL), having continuous triangular norms (t-norm) and their residua as semantics for the conjunction and implication respectively, and of its most prominent extensions, namely Lukasiewicz, Gödel and Product fuzzy logics. Taking advantage of the fact that a t-norm has residuum if, and only if, it is left-continuous, the logic of the left-continuous t-norms, called MTL, was soon after introduced. On the other hand, classical modal logic is an active field of mathematical logic, originally introduced at the beginning of the XXth century for philosophical purposes, that more recently has shown to be very successful in many other areas, specially in computer science. That are the most well-known semantics for classical modal logics. Modal expansions of non-classical logics, in particular of many-valued logics, have also been studied in the literature. In this thesis we focus on the study of some modal logics over MTL, using natural generalizations of the classical Kripke relational structures where propositions at possible words can be many-valued, but keeping classical accessibility relations. In more detail, the main goal of this thesis has been to study modal expansions of the logic of a left-continuous t-norm, defined over the language of MTL expanded with rational truth-constants and the Monteiro-Baaz Delta-operator, whose intended (standard) semantics is given by Kripke models with crisp accessibility relations and taking the unit real interval [0, 1] as set of truth-values. To get complete axiomatizations, already known techniques based on the canonical model construction are uses, but this requires to ensure that the underlying (propositional) fuzzy logic is strongly standard complete. This constraint leads us to consider axiomatic systems with infinitary inference rules, already at the propositional level. A second goal of the thesis has been to also develop and automated reasoning software tool to solve satisfiability and logical consequence problems for some of the fuzzy logic modal logics considered. This dissertation is structured in four parts. After a gentle introduction, Part I contains the needed preliminaries for the thesis be as self-contained as possible. Most of the theoretical results are developed in Parts II and III. Part II focuses on solving some problems concerning the strong standard completeness of underlying non-modal expansions. We first present and axiomatic system for the non-nodal propositional logic of a left-continuous t-norm who makes use of a unique infinitary inference rule, the “density rule”, that solves several problems pointed out in the literature. We further expand this axiomatic system in order to also characterize arbitrary operations over [0, 1] satisfying certain regularity conditions. However, since this axiomatic system turn out to be not well-behaved for the modal expansion, we search for alternative axiomatizations with some particular kind of inference rules (that will be called conjunctive). Unfortunately, this kind of axiomatization does not necessarily exist for all left-continuous t-norms (in particular, it does not exist for the Gödel logic case), but we identify a wide class of t-norms for which it works. This “well-behaved” t-norms include all ordinal sums of Lukasiewiczand Product t-norms. Part III focuses on the modal expansion of the logics presented before. We propose axiomatic systems (which are, as expected, modal expansions of the ones given in the previous part) respectively strongly complete with respect to local and global Kripke semantics defined over frames with crisp accessibility relations and worlds evaluated over a “well-behaved” left-continuous t-norm. We also study some properties and extensions of these logics and also show how to use it for axiomatizing the possibilistic logic over the very same t-norm. Later on, we characterize the algebraic companion of these modal logics, provide some algebraic completeness results and study the relation between their Kripke and algebraic semantics. Finally, Part IV of the thesis is devoted to a software application, mNiB-LoS, who uses Satisfability Modulo Theories in order to build an automated reasoning system to reason over modal logics evaluated over BL algebras. The acronym of this applications stands for a modal Nice BL-logics Solver. The use of BL logics along this part is motivated by the fact that continuous t-norms can be represented as ordinal sums of three particular t-norms: Gödel, Lukasiewicz and Product ones. It is then possible to show that these t-norms have alternative characterizations that, although equivalent from the point of view of the logic, have strong differences for what concerns the design, implementation and efficiency of the application. For practical reasons, the modal structures included in the solver are limited to the finite ones (with no bound on the cardinality)

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access two-volume set constitutes the proceedings of the 27th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2021, which was held during March 27 – April 1, 2021, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021. The conference was planned to take place in Luxembourg and changed to an online format due to the COVID-19 pandemic. The total of 41 full papers presented in the proceedings was carefully reviewed and selected from 141 submissions. The volume also contains 7 tool papers; 6 Tool Demo papers, 9 SV-Comp Competition Papers. The papers are organized in topical sections as follows: Part I: Game Theory; SMT Verification; Probabilities; Timed Systems; Neural Networks; Analysis of Network Communication. Part II: Verification Techniques (not SMT); Case Studies; Proof Generation/Validation; Tool Papers; Tool Demo Papers; SV-Comp Tool Competition Papers

    Extending the Finite Domain Solver of GNU Prolog

    No full text
    International audienceThis paper describes three significant extensions for the Finite Domain solver of GNU Prolog. First, the solver now supports negative integers. Second, the solver detects and prevents integer overflows from occurring. Third, the internal representation of sparse domains has been redesigned to overcome its current limitations. The preliminary performance evaluation shows a limited slowdown factor with respect to the initial solver. This factor is widely counterbalanced by the new possibilities and the robustness of the solver. Furthermore these results are preliminary and we propose some directions to limit this overhead

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 13371 and 13372 constitutes the refereed proceedings of the 34rd International Conference on Computer Aided Verification, CAV 2022, which was held in Haifa, Israel, in August 2022. The 40 full papers presented together with 9 tool papers and 2 case studies were carefully reviewed and selected from 209 submissions. The papers were organized in the following topical sections: Part I: Invited papers; formal methods for probabilistic programs; formal methods for neural networks; software Verification and model checking; hyperproperties and security; formal methods for hardware, cyber-physical, and hybrid systems. Part II: Probabilistic techniques; automata and logic; deductive verification and decision procedures; machine learning; synthesis and concurrency. This is an open access book

    Automated Deduction – CADE 28

    Get PDF
    This open access book constitutes the proceeding of the 28th International Conference on Automated Deduction, CADE 28, held virtually in July 2021. The 29 full papers and 7 system descriptions presented together with 2 invited papers were carefully reviewed and selected from 76 submissions. CADE is the major forum for the presentation of research in all aspects of automated deduction, including foundations, applications, implementations, and practical experience. The papers are organized in the following topics: Logical foundations; theory and principles; implementation and application; ATP and AI; and system descriptions

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access two-volume set constitutes the proceedings of the 27th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2021, which was held during March 27 – April 1, 2021, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021. The conference was planned to take place in Luxembourg and changed to an online format due to the COVID-19 pandemic. The total of 41 full papers presented in the proceedings was carefully reviewed and selected from 141 submissions. The volume also contains 7 tool papers; 6 Tool Demo papers, 9 SV-Comp Competition Papers. The papers are organized in topical sections as follows: Part I: Game Theory; SMT Verification; Probabilities; Timed Systems; Neural Networks; Analysis of Network Communication. Part II: Verification Techniques (not SMT); Case Studies; Proof Generation/Validation; Tool Papers; Tool Demo Papers; SV-Comp Tool Competition Papers

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems

    Proof-theoretic Semantics for Intuitionistic Multiplicative Linear Logic

    Get PDF
    This work is the first exploration of proof-theoretic semantics for a substructural logic. It focuses on the base-extension semantics (B-eS) for intuitionistic multiplicative linear logic (IMLL). The starting point is a review of Sandqvist’s B-eS for intuitionistic propositional logic (IPL), for which we propose an alternative treatment of conjunction that takes the form of the generalized elimination rule for the connective. The resulting semantics is shown to be sound and complete. This motivates our main contribution, a B-eS for IMLL , in which the definitions of the logical constants all take the form of their elimination rule and for which soundness and completeness are established
    • …
    corecore