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Abstract. In this paper we explain the design and preliminary implementation
of a solver for the positive satisfiability problem of concepts in a fuzzy descrip-
tion logic over the infinite-valued product logic. The same solver also works for
1-satisfiability in quasi-witnessed models. The solver works by first performing
a direct reduction of the problem to a satisfiability problem of a quantifier free
boolean formula with non-linear real arithmetic properties, and secondly solves
the resulting formula with an SMT solver. We show that the satisfiability problem
for such formulas is still a very challenging problem for even the most advanced
SMT solvers, and so it represents an interesting problem for the community work-
ing on the theory and practice of SMT solvers. We briefly explain a possible way
of improving the performance of the solver by an alternative implementation un-
der development, based on a reduction to a boolean formula but with linear real
arithmetic properties.
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1 Introduction

In the recent years, the development of solvers for reasoning problems over description
logics (DLs) has experienced an important growth, with very succesful approaches. We
have two main approaches, the most traditional one, able to handle very expressive DLs,
is the one based on Tableaux-like algorithms [1]. For certain DLs, the approach based
on translations of the problem to more basic logical reasoning problems, like the ones
based on a translation to propositional clausal forms has shown to be very sucessful [8].
Very recently, the approach based on doing translations to less simple knowledge rep-
resentation formalisms and then using Sat Modulo Theory (SMT) solvers, has started
to receive high interest [6].

In the case of DLs over fuzzy logics (Fuzzy DLs), the state-of-the-art on solvers
can be summarized mainly on the work of Straccia et al. with fuzzyDL, their solver
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for Fuzzy DL over Łuckasiewicz Logic [9] (available in Straccia’s home page), that
is based on a mixture of tableau rules and Mixed Integer Linear Programming. Note
that the problem faced in [9], called concept satisfiability w.r.t. knowledge bases with
GCI, is more general than the one faced in the present paper. Unfortunately, the general
problem of concept satisfiability w.r.t. knowledge bases with GCI over infinite-valued
Łukasewicz semantics has been proved to be undecidable in [3]. Nevertheless, as proved
in [3], the solver proposed in [9] can solve the concept satisfiability problem without
knowledge bases.

In this work, we present a solver for the concept satisfiability problem without
knowledge bases, in the Fuzzy DL ALE over the infinite-valued product logic. This
problem has been studied in [2] and the FDL under exam has been denoted Π-ALE .
Our approach is based on the last work, where the authors show that the positive and
1-satisfiability problems in Π-ALE limited to quasi-witnessed models are decidable.

To prove the above result the authors give a reduction (inspired by the one given
by Hájek for witnessed models [7]) of the concept satisfiability problem in Π-ALE
with respect to quasi-witnessed models to an entailment problem between two set of
propositional formulas. The algorithm presented in [2] takes a description concept
C0 as input and recursively produces a pair of propositional theories as output. The
propositional theories produced as output jointly represent a description of an FDL
interpretation (a kind of Kripke model) that is supposed to satisfy concept C0 (in the
case, obviously that C0 is satisfiable) in the sense that C0 is satisfiable if and only if
it can proved that one of the propositional theories is not entailed by the other. The
novelty of the algorithm presented in [2] is that it can describe possibly infinite models
by means of a finite set of propositional formulas.

For this reason, the algorithm is much more complex than the one of Hájek. The
algorithm proposed by Hájek, indeed, just produces one propositional theory with the
property of being satisfiable if and only if the concept C0 is satisfiable with respect
to witnessed models. This is the advantage of dealing with witnessed models, which
provide the calculus considered with the finite model property. But in the case of quasi-
witnessed models this property is missing and there can be the case of dealing with
infinite models of a certain shape. In this sense the two propositional theories in the
output of the algorithm presented in [2] represent positive and negative constraints that
this kind of structures must respect in order to be models for the concepts considered.
In this sense, the problem of finding a propositional evaluation that satisfies the set of
propositionsQWT (C0) but not the set YC0, is exactly the problem of deciding whether
YC0 is not entailed by QWT (C0).

Moreover they prove that positive satisfiability in first order product logic (and, as a
consequence, in Π-ALE) coincide with positive satisfiability with respect to the quasi-
witnessed models of first order product logic. If the same completeness result holds for
the notion of 1-satisfiability is still an open problem.

In this paper we present a solver that works by first performing a direct reduction of
the problem to a satisfiability problem of a boolean formula with real valued variables
and non-linear terms, more concretely boolean formulas valid in (R,+,−, ·, /, {q :
q ∈ {Q}), and secondly solves the resulting formula with a SMT solver able to solve
such formulas. Solving such formulas is still a very challenging problem for even the



most advanced SMT solvers, and in this work we show results that indicate that this
satisfiability problem for Π-ALE is a real challenging problem for SMT solvers, and
so it represents an interesting problem for the community working of the theory and
practice of SMT solvers.

2 An SMT-based Solver for the Π-ALE Description Logic

2.1 Global System Architecture

For solving the satisfiability problem, with witnessed or quasi-witnessed models, of an
input concept C0 in Π-ALE , our system follows the next steps:

1. The user introduces the expression of the concept C0 to be solved, and selects a
class of models to search: witnessed or quasi-witnessed.

2. From the parsing tree of C0, we either generate the set WTC0 (for witnessed mod-
els) or the set QWTC0 (for quasi-witnessed models).

3. We obtain a corresponding formula FC0 , from WTC0 or QWTC0 , such that it will
have a solution in (R,+,−, ·, /, {q : q ∈ {Q}) if C0 is satisfiable with the class of
models we have selected. This is explained in more detail in the next subsection.

4. The formula FC0 is solved with a suitable SMT solver.

In our current implementation we use the SMT solver Z3 [5] although the formula
FC0 to be solved is generated in SMT 2.0 format, so we can use any SMT solver able to
solve formulas in (R,+,−, ·, /, {q : q ∈ {Q}). There is an on-line version of the solver
available at the URL: http://arinf.udl.cat/fuzzydlsolver.

2.2 Translation of Fuzzy Propositional Axioms to Non-linear Real Arithmetic
Formulas

In [2] the authors showed a translation of the r-satisfiability problem with respect to
quasi-winessed models of a concept C0 over the logic Π-ALE to an entailment prob-
lem of a propositional theory QWTC0 in Product Logic. Instead on trying to solve
directly QWTC0 , our approach is based on a reduction to the problem of solving the
satisfiabilitity of a corresponding formula FC0 built over quantifier-free real non-linear
arithmetic logic such that FC0 is satisfiable if and only if the concept C0 is r-satisfiable
in a quasi-witnessed model over Π-ALE . We explain first the reduction for the particu-
lar case of witnessed models, presented in the work of Hájek, that is based on a different
fuzzy propositional theory WTC0 .

For every proposition p ∈ WTC0 , we generate a corresponding formula f(p) over
quantifier-free non-linear real arithmetic logic. See Definition 3 in [7] for a detailed ex-
planation of all the axioms in WTC0 obtained from an input concept C0 or Definition
10 in [2] for the corresponding explanation of the axioms in QWTC0 for the more gen-
eral case of quasi-witnessed models. The formulas to generate depend on the form of
the proposition p, and are indicated in Table 1. In the table, ite(C,A,B) is a shorthand
for: if condition C is true, then A must be true, else B must be true and it(C,A) is a
shorthand for: if condition C is true, then A must be true. For example, the formula of
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the first row indicates that real value assigned to the propositional variable of an univer-
sal concept, pr(∀R.C(dσ)), must be equal to 1 if pr(R(dσ, dσ,n)) ≤ pr(C(dσ,n)) and
pr(C(dσ,n))/pr(R(dσ, dσ,n)) otherwise.

p ∈WTC0 f(p) ∈ FC0

(∀R.C(dσ) ≡ (R(dσ, dσ,n)→ C(dσ,n))) ite(pr(R(dσ, dσ,n)) ≤ pr(C(dσ,n)), pr(∀R.C(dσ)) = 1,
pr(∀R.C(dσ)) · pr(R(dσ, dσ,n)) = pr(C(dσ,n)))

(∃R.C(dσ) ≡ (R(dσ, dσ,n) � C(dσ,n))) pr(∃R.C(dσ)) = pr(R(dσ, dσ,n)) ∗ pr(C(dσ,n))
∀R.C(dσ)→ (R(dσ, dσ,m)→ C(dσ,m)) it(pr(R(dσ, dσ,m) > pr(C(dσ,m)),

pr(∀R.C(dσ)) ≤ pr(C(dσ,m))

pr(R(dσ,dσ,m))
)

(R(dσ, dσ,m) � C(dσ,m)))→ ∃R.C(dσ) pr(R(dσ, dσ,m)) · pr(C(dσ,m)) ≤ pr(∃R.C(dσ))

Table 1. Reduction of formulas from the propositional theory WTC0 to formulas in the corre-
sponding set of non-linear arithmetic boolean formulas FC0 .

Then, to solve the r-satisfiability problem of conceptC0 we must determine whether:

FC0 ∪ {0 ≤ pr(E) ≤ 1 | pr(E) ∈ V ars(FC0)} ∪ {pr(C0) = r}

is satisfiable in (R,+,−, ·, /, {q : q ∈ {Q}), where V ars(FC0) denotes the set of all
the propositional variables used in formulas of FC0 .

When we ask instead to solve the problem over quasi-witnessed models, we con-
sider then the theory QWT (C0). In that case, we change the formula produced in the
first row of Table 1 for:

(pr(∀R.C(dσ)) = 0)∨ (ite(pr(R(dσ, dσ,n)) ≤ pr(C(dσ,n)), pr(∀R.C(dσ)) = 1,
pr(∀R.C(dσ)) · pr(R(dσ, dσ,n)) = pr(C(dσ,n))))

And we have also to consider the additional set of propositions in YC0 of Definition 10
in [2], that are of the form:

¬∀R.C(dσ) � (R(dσ, dσ,n)→ C(dσ,n))

that must not be equal to 1 in any solution of the satisfiability problem in order to
encode valid quasi-witnessed models. What we want to enforce with the propositions
in YC0 is that when pr(∀R.C(dσ)) = 0, in order to finitely encode a model with infinite
individuals d1

σ,n, d
2
σ,n, . . . such that:

limi→∞
pr(C(dσ,n))i

pr(R(dσ, dσ,n))i
= 0

we need that pr(R(dσ, dσ,n)) > pr(C(dσ,n)) So, for each such proposition we intro-
duce this additional formula in FC0 :

it(pr(∀R.C(dσ)) = 0, pr(R(dσ, dσ,n)) > pr(C(dσ,n))

which translates the fact that propositions in YC0 should not be satisfied in terms of
satisfiability of non-linear arithmetic boolean formulas.



3 Preliminary Evaluation

Consider the following family of 1−satisfiable concepts, indeed satisfiable with wit-
nessed models, in our logicΠ-ALE , that use the relation symbol friend and the atomic
concept symbol popular, determined by the following regular expression:(

∀friend ·
)n+1

popular u
(
∃friend ·

)n
¬popular (1)

where the expresion (E)n means n nested concatenations of the expression E, and n is
an integer parameter with n ≥ 1. So that with n = 1 we have the concept:

∀friend · ∀friend · popular u ∃friend · ¬popular

and with n = 2 the concept:

∀friend · ∀friend · ∀friend · popular u ∃friend · ∃friend · ¬popular

Consider also the following family of 1−satisfiable concepts, but only with quasi-
witnessed models, determined by the regular expression:(

∀friend ·
)n
popular u ¬

(
∀friend ·

)n
(popular � popular) (2)

where n is as before an integer parameter with n ≥ 1.
Table 2 shows the computation times 3, obtained when using the SMT solver Z3

(version 4.3.2) with a memory limit of 7GB per execution, when solving the instances
from our benchmarks in the range n ∈ [3, 10]. We have solved the instances with both
encodings, the one for only witnessed models and the one for quasi-witnessed models.
The table also shows the size of the resulting formulas FC0 obtained from each encod-
ing. We observe that on the first benchmark, with both encodings we solve the instances
within the time limit of 20 minutes up to n = 7, but with the quasi-witnessed encoding
is always harder to solve it. For the second benchmark, the situation is even more dif-
ferent between both encodings. The witnessed encoding correctly solves the instances
(find that they are not satisfiable with witnessed models) up to n = 8. By contrast, the
quasi-witnessed encoding solves the instances only up to n = 6 and always with more
time.

4 Conclusions and Future Work

Our results show that the performance of our SMT-based approach, that works by solv-
ing a non-linear real arithmetic boolean formula is really problematic. So, we are now
developing a version of our tool that will consider a translation of the problem to a
satisfiability problem over a linear real arithmetic problem. This new tool is based on
the results shown in [4] and follows a similar approach to the one proposed in [10] to
develop a satisfiability solver for different many-valued propositional logics, that uses
SMT solvers as well.

3 A solving time equal to > 1200 means that the execution was aborted after 20 minutes without
being able to solve the instance.



Benchmark (1) Benchmark (2)
WTC0 QWTC0 WTC0 QWTC0

n size solving time size solving time n size solving time size solving time

3 20 0.033 24 0.029 3 16 0.023 20 0.036
4 40 0.041 44 0.063 4 32 0.055 36 0.105
5 80 0.118 92 0.216 5 64 0.143 76 0.450
6 164 0.379 184 0.806 6 132 0.465 152 2.101
7 332 1.327 372 3.094 7 264 1.639 304 > 1200
8 672 5.080 756 > 1200 8 528 11.301 616 > 1200
9 1400 > 1200 1500 > 1200 9 1100 > 1200 1300 > 1200

10 2700 > 1200 3100 > 1200 10 2200 > 1200 2500 > 1200

Table 2. Formula size (in Kbytes) and solving times (in seconds) for FC0 obtained with our two
benchmarks of concepts with Z3 SMT solver. The generation time of the formula FC0 was less
than 0.08 seconds up to n = 8 and less than 0.2 seconds for the other sizes.
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