10 research outputs found

    Fixpoint Alternation: Arithmetic, Transition Systems, and the Binary Tree

    Get PDF
    We provide an elementary proof of the fixpoint alternationhierarchy in arithmetic, which in turn allows us to simplify the proof of the modal mu-calculus alternation hierarchy. We further show that the alternation hierarchy on the binary tree is strict, resolving a problem of Niwinski

    Automated Synthesis of Enforcing Mechanisms for Security Properties in a Timed Setting

    Get PDF
    AbstractIn [Martinelli, F. and I. Matteucci, Modeling security automata with process algebras and related results (2006), presented at the 6th International Workshop on Issues in the Theory of Security (WITS '06) - Informal proceedings; Martinelli, F. and I. Matteucci, Through modeling to synthesis of security automata (2006), accepted to STM06. To appeare in ENTCS] we have presented an approach for enforcing security properties. It is based on the automatic synthesis of controller programs that are able to detect and eventually prevent possible wrong action performed by an external agent. Here, we extend this approach also to a timed setting. Under certain assumptions, we are also able to enforce several information flow properties. We show how to deal with parameterized systems

    The modal mu-calculus alternation hierarchy is strict

    Get PDF
    AbstractOne of the open questions about the modal mu-calculus is whether the alternation hierarchy collapses; that is, whether all modal fixpoint properties can be expressed with only a few alternations of least and greatest fixpoints. In this paper, we resolve this question by showing that the hierarchy does not collapse

    Exptime tableaux for the coalgebraic μ-calculus

    Get PDF
    The coalgebraic approach to modal logic provides a uniform framework that captures the semantics of a large class of structurally different modal logics, including e.g. graded and probabilistic modal logics and coalition logic. In this paper, we introduc

    Using modal logic proofs to test implementation-specification relations

    Get PDF

    Descriptive Complexity

    Full text link

    Finite-State Abstractions for Probabilistic Computation Tree Logic

    No full text
    Probabilistic Computation Tree Logic (PCTL) is the established temporal logic for probabilistic verification of discrete-time Markov chains. Probabilistic model checking is a technique that verifies or refutes whether a property specified in this logic holds in a Markov chain. But Markov chains are often infinite or too large for this technique to apply. A standard solution to this problem is to convert the Markov chain to an abstract model and to model check that abstract model. The problem this thesis therefore studies is whether or when such finite abstractions of Markov chains for model checking PCTL exist. This thesis makes the following contributions. We identify a sizeable fragment of PCTL for which 3-valued Markov chains can serve as finite abstractions; this fragment is maximal for those abstractions and subsumes many practically relevant specifications including, e.g., reachability. We also develop game-theoretic foundations for the semantics of PCTL over Markov chains by capturing the standard PCTL semantics via a two-player games. These games, finally, inspire a notion of p-automata, which accept entire Markov chains. We show that p-automata subsume PCTL and Markov chains; that their languages of Markov chains have pleasant closure properties; and that the complexity of deciding acceptance matches that of probabilistic model checking for p-automata representing PCTL formulae. In addition, we offer a simulation between p-automata that under-approximates language containment. These results then allow us to show that p-automata comprise a solution to the problem studied in this thesis

    Modal Action Logics for Reasoning about Reactive Systems

    Get PDF
    Meyer, J-.J.Ch. [Promotor]Riet, R.P. [Promotor]van de Wieringa, R. [Promotor

    On the expressivity of the modal mu-calculus

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:5186.0913(EU-ECS-LFCS--95-338) / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    corecore