
Modal Action Logics

for

Reasoning about Reactive Systems

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at VU

https://core.ac.uk/display/15452118?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SIKS Dissertation Series No. 2003-2

The research reported in this thesis has been carried out under the auspices
of SIKS, the Dutch Research School for Information and Knowledge Systems.

c© 2003 Jan Broersen, Amsterdam

All rights reserved. No part of this publication may be reproduced, tran-
scribed, translated or transmitted in any material, electronic or optic form
without prior written permission of the author.

ISBN 90-9016611-4

VRIJE UNIVERSITEIT

Modal Action Logics for Reasoning about Reactive Systems

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor aan
de Vrije Universiteit Amsterdam,
op gezag van de rector magnificus

prof. dr. T. Sminia,
in het openbaar te verdedigen

ten overstaan van de promotiecommissie
van de faculteit der Exacte Wetenschappen
op dinsdag 25 februari 2003 om 15.45 uur

in de aula van de universiteit,
De Boelelaan 1105

door

Johannes Maria Broersen

geboren te Den Helder

promotoren: prof. dr. R.J. Wieringa
prof. dr. J.-J.Ch. Meyer
prof. dr. R.P. van de Riet

v

Preface

Roughly, we can distinguish two types of researchers involved in logic related
research: the ones that are interested in applying logic and the ones that are
interested in proving theorems about logic. These groups cannot do without
each other. Appliers look for logics with good theoretical properties that
suit their application domain, and theorists justify their work by reference to
possible future applications. This Ph.D. thesis is somewhere in between: it
develops logics with a clear application domain in mind: the specification of
reactive systems. On the other hand, it embarks on some investigations into
the formal properties of the logics defined.

But, a Ph.D. thesis is never finished. And this holds in particular for the
one you are reading now. Each of the four main chapters contains enough open
questions and directions for future research to make their subjects suitable
candidates for separate doctoral works. So, none of the projects started up in
these chapters is actually finished. This gives some explanation for the fact
that I have had great difficulty determining where to stop. But now that I did
manage to put an end to it, I want to thank all the people who have played a
role in this project.

First of all I thank my supervisors prof. dr. Roel Wieringa, prof. dr John-
Jules Charles Meyer and prof. dr Reind van de Riet: Roel for all philosophical
and directional input, and in particular, for having the confidence that I could
manage to do this the way I did, John-Jules for many valuable discussions
on AI-related aspects of my work (which basically means that I discussed all
parts of this Ph.D. thesis with him), and Reind for pleasant talks on my work,
music, my position at the university, and many other things.

Also I am very grateful to prof. dr. Wiebe van der Hoek, prof. dr. Jan
Treur, dr. Yde Venema and prof. dr. Krister Segerberg, for their willingness
to take a place in the reading committee for this doctoral thesis, and for their
approval of the work. I am especially thankful to Wiebe van der Hoek, who
came up with many good comments, and who managed to find the time and

vi

the place to discuss them with me during a short visit to Utrecht on his way
from New-Zealand to the United Kingdom.

And then there is a large group of people with whom I have had the
pleasure of sharing a university room, a hotel, a deadline, a lunch, a dinner, a
car, a train, an aeroplane, a drink, a laugh, etc.: Leon van der Torre, Mehdi
Dastani, Joris Hulstijn, Zisheng Huang, Jeroen Scheerder, Remco Feenstra,
Perry Groot, Martin Caminada, Radu Serban, Rik Eshuis, David Jansen,
Rogier van Eijk, Mark Ryan, Alessio Lomuscio, Frank van Harmelen, Marta
Sabou, Maarten Marx, Frank and Virginia Dignum, Henry Prakken, and many
more. Some of these colleagues have actually become close friends.

I could also not have done without the support of my wonderful mother,
my family, in-laws, ice-skate friends, poker friends and of Nanacht. My father
encouraged me in his own way. He said he had bought a new suit for the
occasion. But the occasion turned out to be a much sadder one. If I say
that he would have been proud of me, I feel that I do not do him justice:
his happiness for me would have outwayed his proudness by far. He was the
best father anyone can wish to have. Finally, I owe the most special kind of
gratitude to Mieke; our love has brought me much more than any intellectual
endeavor can do.

I end this preface with two remarks. The first is that some references to the
literature might suggest that I do not object against the military use of results
in Artificial Intelligence. But I do. The references simply reflect that authors
making other moral choices can also have ideas that are scientifically relevant.
The second remark is about the use of pronouns. In the remainder of this
Ph.D. thesis I use ‘he’ as a homonym for the two sorts of entities commonly
referred to by the words ‘he’ and ‘she’, and similarly I use ‘we’ as a homonym
for what is commonly referred to by ‘we’ and ‘I’.

Jan Broersen
Amsterdam, december 2002

vii

Contents

1 General introduction 1
1.1 Reasoning about reactive system properties 3
1.2 Actions, action combinators and time 7
1.3 Open worlds and closed systems 8

1.3.1 Closure and compositionality 10
1.3.2 Persistency and causality 11

1.4 Normative system properties 12
1.4.1 A normative stance . 12
1.4.2 Normative models of system environments 16
1.4.3 Description versus prescription 16
1.4.4 Norms versus norm-propositions 17
1.4.5 On the paradoxes of deontic logic 19

1.5 Problem definition . 20
1.6 A modal action logic approach 21

1.6.1 Semantic structures . 22
1.6.2 Modal operators . 28

2 Modal logics of action composition 31
2.1 Modal action logic . 31
2.2 Syntactic extensions of the basic language 34
2.3 Dynamic Logic . 37
2.4 True concurrency . 41

2.4.1 Open action interpretations 41
2.4.2 Intersection in dynamic logic 46
2.4.3 Definability of classes of models and frames 48
2.4.4 Related approaches to concurrency in modal action logic 58

2.5 Action complement . 59
2.5.1 Reasoning domains involving action complement 60
2.5.2 Complement with respect to the universal relation . . . 62

viii CONTENTS

2.5.3 Relativized complement modal action logics 77
2.5.4 Complement and deterministic action 89

2.6 Conclusions . 91

3 Temporalizing modal action logics 93
3.1 Temporal interpretations on action models 94
3.2 Combining basic modal action logic with CTL 99
3.3 Temporalizing dynamic logic 102
3.4 Temporalizing logics of concurrent action 106
3.5 The µη-calculus . 109
3.6 Conclusions . 115

4 Intended modal action models 117
4.1 Three related problems for action specification 119
4.2 From semantic equivalence to orderings 122
4.3 The frame problem . 123

4.3.1 Change over non-sequential action 123
4.3.2 Change over sequential action 135
4.3.3 Change over concurrent action 143

4.4 The qualification problem . 146
4.4.1 Qualification of non-sequential action 148
4.4.2 Qualification of sequential action 150
4.4.3 Qualification of concurrent action and the mutual exclu-

sion problem . 150
4.5 The ramification problem . 155
4.6 Orthogonality of the problems 157
4.7 Unique intended models . 158
4.8 Related work . 163

4.8.1 Approaches to extension construction in modal action
logics . 164

4.8.2 Semantic modal approaches 166
4.9 Conclusions . 168

5 Deontic modal action logic 171
5.1 Free choice versus imposed choice 172

5.1.1 The ought-to-be case . 175
5.2 Action goal norms . 176

5.2.1 A cautious reduction . 178
5.2.2 Some deontic properties 180
5.2.3 Contrary to duty goal norms 183

CONTENTS ix

5.3 Process norms . 186
5.3.1 Semantic conditions and free process choice 189
5.3.2 µa-calculus characterizations through DFAs 197
5.3.3 Compositionality in action combinators 205
5.3.4 Reductions to the µm- and the µη-calculus 209
5.3.5 Contrary to duty process norms 211

5.4 Related work . 212
5.5 Conclusions . 215

6 Discussion and conclusion 217
6.1 Action and time . 218
6.2 Action description assumptions and time 219
6.3 Action description assumptions and norms 220
6.4 Action norms and time . 220
6.5 Final remarks . 224

Bibliography 225

Abstract 239

Samenvatting (Dutch abstract) 241

SIKS Dissertation Series 243

x CONTENTS

1

Chapter 1

General introduction

This Ph.D. thesis is about the development of logics that can support a de-
signer of reactive systems in the initial stages of modeling, where on an abstract
level he is reasoning about functional properties that the system is expected
or required to satisfy. In these initial stages of design, it is necessarily the case
that the system under design is an abstract entity. It is abstract in the sense
that it is an abstraction of a huge number of possible implementations. In any
engineering project, the process we call ‘design’ ideally starts at this abstract
level, and not at the implementation level. However, implications of design
choices should be available to a system designer as soon as possible. Early in-
spection of implications is the best guarantee that the system being developed
is actually the system the specifier intends (we call such ‘checks’ concerning
conformity with the specifiers intentions ‘validations’), and that conceptual
errors and internal inconsistencies are discovered (we call such checks ‘veri-
fications’) before correcting them will be too laborious. The following quote
from a short (invited) paper by John Rushby called ‘calculating with require-
ments’ [161] accurately describes the issue.

‘The reasons for favoring mathematical modeling and calculation
are the same in computer science as in other engineering disciplines:
they allow the consequences of requirements and the properties of
design to be accurately predicted and evaluated prior to construc-
tion.’

The central paradigm in this thesis is that a reactive system can be viewed as
a collection of actions that jointly produce the behavior desired by a reactive
system specifier. We develop several action logics that enable a specifier to
characterize design choices using logic formulas. Implications of design choices

2 CHAPTER 1. GENERAL INTRODUCTION

thus reified, are then available as properties entailed according to the specific
action logic used. The activity of checking these entailment relations is an
example of reasoning about functional reactive system requirements (desired
system properties). Another way of characterizing this type of reasoning is
to make the following comparison: reasoning about requirements is to the
abstract design level what execution and testing are to the implementation
level. Written as an equation:

Reasoning about requirements : Abstract Design Level
=

Execution and Testing : Implementation Level

The equation essentially compares two computational activities: the test-
ing for functionality of an implemented system by executing it, and the ver-
ification of entailment relations between different types of requirement and
specification properties. Both computations are examples of verifications per-
formed on a system under development, but concern entirely different levels
of abstraction. Note that the subject of what is traditionally called ‘formal
verification’ of system implementations concerns a cross-level relation between
the abstract design level and the implementation level: an implementation is
formally verified to obey requirements. The languages developed in this the-
sis are very well suited to function as specification languages in such cross
level formal verifications, but we do not develop them with this application
in mind. We intend to stay entirely on the abstract design level to study the
logic properties that reside there.

In the present chapter we sketch the background of our research and formu-
late a problem definition. First, in section 1.1, we focus in detail on the ways
in which logic can be used as an inference engine for the prediction of system
properties, thus helping a designer to derive consequences that he is not able
or willing to deduce himself. We compare our view to the more traditional
one where there is a strict dichotomy between programming and specification.
One of the objectives for this comparison is to convince the reader that this
Ph.D. thesis is not about programming, but about reasoning about reactive
system requirements in terms of declarative action properties. This discus-
sion enables us to formulate a preliminary, general problem definition for this
Ph.D. thesis. In the sections 1.2, 1.3 and 1.4, we explain what type of action
properties we deem important for system specification and what problems may
arise in a logic approach to the specification of such properties. In particular,
section 1.3, discusses the problem of the discrepancy between the closed worlds
of implemented systems and the open worlds that logics refer to. Here we argue

1.1. REASONING ABOUT REACTIVE SYSTEM PROPERTIES 3

that in order to bring logic closer to the closed world of implemented systems,
we need closed interpretations of sets of logic formulas. Section 1.4 focuses on
the problem of reasoning about requirements from a normative perspective.
Requirements are desired system properties. They are in that sense norms for
a system. We argue that the properties of a logic used for specification to a
large extent reflect the way a specifier rationalizes his design. In particular,
we show that normative (deontic) logics may serve as convenient languages to
express the requirements a specifier poses to a system, and that for certain
situations the use of deontic requirements is actually inevitable. Then, having
described the general specification and verification setting, and the types of
action reasoning involved in it that we think are important, section 1.5 gives
the central problem description for this Ph.D. thesis. Finally, section 1.6 ex-
plains our approach to the central problem, and discusses semantic structures,
orderings and modalities. This section also functions as an overview of the
work in this Ph.D. thesis.

1.1 Reasoning about reactive system properties

A reactive system is a system that continuously interacts with its environ-
ment and whose basic functionality is to maintain a certain behavior of its
environment ([88]). This is what distinguishes reactive systems from mere
transformational systems, for which only the result after termination matters.
Concurrency is central to reactive systems in the sense that each reactive sys-
tem by definition operates concurrently with its environment. A traditional
position towards reactive system design is sketched by the following picture.

describes an
action structure,
the state structure
is implied

only describes
temporal state
relations

Concurrent
Program

Specification

computationscomputations

Temporal LogicCSP, CCS, etc.

− Concrete
− Imperative
− Action oriented

− Abstract
− Declarative
− State oriented

a subset of

Fig 1. the traditional program-specification distinction

This is also the mental picture that Manna and Pnueli follow in their

4 CHAPTER 1. GENERAL INTRODUCTION

book The Temporal Logic of Reactive and Concurrent Systems [124]. In the
first part of this book, Manna and Pnueli define a concurrent programming
language that includes constructs from many other well known languages for
concurrency, such as CSP [97], CCS [138, 139], etc. This concurrent program-
ming language contains assignment, skip and await actions at the atomic level,
and selection, cooperation, while and block statements, etc. at the program
level. It is interpreted over transition systems, and each program determines
a set of computations (traces or trees through a transition system). Each
concurrent program is meant to reflect a specific ongoing behavior in inter-
action with the environment. It is known that concurrent programs carry a
much higher risk for unexpected and unintended behavior. This is one of the
reasons why programs are verified against specifications of their intended be-
havior. For transformational programs, verification only concerns the relation
between begin and end-states. But in case of reactive systems, we have to
deal with ongoing behavior, for which end-states cannot be assumed to exist.
So requirements for reactive systems may concern behavior that is infinite in
the temporal dimension, which means that it cannot be verified in terms of a
relation between begin- and end-states. This explains why for the specification
and verification of reactive systems temporal logics are used [149]. Temporal
logics can express requirements concerning infinitely ongoing behavior. Figure
1 depicts this traditional setting for reactive system verification. The program
on the left determines a (set of) computation(s), by explicit prescription of
an order in which actions (instructions) are executed. The structure of states
(values of state variables) is ultimately defined through the transformations
determined by the assignment, skip and await actions at the lowest program
level. The temporal logic specification on the right determines the possible
temporal (succession) relations between computation states. In these tempo-
ral specifications, nothing is said about actions or programs. A program is
said to satisfy a specification if the computations interpreting the program are
a subset of those interpreting the specification. There can be many different
programs satisfying the same specification.

In this traditional picture, ‘reasoning about requirements’ is not really an
issue. First of all, the verification of a program against its specification can
hardly be seen as a form of reasoning, since the program is (1) not written in
a logical language, and (2) constitutes the system itself: it is not a property or
set of properties of the system. Second, there is no concern about entailment
relations between temporal specification formulas (requirements).

To position the work in this thesis, in figure 2 we sketch an alternative
mental picture. Our mental picture stays at a more abstract level and does

1.1. REASONING ABOUT REACTIVE SYSTEM PROPERTIES 5

not refer directly to an implementation at all. It refers to the level where a
designer thinks about his design by considering possible system properties and
the logical entailment relations between them. Therefore the picture of figure
2 should be seen as a refinement, and at the same time, as an extension of
the right side of figure 1, the side that is only concerned with specification
properties.

describes an
action and/or
state structure

describes an
action and/or
state structure

System
specification

Requirements
specification

computationscomputations

Logics, AQLs
Logics, ADLs,

Statecharts

− Abstract
− Declarative
− Slanted towards Implementation

− Abstract
− Declarative
− Intended exclusively for verification

a subset of

Fig 2. an abstract view on specification

System properties may entail one another, and entailed properties should
not be included in a system specification. This motivates the distinction be-
tween system specification properties (the left side of figure 1) and requirement
properties or verificational properties (the right side). Implementations are
derived from system specification properties, which is why we say that the
properties to the left are more slanted towards implementation. We want any
representation of system specification properties to be as concise as possible.
For instance, as part of our system specification we do not want properties that
are logically redundant. Logically redundant properties are typically proper-
ties that might be taken in consideration as verification properties.

This picture embodies a much more liberal setting than that of figure 1.
We mention a few possibilities to fill in more detail:

• The system specification and the requirements specification are stated in
the same logical language. In this case, the subset relation of the com-
putations (models) coincides with ‘logical entailment’. Checking system
properties for mutual entailment relations or inconsistencies falls under
this picture.

• The system specification is stated in an action description language
(ADL), which is a language in which to describe action domains, and the

6 CHAPTER 1. GENERAL INTRODUCTION

requirements specification in an action query language (AQL), which is a
language in which to specify action properties that need to be proven of
an action domain description ([114]). Now the subset relation is not log-
ical entailment in the traditional sense, since we deal with two separate
logic languages.

• The system specification is a set of properties determining one particular
transition system, and the requirements specification is a set of temporal
properties. In this case the subset relation is verified by means of model
checking. This picture is closest to the traditional one of figure 1, the
only difference being that the transition system is not described by a
concurrent program but by a (declarative) specification.

• The system specification is a statechart design (a graphical language for
modeling reactive systems [84, 10]), and the requirements specification
a temporal logic. This is again a setting that is close to the traditional
one. Much depends on whether statecharts are considered a program-
ming language or a specification language. We do deal with temporal
properties in chapter 3, but do not treat the theory of statecharts in this
Ph.D. thesis.

• The system specification is the combination of a functionality descrip-
tion in modal action logic combined with a description of a normative
environment, and the requirements specification is a set of normative
requirements stated in a deontic action logic.

As said, the situation in figure 2 can be seen as both a refinement and an ex-
tension of the specification part in figure 1. It is a refinement in the sense that
we make a distinction between two sets of specification properties: properties
from which we want to derive an implementation (the left side of the picture),
and properties that are used for verification (the right side of the picture). Of
course, this situation can be repeated by defining a third specification that is
even closer to implementation. This way we get a series of specifications that
can be thought to evolve gradually towards implementation.

The picture in figure 2 is an extension of the one in figure 1 in the sense
that properties concerning actions and concurrency are brought under the
scope of specification, that is, for specification we move from an endogenous
logic, where actions are not explicit in the language, to an exogenous one,
where actions are explicitly represented in the syntax. Temporal logics, as
used in the traditional setting, do not refer explicitly to actions or to concur-
rency, and are thus endogenous. In the traditional setting there is a strict

1.2. ACTIONS, ACTION COMBINATORS AND TIME 7

division: actions and concurrency are aspects of the program side, and tempo-
ral relations between computation states are aspects of the specification side.
In our picture this division is blurred: actions and concurrency are considered
to be supported by the languages in which a specifier states requirements and
makes verifications. This comes with several problems concerning reasoning
about (true) concurrency and reasoning under, for example, frame assump-
tions, topics that are covered by chapters 2 and 4.

The setting of figure 2 thus covers a variety of ways in which languages of
logic can assist a reactive system designer in making verifications. It accounts
for checking separate requirements for mutual inconsistencies or entailment
relations (redundancies). And it does not preclude situations where we want
to cross-verify requirements that are stated in different languages. Having
sketched this general setting, we are in a position to formulate a first, very
general problem definition for this Ph.D. thesis:

Can we develop a uniform reasoning framework that incorporates
and combines the forms of reasoning involved in the different types
of verificational effort that follow from the schematic setting of
figure 2?

As said, this is a very general problem description. In the following subsections
we say something more about the types of reasoning we deem important in this
context. Then, in section 1.5 we formulate a more refined problem description.

1.2 Actions, action combinators and time

A view on reactive system behavior as series of actions to be performed by
a system, provokes a close examination of the action concept itself. A first
issue is how the properties of complex actions relate to properties of the more
elementary actions they are composed of. Complex (compound) actions are
built from atomic actions by means of action combinators. We consider the
combinators that are standard in relational formalisms such as relation algebra
[174] and process formalisms such as dynamic logic [152, 59, 83] and process
logics [87, 90], i.e. choice, sequence, iteration, converse, and some more specific
constructs like fail, any and test. For our purposes, two specific action com-
binators deserve close examination: concurrent action composition and action
negation. We mentioned in the preceding section that concurrency is central to
the concept of reactive systems: reactivity is considered as action taking place
concurrently with environmental action or other internal action. The notion

8 CHAPTER 1. GENERAL INTRODUCTION

of ‘action complement’ in the interpretation of reference to ‘alternative action’
also arises as a crucial concept in the context of action specification. For in-
stance, it is natural to consider the property that a certain effect is brought
about exclusively by a certain action. Another way of saying the same thing
is that any alternative action cannot have that effect. A second example of
where the action complement arises as a natural concept is that of tempo-
ral reasoning over action. For instance, we should be able to conclude that
the (liveness) property that over all possible futures eventually an action a is
inevitable, is logically equivalent with the property that it is not possible to
perform actions alternative to a forever. And finally, we use action negation in
normative statements about action; for instance: ‘an obligation to perform an
action a implies the absence of permission to perform any action alternative
to a’.

Although in figure 2 we sketched a specification setting where, contrary
to the traditional setting in figure 1, not only temporal specification proper-
ties play a role, we do not want to dispute that temporal properties are very
important for specification. To model the reasoning about the temporal evolu-
tion of reactive system properties, many temporal logics have been developed
[149, 9, 47, 187, 24, 124, 48], some of which have incompatible conceptions
of the structure of time. In chapter 3 we present our position regarding this
issue.

1.3 Open worlds and closed systems

Leaving the traditional strict dichotomy between programs (implementations)
and specifications, brings with it the possibility to view an implementation as
the limit of the process of specification refinement. However, although this
idea of a gradual movement towards implementation sounds nice as a goal or
idealization, it neglects a fundamental difference between the way we look at
implementations on the one hand and declarative logic specifications on the
other. Languages for implementation (programming languages) are always
viewed as describing a closed world: a world with a clear boundary (the sys-
tem boundary) and a finite number of finitely describable states in each of
which a finite number of exactly defined actions are possible that display no
unforeseen non-determinism. If we interpret a language of logic, on the other
hand, we assume a world that is open: the world of logic is unbounded, involves
no limitations on the number of states and possible actions, and no action oc-
currence or effect is precluded. In this open world, in principle, everything is
possible. Logic formulas are then interpreted only to dictate constraints on

1.3. OPEN WORLDS AND CLOSED SYSTEMS 9

this open world, in order to make it only slightly less open. But in the closed
world of an implemented system, in principle nothing is possible; the only
things possible being the things enclosed by the functionality of the system
as described by its program. Take as an example the implementation descrip-
tion (program rule) ‘if z = c, then y := z + 1’. The classical interpretation
assumes that we are in a specific completely defined program state (implicitly
represented by the place of this rule in the program) and that if at this point
variable z has value c precisely the following action is performed: 1 is added
to variable z and the result is assigned to y. In a first-order modal action logic
we might try to express this by: ‘∀y, z. (z = c) → [var-update](y = z + 1)’.
This formula says so much as: in states where the (pre)condition z = c is
obeyed, performing the action var-update always results in a state where the
(post)condition y = z+1 is satisfied. Here we encounter the completely differ-
ent world view we presuppose when interpreting a logic formula, because this
is far from equivalent to the program rule. For instance the following things
are left open by the logic formula: (1) it does not refer to a specific state
from where the action is executed, but to a whole set of states by means of a
general precondition z = c (2) it does not guarantee execution of var-update
if z = c is satisfied, (3) it does not exclude performance of other actions if
z = c is satisfied (4) it is not excluded that in states where the precondition is
not satisfied, actions with effects identical to that of var-update are executed
(5) it does not exclude actions occurring simultaneously with var-update (6)
it does not even say that the action var-update is actually possible (7) it does
not exclude that variables other than y or z are also changed by performing
the action (8) it does not say anything about in what way satisfaction of the
postcondition y = z + 1 is to be brought about by the action var-update. For
the program interpreter this is clear: it adds 1 to the variable z and assigns
the result to variable y. But for the interpreter of the logic formula it is not
clear: subtracting 1 from y and assigning the result to z (a program rule would
say z := y − 1) also satisfies it.

Of course, for this particular case, we should be able to provide additional
formulas, representing properties that decide on all that is left open. But in
general this is a very complicated issue, and for this discussion, this observation
is beside the point. The point is that to bring logic closer to implementation,
we may have to find ways to decide on all the matters that are left open in
the semantics of logic in a default way. This is the motivation for chapter 4,
where we investigate closed interpretations of logic formulas by adding closure
assumptions to their semantics. It is also interesting to consider the converse
direction: make closed interpretations more open. In general we might say

10 CHAPTER 1. GENERAL INTRODUCTION

that there are basically two ways to reconcile the two realms: work on the
interpretation of logic formulas to make them more closed or allow more free-
dom in the semantics of programming languages in order to make them more
open. In chapter 4 of this Ph.D. thesis we take the former approach.

1.3.1 Closure and compositionality

Using logic for specification comes down to listing logic formulas representing
requirements that the system ought to satisfy. An apparent advantage of this
declarative approach is that it is highly modular, since a specification consisting
of a list of properties can be easily modified by removing and adding individual
items in the list. Also the task of verifying that a system specification satisfies
a requirement specification (alternatively: that an implementation satisfies a
specification) can be done in a modular fashion by verifying each requirement
separately. The ease with which the join operation is performed in logic speci-
fications follows from the compositionality of the semantics of the conjunction
operation of logic (∧). In programming languages on the other hand, compo-
sitionality is in general much harder to achieve. In many cases, the semantics
of programming languages cannot be said to be compositional; in general it is
very difficult to describe the behavior of two programs that are joined together
in some way in terms of the behavior of the individual programs, especially if
the join involves a concurrent composition of programs.

In general we can say that ease of conjoinment (of programs and specifi-
cations) depends on the compositionality of the semantics of the conjoinment
operation. As said, the conjunction operation of logic ∧ satisfies this desirable
property. But under a closed interpretation of logic formulas, as argued for in
the previous section, compositionality of the semantics of ∧ is not maintained.
To explain this we return to the example ‘(z = c)→ [var-update](y = z + 1)’.
We now give an example of a closed interpretation of this formula by as-
suming that we are in a state that satisfies the precondition (z = c) and
(1) from this state no other actions are possible, and (2) also no other ac-
tions occur simultaneously, and (3) the action ‘var-update’ is actually the
only action possible, (4) other variables than y and z are not changed by
performing ‘var-update’, and (5) variable z is left unchanged by performing
‘var-update’. Now if we conjoin this logic sentence with for instance the sen-
tence ‘(z = c) → [var-update](z = c + 5)’, and we stick to a closed interpre-
tation for both individual clauses, we run into trouble. The second formula
intends to describe an extra effect of the action ‘var-update’. But this imme-
diately conflicts with the closed interpretation of the first formula that says

1.3. OPEN WORLDS AND CLOSED SYSTEMS 11

that z is left unchanged by the action ‘var-update’. This means that under a
closed interpretation of the two individual clauses, their conjunction has no
meaningful interpretation.

The example shows that under a closed interpretation of individual for-
mulas, the semantics of logic conjunction is no longer compositional. Our
solution to this problem is to apply the closure assumptions not to individual
clauses but to the complete set of requirements after they are conjoined. This
makes the closure of an interpretation the final step of the process of building
a specification by composition of individual requirements. The composition
itself is performed on clauses that have an open interpretation, and only as a
final step the interpretation is closed.

1.3.2 Persistency and causality

In a slightly different from, in artificial intelligence (abbreviated AI, from now
on) the subject of closed interpretations of specification formulas appears as
the problem of how to reason about change and causality. One of the most
discussed problems in this area is the infamous frame problem. In short the
original frame problem can be described as follows: when describing effects
of actions declaratively, we prefer to talk exclusively about what changes as
the result of an action and do not want to describe explicitly and exhaustively
what properties persist. This stance towards specification of action effects
embodies an important aspect of going from the open world of declarative
logic specification to the closed world of programming. But, we emphasize
that persistency is only one of the issues relevant for the closure of open in-
terpretations. Recall that in section 1.3 above we mentioned eight ways in
which the formula (z = c)→ [var-update](y = z + 1) can be considered open.
Furthermore, note that the frame problem would actually not be a problem
at all if a reasoner reasoning about how changes are brought about by actions
would adopt an open world view, where he accepts that actions always come
with other (concurrent) actions and with possible additional effects.

In the AI-community the frame problem is often directly associated with
the problem of how to reason about causality, and sometimes these two prob-
lems are identified. This should not come as a surprise, because both the
classical frame problem and the causality problem concern the observation
that change is not arbitrary: the frame assumption says that change does
not occur unless it is specified, and causality says that change does not oc-
cur without a cause. However, in our view, the problems of reasoning about
causality and reasoning under frame assumptions have a different scope. A

12 CHAPTER 1. GENERAL INTRODUCTION

central problem in reasoning about causality is the absence of contrapositive
reasoning: if a causes b, then the negation of b does not necessarily cause the
negation of a. Example: from the assertion that turning a switch to the on-
position causes a room to be lightened, it does not follow that darkening the
room causes the switch to turn to the off-position. This irreversibility problem
concerns reasoning about causal dependency relations between conditions, and
is, in our view, strictly a problem of reasoning about ramifications (secondary
effects) of action effects. Thus, the ramification problem is not interpretable
in terms of the difference between open and closed world views. But it is true
that the problem of how to reason about causality is closely intertwined with
the problem of how to reason under frame assumptions. We focus closely on
these issues in chapter 4.

1.4 Normative system properties

In this section we motivate our interest in the use of normative (deontic) rea-
soning in the context of system specification. The relevance of deontic logic
follows from our intention to specify system properties at an abstract (design)
level. First of all, we argue in section 1.4.1, that on this abstract level it is
convenient to allow for normative properties. Second, in section 1.4.2, we ar-
gue that in environments that concern human activity it is also necessary. We
also comment on some philosophical issues raised in the area of Deontic logic,
and discuss whether they are relevant for normative reactive system specifi-
cation. In 1.4.3 we discuss the difference between descriptive and prescriptive
models, which both play a role in our view on reactive system specification.
Normative models might be used prescriptively in the specification of reactive
system functionality, and descriptively in for instance the description of ex-
ternal bodies of norms to be used in a juridical expert system. In 1.4.4 we
recall that in the literature on deontic logic it is argued that the logic of the
prescriptive use of norms differs from the logic of the descriptive use of norms.
Since the intended use of our logics concerns both, we should say something
about this difference and about how our logics deal with it. Finally, in 1.4.5
we give our view on the role of paradoxes in deontic logic.

1.4.1 A normative stance

For an AI-researcher studying agent rationality, the picture appears to be clear:
his artifacts are considered to be intelligent, and he is trying to ‘capture’ in-
telligent behavior in his models. If an AI-researcher writes down ϕ→ O(a; b),

1.4. NORMATIVE SYSTEM PROPERTIES 13

he means that he is considering the situation where his artifact has an obliga-
tion (denoted by the operator O(.)) to do a; b in case that ϕ. If the researcher
claims that the formula ϕ→ [a]O(b) is entailed, he claims something about the
rationality of his artifact. So his formulas reflect the reasoning of the artifacts
he is trying to develop. If the researcher uses these formulas descriptively, we
are in the realm of what is called ‘knowledge representation1’. If the researcher
uses them prescriptively, we are in the realm of ‘agent specification’.

However, a reactive system designer may write down exactly the same
formulas, despite the fact that a reactive system is in general not considered
an intelligent artifact. The reason is that it might be convenient to look at a
reactive system as if it has intentional capabilities. Of course, this says more
about the standpoint of the specifier than about the nature of the system. If
a specifier writes down ϕ → O(a; b) he means that his system is obliged to
perform a; b in cases where ϕ is satisfied. And if he checks whether ϕ→ [a]O(b)
is entailed, he is performing a check on the coherence of his own view on the
system. This small example shows that the logic does not model the reasoning
of the system under design, but that of the specifier checking his design.

Despite the fact that for AI-researchers it is much more natural to study
intentional notions, essentially this same view had to be argued for exten-
sively in the philosophy of artificial intelligence. It was Daniel Dennett who
emphasized the possibility of taking an intentional stance [53] towards (phys-
ical, artificial) systems. The intentional stance can be described as viewing a
system or object as if it is intentionally motivated, that is, as if it has goals,
beliefs, desires, intentions, and as if it is susceptible to norms. We explain the
intentional stance by means of an example concerning a GPS-based navigation
system for cars. GPS stands for ‘Global Positioning System’, a world-wide im-
plemented satellite network for determining positions on the face of the earth.
We may employ the following two views on such a navigation system.

1. We may view it as a reactive system. The choice for this modeling
paradigm implies that our basic mental picture of the system is that
it continually senses its environment: through GPS its position with
respect to its environment, through a mobile GSM-link (with a central
database) the conditions of its environment that concern traffic-jams and
diversions, and through buttons or voice recognition the commands and
other triggers given by the driver. Based on its information on relevant
geographic properties of its environment (highways, streets, cities, coun-
tries, routes, etc.) and its position in it, it reacts by producing responses

1Note that under this heading not only representations of knowledge are studied.

14 CHAPTER 1. GENERAL INTRODUCTION

in the form of route information on a display or through voice processing.

2. Adopting the intentional stance, we may view it as an artificial intelligent
agent. It communicates with satellites, the driver, and through a GSM-
link with central databases to update its knowledge concerning traffic
jams and diversions. It is intentional in that it has a goal in the form of
the destination of the driver. It may be pro-active in the sense that if it
expects to enter a certain geographical area, it may update its knowledge
concerning traffic jams and diversions for this area in advance. In this
sense, the system can also be attributed autonomy: the driver does
not have to instruct the system to perform such checks explicitly. And
typically, the system makes plans to reach the destination. These plans
are not static: they have to be revised in case of unforeseen incidence.

The assumption underlying the intentional stance is that if we want to rep-
resent information about something we can do this in one of many mutually
incommensurable ways.

The concept of the intentional stance was brought up in the philosophy of
AI to avoid discussions about whether we are right in ascribing genuine mental
abilities to artificial devices that display intelligent behavior. Our motivation
to bring up the intentional stance here puts a slightly different emphasis. Our
reason for bringing it up is that the intentional stance is really useful on the
rather high level of abstraction we consider descriptions of reactive systems.
This same point was argued for by John McCarthy [128] (long before Dennett
formulated his intentional stance), who suggests that mental attributes should
be ascribed to systems whenever this is useful. McCarthy writes:

‘Our general motivation for ascribing mental qualities is the same
as for ascribing any other qualities, namely to express available
information about the machine and its current state.’

Embracing the intentional stance towards modeling goes hand in hand with
applying certain intensional (with an ‘s’) logics (such as epistemic logics or
BDI-logics) to reason about behavior. However, we do not advocate to intro-
duce a whole plethora of intensional modalities and intentional notions from
AI into reactive system specification2. We restrict ourselves to the normative
modalities, and call the associated stance the normative stance.

2However, note that seeing reactive system behavior as action undertaken by it can also
be considered a step in the direction of taking an intentional stance.

1.4. NORMATIVE SYSTEM PROPERTIES 15

Adopting a normative stance towards system requirements amounts to
adopting terms like ‘violation’ and ‘compensating action’ in the vocabulary
for describing system properties. By using this terminology one accepts a
priori that systems may actually violate prescriptions, and that it needs to
be specified what has to be done if the system does so. We reiterate that
this is only a stance towards specification, one that is quite different from
the one one might be used to. It is only a stance, since the same system
might be described not using terms like ‘violation’ or ‘compensating action’.
In that case the states where the violation occurs are seen as normal states
that might be attended by the system during a normal course of activity.
So we view the normative stance as just a convenient way (in some cases) of
looking at system properties, one that is close to the way we talk about system
properties anyway, as is exemplified by terminology like for instance ‘fault-
tolerant systems’. Adopting a normative stance means adopting a terminology
involving deontic notions like permission, prohibition and obligation. But by
stating that a system is obliged to perform a certain step, or prohibited to
execute a procedure, we do not claim that the system is actually susceptible
to this kind of normative notions; we do not claim that it ‘knows’ or ‘decides’
how to behave in such a normative context, as humans, and maybe, artificial
agents might. Our use of normative terms like ‘obligation’ and ‘prohibition’
only expresses that we prefer to describe properties of the system using the
normative stance. This again emphasizes that we are only concerned with a
stance, one that is especially suited for the abstract level on which we want to
talk about system properties.

In deontic logic the concept of a ‘soft constraint’ [102, 40] embodies one
of the forms of appearance of the normative stance. In deontic logic, a ‘soft
constraint’ is defined to refer to system requirements whose violation is not
considered as something that lies outside the scope of specification, but as just
another situation for which it may be specified how the system should react.
However, there is another vivid use of the term ‘soft constraint’, under the
fundamentally different interpretation of ‘weak design choice’. This distinction
between weak and strong design choices concerns the relative ‘strength’ or
‘importance’ of requirements. By adopting such a distinction we enter the
world of preference, probability, conflict and defeasability3, which we view as
fundamentally different from the world of normativity. If a defeasible soft
constraint is violated by a design, it may be dropped altogether, because more
specific, valuable or accurate information takes its place. If, on the other

3In chapter 4 we encounter preference and defeasability in the context of action specifi-
cation.

16 CHAPTER 1. GENERAL INTRODUCTION

hand, a deontic soft constraint is violated by a design, it must be preserved as
a requirement containing valuable violation information for which additional,
‘contrary to duty’ information may be specified. To avoid confusion with the
non-deontic interpretation, in this Ph.D. thesis we simply refrain from using
the term ‘soft constraint’.

1.4.2 Normative models of system environments

In case the environments of reactive systems involve human activity, the nor-
mative stance is the most natural view, that is, if we want to model the
environment in detail. Having the choice to violate norms is one of the main
characteristics that makes us call humans and other intelligent systems ‘au-
tonomous’. It would appear rather artificial to try to describe autonomous
behavior of environmental entities in a non-normative way.

Modeling the environments of reactive systems is essential if we want to
verify and validate global properties that are relative to the behavior of the
environment. In many cases environments are populated with human opera-
tors or other autonomous agents. Autonomous agents may behave differently
then prescribed, i.e. they may violate norms. We want to be able to predict
how the combination of system and environment reacts on these violations.
We may for instance consider assumption / guarantee properties [1] that state
what is guaranteed by the system provided the environment complies to cer-
tain normative properties, and how the system reacts if those properties are
violated.

1.4.3 Description versus prescription

The distinction between ‘normative’ and ‘non-normative’ is not analogous to
the distinction between ‘descriptive’ and ‘prescriptive’. Typically physicists,
discovering and revealing structures that are already there, are involved in
description. System designers, specifying devices that are yet to be built,
are involved in a process of prescription. AI-researchers do both: they use
symbolic representations both to describe intelligent behavior as observed in
human (inter)action (knowledge representation) and to prescribe it in design
models for artificial agents (intelligent agent specification [188]). The use of
the words ‘descriptive’ and ‘prescriptive’ in these sentences exemplifies the use
in this Ph.D. thesis: the words refer to the intended use of a model, and do
not imply anything about the content of a model or the form a model takes.

The distinction between normative (deontic) properties and other inten-
sional properties (alethic, epistemic, etc.) has another source. A deontic

1.4. NORMATIVE SYSTEM PROPERTIES 17

property expresses an obligation, permission or prohibition. It is tempting to
assume that a set of deontic properties always comprises a prescriptive model.
And in many cases it does. But we can think of exceptions. As said, it depends
on the use that is made of such a model. For instance, as part of the design
of a juridical expert system a developer may need to make a deontic model
of a piece of legislation. Such a model of an existing body of normative rules
is, from the point of view of the developer, a descriptive model. This makes
it clear that when we talk about deontic properties, we are not necessarily
in the realm of the prescriptive models: norms are prescriptions but can be
used prescriptively or descriptively. And also: sentences expressing norms are
descriptions but can be used prescriptively or descriptively. Summarizing, we
draw the following picture.

a descriptive model
(possibly of

norms)

a state of affairs
(possibly involving

existing norms)

description

a prescriptive model
(possibly explicitly

normative)

a desired state
of affairs

prescription

Fig 3. description and prescription

Above we stressed that system designers are essentially involved in a pro-
cess of prescription, because they specify devices that are yet to be built. This
holds for their enterprise as a whole. But by distinguishing between require-
ments properties and specification properties, as we did in section 1.1, we
can nuance this picture: in the verification of requirement properties against
specification properties, the former are used prescriptively, and the latter de-
scriptively.

1.4.4 Norms versus norm-propositions

In the previous section we argued that normative models can be either de-
scriptive or prescriptive. The intended use of the normative models in this
Ph.D. thesis concerns both aspects. In deontic logic it is argued [193, 194, 2, 3]
that the logic of the prescriptive use of norms differs from the logic of the de-
scriptive use of norms. Von Wright writes [194]:

‘An example might be ”you may not park your car this side of the
street”. Used prescriptively it imposes a prohibition: used descrip-

18 CHAPTER 1. GENERAL INTRODUCTION

tively it gives information about existing parking regulations. In
the prescriptive use the sentence does not say anything which is
true or false. In the descriptive use it does.’

Von Wright uses the term ‘norm’ to refer to the prescriptive use of norms and
‘norm-proposition’ to refer to the descriptive use. Von Wright and Alchourrón
emphasize that we should take the distinction serious, and that logics of norms
are different from logics of norm-propositions. A new line of research that is
motivated by the distinction between norms and norm-propositions is that by
Makinson and Van der Torre [122, 123].

The first distinction between norm-propositions (descriptions of prescrip-
tions) and norms (plain prescriptions) is that the former should be consid-
ered relative to an authority that has enacted them, while for the latter this
is irrelevant. A distinction that is related to this observation is that norm-
propositions are possibly conflicting, either because different authorities have
enacted conflicting norms (e.g. national laws conflicting with international
laws), or because a given body of norms (a legal system) contains conflict-
ing information. Norms on the other hand, do never conflict: for instance,
we cannot have both the norms “smoking is forbidden” and “one is obliged
to smoke”. These norms logically exclude each other. A second distinction
concerns ‘gaps’. In a context of norm-propositions, the normative information
with respect to a state of affairs may be empty; norm propositions may be
indifferent regarding certain situations. Norms, on the other hand, are usually
assumed to be gap less; for each condition they either assume permission or
prohibition. Finally, norm-propositions are said to bear truth-values, while
norms are not. Norm-propositions refer to norms enacted by some authority,
and may therefore be said to exist in the world. If a norm-proposition exists
in the world, it is true. Norms, on the other hand, cannot be said to exist
in the same way as norm-propositions do. Therefore they are said to lack
truth-values. The following table summarizes the differences between norms
and norm-propositions as mentioned by Von Wright and Alchourrón.

norm-propositions norms
descriptive use prescriptive use

relative to an authority that has enacted them independant
conflicts are possible consistent
indifference is possible gapless

bear truth values do not bear truth values

Table 1. norms versus norm-propositions

1.4. NORMATIVE SYSTEM PROPERTIES 19

As said, the intended use of the deontic logics we develop is both descriptive
(norm-propositions) and prescriptive (norms). Therefore we somehow have
to deal with the differences mentioned in table 1. The relativity of norm-
propositions with respect to an authority is not an issue that is very important
in our context. The main authority is the specifier of a system, and in as far as
external authorities are involved in the descriptive norms of external bodies of
rules, they are not very relevant. But the issue of conflict / indifference versus
consistency / gaplessness is of importance. The deontic logics of chapter 5 are
adaptable to either circumstance. As for the issue of truth values, we adhere to
the following standpoint. The concept of truth usually refers to states of affairs
in the physical world. The deontic world is not a physical world, but a mental,
abstract one. Therefore philosophers hesitate to call validity in this artificial
world ‘truth’, notwithstanding the fact that we can formulate properties that
are obeyed by the reasoning over the entities in this mental, abstract world.
That is where Von Wright points at when he says ([194]) that maybe ‘logic
has a wider reach than truth’. We take the position that also validity in the
artificial (platonic) deontic world can be regarded as truth, notwithstanding
the apparent absence of the direct link with the physical world4. Anyway,
we do not even have to adhere to the view that logic is about truth, it is
enough just to say that logic is about entailment relations between meaningful
sentences. Truth can be regarded an ‘internal’ variable of reasoning, a variable
that is hidden from the reasoner all together.

1.4.5 On the paradoxes of deontic logic

To a large extent, the area of deontic logic has developed around a number of
so called ‘deontic paradoxes’. In as far the ‘paradoxes’ of deontic logic are seen
as puzzles, we have no objections against this preoccupation with paradoxes.
We subscribe to the viewpoint of Bertrand Russell, who writes in ‘On denoting’
[162]:

‘A logical theory may be tested by its capacity for dealing with
puzzles, and it is a wholesome plan, in thinking about logic, to
stock the mind with as many puzzles as possible, since these serve
much the same purpose as is served by experiments in physical
science.’

4This means that we also do not support ‘modal realism’ [113], that says that we have to
take the concept of a ‘possible world’ in modal logic semantics literally.

20 CHAPTER 1. GENERAL INTRODUCTION

But many ‘paradoxes’ of deontic logic are relative to some deontic formalism
in which they arise as a discrepancy with intuition or common sense. We
object to calling such a discrepancy between an outcome of a model of norma-
tive reasoning and our assessment of the rationality of the outcome (common
sense), ‘a paradox’. We simply see these discrepancies as ‘empirical5’ refuta-
tions of the rationality of the normative reasoning model. So, in our view,
many ‘paradoxes’ discussed in the deontic logic literature are no paradoxes,
but just anomalies of the normative reasoning model under consideration. If
the so called paradoxes of deontic logic would point to an inherently paradox-
ical nature of normative reasoning, we should give up hope of ever achieving a
meaningful formalization. This motivates our choice to refer to the paradoxes
of deontic logic as ‘puzzles’ or ‘anomalies’.

The puzzles of deontic logic are relevant to us, in as far they are relevant for
the more restricted context of normative reasoning about action. This means
that some of the famous anomalies can be left unconsidered. For the ones that
remain, the clear demarcation of our reasoning domain results in much more
accurate descriptions of the problems. For instance: in many cases, such as
in many formulations of the Chisholm anomaly and the Forrester anomaly,
normative assertions concerning actions (ought-to-do) and situations (ought-
to-be) ([64]) are intertwined, which obscures the central issue of the problem
considerably. We only consider normative assertions about actions that are
explicitly described in action languages.

1.5 Problem definition

The three foregoing sections on action combinators and time (section 1.2),
closing interpretations of logic formulas (section 1.3) and deontic specification
properties (section 1.4) discuss what type of issues and properties we deem
relevant for abstract specification. With this in mind we can now reformulate
the preliminary problem definition at the end of section 1.1.

Can we define a logic framework for abstract reactive system spec-
ification that combines reasoning about all of the following aspects
of action: (1) the way properties of actions that are composed
by using action combinators (concurrent composition, choice, con-
verse, etc.) relate to properties of their constituent parts (2) the
relation between action and (discrete) time, (3) effects, indirect

5We use this word to stress the analogy with experiments in physical science, as Russell
does.

1.6. A MODAL ACTION LOGIC APPROACH 21

effects and enabling (executability, possibility) of actions, and (4)
permissions, prohibitions and obligations regarding actions?

The development of such a formalism requires a reconciliation of the men-
tioned types of reasoning for the specific domain of functional reactive system
requirements. The restriction to a limited reasoning domain, is clearly in
support of the feasibility of the research. The general reconciliation problem
seems much harder. The work by Van der Torre [179, 180] is an example of
research concerning the general reconciliation problem of combining reasoning
about defeasability and normativity.

But why should we aim for reconciliation? Why should we aim for a frame-
work that indeed combines all mentioned types of reasoning? The first answer
is that this is a natural implication of our intention to leave the traditional
dichotomy between specification and programming. For instance, as a result
of it we need to reason about concurrency, because we do not want this as-
pect to be the exclusive domain of the level of programs. And for exactly the
same reason, we have to be able to reason about action effects, occurrences,
dependencies between variables, etc. The second answer is that we simply
want to be as complete as possible with respect to the types of reasoning in-
volved in abstract system specification. In particular normative reasoning can
be considered an important aspect of it, as we argued in section 1.4. The third
answer is that the 4 reasoning areas described in the problem definition are
not independent. An example is the Kantonian principle of ‘ought implies can’
and its contraposition ‘cannot implies ought not’. Here we see how reasoning
about possibility of actions, which concerns reasoning about action and change
in the form of the qualification problem, interferes with normative reasoning.
Another example is the interference between reasoning about concurrency and
reasoning under frame assumptions. They interfere in the sense that separate
minimal change action description assumptions for concurrent elements of a
complex action cause that they cannot be conjoined concurrently. Actually for
any combination of the four aspects mentioned in the problem definition, we
can show dependencies of the reasoning. All of them are extensively discussed
in the chapters to come.

1.6 A modal action logic approach

To account for the dependencies and interrelationships of the different reason-
ing types as mentioned in the problem definition, we need a common semantic
ground. To this end we use modal action models (Kripke models supplemented

22 CHAPTER 1. GENERAL INTRODUCTION

with action labels). In 1.6.1 we motivate this choice. We call the action logics
that are interpreted on these models ‘modal action logics’. The best-known
modal action logic is propositional dynamic logic (PDL) [152, 59, 83]. Sec-
tion 1.6.2 collects most of the modal operators that are defined throughout
this Ph.D. thesis. These include operators for concurrency, time, action, and
norms. In both sections 1.6.1 and 1.6.2 we refer to the chapters where the is-
sues raised are worked out in detail. The sections can thus be read as overviews
of the work in this Ph.D. thesis.

1.6.1 Semantic structures

Propositional logic (PL) is the logic of finitely many propositions about ar-
bitrary domains. Since in PL nothing about the structure of domains is as-
sumed, it does not bear on an abstract semantic representation of its domain
of reasoning. First order logic (FOL), on the other hand, does assume a
(rudimentary) structure of its reasoning domain by adopting a world view of
relations and functions over arbitrary infinite sets of ‘objects’. This semantic
view of FOL is, in a sense, maximally abstract, and therefore, very gener-
ally applicable. The relations of FOL may be used to refer to such different
real world-relations as temporal relations, spatial relations, causal relations,
human relations, normative relations, authority relations, etc. This has led
several influential researchers (e.g. J.A. Robinson [157]) to believe that FOL
is the only logic we need in computer science.

From a strictly formal standpoint one cannot dispute the claim that FOL
is all we need. But making such a claim is like claiming that for computation
all we need are Turing Machines (assuming the Church-Turing thesis). There
are actually two main reasons why FOL is sometimes not what we need. First
of all it is often the case that FOL is much more then we need, because
FOL is not decidable. Therefore, by using FOL, we cannot in general be sure
that calculations terminate to reach a desired result. The second concern is
the generality of FOL. As said, this is often claimed an advantage. But at
the same time it is a weakness. For more specialized tasks, such as deontic,
temporal and epistemic reasoning, mathematically alike semantic structures
have emerged. Well-known examples of such common mathematical properties
are reflexivity, transitivity, symmetry, etc. of binary relations used for the
interpretation of modalities in intensional logics. Modal Kripke semantics
are typically suited to model the reasoning connected to this type of formal
properties of binary relations. Blackburn et al. call modal logic in their recent
textbook on modal logic the logic of binary relations ([19]). For actions the

1.6. A MODAL ACTION LOGIC APPROACH 23

most used abstract semantic representation is that of a binary relation between
execution and result state. This directly motivates the use of modal semantics
in this Ph.D. thesis on action logics. We refer to the models we use as ‘modal
action models’.

Definition 1.6.1 (modal action models) Given a countable set A of atomic
action symbols with ‘a’ ranging over A, and a countable set P of proposition
symbols with ‘P ’ ranging over P, a modal action model M = (S,RA, V P) over
A and P is defined as follows:

• S is a non-empty set of possible states

• RA is an action interpretation function RA : A → 2(S×S), assigning a
binary relation over S × S to each atomic action a in A.

• V P is an interpretation function V P : P → 2S assigning to each propo-
sition P of P the subset of states in S for which P is valid.

Any individual modal action model can be considered a high level abstract
representation of a specific concrete (reactive) system. The states of a modal
action model represent system states, the relations labelled with atomic action
symbols represent actions taking the system from one system state to the other,
and atomic propositions represent conditions that possibly change value going
from one system state to the other. Note that the models are very close
to transition systems, which are generally accepted as useful abstractions for
reactive systems.

Throughout this Ph.D. thesis, we will use the modal action models of
definition 1.6.1, with sometimes only some non-essential adaptations in cases
involving initial states and norms. All logics defined in this Ph.D. thesis fo-
cus on different aspects of the models: logic properties of (1) the relation of
pre- and post-conditions of complex actions with pre- and post-conditions of
constituting actions (e.g. dynamic logic), (2) concurrency (intersection of ac-
cessibility relations), (3) action negation, (4) action description assumptions
for effects (frame problems) and action possibilities (qualification problems),
and ramifications, (5) action and (branching) time, and (6) norms (ought-to-do
deontic notions).

Interpreting concurrency and complement on modal action models

A fundamental choice that has to be made in the modeling of concurrency
is whether it should be regarded as true concurrency or be reduced to inter-
leaving. The main advantage of a reduction through interleaving is that it

24 CHAPTER 1. GENERAL INTRODUCTION

essentially brings back concurrency to the well-studied sequential situation.
The choice for interleaving as a model for concurrency also has a very natu-
ral analogy in the actual working of computer systems: actions that on a user
level seem to occur concurrently are actually interleaved on the processor level.
However, on the abstract reasoning level we intend to stay, modeling concur-
rency by interleaving is not the most natural choice. First of all, we abstract
completely from implementational issues. And whether concurrent actions are
modeled through interleaving is in our view a choice regarding their implemen-
tation. Second, interleaved models of concurrency are exponentionally more
extensive than truly concurrent models, which has its impact on the complex-
ity of model-oriented reasoning tasks, such as model checking [86]. This makes
it clear why we do not adopt the approach of Lodaya e.a. [117], who define a
dynamic logic over modal action models in which concurrency is interpreted
by interleaving.

Interestingly, it is also natural to consider the opposite: modeling inter-
leaved activity through true concurrency. This gives independent motivation
to be interested in reasoning about true concurrency. Consider a person rea-
soning about his time-schedule for the forthcoming week. He has to fit in
several tasks in his schedule. As long as the order in which different tasks are
performed during the day is not important, he can suitably apply the abstrac-
tion that a day is the minimal time unit, and that different actions performed
during a day are performed concurrently. He will reason with propositions
like ‘I cannot go to the dentist, and attend the conference on the same day (in
concurrency terms: the actions are mutually excluded)’ and ‘one of the days
before the conference, I will have to prepare my lecture’. This means that
logics that model true concurrency, such as developed in this Ph.D. thesis,
also apply to reasoning tasks where we view actions as if they are concurrent.

We interpret true concurrency by intersection of action relations in the
modal action models of definition 1.6.1. Intersection reflects true concurrency
in a natural way: concurrency of actions is mirrored by the condition that the
action relations that interpret them relate the same system states. But, the
choice to model concurrency as intersection implies that we have to increase
the expressiveness of modal languages to reason about concurrency. Standard
modal logics preserve validity under bisimulation, which means that they are
not strong enough to define intersection. These matters are discussed exten-
sively in chapter 2.

The second main concern of chapter 2 is the interpretation of action com-
plement on modal action models. In section 1.2 we motivated the importance
of action complement. However, the interpretation of this notion on modal

1.6. A MODAL ACTION LOGIC APPROACH 25

action models is not straightforward. Semantics definitions found in the litera-
ture do not suffice. We define a notion of ‘relativized action complement’ that
defines the relational space with respect to which the complement is taken to
be relative to the action combinators in the modal action language.

Interpreting time on modal action models

As explained in section 1.1 temporal properties play a major role in system
design, and are most likely to be found among the requirements properties (the
right side in figure 2). The action models of definition 1.6.1 are actually fairly
well-suited for the interpretation of temporal properties, although some details
have to be taken care of. The states in the action models of definition 1.6.1 are
primarily abstractions of system states, and not of time points. But, by looking
at ‘unravelings’ of the action models, individual states are duplicated into
possibly infinite sets that can be viewed as system states at certain points in
time. A second concern is how to account for the intuition that the dimensions
of time and dynamics are closely related: actions take place in time, and the
notion of time is redundant without the possibility of action taking place.
In chapter 3 we show for several modal action logics how to define the link
between action and time by defining a next time relation RX in terms of the
action interpretation function RA. One of the problems we discuss concerns
the definition of RX for concurrent complex actions.

Interpreting norms on modal action models

The modal action models of definition 1.6.1 do not contain normative infor-
mation. So if we want to interpret deontic languages, we need to introduce
a normative realm in the models. There are several options. We introduce
the different ideas here roughly, assuming some minimal knowledge of modal
languages that can be interpreted on modal action models.

Meyer [135] defines violation states. He introduces a proposition V whose
interpretation determines a set of ‘violation states’ for any model. Actions
resulting in a violation state violate a norm, i.e. they either lack a permis-
sion, ignore a prohibition or neglect an obligation. A clear advantage of this
abstraction is that it naturally reflects the intuition that the violation of a
norm will bring a system in a special state: a state that under correct be-
havior should not have occurred. Following Meyer’s approach, it follows that
performing an action a from a certain state means violation of a norm if and
only if in this state it holds that 〈a〉V . Van der Meyden [132] argues that this
is not sufficient, and that it is more natural to associate violations with the

26 CHAPTER 1. GENERAL INTRODUCTION

actions themselves rather than with the states they lead to. If we refrain from
details, we may say that in Van der Meyden’s approach, performing an action
a from a certain state means violation of a norm if and only if in this state it
holds that 〈aV 〉, where the action is annotated with a V to indicate that it
concerns an action whose performance embodies a violation. Finally, in [36]
we presented yet another approach, that simply takes the notion of ‘it is a vio-
lation to perform action a’ as a primitive proposition that is valuated over the
set of possible states (we often call this the state-space in this Ph.D. thesis).
Roughly, we may identify this with a proposition V (a). Then performing an
action a in a state means violation of a norm if and only if V (a) holds in that
state.

Now what are the differences between these approaches, and what are the
relative (dis)advantages? Contrary to what is claimed by Van der Meyden,
for the modal logic he is concerned with (propositional dynamic logic), his
approach is equivalent to that of Meyer. There are many significant differences
between Meyer’s logic and Van der Meyden’s logic, but these do not follow
from the above choice concerning the representation of the violation primitive
on the level of models. Any violation by performance of an action a in a model
of Meyer corresponds one-to-one with a violation of an action a in a model
of Van der Meyden. This is shown by a simple mapping for both formulas
and models. Meyer’s formulas are mapped to Van der Meyden’s by moving
violation propositions from the scope of modal operators to the atomic action
‘within’ them: 〈a〉V becomes 〈aV 〉. This second formula is interpreted in Van
der Meyden’s logic in the obvious way: it is valid in a state whenever there is
a V -annotated action relation leading to some other state. Now, since Van der
Meyden’s logic satisfies the tree model property, he is not right in claiming that
his semantic representation of the deontic primitive gives rise to different logic
properties: any state of a tree model that satisfies 〈a〉V can be easily seen to
correspond one-to-one with a state in a V -annotated tree model that is formed
by ‘moving’ violations V from states to the action leading to them, and that
thereby satisfies 〈aV 〉. This shows the equivalence of both approaches. But
note that it only holds for modal action logics satisfying the tree property.
In this Ph.D. thesis we consider many logics that do not satisfy this property.
The main difference between the logics of Meyer and Van der Meyden does not
concern the primitives, but the way normative assertions for complex actions
relate to normative assertions for constituent parts. Using arguments from law,
Van der Meyden chooses to define permission for a sequential composition of
actions in such a way that it implies permission of all sub-actions (in chapter
5 we call such a permission a ‘process permission’). But this type of choices is

1.6. A MODAL ACTION LOGIC APPROACH 27

independent of the choice for the semantic definition of a normative primitive.
There is a difference between the above two approaches and the approach

with violation propositions of the form V (a). Note that in Meyer’s and Van
der Meyden’s approaches violation is coupled with the actual (in)possibility
to perform an action. Since Meyer associates permission of a, denoted P (a),
with 〈a〉¬V , the atomic action a is actually possible. In the approach with
violation propositions V (a), this coupling is absent. However, it can be argued
that such couplings between normative assertions and qualification assertions
(concerning the possibility of actions) actually reflect logic laws. We might
view Kant’s principle of ‘ought implies can’ as an example of such a law.
However, we believe it is not correct to introduce this as a logical invariant.
The Kantonian principle is more like an ethic directive for norm promulgation
(it is morally / pragmatically wrong to impose norms that cannot possibly
be obeyed), than like a property that is necessarily obeyed by any type of
normative reasoning. It is not a logic necessity, because we can think of many
examples where norms do not ‘respect’ capability (being obliged to pay one’s
debts, but not being able to). So, we can view the Kantonian principle as a
norm about norm promulgation with roots in ethics, which means that for the
application of norms to the specification of reactive system properties, we do
not have to consider it to be a guiding logic principle.

All of the three mentioned approaches are adaptable to either one of the
two cases discussed in section 1.4, i.e. to reasoning about norms or norm-
propositions. If we want to interpret norm-propositions, we can distinguish
between different types of violations: violations of a prohibition, of an obli-
gation and of the absence of a permission. Details of these definitions are
discussed in chapter 5. Also we might introduce seperate violation conditions
for seperate bodies of norms or agents. But this lies outside the scope of the
work presented in this Ph.D. thesis.

Closing in on modal action models

In section 1.3 we called the world of logic ‘open’ and the world of reactive sys-
tems ‘closed’. In the open world of logic, a priori no restrictions are assumed,
while in the closed system world the possibilities are restricted to that what is
considered system behavior. We argued that modal action models are suitable
semantic abstractions of reactive systems. In terms of modal action models,
the openness of the world of logic corresponds with the view that no models
are a priori precluded. The semantic equivalent of the closed world view is
that only a small set of models are considered to be the actually intended

28 CHAPTER 1. GENERAL INTRODUCTION

ones. Thus, under a closed view, many models of the open view are not taken
into consideration because they represent all kinds of system behavior that
is assumed not to occur. The most famous of these assumptions is the frame
assumption. In chapter 4 we call such assumptions ‘action description assump-
tions’. The application of action description assumptions can be seen as a form
of closing the open interpretation of a set of action specification formulas. In
chapter 4 we make action description assumptions explicit by defining order-
ings over modal action models. The models that reflect closed interpretations
are defined as maximal or minimal elements over these orderings.

1.6.2 Modal operators

In this section we give a brief impression of the wide range of modal operators
being defined throughout this Ph.D. thesis. Modal operators capture inten-
sional notions such as possibility, necessity, obligation, globalness, etc. We
divide the modal operators that are relevant to us are in three groups: (bare)
modalities over complex action, temporal (action) modalities and normative
action modalities.

First we consider modalities for reasoning about complex action. We call
logics of action over the models of definition 1.6.1 ‘modal action logics’ (MALs).
Which action modalities are considered by a MAL depends on the action lan-
guage. Other authors call logics of this type ‘dynamic logics’. But in this
Ph.D. thesis, we consider dynamic logic (PDL) to be a specific modal action
logic, namely the one encompassing the action combinators sequence (;), choice
(∪), iteration (∗), and converse (←). We give names to modal action logics
using expressions of the form MAL(X), where X is a specific set of action com-
binators. Under this convention PDL receives the name MAL(∪, ; ,∗). Modal
operators have the form [α]ϕ or 〈α〉ϕ, where complex actions α are built from
atomic actions using the combinators specific for the action logic. Intuitively,
the modal operators say: ‘if it is possible to perform the complex action α it
certainly results in a state that obeys ϕ’ and ‘it is possible to perform α in
such a way that it results in a state where ϕ’, respectively. Central in chapter
2 are MALs where the action language includes a concurrency combinator (∩)
and an action complement (∼ or �I). We consider many different action lan-
guages, and several alternative interpretations. The following quote by Krister
Segerberg [166], who is one of the founding fathers of dynamic logic, supports
us in our conviction that the choice for modal action logic (dynamic logic) to
reason about reactive system properties is justified.

‘Is dynamic logic a logic of action? It seems to this author that

1.6. A MODAL ACTION LOGIC APPROACH 29

one might well say so. (...) Even so, it has to be admitted that
dynamic logic lacks resources in the object language directly to
express agency and ability. (...) But if dynamic logic is a logic of
action, it is primarily a logic of computer action.’

The temporal operators that can be interpreted on the modal action models
of definition 1.6.1 are studied in chapter 3. Since these temporal languages
are interpreted on the same models as the modal action logics of chapter 2,
we are in a good position to study the relations between these two types of
reasoning. Apart from traditional temporal operators like AG(ϕ) for ‘on all
possible futures it globally holds that ϕ’, AX(ϕ) for ‘for all possible next
moments in time it holds that ϕ’ and A(ϕUψ) for ‘for all possible futures ϕ is
preserved until ψ holds’, we introduce A(ϕUη) for ‘for all possible futures the
condition ϕ is preserved until the action η occurs’, A(ηUϕ) for ‘for all possible
futures the action η is performed (repeatedly) until the condition ϕ holds’,
A(ηUϑ) for ‘for all possible futures the action η is performed (repeatedly)
until the action ϑ’ occurs. In chapter 3 we also discuss a classification of
liveness and safety properties in this context.

The deontic modalities over the modal action models we study in chap-
ter 5 are divided into modalities for goal norms (O�(α), P�(α) and F�(α),
where O, P and F stand for Obligation, Permission and Prohibition (‘Forbid-
deness’) respectively), and modalities for process norms (O�(α), P�(α) and
F�(α)). The distinction is explained in detail in chapter 5, but roughly the
distinction is that for process norms violations may occur during execution of
complex (sequential) action, while for goal norms violations can only occur in
the resulting states.

30 CHAPTER 1. GENERAL INTRODUCTION

31

Chapter 2

Modal logics of action
composition

In this chapter we study the modal action logics of various combinations of
action combinators, over the models of definition 1.6.1. Some parts of this
chapter, concerning action complement, have been published [27].

2.1 Modal action logic

The languages of modal action logic in this chapter are all of the form given
in the following definition.

Definition 2.1.1 (modal syntax) Taking ‘α’ to represent any compound
action that can be constructed with a set of atomic action symbols A and a
finite set of action combinators AC, and taking ‘P ’ to represent arbitrary ele-
ments of a given countable set of proposition symbols P, a well-formed formula
ϕ of a modal action language LMAL(AC) is defined by the following BNF:

ϕ,ψ, . . . ::= P | | ⊥ | ¬ϕ | ϕ ∧ ψ | 〈α〉ϕ

This definition leaves open how compound actions α are built from atomic
actions a. We consider several different sets AC of action combinators, and
define the syntax of actions α for the corresponding modal action languages
LMAL(AC) separately. We define the usual syntactic extensions: ϕ ∨ ψ ≡def

¬(¬ϕ ∧ ¬ψ), [α]ϕ ≡def ¬〈α〉¬ϕ, ϕ → ψ ≡def ¬ϕ ∨ ψ, ϕ ↔ ψ ≡def

(ϕ → ψ) ∧ (ψ → ϕ). In the following definition of the semantics of formulas

32 CHAPTER 2. MODAL LOGICS OF ACTION COMPOSITION

of a modal action language LMAL(AC), we assume a general interpretation
function R for the semantics of non-atomic actions α.

Definition 2.1.2 (modal semantics, validity) The modal semantics is de-
termined by the notion of validity of a formula ϕ in a state s of a model
M = (S,RA, V P), denoted M, s |= ϕ. We implicitly assume here an extension
of the interpretation function RA for atomic actions a, to an interpretation
function R for compound actions α.

M, s |= P iff s ∈ V P(P)
M, s |= for all s ∈ S
M, s |= ⊥ for no s ∈ S
M, s |= ¬ϕ iff not M, s |= ϕ
M, s |= ϕ ∧ ψ iff M, s |= ϕ and M, s |= ψ
M, s |= 〈α〉ϕ iff there is a t such that (s, t) ∈ R(α) and M, t |= ϕ

Validity on a model M is defined as validity in all states of the model. If
ϕ is valid on a model M, we say that M is a model for ϕ. General validity of
a formula ϕ is defined as validity on all modal action models. The definition
of R in terms of RA depends on the set AC of action combinators in the
modal action language. The validity relation for these separate languages is
occasionally denoted |=AC .

The semantics enforces that [α]ϕ holds in a state whenever all states reach-
able by α obey ϕ. From validity of formulas in a state we go via validity on a
model and general validity to the definition of a modal action logic.

Definition 2.1.3 (modal action logic) Given the class of modal action mod-
els of definition 1.6.1, a modal action language LMAL(AC), and an interpre-
tation M, s |= ϕ of formulas ϕ of this language on modal action models, the
sub-set of all generally valid formulas is defined to be the (modal action) logic
(relative to this language, semantics, and class of models). The logic is sym-
bolically referred to as MAL(AC).

The important semantic notion of logic consequence (entailment) is defined
as follows:

Definition 2.1.4 (entailment) A formula ϕ globally entails a formula ψ
(notation: ϕ |=G ψ) if and only if all models for ϕ are also models for ψ.

2.1. MODAL ACTION LOGIC 33

This is the global, model-based notion of entailment. Since it is model-
based, it depends on the notion of validity on a model. Validity on a model is
given in definition 2.1.2. For modal logics in general, there are other intuitive
ways in which validity on a model can be defined. For instance, one might
not want to adopt the above notion of validity because one objects against the
entailment [a]P |=G [a][a]P . An alternative is to define validity of models not
as validity in all states, but as validity in a designated subgroup of (initial)
states (or even in one particular point). For the resulting notion of entailment,
that we denote by |=I , the entailment [a]P |=I [a][a]P is not valid. This can
also be achieved by switching to the local notion of entailment (|=L): a formula
ϕ locally entails a formula ψ if and only if state validity of ϕ implies state
validity of ψ. For this local variant of entailment we also have [a]P �|=L [a][a]P
(for general models). In this Ph.D. thesis we mainly use the global version
of entailment. When we use the entailment symbol without a subscript, we
mean the global version. Pre- and postcondition reasoning typically makes
use of modal action formulas of the form ψ → [α]ϕ. The precondition can be
seen to function as a condition for the ‘initial state’ of the (complex) action
α. Clearly we do not have ψ → [α]ϕ |=G ψ → [α][α]ϕ. This justifies the use
of the global notion of entailment for pre- and postcondition reasoning.

In this chapter we consider a range of modal action logics, starting from
the most basic one over atomic actions and its syntactic extensions, and in-
creasing the expressive power by adding action combinators and alternative
ways in which the action semantics interacts with the boolean reasoning in
states. In doing so, we take a special interest in two operations on actions:
truly concurrent composition and action complement. We argue that intersec-
tion of relations in MAL-models can be regarded an intuitive representation
of true concurrency. We elaborate on the open interpretation of concurrency,
and distinguish it from an open interpretation of action effects. We also briefly
review some discussions in the literature on modal logics with intersection, and
discuss properties of these logics. Our concern with the complement follows
from its role in the expression of frame properties, temporal properties, and its
relevance for the definition of deontic action notions. Extensions with comple-
ment are stronger than extensions with intersection, because for all versions of
the complement we consider, the intersection operation is syntactically defin-
able. The crucial semantic choice in adding action complement is to define the
relational space with respect to which the complement is taken. A standard
way to define complement is inherited from (binary) relation algebra [174]:
with respect to the universal relation. We investigate the extension of modal
action logics with this form of complement and discuss some of the logic prop-

34 CHAPTER 2. MODAL LOGICS OF ACTION COMPOSITION

erties it gives rise to. We argue that several of the resulting properties are
not intuitive for modal logics of action. The source of the problems is that
with the introduction of a complement with respect to the universal relation,
we inherit the intrinsically global view from relation algebra. Modal logic has
a local orientation. We define an alternative complement that is faithful to
the local nature of modal action reasoning. The resulting (range of) modal
action logics fit better with intuitions for action reasoning, and have better
complexity properties.

Van Benthem [16] defined (propositional) modal logic to be exactly the
bisimulation-invariant fragment of first order logic. A logic not satisfying the
tree property is also not invariant under bisimulation. All logics of sections
2.4 and 2.5 of this chapter lack the standard tree property. Therefore, strictly
speaking, according to Van Benthem’s definition the range of logics we con-
sider in these sections is not modal. Two other generalizations of the modal
language to first order logic that preserve some desirable properties (e.g. decid-
ability) are the 2 variables fragment and the (loosely) guarded fragment. But
with one exception, all the logics we consider in 2.4 and 2.5 also do not belong
to these fragments, because transitive modal operators form one of their cen-
tral ingredients. It takes three variables to express transitivity in first order
logic, and transitivity cannot be expressed by guarded formulas. Despite this
discrepancy with traditional modal logic and its generalizations, it cannot be
denied that the logics we define and study have a purely modal appearance.
They all extend the minimal modal logic K, which implies (according the well-
known axiom-based classification of what should be regarded as ‘modal’ logic),
that they are all actually normal modal logics. All in all we conclude that it
is not straightforward to find a place for the logics in the landscape of ‘modal’
logic categories.

2.2 Syntactic extensions of the basic language

The simplest action language is the one consisting of the countable set of
atomic actions without action combinators. In the semantics for the modal
action logic over this action language, we just interpret each atomic action
through a relation RA(a) in the models of definition 1.6.1. The logic is
the weakest (minimal) modal logic K, extended with parameterization over
modalities (each atomic action is assigned a separate modality). The logic is
also known under the names ‘Hennessy-Milner logic’ and ‘multi modal logic’
(MML). In the notation of definition 2.1.3 the logic is referred to as MAL(∅)
since it is the modal action logic with an empty set of action operators. The

2.2. SYNTACTIC EXTENSIONS OF THE BASIC LANGUAGE 35

first extension of the basic language we consider, is that with the action com-
binators choice, sequence, test, and the special actions fail and skip.

Definition 2.2.1 Taking ‘a’ to represent arbitrary elements of a given set of
atomic action symbols A, the syntax of the syntactically definable actions is
defined by the following BNF:

α, β, . . . ::= a | α ∪ β | α;β | ϕ? | fail | skip

These action combinators are given their usual interpretation.

Definition 2.2.2 For the actions α of definition 2.2.1, the interpretation
function R is given as a recursively defined extension of the interpretation
function RA for atomic actions:

R(a) = RA(a) for a ∈ A
R(α ∪ β) = R(α) ∪R(β)
R(α;β) = R(α) ◦R(β)
R(ϕ?) = {(s, s) | s ∈ S and M, s |= ϕ}
R(fail) = ∅
R(skip) = {(s, s) | s ∈ S}

Roughly, action modalities [α]ϕ are interpreted by evaluating the condition
ϕ in the ‘final states’ determined by the interpretation of the action α. But the
semantics of the test-action ϕ? breaks this principle: it defines an interaction of
the action semantics with conditions in states that are possibly non-final. The
test action ‘generates’ its own reflexive accessibility relation, and is possible
whenever the tested formula holds in the current state. The empty action fail
is comparable to deadlock in process algebra ([7]). In process algebra deadlock
is defined as the action δ that obeys the laws x + δ = x and δ · x = δ. The
corresponding formulas in the logic presented here are [α∪ fail]ϕ↔ [α]ϕ and
[fail;α]ϕ ↔ [fail]ϕ. It is not difficult to see that these are validity schemes
given the syntactic extensions, which shows that the action fail behaves as
deadlock. Note that we have [α; fail]ϕ ↔ [α][fail]ϕ ↔ [α] ↔ ↔ [fail]ϕ.
The skip action is an action that is always possible (like the test it ‘generates’
its own accessibility relation) and loops in the current state, which means that
it has no effect.

Proposition 2.2.1, below, implies that the basic multi-modal action logic
is equivalent to the modal logic over the action combinators choice, sequence,

36 CHAPTER 2. MODAL LOGICS OF ACTION COMPOSITION

test, fail, and skip. The reason is that the operators only extend MAL(∅)
syntactically, since each of them individually can be introduced as syntactic
extensions. But first we define what it is to say that a modal action logic
extends another logic syntactically.

Definition 2.2.3 (syntactic extensions) Let AC and AC ′ be two sets of
action connectives. If LMAL(AC ′) ⊃ LMAL(AC), and there is a total sur-
jective function T : LMAL(AC ′) → LMAL(AC) such that for any state s of
any model M and any formula ϕ ∈ LMAL(AC ′) it holds that M, s |=AC′ ϕ
if and only if M, s |=AC T (ϕ), we call MAL(AC ′) a syntactic extension of
MAL(AC).

Proposition 2.2.1 MAL(∪, ; , ϕ?, fail, skip) is a syntactic extension of the
logic MAL(∅).

Proof
We can recursively define a total surjective function T taking formulas of

LMAL(∪, ; , ϕ?, fail, skip) to formulas of LMAL(∅) as follows:

T ([α ∪ β]ϕ) ≡ [α]ϕ ∧ [β]ϕ
T ([α;β]ϕ) ≡ [α][β]ϕ
T ([ψ?]ϕ) ≡ ψ → ϕ
T ([fail]ϕ) ≡ [⊥?]ϕ
T ([skip]ϕ) ≡ [?]ϕ
T (ϕ ∧ ψ) ≡ T (ϕ) ∧ T (ψ)
T (¬ϕ) ≡ ¬T (ϕ)
T (P) ≡ P for P ∈ P

Given the semantics of the operators, in definition 2.2.2, it is straightfor-
ward to verify that this translation respects the condition that for any state s
of any model M and any formula ϕ ∈ LMAL(∪, ; , ϕ?, fail, skip) it holds that
M, s |=∪,;,ϕ?,fail,skip ϕ if and only if M, s |=∅ T (ϕ).

We call the operators choice, sequence, test, fail, and skip syntactically
definable in the logic MAL(∅). We can add all action combinators that are
syntactically definable in the basic modal language as a syntactic extension.
But as soon as we want to add an operation on actions that is not syntacti-
cally definable, the possibility to define any of the connectives as a syntactic
extension is blocked. This is what happens if for instance we add the iteration

2.3. DYNAMIC LOGIC 37

or converse, as we do in the next section. Given the linearity of the above
translation, clearly the logic with syntactic extensions has the same properties
as the basic multi modal logic MAL(∅). The following table summarizes some
well-known properties of this logic.

MAL variant complexity of sat. modal axiom. f. m. p.
(; ,∪, φ?, fail, skip)/(∅) PSPACE [110] [111] yes

Table 2. some properties from the literature on MAL(∅)

The finite model property (f. m. p.) says that any satisfiable formula can
be satisfied in a finite model. If additionally, the size of these finite models
is bounded by the formula size, we get the small model property. The small
model property implies that the number of (relevant) models for a formula is
finite and bounded by its size. The small model property thus brings with
it decidability of the satisfiability problem. It directly gives a naive decision
procedure: check all models. This is possible in principle: the finite model
property says that models are finite, and the small model property says that
there are only finitely many models, given the bound with respect to the
formula size. But there is another reason why the finite model property is
important to us. In chapter 4 we define orderings over modal action models in
order to select intended ones. In the definition of these orderings and in the
results obtained for them we require models to be finite. Also, the selection
of intended models is motivated by the wish to be able to construct them and
perform model checking. Clearly, for construction, finiteness is a prerequisite.

2.3 Dynamic Logic

The best known modal action logic is propositional dynamic logic (PDL,
[59, 83]). The original PDL, defined by Pratt [152], introduces two extra
connectives to the modal action language defined in the previous section: it-
eration: ∗ and converse: ←.

Definition 2.3.1 Taking ‘a’ to represent arbitrary elements of a given count-
able set of atomic action symbols A, the syntax of regular actions is defined by
the following BNF:

α, β, . . . ::= a | α ∪ β | α;β | ϕ? | α∗ | α←

38 CHAPTER 2. MODAL LOGICS OF ACTION COMPOSITION

Definition 2.3.2 The semantics of (c-)PDL follows from the modal seman-
tics of definition 2.1.2, and an extension of the relational interpretation func-
tion R of definition 2.2.2 such that it includes the following equalities for ∗

and ←:

R(α∗) = (R(α))∗

R(α←) = {(s, t) | (t, s) ∈ R(α)}

Both the connectives iteration and converse are not syntactically defin-
able in the basic modal language, and can thus not be introduced through a
syntactic extension.

Proposition 2.3.1 The operators 〈α←〉ϕ and 〈α∗〉ϕ are not syntactically de-
finable in the basic modal action logic MAL(∅).

Proof
For the logic MAL(∅) state-validity is preserved under taking generated

sub-models ([19]), that is, if a formula ϕ is satisfied in a state s of a model
M , we can eliminate all parts of the model that are not in the reflexive tran-
sitive closure over all action relations from s, without destroying validity in
s. But, for instance the formula 〈a←〉P is not always preserved under taking
a generated sub-model: if we contract a model to the part corresponding to
the reflexive transitive closure over all action relations from a satisfying state
s, actions a entering the state coming from another state where P holds, are
eliminated.

The logic MAL(∅) is (semantically) compact. This means that any infi-
nite set of MAL(∅)-formulas is satisfiable if all its finite sub-sets are. The
operator 〈α∗〉ϕ is not (semantically) compact. Every finite sub-set of the
set {〈a∗〉¬P,P, [a]P, [a][a]P, . . . } is satisfiable, but the infinite set itself is not.
From the compactness of MAL(∅) it follows that if the operator 〈α∗〉ϕ were
syntactically definable in MAL(∅), the infinite set would be satisfiable. Clearly
it is not.

In the previous section we extended the basic modal language with the
action operations ‘sequence’, ‘choice’, ‘test’ and ‘fail’ through simple syntactic
extensions. But as soon as one non-syntactically definable operator is intro-
duced (as a real extension of the logic), none of these in the basic modal
language syntactically definable operators can be introduced through a simple
syntactic extension anymore (skip and fail are still definable in terms of ϕ?,

2.3. DYNAMIC LOGIC 39

but the test itself is not longer syntactically definable). This is seen by in-
spection of, for example, the formula [(a; b)∗]ϕ. We cannot use the reduction
[a; b]ϕ ≡def [a][b]ϕ for a syntactic reformulation in basic multi-modal logic,
since the sequence is embedded in an iteration, which in turn cannot be re-
duced with the help of a syntactic extension. So as soon as a non-syntactically
definable operation is allowed, properties such as [a; b]ϕ ≡def [a][b]ϕ cannot
any longer be used to define the program constructs through syntactic exten-
sions. But the properties reappear as axioms in the Hilbert-style deductive
system of the logic. The following axioms and rules form a sound and (weakly)
complete Hilbert-style deductive system for c-PDL [144].

Axioms:
any axiomatization of
propositional logic

K 〈α〉ϕ ∧ [α]ψ → 〈α〉(ϕ ∧ ψ)
SEQ [α;β]ϕ ↔ [α][β]ϕ
DISJ 〈α ∪ β〉ϕ↔ 〈α〉ϕ ∨ 〈β〉ϕ
IT [α∗]ϕ→ (ϕ ∧ [α][α∗]ϕ)
IND ϕ ∧ [α∗](ϕ→ [α]ϕ)→ [α∗]ϕ
FORW-SYMM ϕ→ [α]〈α←〉ϕ
BCKW-SYMM ϕ→ [α←]〈α〉ϕ
TEST [ψ?]ϕ↔ (ψ → ϕ)

Rules:
Modus ponens: ϕ, ϕ→ψ

ψ Modal generalization: ϕ
[α]ϕ

The axiom IT is sometimes (Harel [85]) identified with [α∗]ϕ ↔ (ϕ ∧
[α][α∗]ϕ), but the axiom IT as formulated above is sufficient for a (weakly)
complete axiomatization ([109]). The following table summarizes important
properties of modal action logics with converse or iteration. In particular the
iteration is responsible for an increase of complexity with respect to the basic
case.

MAL variant complexity of sat. modal axiom. f. m. p.
(; ,∪,←) PSPACE (thrm. 2.3.2) [144, 108] (implicitly) yes

(; ,∪,∗ , ϕ?) EXPTIME [59] [144, 108] yes
(; ,∪,← ,∗ , ϕ?) EXPTIME [71] [59] yes

Table 3. some results from the literature on dynamic logics

40 CHAPTER 2. MODAL LOGICS OF ACTION COMPOSITION

The logic MAL(; ,∪,←) is one of the simplest real extensions of the basic
modal logic MAL(∅). It is a real extension because in MAL(∅) converse is not
syntactically definable, as we saw. But the complexity of MAL(; ,∪,←) is not
higher than that of MAL(∅). This result can be obtained by adapting the ap-
proach of De Giacomo [71] who showed that we can define a polynomial trans-
lation of formulas of MAL(; ,∪,← ,∗) (converse propositional dynamic logic, or
c-PDL, in his terminology) into MAL(; ,∪,∗) (propositional dynamic logic, or
PDL, for short) that preserves satisfiability.

Theorem 2.3.2 The satisfiability problem for MAL(; ,∪,←) is PSPACE.

Proof
Using the notation C(ϕ) to denote the minimal set of formulas that (1) con-

tains ϕ, and (2) is closed under taking sub-formulas, and aa(ϕ) to denote the
set of atomic actions occurring in ϕ, we translate formulas ϕ of LMAL(; ,∪,←)
to formulas of LMAL(; ,∪) as follows:

1. Translate ϕ into ϕ1 by pushing down all occurrences of the converse op-
eration in ϕ to the atomic action level according to the following rewrite
rules: (α;β)← := β←;α←, (α ∪ β)← := α← ∪ β←, (α←)← := α.

2. Translate ϕ1 into ϕ2 by replacing all occurrences of a← by new atomic
action denotations a′.

3. Define χ(γ, a) ≡def (γ → [a]〈a′〉γ)∧(γ → [a′]〈a〉γ) and construct the for-
mula ν :=

∧

a∈aa(ϕ1)

∧

γ∈C(ϕ2)

χ(γ, a)∧[⋃

a∈aa(ϕ1)

a∪a′](∧

a∈aa(ϕ1)

∧

γ∈C(ϕ2)

χ(γ, a)∧
[

⋃

a∈aa(ϕ1)

a ∪ a′](. . .)). The nesting in this formula has to be of sufficient

modal depth. To find a sufficient depth, count the number of occurrences
of the sequence operation (;) in ϕ2 and add to this the maximal nesting
depth of modal operators in ϕ2.

4. Take ϕ′ := ϕ2 ∧ ν.

Step 1 of the above translation clearly preserves satisfiability. Actually, from
the semantics of the action connectives it follows that it even preserves state-
validity. In step 2, atomic converse actions are simply seen as non-converse
atomic actions with a specific name. This makes it possible to leave the lan-
guage of MAL(; ,∪,←) and use that of MAL(; ,∪). Clearly the translation after
step 2 does not preserve state-validity, since completely new actions are intro-
duced. But it is also not sufficient to preserve satisfiability, since we have lost

2.4. TRUE CONCURRENCY 41

the logic laws that relate a and a′ as being each others converse. This is what
is added in step 3. Intuitively, the formula ν ensures that the truth conditions
of the formulas FL(ϕ), that all play a role in establishing the truth condition
for ϕ, are susceptible to the logic laws that hold for converse. The formulas
χ(γ, a) in ν are recognizable as instantiations of the standard modal logic ax-
ioms γ → [α]〈α←〉γ and γ → [α←]〈α〉γ. Step 4 gathers the conditions of steps
2 and 3, which together ensure preservation of satisfiability. As in the proof
by De Giacomo [71], this is formally proven by straightforward induction over
the structure of formulas. Being linear, the above translation demonstrates
that the complexity of MAL(; ,∪,←) is equal to that of MAL(; ,∪), and thus
PSPACE.

Note that this does not contradict proposition 2.3.1, because only satisfi-
ability is preserved under the translation, and not validity.

2.4 True concurrency

In this section we strengthen the languages of the previous sections by adding
an action connective representing true concurrency. True concurrency is the
‘uninterpreted’ form of concurrency. That is, there is no reduction to for
instance interleaving. Here we study logic properties of true concurrency as
an action connective in modal action logics. In the introduction we emphasized
that logic takes an open world view. We first consider the consequences of this
open world view for the interpretation of true concurrency in modal action
logics.

2.4.1 Open action interpretations

The usefulness of the concept of open action interpretations is recognized in the
literature on Deontic Logic [55, 54, 56], the literature on logics for concurrency
[70], and in the AI literature on reasoning about action and change [75]. Here
we distinguish two ways in which the interpretation of actions in modal action
logics can be open: openness with respect to the description of effects and
openness with respect to the description of concurrency.

First we consider openness of effect descriptions. In an open action effect
interpretation, the effects of actions are only partially described, by stating
logic postcondition formulas representing properties that are obeyed by the
effects. In a closed interpretation, effect descriptions are complete in the sense
that they completely describe the state that results after performance of an

42 CHAPTER 2. MODAL LOGICS OF ACTION COMPOSITION

action. It is explanatory to consider this distinction in companion with the
distinction between exogenous and endogenous (temporal) logics. Exogenous
logics assume actions to be implicit. The difference between situations / worlds
/ states / time points is assumed to be brought about by actions that are not
explicitly represented in the logic language. For these logics an open view
with respect to action effects is the only possible view, because the distinction
makes no sense if actions themselves are not represented in the language.
In endogenous logics, where actions are explicit (such as the modal action
logics studied here) we do have a choice between an open or closed action
effect interpretation. Examples of modal action logics with closed action effect
interpretations are first order dynamic logic [83], that studies the logic of
program operations over first order variable assignments, and the database
update logics studied by Spruit et al. [170]. In this thesis we do not study
logics of this type where the effects of actions are completely described. The
way in which definition 2.1.2 defines the relation between actions and their
effects is open. A formula like [α]ϕ specifies the effect of α to be anything,
provided it satisfies ϕ. A closed reading reverses this: the effect of α is ϕ,
provided that no other changes take place. The subject of closing the open
interpretation of sets of action effect formulas is studied in chapter 4.

In the endogenous modal action logics we study we introduce an explicit
action connective for true concurrency. For the moment, we assume that this
operation is denoted by &. Introduction of such an operator is in principle
independent of the choice between an open or closed interpretation of action
effects. But under a closed interpretation of action effects in an endogenous
action logic with a true concurrency operator, the logic relation between ef-
fect properties of, say, actions α, β and α&β is not interesting. What can be
the logic relation between the (full) description of the effect of α&β and the
(full) descriptions of the effects of α and β? If α assigns A := true and leaves
anything else as it is, and β assigns B := true while leaving anything else
unchanged, and α&β assigns A := true and B := true while leaving anything
else unchanged, then it is not clear how to formulate general logic properties
that relate the effects. We cannot, for instance, adopt the logic relation that
properties of effects of constituent actions carry over to properties of effects
of the concurrently composed action, since action α requires that B is left
unchanged, while α&β does not. However, an open action effect interpreta-
tion enables the possibility to define different logic relations between effects
of concurrent actions and effects of their constituent actions. For instance,
in concurrent dynamic logic [148, 147], the following logic relation is studied:
[α]ϕ∨ [β]ϕ↔ [α&β]ϕ. Below we argue that this property is too strong for our

2.4. TRUE CONCURRENCY 43

purposes. But first we discuss the second way in which action interpretations
can be open.

In the study of logic relations between effects of concurrent actions and
effects of their constituent actions, we may apply the adjectives ‘open’ and
‘closed’ not only to action effects, but also to the concept of concurrency it-
self. Under a closed concurrency interpretation an action term α is interpreted
as ‘the action α in isolation, i.e., not concurrently with yet other actions’. An
open concurrency interpretation is ‘all concurrent actions that include α as a
concurrent component’. The logic property that naturally arises by adopting
an open concurrency interpretation is [α]ϕ → [α&β]ϕ. This is easily seen.
If [α]ϕ means that ϕ holds after any execution of concurrent actions that in-
volves α (the open concurrency interpretation), then it holds in particular after
α&β. This open concurrency interpretation is easily seen to imply an open
effect interpretation of actions: if an action term α is interpreted as referring
to all possible concurrent action executions that involve α as a concurrent
component, then we also have to accept that the effect of α cannot in gen-
eral be completely described by formulating postconditions of α alone: other
concurrently performed actions may be responsible for additional effects.

We adopt the open concurrency interpretation for our modal action logics.
So we adopt the principle [α]ϕ → [α&β]ϕ. We need the axiom to be able
to infer that concurrently composed actions cannot be performed if effects of
contributing actions contradict. If there is no logical influence of the postcon-
ditions of constituent actions on concurrently composed actions, there is no
way to force non-ability of concurrent performance on grounds of conflicting
postconditions of actions contributing to the concurrent execution. Suppose
for example that the actions α and β have mutually inconsistent postcon-
ditions. This is for instance the case if α represents setting a flag and β
un-setting it. Then from this information we want to conclude that these ac-
tions cannot be performed simultaneously. So we want to make the inference
[α]ϕ ∧ [β]¬ϕ |= [α&β]⊥. It is not difficult to see that this inference is enabled
by the schema [α]ϕ ∨ [β]ϕ→ [α&β]ϕ.

The open concurrency interpretation requires a specific ‘attitude’ towards
the reading of MAL formulas. For instance, under the open concurrency inter-
pretation validity of the formula 〈α〉 does not say that it is always possible
to execute an action α in isolation: it may be possible that α can only be exe-
cuted if it is accompanied by, say, β. And the formula 〈α〉 does not decide on
this issue. A formula 〈α&β〉 is interpreted to mean ‘It is possible to execute
an action that has both α and β as concurrent components’. Note, again,
that this is entirely different from the closed meaning a programmer would at-

44 CHAPTER 2. MODAL LOGICS OF ACTION COMPOSITION

tribute to the construct & for concurrency. A programmer would look at the
action (instruction) α as something that is performed completely in isolation.
And the construct α&β means to him that although α is accompanied by β,
the two of them together are again executed in isolation.

From now on, we refer to the combined open concurrency / open effect
interpretation as the ‘open action interpretation’. As an example of reasoning
with open action interpretations, we recall the ‘bowl of soup problem’ [75]. In
natural language the context of the bowl of soup reasoning problem reads:

A bowl of soup with two handles rests on a table. An agent is
about to pick up the bowl of soup. It knows that if it takes the
action of lifting a side of the bowl, the effect will be that that side
is actually lifted. The agent also knows that in situations where
one of the sides of the bowl is lifted while the other side is not, the
soup is spilled.

Apparently, the problem setting is one in which actions can be performed con-
currently. The agent always has to take into account the possibility that an
individual action is performed concurrently with other, possibly unknown ac-
tions: in particular he accounts for the possibility that right-lift is performed
concurrently with left-lift, that left-lift is performed concurrently with right-lift,
but also that right-lift is performed concurrently with an action left-lift ′ per-
formed by some other agent, or even concurrently with an action x that has
nothing to do with the bowl of soup. This underlines that the agent adopts
a world view of open actions: actions may always occur concurrently to other
actions, unless, of course, the agent knows (or assumes) that other actions do
not occur concurrently. The agent, obviously wanting to avoid that the soup is
spilled, needs to be able to reason with the knowledge as described above and
draw conclusions about the spilling of soup as the effect of the different (con-
current) actions it can undertake. In particular, the reasoning should allow
him to arrive at the following conclusions:

• If I take the concurrent action of lifting both the left and the right side
of the bowl (possibly concurrent with yet other actions), the soup will
not be spilled.

• If I take the action x-lift (x for right and left) of lifting one side of the
bowl, and if I have no further information (or assumptions) about other
actions performed simultaneously, it is always possible that the soup
will be spilled. The corresponding formula is: 〈x-lift 〉Spilled. I cannot

2.4. TRUE CONCURRENCY 45

draw the conclusion that soup will be spilled, because the effect of the
other side being lifted might be caused by an action that is performed
concurrently with the agents’ action. This might for instance be an
action of a second agent that has spotted that something is about to go
wrong. Or there may be a change in the world of which the source is
unknown.

An action description AD concerning the actions involved in lifting the bowl
of soup is:

AD = {
[left-lift]UpLeft, [right-lift]UpRight,
UpLeft ∧ ¬UpRight→ Spilled, ¬UpLeft ∧ UpRight→ Spilled,
UpLeft ∧ UpRight→ ¬Spilled, ¬UpLeft ∧ ¬UpRight→ ¬Spilled}

The intuitive conclusion to be drawn from this information is that by
performing both actions concurrently, we do not spill the soup:

AD |=G ¬Spilled ∧ ¬UpLeft∧ ¬UpRight→
[left-lift & right-lift]¬Spilled

But it is also important to take stock of what would be non-intuitive conclu-
sions under an open concurrency interpretation. As said, we cannot conclude
that the soup will be spilled by performing for instance right-lift. Another non-
intuitive conclusion would be that if the concurrent execution forces absence
of spilling, this absence would be forced already by performances involving
only one of the two lift actions. We explicitly mention this as an undesir-
able property because in concurrent dynamic logic [148, 147], which obeys
[α]ϕ ∨ [β]ϕ ↔ [α&β]ϕ, this would be a valid inference. Below we list these
properties.

AD �|=G [left-lift]¬Spilled
AD �|=G [right-lift]¬Spilled
AD �|=G [left-lift&right-lift]¬Spilled→

([left-lift]¬Spilled ∨ [right-lift]¬Spilled)
From our discussion we distill two desirable general properties for open

true concurrency: (1) effects of actions that take part in a concurrent action
performance carry over to the effect of the concurrently composed actions, and

46 CHAPTER 2. MODAL LOGICS OF ACTION COMPOSITION

(2) effects of constituent actions of concurrent actions may enhance each other
(the effect of α&β if [α](P → Q) and [β]P) or make execution of the concur-
rently composed action impossible (the effect of α&β if [α]P and [β]¬P). This
second property has an alternative formulation in: effects of concurrently com-
posed actions cannot always be attributed to one of the contributing actions.
In formulas these properties are expressed as:

|= [α]ϕ→ [α&β]ϕ
�|= [α&β]ϕ→ ([α]ϕ ∨ [β]ϕ)

2.4.2 Intersection in dynamic logic

The operation of intersection (∩) on relations in modal action models can
easily be seen to satisfy both properties argued for in the previous section.
Yet, plain intersection as a representation for (true) concurrency in PDL has
not been considered extensively in the literature.

Definition 2.4.1 The semantics of (c-)IPDL follows from the modal seman-
tics of definition 2.1.2, and an extension of the relational interpretation func-
tion R of definition 2.3.2 such that it includes the following equality for ∩:

R(α ∩ β) = R(α) ∩R(β)

PDL can be defined using an action trace semantics (an action trace is a fi-
nite concatenation of atomic actions) for programs. Every PDL-action α corre-
sponds to a set of traces Σ(α). Atomic actions a constitute singleton trace-sets
in themselves, the action connective ∪ is associated with union of trace-sets,
; with the possible concatenations that can be made with elements from the
trace-sets, and ∗ with the union of all finitely repeated self-concatenations of
trace-set elements, respectively. It is not difficult to verify that M, s |= 〈α〉ϕ
if and only if there is a state t and an action trace σ = 〈a1, a2, . . . , an〉 from s
to t in M such that M, s |= ϕ and σ ∈ Σ(α). Also for c-PDL trace-sets are
appropriate: we can add that individual steps within a trace may follow the
converse direction of atomic actions. Trace semantics of modal action logics
will be important in chapter 5, where we study deontic action logics. But the
semantics of modal action logics with intersection cannot be defined in terms
of action traces. Therefore, in the next section we generalize traces to so
called ‘action graphs’ with a root and a sink. First we show that intersection
embodies a genuine extension of the logics encountered so far.

2.4. TRUE CONCURRENCY 47

Proposition 2.4.1 The intersection (concurrency) operator 〈α ∩ β〉ϕ is not
syntactically definable in the basic modal language, nor in c-PDL.

Proof
In both the basic modal language and c-PDL state validity of formulas is

preserved under unraveling models into trees (from the state in which validity
is considered)1. For c-PDL, the unraveling also involves the converse direction
of atomic actions. State validity of for instance the formula 〈a ∩ b〉 is not
preserved under this model transformation.

The introduction of the intersection operator enables new forms of logic
inference. For instance, for modal action logics with ‘;’, ‘∩’ and ‘←’, the
following are valid entailment relations:

CycleProp1 [(α;β) ∩ γ]⊥ |=G [(α←; γ) ∩ β]⊥
CycleProp2 [(α←; γ) ∩ β]⊥ |=G [(γ;β←) ∩ α]⊥
CycleProp3 [(γ;β←) ∩ α]⊥ |=G [(α;β) ∩ γ]⊥

It is easy to verify that these properties are valid2. The three properties
reflect the so called ‘cycle rules’ of relation algebra [174].

In the next section we study the expressiveness of the intersection operator
by considering modal definability (not to be confused with syntactic definabil-
ity of the intersection operation, as for instance discussed in section 2.2). But
before going into modal definability of the intersection operation, we shortly
discuss complexity properties of ∩-logics. A positive result concerning the
complexity of intersection as an addition to PDL is due to Danecki [52] who
showed that for the general, non-deterministic case, satisfiability for IPDL or,
in our notation, MAL(; ,∗ ,∪,∩, ϕ?), is decidable. The next table summarizes
some results on ∩-logics that can be found in the literature. Note that many
(possible results on) modal action logics with intersection are absent from the
table: quite some research has not yet been carried out.

1The standard tree property is closely connected to the property of preservation of state
validity under bisimulation: the unraveling is bisimilar to the original model. The tree
property is seen as an important indicator for good complexity properties [79].

2Note that the entailment properties do not hold for the local (|=L) or initial state (|=I)
variants of entailment.

48 CHAPTER 2. MODAL LOGICS OF ACTION COMPOSITION

MAL variant complexity of sat. modal axiom. f. m. p.
(∪,∩) PSPACE-compl. [119] [8] yes
(; ,∪,∩) unknown [8] yes

(; ,∗ ,∪,∩, ϕ?) decidable [52] unknown no
Table 4. some results from the literature on ∩-logics

Note that the logic MAL(; ,∗ ,∪,∩, ϕ?) is decidable although it does not
obey the finite model property (f. m. p.). Decidability of MAL(; ,∗ ,∪,∩,←) is
yet an open question. It is tempting to think that we can prove decidability
for this logic by once again adapting the proof of De Giacomo for the logic
MAL(; ,∗ ,∪,←). The semantics of the ← and the ∩ tells us that they interact
according to (α ∩ β)← := α← ∩ β←. So, presence of the intersection does not
prevent us from performing step 1 and 2 of this proof: pushing down converse
to the atomic level and renaming converse atomic actions (also the iteration
forms no obstacle, since (α∗)← := (α←)∗). But a complication arises in the
third step. It is not clear whether we can find an appropriate extension of
the definition of a Fischer-Ladner closure (a generalization of closure under
sub-formulas for PDL) in the presence of ∩. We would have to prove that
addition of the closure rule ‘if 〈α ∩ β〉ϕ ∈ FL(ψ) then 〈α〉ϕ ∈ FL(ψ) and
〈β〉ϕ ∈ FL(ψ)’, is sufficient.

In the next section we develop the machinery of ‘action graphs’ to study
some aspects of the expressiveness of ∩-logics. Without too much work, it
should be possible to use this machinery also to prove complexity results for
∩-logics. Nevertheless we leave complexity issues for future work.

2.4.3 Definability of classes of models and frames

Definition 2.2.3 is about syntactic extensions, that is, how to define an action
operation in terms of other action operations. This notion of definability is
essentially a notion that concerns an internal issue of the logic, and it does not
say anything about the expressiveness in terms of what can be said of models.
Here we consider definability of certain classes of models and frames. This
type of definability is completely different from definability of operators in
terms of others: it takes a semantic view on a logic from ‘the outside’. Before
we define model and frame definability, we introduce the notions of ‘frame’
and ‘frame validity’.

Definition 2.4.2 (modal action frames) Given a countable set A of ac-
tion symbols with ‘a’ ranging over A, a modal action frame F = (S,RA) is
defined as:

2.4. TRUE CONCURRENCY 49

• S is a nonempty set of possible states

• RA is an action interpretation function RA : A → 2(S×S), assigning a
binary relation over S × S to each atomic action a in A.

Is is clear that a frame is turned into a model if an interpretation of propo-
sitional atoms is added. Such a model M = (S,RA, V P) is said to be ‘based
on the frame F = (S,RA)’.

Definition 2.4.3 (frame validity) Frame validity F |= ϕ is defined as fol-
lows: a formula ϕ is valid on the frame F if and only if it is valid on all models
based on F .

Definition 2.4.4 (definability of model and frame classes) A class of modal
action models C is definable in a modal action logic MAL(AC) iff there is a
set of formulas Ψ in LMAL(AC) such that for all modal action models M it
holds that M ∈ C if and only if M |=AC ψ for all ψ in Ψ.

A class of modal action frames D is definable in a modal action logic
MAL(AC) iff there is a set of formulas Ψ in LMAL(AC) such that for all
modal action frames F it holds that F ∈ D if and only if F |=AC ψ for all ψ
in Ψ.

Definability of classes of frames is one of the concerns in ‘correspondence
theory’ [16], that studies the expressive power of modal logics by taking an
‘external’, first order view on their semantics over Kripke-type frames. Corre-
spondence theory deals with two types of questions: which first order definable
properties on frames are definable in the modal language (modal definability),
and which modally definable properties on frames are first order definable
(first-order definability). Since our main logic concern is appropriateness of
semantics, we only consider definability of the first type. Furthermore, our
interest deviates from the one of correspondence theory in three ways: (1) we
are not interested in the first order definitions of classes of frames, (2) we do
not limit ourselves to modal definability, because we look at languages that are
strictly stronger than the languages called ‘modal’ by Van Benthem, and (3)
we are more interested in expressiveness in terms of definability of classes of
models than in terms of definability of classes of frames. This last point needs
some explanation. In a sense, the expressiveness in terms of frame validity is
artificially strong: implicitly, frame validity quantifies over all possible valu-
ations in all possible states. This quantification is intrinsically second order,
which explains the high expressiveness at the level of frames. The frame level

50 CHAPTER 2. MODAL LOGICS OF ACTION COMPOSITION

is important for the study of expressiveness as such, but for our applications
there is no a priori semantic relevancy for being interested in the expressive-
ness in terms of frame validity. Our main concern is with models, since we
view these as abstract semantic representations of (reactive) systems. Let’s
consider the example of intersection. We argued that intersection reflects true
concurrency in an intuitive way. Then it makes sense to demand of our logics
that they define intersection at the level of models, that is, that we can for
instance write down a logic formula that enforces that in all models (being ab-
stractions of a reactive system) the actions a and b can (possibly under certain
conditions) be performed concurrently. Definability of intersection at the level
of frames is not enough to guarantee that we can impose such a condition on
models using modal action logic formulas.

First we show that intersection models and intersection frames are both not
definable in dynamic logics without the intersection operator. Similar results
(for frames, and modal languages without converse) can be found in e.g. [98].

Proposition 2.4.2 The class of models CR(γ)=R(α∩β) and the class of frames
DR(γ)=R(α∩β) for which R(γ) = R(α) ∩ R(β) are not definable in dynamic
logic.

Proof
Frame validity is preserved under taking bounded morphic images (F2 =

(S2, R
A
2) is a bounded morphic image of F1 = (S1, R

A
1) iff there is a surjective

function f : S1 → S2 such that (1) for all a ∈ A, if (s1, t1) ∈ RA1 (a) then
(f(s1), f(t1)) ∈ RA2 (a), and (2) for all a ∈ A, if (f(s1), t2) ∈ RA2 (a) then
there is a t1 such that (s1, t1) ∈ RA1 (a) and f(t1) = t2, see [19] p.139 and
further for details). Thus, to prove non-definability of intersection frames, it
suffices to show that the class of intersection frames is not closed under taking
bounded morphic images. However, first we have to generalize the notion
of bounded morphism, such that it also preserves frame validity for formulas
involving converse action. We already saw in the proof of theorem 2.3.2, that
by a restriction of converse to the atomic action level, we do not get weaker
modal action logics (converse can always be pushed down to the atomic level
without destroying validities). This shows that it suffices to add a clause that
accounts for the converse direction of relations for atomic actions to the above
definition for bounded morphisms: (2’) for all a ∈ A, if (s2, f(t1)) ∈ RA2 (a)
then there is an s1 such that (s1, t1) ∈ RA1 (a) and f(s1) = s2. With this
generalization, the proof proceeds as follows. Take the intersection frame F
from the class DR(γ)=R(α∩β)) , with four distinct states r, s, t and u such that
R(α) = {(r, s), (u, t)}, R(β) = {(r, t), (u, s)}, R(γ) = ∅. It is easy to check

2.4. TRUE CONCURRENCY 51

that the surjective function f for which f(r) = v, f(s) = w, f(t) = w, f(u) = v
to the frame F ′ with (v,w) ∈ R(α), (v,w) ∈ R(β), R(γ) = ∅ is a generalized
bounded morphism. But the frame F ′ is not in the class DR(γ)=R(α∩β)) , which
proves the proposition.

Model validity is preserved under surjective bisimulations (see [182], and
chapter 4 for definitions). Thus, to prove non-definability of intersection mod-
els, it suffices to show that the class of intersection models is not closed under
surjective bisimulations. Now any bounded morphism f for frames can be
turned easily into a surjective bisimulation for models based on these frames,
by demanding that for these models it holds that for any state s in the source
model the valuation of atomic propositions is equal to the valuation in state
f(s) in the target model. Note that this means that for states in the source
model that have the same morphic image, valuations are equal. Creation
of two such models by addition of suitable valuations to the above example,
demonstrates that the class of intersection models is not closed under surjec-
tive bisimulations, which proves the proposition.

The above proof suggests that the reason that the modal language of dy-
namic logic is not strong enough to define the class of intersection models, is
that it cannot distinguish confluency of paths from non-confluency. This also
follows from the tree property (used to prove proposition 2.4.1) for dynamic
logic: from a specific state we can always unravel models into trees without
destroying validity of formulas in that state. In trees there is no confluency of
paths. It is a natural thought that this ‘weakness’ can be remedied by explic-
itly adding the intersection operation to the modal language, as we have done
in the definition of ∩-logics. Clearly, the intersection operator does enable
us to express that paths are confluent. And indeed, it is easy to prove that
∩-logics are strong enough to define intersection frames.

Proposition 2.4.3 In ∩-logics the class of frames DR(γ)=R(α∩β)) , for which
R(γ) = R(α)∩R(β) is defined by the set of formulas (formula scheme) 〈γ〉ϕ↔
〈α ∩ β〉ϕ.

Proof
(⇒) Immediate.
(⇐) Suppose F �∈ DR(γ)=R(α∩β)) . We have to show that 〈γ〉ϕ ↔ 〈α ∩ β〉ϕ

is not valid on F . There are two cases. (case 1) there is a (s, t) ∈ R(γ) while
(s, t) �∈ R(α ∩ β). Now construct a model M = (S,RA, V P) based on F ,
such that t ∈ V P(P) while for all u such that (s, u) ∈ R(α ∩ β), it holds that

52 CHAPTER 2. MODAL LOGICS OF ACTION COMPOSITION

u �∈ V P(P). It follows that in state s it holds that M, s �|= 〈γ〉P ↔ 〈α ∩ β〉P .
Thus, the formula is also not valid on the frame F , which proves this case.
(case 2) there is a (s, t) ∈ R(α ∩ β) while (s, t) �∈ R(γ). The proof of this case
is analogous to the proof for case 1.

However, it turns out that in the modal action languages enriched with
the ∩-operator it is not possible to define intersection on the level of models.
To prove this, we formulate a preservation theorem for the most expressive ∩-
logic MAL(; ,∗ ,∪,∩,←) that concerns a notion of semantical equivalence that
is more refined than bisimulation. We call it ‘action graph bisimulation’ (ag-
bisimulation). The notion of ‘action graph’ is a generalization of the concept
of a ‘well-nested graph’, used by Danecki in his automaton-based proof of the
decidability of IPDL [52]. In the theory we develop below, we leave out the test
in order to avoid unnecessary complication. But Danecki [52] shows that the
test can be suitably integrated in his graphs-based reformulation of dynamic
logic (IPDL) semantics.

Definition 2.4.5 (rs-graphs and basic graph operations) Given a set of
action labels A, a graph is a tuple (N,E), with N a set of nodes, and E a re-
lation E : N × A × N defining edges. We call graphs G1 = (N1, E1) and
G2 = (N2, E2) distinct if N1 ∩ N2 = ∅. Now let r and s be two designated
elements of N called the ‘root’ and ‘sink’ of a graph, respectively. Then, we
call a graph (N,E, r, s) with r ∈ N and s ∈ N , an rs-graph. We define the
following operations on rs-graphs:

• Sequential composition: if G1 = (N1, E1, r1, s1) and G2 = (N2, E2, r2, s2)
are distinct action graphs, then the graph G1 · G2 = (N,E, r, s) is con-
structed by imposing that N := N1 ∪ N2, r := r1, s := s2, s1 = r2 (the
nodes referred to by s1 and r2 are melted together), and E := E1 ∪ E2.

• Parallel composition: if G1 = (N1, E1, r1, s1) and G2 = (N2, E2, r2, s2)
are distinct action graphs, then the graph G1 ‖ G2 = (N,E, r, s) is con-
structed by imposing that N := N1 ∪ N2, r = r1 and r = r2 (the nodes
referred to by r1 and r2 are melted together, and are in the composed
graph referred to by r), s = s1 and = s2 (the nodes referred to by s1 and
s2 are melted together, and are in the composed graph referred to by s),
and E := E1 ∪ E2.

• Reverse orientation: if G = (N,E, r′, s′) is an action graph, then the
graph G� = (N,E, r, s) is constructed by imposing that r := s′ and
s := r′.

2.4. TRUE CONCURRENCY 53

Definition 2.4.6 (action graphs) An action graph is any rs-graph
(N,E, r, s) that is an element of the minimal set satisfying the following con-
ditions.

• The point graph (N,E, r, s) with N = {r} = {s} (so, r = s) and E = ∅
is an action graph. We denote the point graph with the symbol Υ.

• For any action a such that a ∈ A the graph G = (N,E, r, s) with r �= s
and N = {r, s} and E = {(r, a, s)} is an action graph. We call such a
graph an elementary a-graph, and denote it by the symbol Θa.

• If G1 and G2 are action graphs, then also G1 ·G2 is an action graph.

• If G1 and G2 are action graphs, then also G1 ‖ G2 is an action graph.

• If G is an action graph, then also G� is an action graph.

Throughout this chapter, we assume that action graphs are ‘finite’, that
is, they involve a finite number of nodes (and thus, a finite number of edges).
Finite action graphs have the following features: (1) they have a root and a
sink (2) from the root we can reach any point in the graph through a finite
number of atomic actions (3) from any point in the graph we can reach the
sink through a finite number of atomic actions (4) loops are not excluded.
This last mentioned feature follows from the observation that a loop can be
formed as the result of a parallel composition of a non-point graph with the
point graph. The following definition shows how to interpret actions as sets
of action graphs.

Definition 2.4.7 (the graph interpretation of actions) The graph inter-
pretation Γ(α) of any action α over the connectives (; ,∗ ,∪,∩,←), is defined
as the set of action graphs obeying the following conditions:

Γ(a) = {Θa}
Γ(α ∪ β) = Γ(α) ∪ Γ(β)
Γ(α ∩ β) = {G1 ‖ G2 | G1 ∈ Γ(α) and G2 ∈ Γ(β)}
Γ(α;β) = {G1 ·G2 | G1 ∈ Γ(α) and G2 ∈ Γ(β)}
Γ(α∗) = {G0 ∪ (G0 ·G1) ∪ (G0 ·G1 ·G2) ∪ . . . | G0 = Υ

and Gi ∈ Γ(α) for i ≥ 1}
Γ(α←) = {G� | G ∈ Γ(α)}

If G ∈ Γ(α), we call G an action graph for α.

54 CHAPTER 2. MODAL LOGICS OF ACTION COMPOSITION

Note that among the action graphs that interpret an action α, there may
be some that are loops. For instance, in the set interpreting the action a ∩ b∗

there is a graph that is a parallel composition of the elementary a-graph Θa

and the point graph Υ. The result is an a-loop.

Definition 2.4.8 (ag-relatedness of states) Given a modal action model
M = (S,RA, V P) and an action graph G = (N,E, r, s), we say that state u
and v (possibly u = v) of S are ‘G-related relative to M’, notation u(G)�v, if
and only if there is a function (homomorphism) K : N → S such that:

• K(r) = u and K(s) = v

• for all n and m such that n ∈ N and m ∈ N , it holds that if (n, a,m) ∈E
then (K(n),K(m)) ∈ RA(a)

Note that if two points in a model are G-related, it is not necessarily the
case that the ‘form’ of the model that is ‘in between’ those states corresponds
one to one to the form of the graph: all connections in the graph are required
to be in the model, but not the other way round. In other words: we have
a homomorphism and not an isomorphism. The right pointing triangle in
the notation u(G)�v is a symbolic reference to the fact that we deal with
a homomorphism. Note also that if an action graph is not a loop, it does
not follow that the relational structure between to points in a model it is
homomorphic to, is also not a loop.

Definition 2.4.9 (ag-bisimulation) Given two models M1 = (S1, R
A
1 , V

P
1)

and M2 = (S2, R
A
2 , V

P
2), a non-empty relation Z ⊆ S1×S2 between the models

is an ag-bisimulation if it obeys the following properties:

1. if s1Zs2, then for all P ∈ P it holds that s1 ∈ V P1 (P) if and only if
s2 ∈ V P2 (P)

2. if s1Zs2, and for some state t1, and some (non-point) action graph G it
holds that s1(G)�t1 relative to M1, then there is a t2 ∈ S2 such that (1)
s2(G)�t2 relative to M2 and (2) t1Zt2

3. if s2Zs1, and for some state t2, and some (non-point) action graph G it
holds that s2(G)�t2 relative to M2, then there is a t1 ∈ S1 such that (1)
s1(G)�t1 relative to M1 and (2) t2Zt1

2.4. TRUE CONCURRENCY 55

It is not hard to see that on tree models ag-bisimulation reduces to the
standard notion of bisimulation. First of all, for tree models, sets of action
graphs Γ(α) interpreting an action α reduce to sets of traces. Furthermore, the
assertions ‘sΘa, t relative toM’ and ‘(s, t) ∈ RA’ are equivalent, which implies
that the above conditions include the conditions for standard bisimulation.
Then, on tree models, the only extra condition imposed by ag-bisimulation is
that traces a1, a2, . . . , an also obey the forth and back conditions. But on tree
models this enforces nothing new: the standard notion of bisimulation already
implies that for two bisimulating states s1 and s2 it holds that if there is a
trace τ from s1 to t1, then there is a state t2 such that (1) the trace τ starts
at s2 and arrives at t2, and (2) that t1 and t2 bisimulate. Another way of
saying this is that bisimulation equivalence implies trace equivalence, which is
a standard result from concurrency theory [77].

Proposition 2.4.4 A formula 〈α〉ϕ of MAL(; ,∗ ,∪,∩,←) holds in a state s
of a model M if and only if for some (finite) action graph G and state t it
holds that G ∈ Γ(α) and s(G)�t and M, t |= ϕ. We call G a ‘witness’ for α
in M.

Proof
(⇒) By induction over the structure of actions. First we consider the

atomic action case: M, s |= 〈a〉ϕ. The semantic condition ensures that there
is a t such that (s, t) ∈ RA and M, t |= ϕ. Then it is clear that for the
elementary graph Θa for which by definition Θa ∈ Γ(a), there is a trivial
homomorphism that ensures that s(Θa)�t.

The case M, s |= 〈α;β〉ϕ follows from the semantic equivalence with
〈α〉〈β〉ϕ and the induction hypotheses: from the graphG1 such that G1 ∈ Γ(α)
and the graph G2 such that G2 ∈ Γ(α) we construct the graph G1 · G2, for
which it holds by definition 2.4.7 that G1 ·G2 ∈ Γ(α;β). Clearly this construc-
tion preserves the homomorphism condition.

For the caseM, s |= 〈α∩β〉ϕ we take a closer look on its semantic condition.
The semantics tells us that there is a state t such that (s, t) ∈ R(α) and
(s, t) ∈ R(β) andM, t |= ϕ. But then also the formulas 〈α〉ϕ and 〈β〉ϕ hold in
s, and what is more, both these formulas have state t as a witness for ϕ. Then
again, we use the induction hypotheses and construe a parallel composition of
the action graphs G1 and G2 for α and β to obtain the witness G1 ‖ G2 for
M, t |= 〈α∩β〉ϕ. It is easy to check that the required conditions are preserved.

The case M, s |= 〈α ∪ β〉ϕ follows from the induction hypotheses in the
same way, but in this case we may simply choose one of the two graphs inter-
preting α and β respectively.

56 CHAPTER 2. MODAL LOGICS OF ACTION COMPOSITION

The case M, s |= 〈α∗〉ϕ is based on the following property, that follows
directly from semantic conditions: M, s |= 〈α∗〉ϕ if and only if (1) for some
n ∈ {1, 2, . . . } it holds that M, s |= 〈αn〉ϕ (where α1 ≡def α, α2 ≡def α;α,
etc.), or (2) M, s |= ϕ. Now, case (1) is a special instance of the sequential
case, and for case (2) it is easy to see that the point graph Υ is a suitable
candidate.

The case M, s |= 〈α←〉ϕ follows from the induction hypotheses: from the
graph G such that G ∈ Γ(α), we construe the graph G�.

(⇐) The ‘if’ direction follows from the relational interpretation of the
action connectives and the graph interpretation of actions in definition 2.4.7
by straightforward induction over the structure of action graphs.

Theorem 2.4.5 State validity of formulas of MAL(; ,∗ ,∪,∩,←) is preserved
by ag-bisimulations.

Proof
By induction on the structure of formulas ϕ. Let s1 and s2 be the states

such that (s1, s2) ∈ Z and Z is an ag-bisimulation. For proposition letters
preservation is immediate from condition 1. For the logic connectives ∧ and
¬, the property follows from the induction hypotheses. This leaves us with the
case 〈α〉ϕ for which we consider condition 2. From the ‘only if’ direction of
proposition 2.4.4 it follows thatM1, s1 |= 〈α〉ϕ implies that there is an action
graph G and a state t1 such that G ∈ Γ(α) and s1(G)�t1 andM1, t1 |= ϕ. Now
condition 2 says that there is a state t2 such that s2(G)�t2 andM2, t2 |= ϕ. But
then from the ‘if’ direction of proposition 2.4.4 it follows thatM2, s2 |= 〈α〉ϕ.
The converse direction follows from condition 3.

Proposition 2.4.6 The class CR(γ)=R(α∩β)) of models for which R(γ) =
R(α) ∩R(β) is not definable in MAL(; ,∗ ,∪,∩,←).

Proof
Assume (1) that there is a MAL(; ,∗ ,∪,∩,←)-formula ψ that defines the

class of models CR(γ)=R(α∩β)) . Take the modelM from the class CR(γ)=R(α∩β)) ,
with states s and t such that (s, t) ∈ R(α), (s, t) ∈ R(β), and (s, t) ∈ R(γ).
From the assumption that ψ defines CR(γ)=R(α∩β)) it follows that M |= ψ.
We show how to construct a model M′ from M such that M′ |= ψ, while
M′ �∈ CR(γ)=R(α∩β)) . We showed that in MAL(; ,∗ ,∪,∩,←), state validity

2.4. TRUE CONCURRENCY 57

of formulas is preserved by ag-bisimulation. We construct from M the ag-
bisimulating model M′ by making an identical copy u of state t, and adding
(s, u) ∈ R(α), (s, u) ∈ R(β). Models M and M′ ag-bisimulate, because for
the resulting modal M′ only an identical copy of one of the action graphs
relating s and t in the original model (subgraphs count as separate graphs), is
added. From preservation of formula validity under ag-bisimulation, it follows
that M′, s |= ψ, and since states t and u in M′ have isomorphic copies in M,
we have M′ |= ψ. This directly contradicts assumption 1.

This proves that the class CR(γ)=R(α∩β)) is not defined by for instance
〈γ〉ϕ ↔ 〈α ∩ β〉ϕ, which was sufficient to define intersection at the levels of
frames. And indeed this is immediately clear: the model with states s, t, u
and (s, t) ∈ R(γ), (s, u) ∈ R(α), (s, u) ∈ R(β), and t and u agree on all
valuations, satisfies it, but is not in CR(γ)=R(α∩β)) . The conclusion is that
in MAL(; ,∗ ,∪,∩,←), we can define confluency, but definability of the class
CR(γ)=R(α∩β)) is prevented by the inability to express that two (compound)
actions define the same relation over states. Therefore we cannot enforce that
the relation α∩β coincides with the relation γ, which would yield a definition
of the class CR(γ)=R(α∩β)) . The following proposition makes this conclusion
explicit.

Proposition 2.4.7 The class of models CR(α)=R(β), for which R(β) = R(α)
is not definable in MAL(; ,∗ ,∪,∩,←).

Proof Analogous to the proof of proposition 2.4.5, by substituting β for α∩β.

All of the above developed theory for the logic MAL(; ,∗ ,∪,∩,←) applies
to ∩-logics in general. For instance, for ∩-logics without converse, we may
specialize the notion of action graph by dropping closure under reverse ori-
entation. For ∩-logics without sequence and iteration, we may specialize the
notion of action graph by dropping closure under sequential composition, etc.

Since ∩-logics identify the set of models for which R(γ) = R(α) ∩ R(β)
with the set of models for which R(γ) ⊆ R(α) ∩ R(β), as follows from the
proof of proposition 2.4.6, we may relax the interpretation of the ∩-operator
from R(α∩ β) = R(α)∩R(β) to R(α∩ β) ⊆ R(α)∩R(β), without destroying
validity of formulas. So it is possible to relax the interpretation of the ∩-symbol
and arrive at the same logic (defined as the set of all its validities, definition
2.1.3). In other words: the ∩-logics do not require that the interpretation of
the ∩-symbol coincides with intersection: also a slightly relaxed interpretation

58 CHAPTER 2. MODAL LOGICS OF ACTION COMPOSITION

qualifies for the task. This points to a semantic inadequacy of the logics.
We introduced intersection into the semantics for a good reason: because it
intuitively captures the notion of true concurrency. But now it appears that
we get the same logic by relaxing intersection in the aforementioned way. This
means that not all aspects of reasoning under real intersection are captured
by the logic: the logic is simply not strong enough to distinguish between real
intersection and the slightly relaxed interpretation. In particular, the logic
cannot encompass reasoning of the sort where from certain premises we have
to logically draw the conclusion that actions are concurrent, that is, intersect.

In section 2.5 we increase expressiveness by introduction of an action com-
plement operator. There we motivate this extension with the intended ap-
plication of modal action logics to all our domains of interest: concurrency,
effects, time, and norms. But the semantic inadequacy observed in this section
gives independent motivation to look at stronger languages. And indeed we
prove that the modal action logics with complement do define intersection at
the level of models.

2.4.4 Related approaches to concurrency in modal action logic

Other approaches to the incorporation of concurrency into PDL were under-
taken by Peleg [148, 147] and Lodaya et al. [117]. However, neither of these
approaches relates concurrency to intersection.

Peleg defines generalized tree models in order to satisfy 〈α&β〉ϕ↔ 〈α〉ϕ∧
〈β〉ϕ. This means that concurrently composed actions inherit effect properties
from their parts, while at the same time effect properties of composed actions
can always be completely allocated to some constituent action. We already
argued that this second aspect is not very intuitive for a language that models
the reasoning of a specifier, but here we elaborate on this issue some more. If
a specifier wants to prove that a specification obeys the property that α and β
can be performed concurrently, he wants to prove that 〈α&β〉. However, in
CPDL this is equivalent to 〈α〉 ∧ 〈β〉. So in CPDL a parallel composition
can be performed if and only if both its parts can be performed separately.
This means that in CPDL the specifier is not able to reason about the question
whether the actions can be performed together: it is simply impossible that
they cannot be performed whenever the constituent actions can be performed.
So 〈α&β〉ϕ← 〈α〉ϕ∧〈β〉ϕ is a property that forms an obstacle for the kind of
reasoning a specifier uses to derive properties of his design. In a specification
language we typically specify the parts of a parallel composition separately and
then want to prove or investigate whether they can be performed concurrently

2.5. ACTION COMPLEMENT 59

in certain contexts. A non-dynamic logic approach that is worth mentioning in
this context, is the one by Lifschitz. In the language C+ [69], effects of actions
add up if they are performed concurrently, unless the specification explicitly
states that a subsuming concurrent action overrules the effect. In the extension
by Thielscher [21], in addition to this, conflicting effects are reinterpreted as
non-determinism. Also we mention the approach by Meyer and Doherty [136],
that allows free interaction between concurrent effects.

The second approach to the incorporation of concurrency in dynamic logic
focuses on a reduction to interleaving [117]. We argued in chapter 1 why we
do not endorse a reduction of concurrency to interleaving in the context of
reasoning about reactive system properties.

2.5 Action complement

Our study of the notion of action complement is motivated by the need to be
able to refer to (the union of) actions other than a given action α. The concept
of ‘alternative action’ arises naturally in deontic action reasoning, temporal ac-
tion reasoning and reasoning about effects of actions, and reasoning about true
concurrency. So the action complement plays an important role in all the cen-
tral themes of this thesis, which explains the focus on this action operation in
this chapter on modal action reasoning. In the two approaches to action com-
plement we propose in this section, the intersection operation is syntactically
definable. The notions of action complement, or ‘action negation’, we study
are different from the dynamic negation, as defined by Van Benthem [17].
Dynamic negation (defined as the test concerning non-possibility to perform
an action: ∼d α ≡def ([α]⊥)?) refers to non-activity, and not to alternative
action.

To explain the difference between the two approaches to action complement
in this section, we quote words from Krister Segerberg [167] that address the
central issue:

‘By contrast with intersection, the question concerning comple-
ment (negative action) is intricate and involves much extra-theore-
tical consideration: do we humans really think in terms of com-
plements? Does the analysis of human languages suggest that we
do? Is it not the case that the choice between two actions a and
U \a is often a choice between a and some action b that is a proper
sub-set of U \ a? Before these questions have been answered, this
author feels a certain unease about the unrestricted acceptance of

60 CHAPTER 2. MODAL LOGICS OF ACTION COMPOSITION

closure under complement.’

Segerberg uses the symbol U here to refer to the universal relation S × S. He
makes several points. One is that he is not convinced of the naturalness of a
notion of action complement. We first show in section 2.5.1 that the action
complement does appear as a natural operation in several reasoning tasks.
The second important point made is that it is in a way counter-intuitive to
define action complement with respect to the universal relation. In our study
of complement with respect to the universal relation (2.5.2) in modal action
logic, we make the uneasiness felt by Segerberg explicit by showing that it
induces some properties that cannot be considered intuitive action laws. After
that (2.5.3) we show how to define weaker notions of complement, that should
take Segerberg’s feelings of uneasiness away, and that result in logics that are
more fitted to a reasoning domain of actions.

Somewhat out of line with the structure of the whole chapter, in this section
about complement the order in which we consider the different extensions is
from strong to weak.

2.5.1 Reasoning domains involving action complement

One of the contexts where the action complement under the interpretation of
‘alternative action’ naturally arises, is concerned with reasoning about effects
of actions. In this reasoning context it is natural to consider the property
that a certain effect is brought about exclusively by an action. Another way
of saying this is that other actions cannot have that effect. Here we see how
the concept of ‘the other actions’ or ‘alternative action’ can be used to reason
about how effects and actions are related. If, for the moment, we denote action
complement with the symbol ‘−’, we can capture the property of ‘exclusive
effect’ in a formula of the form: ¬ϕ→ [−α]¬ϕ. Intuitively it reads ‘performing
an action other than (one that involves) α from a state for which ¬ϕ holds,
never results in a state where ϕ holds’. So it expresses that changing ϕ from
false to true can only be accomplished by performing an action (that involves)
α, provided that such an action is actually possible. De Giacomo [73] observes
that frame formulas of this type reflect Reiter’s ‘solution’ [155, 20] to the frame
problem. The formulas are called ‘frame formulas’ because they preserve the
property ¬ϕ over the action −α. But note that they do not preserve properties
over the action α. If for instance it is specified that ¬P → [−α]¬P , then
action α may or may not change P from false to true. Formulas of the form
¬ϕ → [−α]¬ϕ say nothing about what is preserved by α. To express that α
preserves ¬P , we first have to find out which of the actions in the description

2.5. ACTION COMPLEMENT 61

domain possibly change the value of P from false to true. Then, if β is the
union of these actions, the formula ¬P → [−β]¬P implies that all ways to
perform α that are not also a way to perform β preserve ¬P . Reiter’s solution
to the frame problem [155] is simply to give a formula ¬P → [−β]¬P for any
proposition P (fluent) in the action description.

In the formalization of the bowl of soup example we can use the action
negation to express that the effect UpX (X for Right and Left) is exclusively
brought about by the action x-lift:

AD = {
[left-lift]UpLeft, ¬UpLeft→ [−left-lift]¬UpLeft,
[right-lift]UpRight, ¬UpRight→ [−right-lift]¬UpRight,
UpLeft ∧ ¬UpRight→ Spilled, ¬UpLeft ∧ UpRight→ Spilled,
UpLeft ∧ UpRight→ ¬Spilled, ¬UpLeft ∧ ¬UpRight→ ¬Spilled}
It is not difficult to verify the following entailment relations:

AD |=G ¬UpLeft∧ ¬UpRight→ [left-lift ∩ −right-lift]Spilled
AD |=G ¬UpLeft∧ ¬UpRight→ [−left-lift ∩ right-lift]Spilled

A second area where the action complement arises naturally is that of de-
ontic action reasoning. Traditionally, in deontic logics that were not so much
concerned with normative statements about action as with normative state-
ments about conditions, in general the relation between obligation (O(ϕ)) and
permission (P (ϕ)) is described as O(ϕ) ↔ ¬P (¬ϕ). In the work on (dy-
namic) deontic action logic, initiated by Meyer [135], this property reappears
as O(α)↔ ¬P (−α). This identification only makes sense under a suitable in-
terpretation of the action connective ‘−’ as an action complement that refers
to actions alternative to that referred to by α. Under such an interpretation
the identification is read as ‘obligation to perform an action a bi-implies ab-
sence of permission to perform any action not involving a (alternative action)’.
We discuss this type of logics extensively in chapter 5.

The third area in which action complement, in the interpretation of al-
ternative action, arises as a natural mode of expression is that of temporal
reasoning over action. For instance, the (liveness) property that over all pos-
sible futures eventually an action a is inevitable, may be logically identified
with the property that it is not possible to perform actions alternative to a
forever. We define logics that can make this type of logical identifications in
chapter 3.

62 CHAPTER 2. MODAL LOGICS OF ACTION COMPOSITION

Finally, we mention that reasoning about action complements is directly
related to reasoning about concurrency via the identification −(α ∩ β) ≡
−α ∪ −β.

2.5.2 Complement with respect to the universal relation

In this section we show that in the extension of PDL with the complement as
copied from relation algebra, has properties that although useful and intuitive
for relations in general, do not apply to actions. In the next section we propose
weakenings of this complement that better suit the intended interpretation as
‘alternative action’

In the relation algebraic approach the natural way to define the comple-
ment is with respect to the universal relation. It is straightforward to import
this notion of complement in the modal action logics we study. We denote this
complement with the symbol ‘∼’.

Definition 2.5.1 (semantics of ∼-logics) ∼-logics are defined as modal ac-
tion logics whose set AC of action combinators includes the unary action oper-
ator ‘∼’, which we call the ‘universal complement’. The semantics of ∼-logics
follows from the modal semantics of definition 2.1.2, and an extension of the
relational interpretation function R of definition 2.4.1 such that it includes the
following equality for ∼:

R(∼α) = S × S \R(α)

The action semantics of this complement is exemplified by the following
informal meaning of formulas of the form [∼ α]ϕ: for all states that cannot
result from performing α, it holds that ϕ. Note that this includes the states
that are not reachable at all.

Proposition 2.5.1 The complement operator 〈∼α〉ϕ is not syntactically de-
finable in the basic modal language, nor in c-PDL or c-IPDL.

Proof
We may rely on the notion of ag-bisimulation to prove this property. But

it is sufficient here to consider the coarser semantic equivalence that says that
state validity is preserved under contraction to generated sub-models (for the
definition of generated sub-models see the proof of proposition 2.3.1 and [19]).
All logics considered so far obey this property, provided that we include the
converse direction of actions in case the converse operation is in the action

2.5. ACTION COMPLEMENT 63

language. But logics containing the universal complement do not obey it.
For example, state validity of the formula 〈∼ a〉 is not always preserved by
contraction to a generated sub-model; it is not valid in a one-state model with
an action a looping in it, while this model is a generated sub-model of many
models that do satisfy the formula.

With one exception [73], in the literature known to us concerning the
complement in modal action logics [68, 78, 143, 85] and related algebraic for-
malisms (dynamic algebras, Peirce algebra’s, boolean modules), this is the
version of the complement that is studied. This is not surprising given that
the universal complement directly corresponds to standard negation in the
first-order view on modal languages. It is straightforward to define a transla-
tion T from iteration-free ∼-logics involving a set of propositions {P,Q, . . . },
and a set of atomic actions {a, b, . . . } to a first-order logic with a set of unary
predicates {P,Q, . . . }, a set of binary predicates {Ra, Rb, . . . }, and a set of
variables {x, y, . . . }:

Tx(P) ≡ Px Txy(a) ≡ Raxy
Tx(⊥) ≡ x �= x Txy(α ∪ β) ≡ Txy(α) ∨ Txy(β)
Tx(¬ϕ) ≡ ¬Tx(ϕ) Txy(α←) ≡ Tyx(α)
Tx(ϕ ∧ ψ) ≡ Tx(ϕ) ∧ Tx(ψ) Txy(α;β) ≡ ∃z(Txz(α) ∧ Tzy(β))
Tx(〈α〉ϕ) ≡ ∃y(Txy(α) ∧ Ty(ϕ)) Txy(∼α) ≡ ¬Txy(α)

With induction we can prove that for any ϕ ∈ LMAL(←, ; ,∪,∼) it holds
that M, s |= ϕ iff M |=FOL Tx(ϕ)[s] (s is assigned to the free variable x).
Iteration free ∼-logics are thus subsumed by first-order logic. This means that
they inherit the compactness property from FOL: any non-satisfiable infinite
set has a non-satisfiable finite subset. The relativized action complement we
discuss in section 2.5.3 does not have this property for all modal action logics
considered.

We now give a set of action connectives that can be introduced as syntactic
abbreviations in terms of the complement (∼) and the choice (∪).

Definition 2.5.2 The U, the fail, the intersection, the subsumption action,
and the action equivalence are defined through the following syntactic exten-
sions on ∪ and ∼ (We add parentheses whenever ambiguity in the reading of
relational formulas may arise. But we do assume that unary operators bind
stronger than binary ones.):

64 CHAPTER 2. MODAL LOGICS OF ACTION COMPOSITION

α ∩ β ≡def ∼(∼α∪ ∼β) fail ≡def α ∩ ∼α
α ⊆ β ≡def ∼α ∪ β U ≡def α ∪ ∼α
α � β ≡def (α ⊆ β) ∩ (β ⊆ α)

Due to these definabilities, action operations as ∩ and fail do not have
to be introduced explicitly in a modal action logic whenever complement and
choice are already included (note that fail can also be defined in terms of the
test: fail ≡def ⊥?). The above definition says that α ⊆ β should be read as
the action whose reachability relation is the union of that of β and that of the
complement of α. It may be confusing to read α ⊆ β as an action. We call an
action α ⊆ β a subsumption action, it represents all actions for which it holds
that if α is involved (as a concurrent component), than also β is involved. We
call an action α � β an equivalence action, since it denotes any action obeying
the condition that α is involved if and only if β is involved (which includes the
case that neither α or β is involved). We can turn a subsumption action into
an action implication by demanding the following on the modal level.

α⇒ β ≡def [∼(α ⊆ β)]⊥
The right hand side says ‘all actions for which it does not hold that if

you do an α, you also do a β, lead to a falsum’, which is to say that they
cannot be there. This expresses the property that performing a transition α
implies doing β at the same time (concurrently). So we can express things like
‘running implies walking and walking implies moving’:

run ⇒ walk walk ⇒ move

The U that is defined, includes any action relation. This motivates some
authors to call it the ‘any-operation’. For instance, this variant of the notion
of ‘any action’ is studied as an explicit addition to PDL by Prendinger [153].
At the end of this section we will argue that the U is too strong to function
as a notion of ‘any action’. In [19] the same operator is called the global
modality, and in [118] it is called the universal modality. Finally, Goranko,
Gargov, Passy and Tinchev [146] call it the universe program. The action U ,
as defined above, reaches every state from any given state. This means that in
each state we have power to say something about all other states of a model.

The universal complement enables the definition of the so-called window
operator. Semantically the window operator [[α]]ϕ is defined as follows:

2.5. ACTION COMPLEMENT 65

Definition 2.5.3

M, s |= [|α|]ϕ iff for all t, if M, t |= ϕ then (s, t) ∈ R(α)

The definition of the window-operator in terms of complement is: [|α|]ϕ
≡def [∼α]¬ϕ [118]. This means that the window operator is just a shorthand
for the formulas we already met when we motivated the introduction of a
complement in modal action logic with its relevancy for the reasoning about
action effects. We may now try to capture the intuition ‘a is the only action
that may make ϕ true’ with:

¬ϕ→ [|α|]ϕ
In section 2.5.2, we argue that this formula is actually too strong to express

the intuition.
The window operator was used by Van Benthem [15] to define an ought-

to-be deontic logic (Define ought-to-be obligation as O(ϕ) = []ϕ, using the
modal relation to interpret reachability of deontic ideal worlds. And define
ought-to-be strong permission as P (ϕ) = [| |]ϕ, thereby obeying P (ϕ ∨ ψ) ↔
P (ϕ) ∧P (ψ), which avoids the free choice permission anomaly3). And it was
used by Humberstone [101] to define a logic of inaccessible worlds.

Some validities

With the introduction of the complement into a modal action logic encom-
passing the connectives of c-PDL, we arrive at a superset of the repertoire
of connectives that is studied in (binary) relation algebra. The only differ-
ence is that relation algebra does not encompass iteration. All connectives of
MAL(∗,← , ; ,∪,∼) have exactly the same interpretation as in relation algebra.
In relation algebra, axiomatization is accomplished by formulating laws that
define how operations interact. A complete set of axioms for relation algebra
is:

(0) a complete set of boolean axioms
(1) α; (β; γ) � (α;β); γ (5) (α←)← � α
(2) α; skip � α � skip;α (6) (α;β)← � β←;α←

(3) (α ∪ β); γ � α; γ ∪ β; γ (7) (α ∪ β)← � α← ∪ β←

(4) α; (β ∪ γ) � α;β ∪ α; γ (8) ∼β �∼β ∪ (α←;∼(α;β))
3Van Benthem calls it ‘Ross’ paradox’, by mistake. Ross’ paradox concerns a similar

problem for obligations (see section 5.1).

66 CHAPTER 2. MODAL LOGICS OF ACTION COMPOSITION

These axioms reflect properties of action relations of modal action models.
As opposed to modal properties, that take the perspective of states within
models, these properties can be said to result from a ‘global’ external view on
the modal relations in models. But the above global relation algebraic proper-
ties have local modal repercussions. The following proposition is immediate.

Proposition 2.5.2 If α � β algebraically, the following are schemes for gen-
eral validities of the logic MAL(∗,← , ; ,∪,∼):

|= 〈α〉ϕ↔ 〈β〉ϕ |= [∼(α � β)]ϕ

Proof
The first scheme is immediate. For the second scheme we have to expand

the definition for �, according to definition 2.5.2, and apply a series of seman-
tically motivated steps to show equivalence with the scheme [fail]ϕ, which is
trivially valid for all instantiations of ϕ.

An interesting question is whether the converse also holds: that is, is va-
lidity of all the formulas that instantiate these schemes enough to guarantee
equivalence of actions in the relation algebraic sense? This issue is important
for the question whether we loose expressive power by going from the global
perspective of relation algebra to the local perspective of modal logics. For in-
stance: given two action terms α and β, can we prove that α � β algebraically
by establishing (some form of) validity of some modal action logic formula?
It depends on what level we consider this question: the level of models or the
level of frames. It is easy to prove that at the level of frames, both schemes
enforce equivalence of action relations through frame validity. This should not
come as a surprise, since as we argued before, as a means to talk about frame
properties, through the notion of frame validity, modal (action) logics are very
strong. But in a sense it is not ‘fair’ to claim that the first formula proves
algebraic equivalence: it only proves this relative to a certain frame. To prove
relational equivalence as such, it is necessary to show that equivalence can be
enforced at the levels of models. In proposition 2.5.6 we prove that validity of
all formulas that follow the second scheme, [∼(α � β)]ϕ, indeed accomplishes
this. The first scheme does not.

As an example of the type of validity schemes that proposition 2.5.2 is
concerned with, we mention the interaction of the converse and the com-
plement. In MAL(∗,← , ; ,∪,∼), the following is a general validity scheme:
NegConv-R |= [∼ (α←)]ϕ ↔ [(∼ α)←]ϕ. This follows immediately from the

2.5. ACTION COMPLEMENT 67

fact that ∼ (α←) � (∼ α)← algebraically. Note that we can use the prop-
erty NegConv −R, in combination with the rewrite rules for converse in the
proof of theorem 2.3.2, to push down converse tot the atomic level. So also
for the logic MAL(∗,← , ; ,∪,∼) we do not loose expressive power by syntactic
restriction of the converse operation to atomic actions only. Note also that a
similar property does not hold for the other unary operators: complement and
iteration.

But the above types of validity do not form the only repercussion of the
algebraic laws to the modal language. Examples of modal properties that are
induced by, in particular, the introduction of the universal complement are:

Proposition 2.5.3 The following are validity schemes for the U in the logic
MAL(∗,← , ; ,∪,∼).

|= ϕ→ [U]〈U〉ϕ (Symmetry-U)
|= ϕ→ 〈U〉ϕ (Reflexivity-U)
|= 〈U〉〈U〉ϕ→ 〈U〉ϕ (Transitivity-U)
|= 〈U〉ϕ→ 〈U〉〈U〉ϕ (Density-U)

Proof
Straightforward semantic verification (the universal relation is an equiva-

lence relation).

These properties make the U -operator an S5-modality. We will argue that
these properties disqualify U as an operator that reflects the notion of ‘any
action’. But there are many more modal validity schemes that are not a
simple reformulation of the algebraic axioms. Before we explore these modal
properties, we note that there are two important differences between modal
logic properties and relation algebraic properties. First of all, relation algebraic
properties take a global view on relations, while modal properties take a local
view. For instance, a local modal repercussion of the algebraic properties
5-7 is formed by the validity schemes: ϕ → [α]〈α←〉ϕ and ϕ → [α←]〈α〉ϕ.
These modal properties characterize the converse in terms of the interaction
with propositional state reasoning; there is no reference to the interactions
of converse with other action combinators, such as in the axioms of relation
algebra.

We now explore more local modal repercussions of the algebraic prop-
erties. The repercussions of properties 1-4 are none. More interesting are

68 CHAPTER 2. MODAL LOGICS OF ACTION COMPOSITION

boolean (semi-)equations such as α ⊆ α∪β and ∼∼α � α. We did not explic-
itly mention such axioms in the above listing of relation algebraic laws, since
there are many different ways in which to axiomatize boolean algebra. And
actually, the problem of finding minimal sets of boolean algebraic properties
that completely axiomatize boolean algebra is very hard in general. But we
are not interested in this question, and rely on the assumption that boolean
properties are very familiar and need no further explanation or justification. A
local modal repercussion of the boolean properties of actions is the following:

Proposition 2.5.4 The following is a validity scheme of MAL(∗,← , ; ,∪,∼).

|= 〈α〉ϕ ∧ [∼β]¬ϕ→ 〈α ∩ β〉ϕ (K-R)

Using the window operator, we may write this alternatively as |= 〈α〉ϕ ∧
[|β|]ϕ→ 〈α ∩ β〉ϕ.
Proof

Consider an arbitrary model M and an arbitrary state s. In case that
M, s �|= 〈α〉ϕ or M, s �|= [∼ β]¬ϕ it holds trivially that M, s |= 〈α〉ϕ ∧
¬ϕ→ 〈α∩β〉ϕ. So, we assume that (1)M, s |= 〈α〉ϕ and (2)M, s |= [∼β]¬ϕ.
From (1) it follows that α �= fail and that there is a state t such that
(s, t) ∈ R(α) and (1’) M, t |= ϕ. Now either (s, t) ∈ R(β) or (s, t) ∈ R(∼ β)
(∼ β ∪ β is the universal relation). But from (s, t) ∈ R(∼ β) and property 2
we would have to conclude thatM, t |= ¬ϕ, which contradicts 1’. Then, from
(s, t) ∈ R(β) and (s, t) ∈ R(α) it follows that (s, t) ∈ R(α∩β), which together
with 1’ gives M, s |= 〈α ∩ β〉ϕ.

The property K-R can be seen as the action equivalent of the basic modal
property K: 〈α〉ϕ ∧ [α]ψ → 〈α〉(ϕ ∧ ψ). When we discuss axiomatization of
∼-logics, we show how it can be used in deductive boolean reasoning over
actions.

Now finally, we turn to the interesting question of what can be the local
modal repercussions of the above algebraic property 8. We already mentioned
that it gives rise to the modal validity scheme:

|= [∼β]ϕ↔ [∼β ∪ α←;∼(α;β)]ϕ (NegSeqConv-R)

which by established modal reasoning for the ∪ and propositional reasoning
is equivalent to:

2.5. ACTION COMPLEMENT 69

|= [∼β]ϕ→ [α←;∼(α;β)]ϕ (NegSeqConv’-R)

But this property is basically still a straightforward non-local translation
of the relation algebraic property 8. And actually it is a straightforward re-
formulation of the appearance of this property in the original axiomatization
given by Tarski [174]:

(8’) α←;∼(α;β) ⊆∼β

The question arises whether there are any local repercussions related to
this algebraic property at all. To find related local properties we should take
a local semantic view. From a local view property 8’ says something like
‘if I first go into backwards (converse) α-direction and after that in forward
direction complementary to α;β, I arrive at a place that is contained in all
places that I would possibly have reached if from the beginning I would have
gone directly in forward direction complementary to β’. So, from a local
standpoint, the property compares the complement of α;β (after first taking
one step in backwards α-direction) and the complement of β. Now it appears
that from a local modal viewpoint this comparison can actually also be made
without first taking one step back. The following property shows this. Its
proof involves more than just a straightforward semantic verification.

Proposition 2.5.5 The following is a validity scheme of MAL(∗,← , ; ,∪,∼).

|= 〈α〉[∼β]ϕ → [∼(α;β)]ϕ (NegSeq-R)

Proof
We prove NegSeq − R from negative demonstration: assume there is a

model M with a state s such that (1) M, s |= 〈α〉[∼ β]ϕ and (2) M, s |=
¬[∼(α;β)]ϕ. From (1) it follows that α �= fail and that there is a state t such
that (s, t) ∈ R(α) and (1’) M, t |= [∼β]ϕ. Property 2 is equivalent with (2’)
M, s |= 〈∼(α;β)〉¬ϕ. Now there are two cases: β = fail or β �= fail.

If β = fail property 2’ reduces to M, s |= 〈U〉¬ϕ. This is in direct
contradiction with semantic property 1’, that for β = fail reduces to M, t |=
[U]ϕ. Since the U reaches all states, the contradiction strikes notwithstanding
the circumstance that this second validity holds for another state.

70 CHAPTER 2. MODAL LOGICS OF ACTION COMPOSITION

If β �= fail, there is a state u such that (s, u) ∈ R(∼ (α;β)) and (3)
M, u |= ¬ϕ. Now either (t, u) ∈ R(β) or (t, u) ∈ R(∼ β) (again, ∼ β ∪ β
reaches all states). But from (t, u) ∈ R(∼ β) and property 1’ we would have
to conclude that M, u |= ϕ, which contradicts 3. And from (t, u) ∈ R(β)
together with (s, t) ∈ R(α) we get (s, u) ∈ R(α;β), which directly contradicts
(s, u) ∈ R(∼(α;β)).

Note that this comparison between the two complements without first tak-
ing one step back cannot be made from the global orientation of relation
algebra. This explains why we refer to property NegSeq−R as a ‘local modal
repercussion’. Also, it expresses the same intuition as property 8 using less
action combinators (no converse). This seems as close as we can get to a local
modal variant or consequence of algebraic property 8. We will argue that the
property NegSeq − R is not always intuitive for reasoning about action. In
section 2.5.3 we develop several logics that do not obey it, by considering a
slightly other interpretation of the complement.

Definability of classes of models and frames

The universal complement strongly enhances expressiveness. In [78] the frame
expressiveness of the extension of modal logic with a universal relation com-
plement is thoroughly investigated. One of the things mentioned there is
that this complement enables expression of irreflexivity of frame relations:
IRREFL: [∼ a]ϕ → ϕ expresses that the frame relation R(a) is irreflexive.
It accomplishes this by demanding that the complementary relation R(∼ a)
is reflexive. Other examples of expressible properties of frames are strict
asymmetry SASYM: ϕ → [a]〈∼ a〉ϕ and left linearity LeftL: (ϕ → 〈∼ a〉ψ) ∨
(〈a〉ψ → (ϕ∨〈a〉ϕ)). Together, the frame validities IRREFL and LeftL define
a frame relation to be a tree. Note that we cannot express that these proper-
ties hold for all possible frame relations; we can only express that they hold
for individual frame relations.

In section 2.4.3 we saw that modal action logics with intersection but
without complement are strong enough to define intersection at the level of
frames. And because the intersection connective is syntactically definable in∼-
logics, it should raise no surprise that also ∼-logics are strong enough to define
intersection at the level of frames. That intersection is definable at the level
of frames in logics with a universal complement is shown by several authors
(e.g. [68], and [19] p.425). However, it seems to have gone unnoticed that in
logics of this type (in our terminology ‘∼-logics’) we can define intersection in

2.5. ACTION COMPLEMENT 71

a stronger sense, namely, at the level of models. First we prove that we can
define relation equivalence at the level of models, which answers the question
that arose after proposition 2.5.2.

Proposition 2.5.6 In ∼-logics, the class of models CR(α)=R(β), for which
R(β) = R(α), is defined by [∼(α � β)]ϕ.

Proof
(⇒) Immediate from proposition 2.5.2.
(⇐) First we rewrite the formula [∼(α � β)]ϕ, by expanding the syntactic

rules in definition 2.5.2 and by using semantic equivalences.

[∼(α � β)]ϕ
expand action abbreviations [∼((α ⊆ β) ∩ (β ⊆ α))]ϕ
expand action abbreviations [∼(α ⊆ β)∪ ∼(β ⊆ α)]ϕ
boolean action reasoning [(α∩ ∼β) ∪ (∼α ∩ β)]ϕ
modal reasoning [α∩ ∼β]ϕ ∧ [∼α ∩ β]ϕ
expand modal abbreviation ¬〈α∩ ∼β〉¬ϕ ∧ ¬〈∼α ∩ β〉¬ϕ
subst. for props ¬〈α∩ ∼β〉ϕ ∧ ¬〈∼α ∩ β〉ϕ

Now suppose M �∈ CR(α)=R(β). We have to show that ¬〈α∩ ∼ β〉ϕ ∧
¬〈∼α∩β〉ϕ is not valid onM. There are two cases. (case 1) There is a (s, t) ∈
R(α) while (s, t) �∈ R(β). This invalidates ¬〈α∩ ∼β〉ϕ, by instantiation of ϕ
by a formula that holds in t, for which we can always use . (case 2) There is
a (s, t) ∈ R(β) while (s, t) �∈ R(α). This invalidates ¬〈∼α ∩ β〉ϕ by the same
reasoning.

As a corollary we get that all action operations we considered before are
definable at the level of models. As an example we mention the definitions
for complement (CR(β)=R(∼α) , for which R(β) = U \ R(α)) and intersection
(CR(γ)=R(α∩β)) , for which R(γ) = R(α) ∩ R(β)), which are defined by respec-
tively [∼ (β �∼α)]ϕ and [∼ (γ � α ∩ β))]ϕ. We argued in section 2.4.3 that
the definability at the level of models of in particular intersection is a desirable
property for our logics, since we view intersection as central to the formaliza-
tion of true-concurrency in modal action logics, and want to incorporate all
relevant aspects of reasoning with intersection. This point is in favor of the
use of ∼-logics. But in the next sections we see some negative properties of
logics of this type.

72 CHAPTER 2. MODAL LOGICS OF ACTION COMPOSITION

Complexity of ∼-logics

From a complexity perspective, ∼-logics are not attractive. The logics MAL(∼)
and MAL(∪,∼) (boolean modal logic) have EXPTIME-complete complexity
[118, 119]. And already the extension with the sequence operation on ac-
tions, MAL(∪, ; ,∼), is undecidable. From the property that α � β holds
algebraically if and only if |= [∼ (α � β)]⊥ (proposition 2.5.6), it follows that
∼-logics are at least as complex as the algebras over their action combinators.
The algebra over the combinators ∪, ; and ∼ is known to be undecidable (it
is possible to encode the undecidable ‘word problem’ [181] in it).

Axiomatization of ∼-logics

De Rijke [156] studies dynamic modal logic with the universal complement (in
our terminology MAL(←, ; ,∪,∼, ϕ?), and gives a complete axiomatization.
We do not consider this work here. But we do consider the axiomatization
by Gargov and Passy [68] that concerns the logic MAL(∪,∼), which they call
‘boolean modal logic’. Gargov and Passy define a complete axiomatization,
and show that boolean modal logic has the finite (small) model property. The
logic can be seen as an extension with boolean modalities of the standard
multi-modal variant of the weakest modal logic K (Hennessy-Milner logic).
The relevancy of boolean reasoning over action is recognized by several authors
[32, 70, 131, 54, 55]. Below we give a finite axiomatization of boolean modal
logic. Gargov and Passy’s deductive system relies on a recursively enumerable
set of axioms.

Theorem 2.5.7 The following axioms and rules form a sound and complete
Hilbert-style deductive system for MAL(∪,∼) (we freely use syntactic exten-
sions).

Bool1 ϕ→ (ψ → ϕ)
Bool2 (ϕ→ (ψ → θ))→ ((ϕ→ ψ)→ (ϕ→ θ))
Bool3 (¬ϕ→ ψ)→ ((¬ϕ→ ¬ψ)→ ϕ)

K [α](ϕ→ ψ)→ ([α]ϕ→ [α]ψ)

Bool1-R [∼(α ⊆ (β ⊆ α))]ϕ
Bool2-R [∼((α ⊆ (β ⊆ γ)) ⊆ ((α ⊆ β) ⊆ (α ⊆ γ)))]ϕ
Bool3-R [∼((∼α ⊆ β) ⊆ ((∼α ⊆∼β) ⊆ α)))]ϕ

2.5. ACTION COMPLEMENT 73

K’-R [∼(α ⊆ β)]ϕ→ ([β]ϕ→ [α]ϕ)

Disj-R [α ∪ β]ϕ→ [α]ϕ

Symm-U ϕ→ [U]〈U〉ϕ
Refl-U ϕ→ 〈U〉ϕ
Trans-U 〈U〉〈U〉ϕ→ 〈U〉ϕ

Modus ponens: ϕ, ϕ→ψ
ψ Modal generalization: ϕ

[α]ϕ

Proof
Soundness of K ′ −R is proven by showing semantic equivalence with the

property K −R that was already proven a validity (proposition 2.5.4).

K’-R [∼(α ⊆ β)]ϕ→ ([β]ϕ→ [α]ϕ)
bool. reasoning over props. [∼(α ⊆ β)]ϕ→ ([α]ϕ ∨ ¬[β]ϕ)
bool. reasoning over actions [α∩ ∼β]ϕ→ ([α]ϕ ∨ ¬[β]ϕ)
subst. for actions and for props. [α∩ ∼∼β]¬ϕ→ ([α]¬ϕ ∨ ¬[∼β]¬ϕ)
bool. reasoning over actions [α ∩ β]¬ϕ→ ([α]¬ϕ ∨ ¬[∼β]¬ϕ)
duals + bool. reasoning over props. ¬〈α ∩ β〉ϕ→ ¬(〈α〉ϕ ∧ [∼β]¬ϕ)
contraposition 〈α〉ϕ ∧ [∼β]¬ϕ→ 〈α ∩ β〉ϕ

Soundness of, for instance, Bool1 − R follows almost immediately if the
definition of ⊆ is written out: [∼ (∼ α ∪ (∼ β ∪ α))]ϕ. This is semantically
equivalent with [∼ (∼α ∪ α))]ϕ and thus with [fail]ϕ, which is directly seen
to be a validity. The point of the axioms BoolX − R is that they all have
the form [∼(BoolX)]ϕ, where each BoolX is a reformulation of an axiom for
propositional boolean reasoning in relational terms. Clearly, validity follows
for all formulas [∼(BoolX))]ϕ where BoolX is a boolean validity reformulated
in relational terms.

Completeness is shown by relating the above axiomatization to the (first)
complete axiomatization defined by Gargov and Passy [68]. The difference
between their axiomatization and ours is that they do not include the boolean
axioms and K ′−R, but instead propose [fail]ϕ, together with an infinite, but
recursively enumerable set of axioms {[β]ϕ→ [α]ϕ | α ⊆ β is derivable in B},
where B is the boolean algebra based on the atomic actions and the boolean

74 CHAPTER 2. MODAL LOGICS OF ACTION COMPOSITION

connectives. This set is enumerable because the relation ⊆ for boolean alge-
bras is decidable. Our axiomatization is equivalent with Gargov and Passy’s
because our axiomatization deduces all axioms in this recursively enumerable
set, including [fail]ϕ. This follows immediately from the observation that the
above axioms BoolX −R together with the axiom K ′ − R mimic a complete
deductive system for boolean reasoning over relations: the axioms BoolX−R
are relational versions of the standard boolean axioms BoolX, and the axiom
K ′ − R is the relational version of the standard K-axiom for reasoning about
modal states. Together with the modus ponens rule the axioms BoolX − R
and K ′ − R form a deductive system that derives all formulas in the recur-
sively enumerable set (an example of such a deduction is given below). This
demonstrates that Boolean reasoning over actions is complete. If we would
have used an equational axiomatization of the boolean reasoning over actions,
we would need extra rules, such as the substitution rule in Gargov en Passy’s
second axiomatization.

We now list some properties that are available as theorems, deducible in
the above system. We roughly sketch by which steps these deductions are
made.

Proposition 2.5.8 The following are theorems of MAL(∪,∼):

CONJ-R 〈α ∩ β〉ϕ→ 〈α〉ϕ ∧ 〈β〉ϕ
DISJ-R 〈α ∪ β〉ϕ↔ 〈α〉ϕ ∨ 〈β〉ϕ

Proof
Straightforward verification shows that these are validity schemes. Com-

pleteness then says that the properties are also derivable in the deductive
system. To get an impression of such deductions we will roughly show how to
deduce 〈α ∩ β〉ϕ→ 〈α〉ϕ from K’-R and BoolX-R axioms.

boolean axioms [∼(α ∩ β ⊆ α)]ϕ
K’-R [∼(α ⊆ β)]ϕ→ ([β]ϕ→ [α]ϕ)
instant. K’-R [∼(α ∩ β ⊆ α)]ϕ→ ([α]ϕ→ [α ∩ β]ϕ)
mod. pon. [α]ϕ→ [α ∩ β]ϕ
duality + subst. of props. 〈α ∩ β〉ϕ→ 〈α〉ϕ
To deduce Disj-R, similar steps can be made.

2.5. ACTION COMPLEMENT 75

Notice the correspondence of the theorems of proposition 2.5.8 with the
following standard modal theorems:

CONJ 〈α〉(ϕ ∧ ψ)→ 〈α〉ϕ ∧ 〈α〉ψ
DISJ 〈α〉(ϕ ∨ ψ)↔ 〈α〉ϕ ∨ 〈α〉ψ

We saw that the ∼-logics allow syntactic definition of the U -operator, that
is symmetric, transitive and reflexive, which makes it an S5-modality. In the
section after the next one we argue that the S5- properties are in general too
strong for a notion that presumes to model ‘any action’ (the only exception
being the case where all action combinators are in the action language). But
first we summarize some basic logic properties of ∼-logics.

Summary of known ∼-logic properties

In the table below we summarize some results on ∼-logics from the literature.
Note that many logics are missing from the table, which means that still many
open ‘standard’ questions concerning ∼-logics abide.

MAL variant complexity of sat. modal axiom. f. m. p.
(∪,∼) EXPT.-cpl. [118] [68] / theorem 2.5.7 yes
(; ,∪,∼) undec. [181] [156] (sub-system) no

(←, ; ,∪,∼, ϕ?) undec. [156] [156] no

Table 5. some results from the literature on ∼-logics

Many properties that hold for modal logics in general do not carry over
to ∼-logics. In particular, ∼-logic validity is not preserved under (1) disjoint
unions, (2) generated sub-models, (3) standard bisimulation. And validity is
also not preserved under the notion of ag-bisimulation, that we proved (the-
orem 2.4.5) to be sufficient for modal action logics involving intersection. De
Rijke [156] defines a variant of bisimulation that does preserve ∼-logic validity.

Usefulness of ∼-logics as logics of action

We saw that ∼-logics are strong enough to define intersection and action equiv-
alence. But we also saw that ∼-logics have high complexities. But the main
reason to reject∼-logics as appropriate for reasoning about action has a seman-
tic nature. We argue from semantic intuitions that the universal complement
is not appropriate for modeling the notion of ‘alternative action’. Of course

76 CHAPTER 2. MODAL LOGICS OF ACTION COMPOSITION

this does not mean that it cannot be a useful construct in other applications
of modal logic (e.g. epistemic reasoning).

Our first point is that the universal modality U , that is syntactically de-
finable as ∼ α ∪ α, does not correspond to the notion of ‘any action’, an
interpretation it should have if the complement were to reflect the notion of
‘alternative action’. The intuition for the notion of ‘any action’ is that it sub-
sumes all possible actions, but not more. But the modality U has universal
power; it is capable of reaching any state, including the ones that are not
reachable by any action (other than the U). In our view, this makes the U
too strong for representation of the notion of ‘any action’. Nevertheless, some
authors on action reasoning in PDL refer to the modality U as the ‘any action’
[153].

The strength of the complement is also demonstrated by the property:
〈∼ (α;β)〉ϕ → [α]〈∼ β〉ϕ, which is the dual of 〈α〉[∼ β]ϕ → [∼ (α;β)]ϕ.
Let us assume that the action language does not allow for converse action.
And let us retain a local perspective by situating ourselves in a state and by
considering the actions α, β, their action complements, and their effects. At
first sight, the property seems to describe a reasonable action law: ‘if by doing
an action complementary to α;β I can reach a state where ϕ, then necessarily,
after doing α, I can reach the same state (where ϕ) by performing an action
complementary to β’. But on closer inspection, it becomes clear that the
possibility to reach the same state where ϕ after any possible performance
of α, implies that the execution of such an α apparently has not limited our
possibilities to reach certain states. This is a non-intuitive property for actions
that do not encompass converse, because in general, as the result of performing
such actions, the reachable state-space shrinks4. The property 〈∼ (α;β)〉ϕ →
[α]〈∼ β〉ϕ shows that it does not, because it says that all possible ways to
perform α do not result in a state from which ϕ cannot any longer be reached
by an action complementary to β.

Also, the universal complement does not combine well with temporal rea-
soning. For temporal reasoning over action, we assume in chapter 3 that time,
in a sense, is ‘realized’ by the performance of actions. In any case, actions
take place in time, and time evolves by the performance of actions. It follows
that only if states of affairs can be achieved through action, they belong to the
possible futures that have to be considered. Then it is clear that the univer-
sal operation U that reaches all possible states cannot function as an action
operation, since then many states not reachable by action should have to be

4An analogy: at the start of one’s life, much more different futures are possible than at
the age of 65.

2.5. ACTION COMPLEMENT 77

considered as possible future states of affairs.
The universal complement is also not suited to reason about action effects.

In section 2.5.1 we explained that a suitable notion of action complement (‘−’)
should enable the expression of frame properties. In particular we claimed that
it should be possible to use formulas of the form ¬ϕ→ [−α]¬ϕ to express that
the condition ϕ can only be changed by α. But his cannot be achieved by using
the universal complement. Again, it is too strong. The universal complement
in the expression ¬ϕ → [∼ α]¬ϕ does not only say that actions other than
(not involving) α cannot have ϕ as a result, it says in addition that all states
in the state-space that embody the result ϕ can actually be reached by α.
This follows from the semantics of the universal complement: any state can
be reached from any other state by either α or ∼α, and reachability by ∼α
contradicts [∼α]¬ϕ. This means that the universal complement is not suited
to encode Reiter’s solution to the frame problem [73, 155] into modal action
logic.

Note that we do not claim that a modal formula of the form [∼α]ϕ does
not have an intuitive reading in terms of the action α. We only claim that
the operator ∼ does not have an intuitive reading as an action operation. An
intuitive reading of [∼α]ϕ in terms of action is ‘ϕ holds in all states that are
not the result of performing the action α’. But this does not give a reading
of ∼ as an action combinator, because ∼ α is not an action: it may include
‘transitions’ that do not correspond to any action at all. In conclusion we
might add that we can only use this version of the complement in a logic
of action if we see the action as performed by omnipotent agents, that can
actually bring about any conceivable state of affairs.

2.5.3 Relativized complement modal action logics

The universal complement introduces an aspect that is not in the spirit of
modal logic: globalness. This aspect of the complement is inherited from re-
lation algebra, where the semantic view is also global. The complement we
consider in this section is faithful to the idea of locality in modal semantics.
This results in a better fit with the interpretation of the modal language as a
logic of action. As a side-effect we also expect better complexities for the log-
ics with a relativized action complement. The action language comprising the
new, relativized complement is only concerned with the part of the state space
that is ‘reachable’. It assumes that in general, from any given state at least
part of the state space cannot be reached through any action, and that the
part of the state space that is reachable may vary from state to state. Then,

78 CHAPTER 2. MODAL LOGICS OF ACTION COMPOSITION

the general intuition for the alternative complement, denoted �I , is that it is
taken with respect to all possible relations over this reachable state space. But
what may be considered reachable, depends on what action combinators are
in the action language. This explains the term ‘relativized’. The complement
operation is relativized with respect to the part of the state space in a modal
action model that (1) is the minimal relation space containing all atomic ac-
tions and that (2) is closed under application of the action combinators of the
dynamic logic language. Thus, if we allow iteration in the action language, the
complement space is reflexive, and if we allow converse, the complement space
is symmetric. Therefore we cannot give, as for the universal complement, a
general definition of the new complement for all dynamic logics; each dynamic
logic comes with its own interpretation for the complement. All in all we define
six versions of the relativized complement: �K , �B , �S4, �K4, �B4, �S5, one for each
dynamic logic involving a specific set of action combinators. The annotations
give information about the nature of the relation space with respect to which
the complement is taken, where we adopt standard terminology from modal
logic to refer to transitivity, reflexivity etc. Intuitively, this relation space
with respect to which the relativized complement is taken reflects the space of
possible alternative complex actions. That this space is relative to the action
combinators makes sense, since the syntactic complexity of alternative actions
is determined by the action connectives in the action language.

As a consequence of this scattering of interpretations, some action oper-
ators that can be syntactically defined in terms of the complement also get
alternative interpretations (anyI , ⊆I). Other combinators undergo no effective
change in interpretation (∪,∩, ; ,∗ ,← , fail).

To our knowledge the notion of relativized complement was not studied
before in modal logic. Only in the work of De Giacomo [70] a complement
can be found that is equivalent with �K . But there it was only applied to a
boolean action fragment, and not studied in detail.

Semantics of �I-logics
We define a series of modal action logics encompassing a relativized action
complement operator �I . Each subsequent logic in the series introduces a new
action operator and redefines the relativized complement operation accord-
ingly. The justification of the definitions is the following. If a complement
operation �I is meant to return all actions that are alternative, the space of
actions with respect to which the complement is defined should not only con-
tain all atomic actions, but should also be closed under the action operations

2.5. ACTION COMPLEMENT 79

of the logic. For instance: if sequence is among the action operators of the
logic, than also alternative action is possibly of a sequential nature, which
means that the complement space, that is, the space with respect to which �I
is defined, should be closed under the sequence operation.

Definition 2.5.4 (semantics of �I-logics) Let �K , �B , �S4, �K4, �B4, �S5, be ac-
tion complement connectives for the logics MAL(∪, �K), MAL(←,∪, �B),
MAL(; ,∪, �K4), MAL(∗, ; ,∪, �S4), MAL(←, ; ,∪, �B4), MAL(∗,← , ; ,∪, �S5) re-
spectively. We refer to this type of logics as �I-logics, where I is an annotation
referring to properties of the relational space with respect to which the com-
plement �I is taken. The semantics of each individual �I -logic is determined
by the modal semantics of definition 2.1.2, together with a relational interpre-
tation function R for actions, that follows by selection of the relevant clauses
of definition 2.4.1 in combination with the relevant clause for the relativized
action from the following list:

for MAL(∪, �K) : R(anyK) =
⋃

a∈A
R(a)

for MAL(←,∪, �B) : R(anyB) =
⋃

a∈A
(R(a) ∪R(a←))

for MAL(; ,∪, �K4) : R(anyK4) = (
⋃

a∈A
R(a))+

for MAL(∗, ; ,∪, �S4) : R(anyS4) = (
⋃

a∈A
R(a))∗

for MAL(←, ; ,∪, �B4) : R(anyB4) = (
⋃

a∈A
(R(a) ∪R(a←)))+

for MAL(∗,← , ; ,∪, �S5) : R(anyS5) = (
⋃

a∈A
(R(a) ∪R(a←)))∗

R(�Iα) = R(anyI) \R(α)

The logics of definition 2.5.4 are not the only possible �I -logics. Given
that besides the complement we consider four independent action operations
(choice, sequence, converse, iteration), we have a total of 24 = 16 different �I -
logics. But many of these are rather eccentric. Examples are MAL(�K), which
has the same complement as MAL(∪, �K) and MAL(∗,∪, �S4), which has the
same complement as MAL(∗, ; ,∪, �S4). We do not consider these logics, since
they seem to have less relevancy for the application to reasoning about action.

We introduce the relativized any and the relativized subsumption action as
syntactic extensions by defining them in terms of the relativized complement
(�I) and the choice (∪). Note that we already defined the relativized any as
part of the definition of the relativized action complement above. But we

80 CHAPTER 2. MODAL LOGICS OF ACTION COMPOSITION

identify dynamic logics by reference to their base-combinators, that is, sets of
action combinators that are not definable in terms of others. We can define
the any in terms of the complement, but not the other way round.

Definition 2.5.5 The relativized any, and the relativized subsumption action
are defined through the following syntactic extensions on ∪ and �I :

α ⊆I β ≡def �Iα ∪ β
anyI ≡def α ∪ �Iα

The relativized versions of the any and the subsumption action differ from
their non-relativized counterparts. The relativized any does not reach the
complete state space, but only the part that is reachable through (complex)
action, as determined by the action language. The next propositions states
that the intersection, equivalence action and fail have the same interpretation
as their relativized counterparts. In section 2.4.1, plain intersection was argued
to represent concurrency in an intuitive way. Therefore this proposition is in
support of the intuitive correctness of �I -logics for reasoning about concurrent
action.

Proposition 2.5.9 For any two actions α and β in the action language of a
�I -logic the following holds for the relational interpretations R(α) and R(β) on
a modal action frame F = (S,RA):

R(α ∩ β) = R(α ∩I β) with α ∩I β ≡def �I(�Iα ∪ �Iβ)
R(α � β) = R(α �I β) with α �I β ≡def (α ⊆I β) ∩ (β ⊆I α)
R(fail) = R(failI) with failI ≡def α ∩ �Iα

Proof
We prove the first equivalence. From the action semantics for the uni-

versal complement and the relativized complements it follows that R(�Iα) =
R(∼ (α∪ ∼ anyI)). Therefore we can substitute the action ∼ (α∪ ∼ anyI)
for actions �Iα in the definition for α ∩I β. This returns ∼(∼(α∪∼anyI)∪
∼(β ∪∼anyI)∪∼anyI). By applying standard boolean properties we arrive
at the equivalent ∼(∼((α∪∼anyI) ∩ anyI)∪∼((β ∪∼anyI) ∩ anyI)). Again,
by applying standard boolean properties we arrive at the equivalent action (1)
∼(∼((α∩anyI)∪ (∼anyI ∩anyI))∪∼((β ∩anyI)∪ (∼anyI ∩anyI))). Now we
focus on the actions (2) α∩anyI and (3) ∼anyI ∩anyI . Action 3 is equivalent
with the impossible action fail, as follows from the meaning of ∼. Action 2 is

2.5. ACTION COMPLEMENT 81

equivalent with α, since anyI is the action that subsumes any other action: for
any α it holds that R(α) ⊆ R(anyI). Substitution of these equivalent actions
into action 1 results in ∼(∼α∪∼β), which is equivalent with α ∩ β.

For any specific �I -logic, we talk of its �I -reduced sub-logic if we mean
the logic that results by removal of the complement, and we talk of its ∼-
logic counterpart, if we mean the corresponding logic where the �I -operator is
replaced by the∼-operator. In the same way we talk about ∼-logic counterpart
formulas, validities, validity schemes, etc.

Proposition 2.5.10 For any �I-logic, the relativized complement operator
〈�Iα〉ϕ is not syntactically definable in its �I-reduced sub-logic.

Proof
For all �I -reduced sub-logics state validity is preserved under bisimulation

(in specific cases generalized to deal with converse action). State validity of for
instance 〈a∩b〉P (where we use proposition 2.5.9, saying that plain intersection
is syntactically definable in any of the relativized modal action logics) is not
preserved under bisimulation. The proposition can be made stronger, since
for instance �S4 is also not definable in MAL(∗, ; ,∪,∩), because state validity
of 〈�S4a ∪ �S4b〉¬P is not preserved under ag-bisimulation.

We will prove that �I -logics are subsumed by their ∼-logic counterparts
(under syntactic replacement of the complements). In this sense they are
‘weaker’. But (with one exception) it is not the case that �I -logics can be
syntactically defined by their ∼-logic counterparts. We will prove this for the
two weakest �I -logics.
Proposition 2.5.11 For the logics MAL(∪, �K) and MAL(∪,← , �B), the rela-
tivized complement operator 〈�Iα〉ϕ is not syntactically definable in the ∼-logic
counterparts.

Proof
In section 2.5.2 we mentioned that iteration-free ∼-logics are compact.

The relativized complements �K and �B are not. For the logic MAL(∪, �K),
it is straightforward to verify that the set {〈�Ka〉¬P, [b]P, [c]P, . . . } (where
{a, b, c, . . . } = A), is not satisfiable while all of its finite sub-sets are. For the
logic MAL(∪,← , �B), the absence of the compactness property follows from the
set {〈�B(a ∪ a←)〉¬P, [b]P, [b←]P, [c]P, [c←]P, . . . }.

82 CHAPTER 2. MODAL LOGICS OF ACTION COMPOSITION

We will show in chapter 3 how to use the relativized action complement
for temporal reasoning over action, and we will show in chapter 5 how to use
it for deontic reasoning. To stress the intuitive adequacy of the complement
to reason about action, we only mention here that it can be used to encode
Reiter’s solution of the frame problem. In section 2.5.1 we argued that the
universal complement is not suitable for the encoding of Reiter’s solution to the
frame problem in modal action logics, because the expression ¬ϕ → [∼α]¬ϕ
does not only say that actions other than (not involving) α cannot have ϕ as
a result, it says in addition that all states in the state-space that embody the
result ϕ can actually be reached by α. The relativized complement version of
this expression, i.e. ¬ϕ → [�Iα]¬ϕ does not have this unintended additional
consequence: only for the states that are reachable through complex action it
holds that if ϕ holds in them, they can be reached by α. Note that we can
introduce a relativized version of the window operator of definition 2.5.3 to
abbreviate [�Iα]¬ϕ.

Validities

In this section we prove that each �I -logic represents a specific weakening of
its ∼-logic counterpart, and that the series of �I -logics themselves are partially
ordered in strength. Also we show that this ordering is strict, by presenting
validity schemes witnessing the differences in strength. First we prove:

Theorem 2.5.12 Under syntactic replacement of �I with ∼, each validity for
a given �I-logic turns into a validity for its ∼-logic counterpart.

Proof
Through negative demonstration. Assume that the formula ϕ�I is a �I -

validity (so it is not a validity scheme). Denote its ∼-logic counterpart formula
by ϕ∼. Now assume that ϕ∼ is not a validity. Under this assumption, we
show how to construct a model on which ϕ�I is not valid, thereby proving
the theorem. If ϕ∼ is not a validity, it follows that there is a model M
and a state s such that M, s �|= ϕ∼. Define aa(ϕ∼) to be the set of atomic
actions occurring in the formula ϕ∼. Now construct the modelM′, by adding
to M the interpretation of an atomic action r such that r �∈ aa(ϕ∼) and
RA(r) = S × S \ anyI . It follows that M′, s �|= ϕ∼, because the addition of
the new relation does not alter the truth-condition for ϕ∼: (1) all actions in
aa(ϕ∼) are equally interpreted in M and M′, and (2) all action connectives
are equally interpreted, in particular, addition of RA(r) does not in any way
change the interpretation of actions of the form ∼ α, because the universal

2.5. ACTION COMPLEMENT 83

relation is not affected, (3) all valuations of propositions remain as they are.
But now, due to the addition of the extra relation, for any a such that a ∈
aa(ϕ∼), the interpretation of the relation �Ia on M′, is exactly the same as
the interpretation of ∼a on M. It is easy to see that this does not only hold
for the interpretation of negated atomic actions, but that the interpretation
of any compound action �Iα on M′, is exactly the same as the interpretation
of ∼ α on M. But then, from the information that M′ and M agree on
all valuations of atomic proposition, it follows that the truth conditions for a
formula ϕ�I on M′ is necessarily equal to the truth condition for ϕ∼ on M.
So it holds that M′, s �|= ϕ�I . So there is a model, namely M′, for which the
formula ϕ�I is not valid. This contradicts the assumption we started off with.

Second, we show that the insight used in the above proof can also be used
to compare the relativized modal action logics mutually.

Theorem 2.5.13 Under replacement of complements in formulas, the follow-
ing inclusion relation between �I-logics holds. In the picture, logics are repre-
sented by the type of complement they endorse, and arrows denote inclusion.

❅
❅❘

✲

✲

❅
❅❘

�
�✒

❅
❅

❅
❅

❅
❅❅❘

�
�✒

�K4

�K

�S4

�B4�B

�S5

Proof
We can use the same proof strategy as for theorem 2.5.12. If we want to

prove that for a logic encompassing the complement �I , the validities are in-
cluded in a logic encompassing the complement �J , we make use of the addition
of a relation RA(r) for an atomic action r, defined as RA(r) = anyJ \ anyI .
On all other aspects the proofs are completely analogous to the proof of theo-
rem 2.5.12. This implies that inclusion of logics is determined by inclusion of
the respective complement spaces. So the above partial order simply follows
definition 2.5.4 by inspecting the inclusion relations between the spaces with
respect to which the respective complements are defined.

84 CHAPTER 2. MODAL LOGICS OF ACTION COMPOSITION

It is clear right away that the above inclusions are strict since stronger
logics encompass supersets of non-syntactically definable action connectives.
But it is illustrative to see how the logics can also be distinguished by validity
schemes concerning action connectives that are available in (almost) all rel-
ativized complement logics, such as the ‘∪’, the ‘�I ’ and the ‘;’. We already
investigated such validities for ∼-logics in section 2.5.2, and know that the
logics in this section weaken these logics. So we simply check which of the va-
lidities we encountered in section 2.5.2 are affected. First we note that many
validity schemes are shared by all �I -logics and ∼-logics. One example is the
property K-R:

|= 〈α〉ϕ ∧ [�Iβ]¬ϕ→ 〈α ∩ β〉ϕ (K-R)

Other properties are valid for some �I -logics and invalid for others. We
recall the following possible validity schemes for �I -logics:

|= 〈anyI〉〈anyI〉φ→ 〈anyI〉φ (Trans-any)
|= φ→ [anyI]〈anyI〉φ (Symm-any)
|= φ→ 〈anyI〉φ (Refl-any)
|= 〈α〉[�Iβ]φ→ [�I(α;β)]φ (NegSeq-R)

Now the following proposition lists a table saying which properties hold
for which logic.

Proposition 2.5.14 (validity schemes of �I-logics)
MAL variant(s) Trans-any Symm-any Refl-any NegSeq-R

(∪, �K) no no no no
(←,∪, �B) no yes no no
(; ,∪, �K4) yes no no no
(∗, ; ,∪, �S4) yes no yes no
(←, ; ,∪, �B4) yes yes no yes
(∗,← , ; ,∪, �S5) yes yes yes yes

Table 6. validity schemes for �I-logics

Proof
Most properties follow by straightforward verification. That the property

NegSeq-R is only valid for the strongest two logics takes the following insight.

2.5. ACTION COMPLEMENT 85

First of all it takes the sequence operator to express the property, which already
rules out half of the �I -logics. Second it requires symmetry of the space with
respect to which the complement �I is taken. Without symmetry, 〈α〉[�Iβ]ϕ→
[�I(α;β)]ϕ is easily refuted in the state s of a modelM with two states s and t
such thatM, t |= ¬ϕ, and (s, t) ∈ R(α) (it is also easy to check that by making
the complement space symmetric, that is, by including the converse direction
of α in it, the model is no longer a counter example to the scheme, because
thenM, t �|= [�Iβ]ϕ and thusM, s �|= 〈α〉[�Iβ]ϕ). Symmetry of the complement
space holds only for �I -logics encompassing the converse operation.

It might come as a surprise that the scheme φ → 〈anyI〉φ, representing
reflexivity, only holds in the logic with �S4 and �S5, and not for the logic
with �B4. The complement space for the logic with �B4 is both transitive and
symmetric. Transitivity and symmetry together imply reflexivity. But in the
present setting, transitivity and symmetry only holds for the reachable relation
space, which results in a relativized reflexivity with respect to the complete
state space: the reflexivity only holds for states from which action is actually
possible.

The above table not only lists properties that distinguish �I -logics mutu-
ally, it also forms a comparison of �I -logics with their ∼-logic counterparts.
For instance, it shows that MAL(∪, �K) is considerably weaker than its sib-
ling MAL(∪,∼), because it does not support transitivity, or reflexivity or
symmetry for the anyK . But the logics lower in the table are closer to
their ∼-logic counterparts. And we now prove that the final and strongest
one, MAL(∗,← , ; ,∪, �S5), is actually equivalent with its ∼-logic counterpart
MAL(∗,← , ; ,∪,∼).

Theorem 2.5.15 Under syntactic interchange of occurrences of �S5 and ∼,
the logics MAL(�S5,∪, ; ,∗ ,←) and MAL(∼,∪, ; ,∗ ,←) encompass exactly the
same validities. Thus, the logics are equivalent.

Proof
Theorem 2.5.12 already proved that under syntactic interchange of occur-

rences of �S5 and ∼, it holds that MAL(�S5,∪, ; ,∗ ,←) ⊆ MAL(∼,∪, ; ,∗ ,←).
Here we have to prove that also MAL(�S5,∪, ; ,∗ ,←) ⊇ MAL(∼,∪, ; ,∗ ,←).
Again we rely on a proof through negative demonstration. Assume that ϕ∼

is a ∼-validity. Denote its �S5-logic counterpart formula by ϕ�S5
. Now assume

that ϕ�S5
is not a validity. Under this assumption, we show how to construct

a model on which ϕ∼ is not valid, thereby proving the theorem. If ϕ�S5
is

86 CHAPTER 2. MODAL LOGICS OF ACTION COMPOSITION

not a validity, it follows that there is a model M and a state s such that
M, s �|= ϕ�S5

. Define aa(ϕ�S5
) to be the set of atomic actions occurring in

the formula ϕ�S5
. Now construct the model M′, by contraction to the gen-

erated sub-model of state s (simply remove all non-reachable states, where
reachability also accounts for the converse direction of relations). It follows
thatM′, s �|= Φ�S5

, since the truth function does not get another value by this
contraction. But now, for any a such that a ∈ aa(ϕ�S5

), the interpretation
of the relation ∼ a on M′, corresponds one to one to the interpretation of
�S5a on M. It is easy to see that actually the interpretation of any compound
relation and well-formed formula using ∼ on M′ corresponds one to one to
the interpretation of a compound relation and well-formed formula using �S5

onM. But then it holds thatM′, s �|= ϕ∼, where ϕ∼ corresponds to ϕ�S5
with

∼ in place for �S5. It follows that there is a model M′ for which the scheme
ϕ∼ is not valid. This contradicts the assumption we started off with.

We want to elaborate on the role of the scheme NegSec-R in the distinction
between logics. The property is not relevant for the comparison of MAL(∪, �K)
and MAL(∪,∼), since neither of these allow expression of the complement of
sequence.5 But for logics higher in the partial order, the property plays an
interesting role. An important way in which the relativized complement differs
from the universal complement is that, in case we do not have the converse in
the action language, the reachable state space might change when going from
one state to another. For the logics with universal complement, this does not
hold, because with the universal relation, from any state in a model we can
reach any other state. The difference between these two semantic choices is
demonstrated by the way the complement interacts with the sequence. For
logics with universal complement we have 〈α〉[∼ β]ϕ → [∼ (α;β)]ϕ. We can
read this as ‘if we can do an α after which the state space not reachable through
β obeys ϕ, then the state-space not reachable through α;β obeys ϕ’. So if we
want to impose ϕ on the state-space that is complementary to the space reach-
able by α;β, it is possible to first perform α and impose ϕ on the complement
of states reachable by β afterwards. This is not possible in the (converse-free)
logics with relativized complement. If we want to impose ϕ on the state-space
that is complementary to the space reachable by α;β, it is not possible to first
perform α, and to try to impose ϕ on some reachable state-space ϕ afterwards.

5We might introduce in MAL(∪, �K) a notion of sequence through syntactic exten-
sion ([α; β]φ ≡def [α][β]φ). But that does not bring us the expressiveness of the logic
MAL(; ,∪, �K4), because there is for instance no formula equivalent to [�K4(α;β)]φ.

2.5. ACTION COMPLEMENT 87

The reason is that by doing an α, we cut off reachability of many states that
are in the complement of the α;β-reachable states. Addition of the converse
to the action language brings us back symmetry of the connected relation
space. So we get symmetry of the complement (anyB4), and global reachabil-
ity (NegSeq − R). This shows that from an action perspective, the converse
seems to be a more powerful connective than from a mere relational perspec-
tive, because in the MAL versions with universal complement, symmetry and
global reachability already holds for the variants without converse.

Definability of classes of models and frames in �I-logics
In section 2.4.3 we saw that logics with intersection but without complement
were not strong enough to define intersection and relation equivalence at the
level of models. In section 2.5.2 we proved that ∼-logics were strong enough
for this task. But also the weaker �I -logics accomplish this.

Proposition 2.5.16 In ∼-logics, the class of models CR(α)=R(β), for which
R(β) = R(α), is defined by [�I(α �I β)]ϕ.

Proof
The proof is completely analogous to that of proposition 2.5.6.

As a corollary we get that all action operations are definable at the level
of models. In particular, the class of models CR(γ)=R(α∩β) , for which R(γ) =
R(β) ∩ R(α), is defined by [�I(γ �I α ∩I β)]ϕ. Note that in these formulas
we might replace �I and ∩I by their non-relativized counterparts, since these
were shown to have exactly the same interpretation.

Preservation of state validity

�I -logics are stronger than ∩-logics. Therefore, semantic equivalence notions
for �I -logics should be obtained as strengthenings of the equivalence notion for
∩-logics, that is, ag-bisimulation (definition 2.4.9). Whereas in ∩-logics we can
express that states are reachable through certain action graphs, in �I -logics we
can express additionally that certain states are not reachable through certain
action graphs. For instance, in terms of action graphs, the formula 〈�Iα〉ϕ
means that there is a state where ϕ holds that is reachable by some action
graph, but not by any action graph that interprets the action α. To incorporate
this non-reachability aspect, we have to generalize definition 2.4.7 concerning
the graph interpretation of action. Essentially we will get a relativized notion

88 CHAPTER 2. MODAL LOGICS OF ACTION COMPOSITION

of semantic equivalence, i.e. semantic equivalence notion for each separate �I -
logic. The semantic equivalence notion we defined for ∩-logics are used in
chapter 4 to base notions of ‘semantic in-equivalence’ on. But for �I -logics we
will not consider these. Therefore we leave semantic equivalence notions for
these logics as a subject for future research.

Complexity of �I-logics
In the proof of proposition 2.5.11 we showed that �I -logics are not compact.
This shows that the semantics of relativized complement contains a second
order aspect (like the iteration). Therefore we may expect higher complex-
ities for �I -logics w.r.t. their ∼-logic counterparts. But on the other hand,
relativization is known to result in better complexity properties. The work
of Marx [125] on relativized relation algebra studies relativizations of relation
algebras with respect to ‘background’ relations. He shows that relativization
of relation algebras has a positive effect on their complexity. Although our
form of relativization is more specific, we expect a better complexity for our
�I -logics with respect to their ∼-logic counterparts. Relativization can be seen
as a way to adapt the semantics of formulas in order to allow more models,
which should make the satisfaction problem easier. Having more models cor-
responds with having less validities. The validities of proposition 2.5.14 are
examples of properties that hold for ∼-logics but not necessary for their �I -logic
counterparts.

To prove complexity results we expect that we can use the local charac-
ter of the relativized complement. This local character enables us to define
generalized tree properties such as defined by Marx and Venema [126]. A par-
ticular interesting question is whether the logic MAL(; ,∪, �K4) is decidable.
The presence of sequence is likely to cause undecidability. Transitivity intro-
duces undecidability in first order generalizations of modal logic such as the
two variable and guarded fragments. But for some traditional incarnations
of modal logic that were developed for the temporal and process domains,
transitivity is a common feature that does not cause undecidability.

Decidability for the stronger logics MAL(�S4,∪, ; ,∗) and MAL(�B4,∪, ; ,←)
is unlikely. But for the strongest �I -logic, undecidability of the satisfiability
problem is certain.

Theorem 2.5.17 The satisfiability problem for MAL(�S5,∪, ; ,∗ ,←) is unde-
cidable.

2.5. ACTION COMPLEMENT 89

Proof
Directly from theorem 2.5.15 saying that the logic is equivalent with the

undecidable logic MAL(∼,∪, ; ,∗ ,←).

We conjecture that most �I -logics have a better complexity than their ∼-
logic counterparts, but that the difference vanishes for the strongest �I -logics.

Axiomatization of �I-logics
It is possible that dropping the axioms concerning the transitivity, symmetry
and reflexivity of the U from the complete axiomatization of MAL(∪,∼) in
theorem 2.5.7, returns a (weakly6) complete axiomatization for MAL(∪, �K).
Axiom systems for stronger �I -logics can then be obtained by supplementing
this base system with the well-known axioms for iteration, converse, etc., and
the axioms that are listed as validity schemes in proposition 2.5.14. We do
however not perform this investigation here.

Summary of �I-logic properties

In the table below we summarize properties of MAL variants with a relativized
complement.

MAL variant complexity of sat. f. m. p.
(∪, �K) PSPACE compl. (conj.) yes

(←,∪, �B) PSPACE compl. (conj.) yes
(∗,← , ; ,∪, �S5) undec. (theorem 2.5.17) no

Table 7. some properties of �I -logics
The conjecture about PSPACE complexity of MAL(←,∪, �B) is based on

the insight from the proof of theorem 2.3.2, that we can safely push down
converse operations to the atomic action level. Many �I -logics and �I -logic
properties are missing from the table, indicating that several standard logic
questions concerning �I -logics are still open.

2.5.4 Complement and deterministic action

There are two different levels on which determinism can be assumed: (1) at
the level of atomic actions, in order to obey 〈a〉ϕ → [a]ϕ for atomic actions

6Such an axiomatization is not likely to be strongly complete due to the incompactness
of MAL(∪, �K).

90 CHAPTER 2. MODAL LOGICS OF ACTION COMPOSITION

a, and (2) at the level of compound actions, in order to obey 〈α〉ϕ → [α]ϕ
for complex actions α. The first strengthening corresponds to interpretations
over models for which each relation RA(a) is a partial function assigning a
unique a-successor state to every state where the action a can be executed.
Such models are called deterministic models. In general, interpretation over
deterministic models leads to higher complexities. For deterministic models,
addition of the global (universal) modality [U]ϕ to the logic MAL(; ,∩) returns
an undecidable logic ([19] p.367), and addition of the ‘master’ modality, which
is equivalent to our [anyS4]ϕ, to the logic MAL(; ,∩) results in a logic that
is highly undecidable ([19] p.371). This follows from the encoding of tiling
problems. It follows that also the logic MAL(∗, ; ,∪, �S4) is highly undecidable
on deterministic models.

For logics for which we assume deterministic compound action, the opposite
holds: they have a low complexity. This is because obedience of 〈α〉ϕ →
[α]ϕ can only be accomplished by imposing severe restrictions on the action
syntax (very tight restrictions on the application of ∪ and ∗ to exclude non-
deterministic choices). We want to note that determinism on the level of
compound actions does not mean that we only have to consider models that are
traces, and that bisimulation can be replaced by trace-equivalence. The reason
is that we still have a multi-modal language. Each program reaches maximally
one state (up to bisimulation), but in general more than one program (up
to program equivalence) is possible from a specific state. If we have such
a situation, where two programs α and β with R(α) �= R(β) are possible
from a given state, syntactically there is no program γ allowed for which
R(α) ∪ R(β) ⊆ R(γ), because this would be a non-deterministic program.
However, the notion of deterministic compound action completely collapses if
complement enters the stage. We have to distinguish between the traditional
∼ and our �I . For the logics with ∼, deterministic reasoning will have to obey
〈U〉ϕ→ [U]ϕ. This results in a collapse to propositional logic, since it imposes
that all states in models obey exactly the same formulas. For the �I -logics
we distinguish two cases: the cases that obey reflexivity, and the cases that
do not. The �I -logics obeying reflexivity also collapse to propositional logic,
since under this condition, 〈anyI〉ϕ → [anyI]ϕ imposes that all that holds in
the current state also holds in all states reachable through (complex) action.
The �I -logics not obeying reflexivity collapse to modal logic over frames with
maximally two states. Clearly these logics have low complexities.

2.6. CONCLUSIONS 91

2.6 Conclusions

In this chapter we studied the modal logics of action action composition that
form a basis for the rest of the work in this thesis. We focussed on the notions
of intersection, and action complement. Intersection was argued to represent
concurrency in an intuitive way, provided we adopt the open action paradigm.
Action complement was argued to be important for the combination of action
reasoning with reasoning about change, temporal reasoning and with norma-
tive reasoning. Discontent with the standard notion of action complement led
to the definition of a relativized action complement. Logics with this action
complement feature a number of attractive properties: (1) intuitive correct-
ness, (2) syntactic definability of the (non-relativized) intersection operation,
(3) definability of intersection and of action equivalence in terms of classes
of models, and (4) better complexity properties. Not all relevant aspects of
modal action logics with a relativized complement were dealt with: some inter-
esting questions concerning complexity and axiomatization were left for future
research.

92 CHAPTER 2. MODAL LOGICS OF ACTION COMPOSITION

93

Chapter 3

Temporalizing modal action
logics

The temporal dimension is traditionally deemed very important for reasoning
about reactive system behavior [124]. The interpretation domain for temporal
system properties is formed by the points in time that are attended in the
behavioral history of a system. We call these points in time moments (other
terms that can be found in the literature are: ‘worlds’, ‘states’, ‘situations’).
To model the reasoning about the temporal evolution of reactive system prop-
erties, many temporal logics have been developed [149, 47, 187, 24, 124, 48],
some of which have incompatible conceptions of the structure of time. Tem-
poral logics in general abstract from dynamic aspects of the structure in which
moments are related, i.e. from the actions and processes through which mo-
ments ‘result’ from other moments. Typical temporal properties are ‘liveness’,
expressing that certain conditions will occur eventually or even repeatedly
(fairness), and ‘safety’, expressing that certain conditions are preserved over
time.

In this chapter we study how to interpret temporal properties on modal
action models, and to what extent temporal properties are already expressible
by the modal action logics of chapter 2. The chapter consists mainly of defini-
tions concerning combined action / time logics, and their motivations. Many
of the relevant logic properties for the combinations follow from the individual
logic fragments. We sometimes mention these properties, but the main focus
will be on the semantic definitions of the combined logics. We first study
how we are to define the common semantic ground for temporal formulas and
action formulas.

94 CHAPTER 3. TEMPORALIZING MODAL ACTION LOGICS

3.1 Temporal interpretations on action models

We investigate how to interpret temporal properties on modal action models.
We restrict our attention to discrete, non-dense, Ockhamist ([154, 195, 39])
time. A conception of time is ‘Ockhamist’ if it assumes determinism in the
past direction. Non-Ockhamist time may branch in the past direction. The
two other restrictions, that is, discreteness and non-density, point to the in-
volvement of a specific temporal notion: the next moment in time. Another
central temporal notion is that of the future in its global extensiveness. In
order to interpret temporal operations, we have to make these two basic tem-
poral notions concrete in modal action models. We do that by representing
them by special relations in modal action models. We denote the first, the next
time relation, with the relation RX , and the second, the global time relation,
with RG. The relations represent the following information: if (s, t) ∈ RX ,
then for any moment the system is in state s the next moment in time the
system is possibly in state t, and if (s, t) ∈ RG, then for any moment that the
system is in state s there is a possible future moment in which the system is
in state t. Note that RX and RG do not explicitly relate moments, but system
states that may occur at certain moments. This leaves open the possibility
that system states may correspond to more than one moment.

To see how RX and RG can be defined for the modal action logics we
studied in chapter 2, we consider several requirements for a temporal view
on action structures. Some have to do with desired properties for time itself,
while others stem from our basic viewpoint that it is through action that,
in a sense, time is ‘realized’. We begin with requirements of the first type.
These are requirements for RX and RG that do not relate to their use in an
action context, but follow from temporal intuitions alone. We denote infinite
sequential composition of a relation R by Rω, and infinite transitive closure
by R∞, which gives that R∞ = Rω ∪R∗. The temporal requirements are:

(1) (RX)∞ = RG

(2) Let I ≡def {(s, s) | s ∈ S} and Rirr
X ≡def RX \ I. Then

Rirr
X ◦Rirr

X ⊆ (RG \Rirr
X).

(3) There is no Rhalt
G such that Rhalt

G ⊆ RG and Rhalt
G ◦RX = ∅.

Requirement 1 says that the set of states that is possibly attended after the
passing of a zero, finite or countably infinite number of next moments in time
equals the set of possible future states, including the current state. Obedience
of this requirement has two intuitive implications: (1) any state that comes

3.1. TEMPORAL INTERPRETATIONS ON ACTION MODELS 95

next in time belongs to a possible future, that is, RX ⊆ RG, and (2) RG is
closed under transitive composition: RG ◦RG ⊆ RG. This reflects the general
temporal law that time is transitive: ‘if I am born before my brother, and my
brother is born before my sister, then I am born before my sister’. Note that
the requirement can be used as a definition of the relation RG in terms of RX .
We thus only have to define the relation RX on modal action models to enable
the interpretation of temporal modalities over them. Requirement 2 follows
from the observation that a state that is next in time cannot really be a state
next in time if it is possible to consider states at moments in between. It says
that under the condition that we cannot stay in the current system state when
going to a next moment in time (irreflexivity of Rirr

X), we cannot reach the
same system state by both one and two minimal time steps. Requirement 3
says that there cannot be future states where time comes to a halt: time goes
on forever, whichever branch is followed. Note that requirement 3 does not
follow from requirement 1: reflexivity of RG does not guarantee that there are
no states from where no other states are reachable through RX . It is clear
that RX and RG play opposite roles as the minimal time lapse and any time
lapse respectively.

But should we not demand additionally that both RX and RG are irreflex-
ive, in order to mirror that time is considered to be loop free? The answer
is no, because logics for Ockhamist time cannot distinguish loops from their
‘unravelings’. So the temporal reasoning will not run into paradoxical time
circularities whenever a loop is formed by the relations RX and RG; the tem-
poral languages we consider are not strong enough to ‘detect’ them. We may
also explain this in another way: with any system state that is begin and end
point of an action loop, we can associate a countably infinite set of time points,
corresponding to the infinitely many times a lapse through the loop may occur.
That in the model, this countably infinite set of moments is represented by one
state, is justified by the fact that the time logics we consider are not strong
enough to ascertain this identification of states: they only ‘see’ an infinite set
of moments1. Note that modal action logics with skip (definition 2.2.2) and
∩ are strong enough to define loops. In particular, ψ → 〈a∩ skip〉 expresses
that in states where ψ holds it is possible to perform a in such a way that
the current state is reached. So, we may say that in these states we have a
‘circular’ action (which is an action with no effect). We thus have circularity
in modal action models for this formula. But as just explained, this does not

1Note that this is exactly why modal languages for reasoning about infinite behavior in
many cases do have the finite model property: countably infinite traces can be encoded as
loops in finite models.

96 CHAPTER 3. TEMPORALIZING MODAL ACTION LOGICS

imply that time is circular.
We now turn to the requirements that follow from the assumption that

any action not only relates system states, but also moments in time. The
leading principle here is that time advances by performing actions. Time is
thus ‘realized’ by action, which means that the directional structure of actions
and states in modal action models should never conflict with the temporal
ordering of moments.

(4) For all a such that a ∈ A it holds that RA(a) ⊆ RX .

(5) For all binary action combinators B it holds that if R(α) ⊆ RG

and R(β) ⊆ RG, then R(α B β) ⊆ RG. And for all unary action
combinators • it holds that if R(α) ⊆ RG, then R(α•) ⊆ RG.

(6) For all (s, t) ∈ RG it holds that there is some (possibly infi-
nite) series of complex actions α1, α2, . . . such that (s, t) ∈ R(α1)◦
R(α2)◦. . . where the αi are complex actions in the action language
of the modal action language under consideration.

Requirement 4 stipulates two things. First of all, that the relation between
two system states as execution and resulting state of an atomic action also
determines a temporal relation: the execution state chronologically precedes
the resulting state. The second implication is that indeed atomicity of actions
implies that they relate moments in time for which no intermediate moment
is deemed possible. Requirement 5 shows that time is closed under action
combinators in the sense that complex actions are temporal whenever their
constituent parts are. This means that the definition of RG (and thus RX)
will have to depend on which action combinators are in the language. So again,
we encounter the concept of ‘relativization’ with respect to action combinators.
For instance, if converse is in the action language, time can be advanced by
performing a converse action. We discuss this particular example in a separate
subsection below. Finally, requirement 6 refers to the observation that we do
not consider moments that never occur in any course of action. For reasoning
about system behavior this is important. We are not interested to reason
about moments that will never occur in a history of system behavior. But,
note that by ‘never’ we do not mean ‘not within a finite number of time steps’,
because we do consider infinities.

In the sections to come, we investigate for various modal action logics
defined in chapter 2 how relations RX and RG that satisfy the above six
requirements can be defined. For the modal action logics of the previous
chapter that are most useful for our purposes, that is, the ∩-logics and the

3.1. TEMPORAL INTERPRETATIONS ON ACTION MODELS 97

�I -logics, we will run into problems. We discuss these problems in section 3.4,
and propose solutions. But first we discuss three general issues regarding the
interpretation of temporal formulas on modal action models.

Determinism and linear temporal logics

An important issue is the relation between linear time and determinism of ac-
tion. First we shortly explain the difference between linear time and branching
time, in terms of properties of RX . Assume that the relation RX interprets a
temporal operator N , with the informal meaning ‘next moment in time’. Now,
in linear time temporal logic it holds that Nϕ→ ¬N¬ϕ, meaning that if in a
state for the next moment ϕ holds, it cannot be that there are other possible
states for the next moment where ϕ does not hold. So in the linear conception
of time moments have unique successor moments. Linear time temporal logic
is thus appropriate for reasoning domains where the future is (in principle)
completely determined by the present2. In branching time temporal logic on
the other hand, we a priori assume two dimensions of time: a dimension that
corresponds with duration, and a dimension that corresponds with the differ-
ent courses of time. If N is a branching time temporal operator, Nϕ→ ¬N¬ϕ
is not a validity. Branching time temporal reasoning is appropriate for rea-
soning about temporal domains where we a priori assume that the future is
not determined by the present. An example is reasoning about autonomous
behavior of agents: at any possible future moment an agent has a choice about
what future to pursue.

It is a natural thought that there should be a strong relation between the
notion of linear time and the two notions of determinism we encountered in
chapter 2, i.e. (1) determinism at the level of atomic action (characterized
by the formula 〈a〉ϕ → [a]ϕ), and (2) determinism at the level of general
complex action (characterized by the formula 〈α〉ϕ → [α]ϕ). But that is
not the case. The six requirements we formulated do not enforce this. And
indeed, they should not. Consider the second notion of determinism for modal
action logics. It imposes that from each system state, by performing a specific
complex action it is only possible to reach exactly one resulting state. So,
the limitation we have is that we cannot perform an action whose outcome is
not certain. But no limitations hold for the choice between separate actions.
So still, at each moment, several compound deterministic actions are possible,

2Note that this does not mean that we assume to always know what the future will be:
we may not have enough information about the present or about which moments temporally
follow-up which other moments. Model theoretically: we know there is a linear time model
reflecting reality, but we do not know which one.

98 CHAPTER 3. TEMPORALIZING MODAL ACTION LOGICS

which leads to a branching notion of time. It is clear that also for determinism
of the first type, and for standard non-deterministic action, we arrive at a
branching notion of time.

Future and past

We do not discuss past temporal formulas. In many cases the past is definable
in terms of future ‘Until’ formulas. This leads to the well-known separation
theorem’s [66, 65].

The only comment we want to make about past modalities is not to confuse
them with converse action. We do not make the a priori assumption saying that
converse action as interpreted by R(α←) should somehow be identified with
a converse time direction. Conceptually there is a crucial difference between
temporal past operators and the action converse: past operators look back
in time, converse actions do not. A converse action is like an ‘undo’: time
advances, but the state of affairs returns to a previously encountered state.
This difference also follows from the observation that for inverse operations
no restrictions apply, while past temporal operators are usually thought to
be non-branching. The realms of converse / non-converse action and future /
past temporal operation are thus completely distinct. This means that we can
have past operators looking back in time over actions and even over converse
actions.

Initial states

Many temporal logics define validity on a model with respect to a set of initial
states. For temporal logics this is often considered more convenient, because
we are very used to reason about time from our own perspective on it, that
is, from the point we usually refer to by ‘now’. The definition of validity on
a model as validity in all initial states of the model affects logic entailment,
as we discussed in section 2. The entailment [a]ϕ |=G [a][a]ϕ holds for modal
action models. But if validity on a model is defined with respect to initial
states, it does not hold.

By defining model validity as validity in all initial states of a model, we do
not loose or gain validities: if a formula is valid in all states of models, it is
also valid in certain distinguished states of models, and vice versa. However,
the allocation of initial states in models paves the way to impose an optional
additional constraint on the temporal structure of models, namely, that initial
states have no past. For such models we would have formulas like ¬Pϕ, where
‘P ’ is a past modality, as general validities. A similar (but not equivalent,

3.2. COMBINING BASIC MODAL ACTION LOGIC WITH CTL 99

see above) condition for modal action models with initial states would be that
from initial states no converse actions can be performed. This can for instance
be used to model that compensating actions are not possible initially. For
such models we would have ¬〈a←〉 as a general validity. Note that these
validities only hold if we restrict accessibility from initial states such that no
past or reverse access to other states is possible; by the allocation of certain
distinguished ‘initial’ states as such, no such properties are introduced. The
main message of this section is thus that we do not have to worry that the
introduction of initial states will affect the validities of a logic. We can thus
add them without any difficulty if we want to adapt the notion of entailment.
In section 4.3.2 we will use this observation in the analysis of frame properties
for sequential actions.

3.2 Combining basic modal action logic with CTL

We show how for basic modal action logic, the six requirements for RX and RG

on modal action models can be satisfied. First we define RX ≡def R(anyK),
which by requirement 1 also defines RG. Recall that in definition 2.5.4 we
defined the semantics of anyK as R(anyK) ≡def

⋃

a∈A
R(a). In section 2.5.3

we used this operator to define the space with respect to which to define an
action complement.

The definition RX ≡def R(anyK) satisfies all requirements except for re-
quirement 3: time may come to a halt whenever we reach a state where no
atomic actions from A are possible. With requirements 4, 5 and 6 we have
explicitly linked the flow of time to the performance of actions, which has as
a consequence that time cannot advance if no actions are possible. We discuss
two ways out of this problem. The first is to introduce a special action that
is only possible in states where no actions from the set A are possible, and
that loops in the current state. For this purpose we can use the test action
([anyK]⊥)?. This test (definition 2.2.2) checks the possibility to perform any
atomic action in the current state. If no atomic actions are possible, the test
succeeds. This test is equivalent with the ‘dynamic negation’ as defined by
Van Benthem [17], applied to the union of atomic actions. Since it loops in the
current state, the action ([anyK]⊥)? has no effect (just like the skip). But,
we may define that is does advance the time to a next moment in time. Thus,
we may define RX ≡def R(([anyK]⊥)?) ∪ R(anyK). Note that we cannot use
the action skip (for which proposition 2.2.1 says that it can be syntactically
defined according to skip ≡def ?) for this purpose. If we would include skip

100 CHAPTER 3. TEMPORALIZING MODAL ACTION LOGICS

as an action that contributes to the next time relation RX we would get that
the current system state is always one of the system states that is possible the
next moment in time. Then, we would have to accept that in any system state
there is a possible future where the dynamics comes to a standstill while time
goes on forever. Also we would get that if something holds for any system
state that is next in time, it also holds for the current system state.

Strictly speaking, the above solution is no solution for basic modal action
logic, since it requires an extension of the language with dynamic negation
or test. The other way out is to assume that it is no problem to violate
requirement 3. We simply accept this violation as a strong consequence of
our view that time is ‘realized’ through action. So we stick to the definition
RX ≡def R(anyK), and accept that time comes to a halt in the subset of
states of the state space where no actions are possible. Note that this is not
such a strange viewpoint after all. If time leads us to a state where the whole
future is frozen due to the absence of any action possibility, the role of time
has become redundant3. We show that the violation of requirement 3 does not
prevent us from defining a version of the well-known branching time temporal
logic CTL [47, 57] in terms of RX . We do not explicitly define the syntax
of the combined logic MAL(∅) / CTL, because this is straightforward: both
languages are freely mixed.

Definition 3.2.1 (the syntax of CTL) Taking ‘P ’ to represent arbitrary
elements of a given countable set of proposition symbols P, and ‘a’ to represent
arbitrary elements of a given countable set of action symbols A, a well-formed
formula ϕ of the temporal language LCTL is defined by:

ϕ,ψ, . . . := P | ¬ϕ | ϕ ∧ ψ | 〈a〉ϕ | E(ϕUψ) | A(ϕUψ)

where ϕ,ψ represent arbitrary well-formed formulas. Furthermore, the fol-
lowing abbreviations are applied:

EXϕ ≡def E(⊥Uϕ) AXϕ ≡def ¬EX¬ϕ
EFϕ ≡def E(Uϕ) AGϕ ≡def ¬EF¬ϕ
AFϕ ≡def A(Uϕ) EGϕ ≡def ¬AF¬ϕ

3There is an analogy with physics, where it is a common viewpoint that time emerged
with the first action (the big bang) and stops with the final action (the great collapse), would
it occur.

3.2. COMBINING BASIC MODAL ACTION LOGIC WITH CTL 101

The CTL-operators have the following informal meanings:

E(ϕUψ) : there is a possible future course of action after which ψ will
hold, while ϕ holds until then

A(ϕUψ) : for all possible future courses of action eventually ψ will hold,
while ϕ holds until then

EXϕ : there is an atomic action after which ϕ will hold
AXϕ : after application of any atomic action ϕ will hold
EFϕ : there is a possible future course of action after which ϕ will

hold
AGϕ : for all possible future courses of action ϕ will be preserved
AFϕ : for all possible future courses of action eventually ϕ will hold
EGϕ : there is a possible future course of action that preserves ϕ

The formal semantics of the CTL-operators is stated in terms of the notions
of ‘maximal state trace’ and ‘finite sub-trace’.

Definition 3.2.2 (state traces) For any modal action model M = (S,RA,
V P), and a definition of the temporal relation RX ⊆ S × S in terms of RA,
a finite state trace σ from a world s of M is defined as a series of states
< s0, s1, . . . , sn > such that s0 = s, and n ≥ 1, and for all i such that
0 ≤ i < n it holds that (si, si+1) ∈ RX . We define Σ+(M, s) to be the set of
all finite state traces from s in M. Similarly, countably infinite state traces
are infinite series < s0, s1, . . . > such that for all i such that i ≥ 0 it holds
that (si, si+1) ∈ RX . We define Σω(M, s) to be the set of all countably infinite
state traces from s in M.

Definition 3.2.3 (finite sub-traces) For any countably infinite state trace
σ = s0, s1, . . . , sn, . . . and any finite state trace σ′ = s0, s1, . . . , sn, . . . , sk with
n ≥ 1 and possibly n = k, we call the state trace σ′′ = s0, s1, . . . , sn a finite
sub-trace of σ and σ′ respectively. We denote that σ′ is a finite sub-trace of
any finite or countably infinite state trace σ by σ′ � σ.

Definition 3.2.4 (maximal state traces) The set Σm(M, s) of all maxi-
mal state traces from s in the model M is defined by Σm(M, s) = {σ | either
σ ∈ Σω(M, s) or σ ∈ Σ+(M, s) and there is no σ′ ∈ Σ+(M, s) such that
σ � σ′ and σ′ �� σ}.

We now define the semantics of the CTL-operators.

102 CHAPTER 3. TEMPORALIZING MODAL ACTION LOGICS

Definition 3.2.5 (CTL-semantics, validity, logic) Validity M, s |= ϕ, of
a CTL-formula ϕ in a world s of a modal action model M is defined as:

M, s |= E(ϕUψ) iff ∃σ ∈ Σ+(M, s) with σ =< s0, s1, . . . , sn >
such that
(1)M, sn |= ψ and
(2) ∀si such that s0 < si < sn it holds that M, si |= ϕ

M, s |= A(ϕUψ) iff ∀σ ∈ Σm(M, s), there is a σ′ =< s0, s1, . . . , sn >
such that
(1) σ′ � σ and
(2)M, sn |= ψ and
(3) ∀si such that s0 < si < sn it holds that M, si |= ϕ

Validity on a model M is defined as validity in all worlds of the model. If
ϕ is valid on a model M, we say that M is a model for ϕ. General validity
of a formula ϕ is defined as validity on all modal action models. The logic
CTL is determined by the set of all general validities of LCTL over the class
of standard modal action models.

Note that the notion of ‘maximal state trace’ is only needed to give se-
mantics to the A(ϕUψ) operator. Note also that reflexive temporal operators
can be introduced as syntactic extensions: Er(ϕUψ) ≡def ψ ∨ E(ϕUψ) and
Ar(ϕUψ) ≡def ψ ∨A(ϕUψ).

Together with definition 2.1.2, this defines the mixed dynamic / temporal
logic MAL(∅) / CTL. The logic MAL(∅) / CTL combines reasoning about
actions and time and is close to the logic ACTL [141, 140]. However, the
interaction between action and time reasoning in this combined language is
very limited. It is expressed by the scheme AXϕ → [a]ϕ. In the next section
we will increase the strength of the time-action relation by going from the
basic modal action logic to dynamic logic.

3.3 Temporalizing dynamic logic

There have been numerous attempts to add temporal expressiveness to PDL.
Process logic [87] and computation path logic [90] subsume many of these
approaches. But process logic and its variants are themselves subsumed by the
modal µm-calculus as defined by Bradfield and Stirling [25] (we denote their µ-
calculus with the superscript ‘m’, because it is based on the rudimentary action
language m,n, . . . := a1, a2, . . . , an | −(a1, a2, . . . , an) for ai ∈ A, where the

3.3. TEMPORALIZING DYNAMIC LOGIC 103

comma stands for choice and the dash for complement). In section 3.5 we
define an extension of Bradfield and Stirling’s µm-calculus by extending the
language of actions m to a language of more complex actions η. In the present
section we discuss how for dynamic logic the formulated requirements can
be met. With respect to the basic modal action language, c-PDL (converse
PDL, see section 2.3) introduces two extra action connectives: iteration and
converse. The iterated action does not force us to alter our previous definitions
of RX . Requirement 5 is the only requirement that needs closer attention. It
says that the global time relation should be closed under the iteration action.
But it already is closed under the iteration action due to requirement 1. But in
case of the converse action, requirement 5 does force us to adapt the definitions
of RX . To ensure that the global time relation is closed under taking the
converse of actions, we need to include converse atomic actions in the next
time relation RX . This means that if performing α advances the time, now
also performing α← advances the time. We discussed this in section 3.1. Note
that this results in a natural view on converse action. A converse action is like
an ‘undo’ action: an action with opposite effect. Examples include: (1) the
undo in text processors, (2) the operation of returning a consumer product
that does not meet expectations and asking the money back.

From the above considerations it follows that for c-PDL we have the fol-
lowing two alternatives for the definition of the next time relation on modal
action models: RX ≡def R(([anyB]⊥)?) ∪ R(anyB) and RX ≡def R(anyB).
As for the basic modal action logic case of the previous section, we can use the
first definition if we want to obey requirement 3, and the second if we do not.
Note that we now use the anyB action (definition 2.5.4) instead of the anyK

action. As explained above, this is because time can be advanced by perform-
ing a converse action in c-PDL. For PDL (i.e. without the converse) we have
the alternatives RX ≡def R(([anyK]⊥)?) ∪R(anyK) and RX ≡def R(anyK).

In the same way as we did for the basic modal action language and CTL, we
can use the relation RX to interpret CTL on the same models as (c-)PDL. This
defines the combined logic (c-)PDL / CTL. In the next section we investigate
the interactions between the action reasoning in the PDL-variant PDL-x and
the temporal reasoning in CTL.

Combining PDL and CTL

To enable a comparison between some aspects of the expressive powers of
CTL and PDL, we define a slight extension of PDL that we call PDL-x. We
introduce a ‘general action’ x as a syntactic element in the action language of

104 CHAPTER 3. TEMPORALIZING MODAL ACTION LOGICS

PDL, and define its relational semantics as R(x) ≡def RX . For RX we can use
both defined alternatives. With the definition we get directly that the CTL-
operator AX(.) and the PDL-x-operator [x](.) have equivalent interpretations.
This enables us to investigate the interactions between temporal operators and
dynamic operators in the combined logic CTL / PDL-x. The interactions are
expressed in the following proposition:

Proposition 3.3.1 For the combined logic CTL/PDL-x it holds that:

AXϕ → [a]ϕ
AXϕ ↔ [x]ϕ
EXϕ ↔ 〈x〉ϕ
E(ϕUψ) ↔ 〈x; (ϕ?;x)∗〉ψ

But in PDL-x we cannot express the conditions on models expressed by
CTL-formulas of the forms EGϕ and AFϕ. Consequently we cannot express
A(ϕUψ) either.

We do not prove this in detail, but discuss the important intuitions behind
the proof. Validity of the four formulas comparing PDL-x and CTL-operators
is easily verified. To show the inability to express EGϕ and AFϕ in PDL-x,
we construct two models which can be distinguished by CTL-formulas of this
form, but not by any formula of PDL-x. In both PDL-x and CTL, state-
validity of formulas is preserved under standard bisimulation. So the models
we look for do not bisimulate, are nevertheless indistinguishable for PDL-x,
and at the same time can be distinguished by CTL. Figure 4 below shows two
such models. By default, all states that are not annotated with −p (which
stands for ¬p) satisfy p. Relations are not annotated with action symbols,
since we abstract from actions by means of the general ‘atomic’ action x.

etc.

−p
−p

−p

−p
−p

−p

−p

−p

M2

etc.

−p
−p

−p

−p
−p

−p

−p

−p

M1

Fig 4. two models distinguishable by CTL, but indistinguishable for PDL-x

3.3. TEMPORALIZING DYNAMIC LOGIC 105

The model M1 has a ‘fractal’-like structure: by performing one atomic
step from the root into an arbitrary branch, we arrive at a complete copy of
the model part that from the root is seen to reside at the left hand side of the
chosen branch. The strings ‘etc.’ in the figure mean that the root has infinitely
many such branches. The fractal-like structure ensures that for any finitely
branching ‘slice’ of the model as seen from the root, we can always perform a
(series of) step(s) from the root and arrive at a state where we see exactly the
same finitely branching ‘slice’. We make it plausible that this property ensures
that PDL-x is unable to distinguish the models. Model M2 only differs from
M1 in that a loop is added to the root. This loop is responsible for the
fact that the models can be distinguished by CTL: M1 satisfies AF¬p and
does not satisfy EGp, while M2 satisfies EGp (through the loop) and does
not satisfy AF¬p (because of the loop). Now we have to show that PDL-x
does not distinguish the models. If we want to do this thoroughly, we have
to show that the roots of the above models bisimulate in the PDL-x ultra-
filter extensions (see [19]) of the above models. But to avoid mathematical
burden and to concentrate on the intuitions, we will not introduce the notion
of an ultra-filter extension. Instead we choose to make the claim plausible
by taking a somewhat ad hoc semantic view on PDL-x expressiveness. The
only difference between the models is the loop at the root. This loop induces
the existence of a countably infinite p-state trace. Now, it is not true that in
PDL-x we cannot say anything about the existence of such countably infinite
p-state traces. For instance p ∧ [x∗](p → 〈x〉p) says that there has to be at
least one such a state trace. But model M2 exemplifies that not every model
with a countably infinite p-state trace satisfies this formula. So we cannot
use the formula to distinguish M1 from M2. On the other hand, it is clear
that if we look for formulas to say something about the countably infinite
state trace, we have to consider formulas with the box operator [x∗](.) as the
primary construct to talk about these state traces. Attempts to capture the
existence of the state trace through formulas of the form 〈x∗〉ϕ have to fail
because they only concern properties ϕ that are at a finite distance from the
root. But the problem with formulas of the form [x∗]ϕ is that they do not
discriminate between separate state traces, which is exactly the reason why
we can ‘fool’ the property p ∧ [x∗](p → 〈x〉p). Model M2 does not satisfy it
because at any modal depth there is a branch that starts by going to a p-state,
but that eventually encounters a ¬p-state. The reader is invited to check that
the fractal-like structure ensures that no other PDL-x formulas distinguish the
models (note that the example concerns PDL without converse).

106 CHAPTER 3. TEMPORALIZING MODAL ACTION LOGICS

In PDL-x we can define a weaker version of the temporal operator A(ϕU ψ).
The weaker version differs in the sense that it is not necessary that the condi-
tion ψ is actually met after finitely many next moments in time. This weaker
temporal operator can be defined in PDL-x as A(ϕUw ψ) ≡def [(x;¬ψ?)+]ϕ
(where α+ ≡def α;α∗). Note that also formulas of this form do not distinguish
between the above two example models.

The conclusion is that in PDL with the help of the action x, we can ex-
press AGϕ and its negated dual EFψ, but not AFϕ or EGψ. PDL couples
the orientations A and E of the branching dimension to respectively the ori-
entations G and F of the duration dimension. Proposition 3.3.1 gives a good
impression of the relative expressive powers of PDL and CTL. But several
questions remain. For instance, can any PDL-x expressible temporal prop-
erty by captured by CTL? This seems very likely, and it would mean that
the temporal expressiveness of the combined logic PDL-x/CTL is equivalent
with that of CTL. Finally, we could study the comparison between PDL-x and
CTL on image finite models. In these models no infinite branching is allowed.
Can we, for this type of models define an equivalent PDL-x formula for every
CTL-formula? We leave these questions for future research.

3.4 Temporalizing logics of concurrent action

So far, we did not encounter any serious problems in meeting the requirements.
But this changes when modal action logics are strengthened with intersection
of actions (concurrency) or action complement. Even though ∩-logics do not
define intersection at the level of models, the temporalization of ∩-logics is
problematic, because they are strong enough to express the inclusion R(α ∩
β) ⊆ R(α)∩R(β). Therefore, in ∩-logics we can easily define a model for which
requirement 2 cannot be satisfied. Take for instance a model for which in some
state s the formula 〈a∩(b; c)〉P is satisfied. This formula enforces (proposition
2.4.4) that there is a state t that satisfies P and an action graph Θa ‖ (Θb ·Θc)
such that there is a homomorphism that maps the root of the graph to s and
the sink to t. This shows that for instance for the ∩-logic MAL(∪,∩), it is not
correct to define the next time relation as RX ≡def R(anyK). This definition
violates requirement 2: in the example we have that state t corresponds both to
a next moment in time (through atomic action a) and to a second next moment
in time (through action b, followed by action c). Note that this is not due to
reflexivity of RX in s or t. The action complement causes similar problems,
which follows immediately from the syntactic definability of intersection in
terms of complement and choice.

3.4. TEMPORALIZING LOGICS OF CONCURRENT ACTION 107

Having established the problem, we consider three directions in which to
proceed. The most drastic possibility is to abandon the Ockhamist conception
of time. This requires a revision of the way in which we view modal action
models as abstract representations of time structures, and an alternative view
on time itself. We might for instance switch to the particular non-Ockhamist
conception of time where the same future time-point can be reached through
separate alternative courses of time (see e.g. the logic of since and until in
[126]) Under this conception of the structure of time the above example gets a
completely new interpretation: the system state t corresponds to exactly one
time point that is reachable through alternative time-routes, corresponding
to, on the one hand action a, and on the other hand the sequence of actions
b and c. In such logics the ‘until’-formula ϕUψ needs not be prefixed by a
path (state trace) quantifier in order to interpret it on modal action models.
The formula means ‘there is some future point where (1) ψ holds, and (2) for
which all states of state traces leading to it satisfy ϕ’. This notion of until is
not preserved under bisimulation, which marks the difference with branching
time logics such as CTL, CTL*, and the modal µ-calculus, that all do preserve
validity under bisimulation.

Several examples of non-Ockhamist temporal logics can be found in the
literature [187, 172, 126]. Although there are possible applications for non-
Ockhamist conceptions of time, we believe that for system specification pur-
poses this is not the most intuitive perspective to take. But our main reason
to reject it is that it is not compatible with the use of relational intersection in
modal action structures as the abstract representation for concurrency. Since
we have chosen to interpret concurrency by relational intersection, we cannot
at the same time see intersection as a representation for alternative courses of
time: each concurrent execution of actions concerns a single course of time.

The second possibility is to stick to Ockhamist time and intersection as
the formal counterpart of concurrency, but to drop requirement 4, saying that
any atomic action in A contributes to the relation RX . The idea is to lift the
time perspective on atomicity one level up, to the level of action graphs that
(1) are not the result of the concatenation of two other action graphs, and (2)
have a maximal number of edges, as base for the minimal units of time. The
above mentioned graph Θa ‖ (Θb ·Θc) is one that satisfies these conditions. As
a whole such graphs can be viewed as single coherent actions, that are built up
out of concurrently and sequentially composed atomic actions. Within these
coherent assemblings of atomic actions, it is not clear how we should deal with
time. But we might define that the coherent graphs themselves determine
minimal time lapses. This view combines well with modeling concurrency with

108 CHAPTER 3. TEMPORALIZING MODAL ACTION LOGICS

intersection. We will not give a formal definition, but the idea is clear; the root
and sink of each action graph satisfying the above two conditions, determine an
element of the relation RX . Requirement 4 is the only requirement that cannot
be obeyed by this solution. Indeed, the role of atomic actions as minimal units
of time is now played by the ‘minimal’ graphs just mentioned.

The third possibility is to adapt the action language to ensure that the
action language is not both closed under, on the one hand sequence or iteration,
and on the other hand intersection or complement. The following action syntax
is an example.

Definition 3.4.1 (A leveled action syntax) Taking ‘a’ to represent arbi-
trary elements of a given set of atomic action symbols A, a levelled action syn-
tax enabling satisfaction of the six requirements for temporal reasoning over
modal actions models is defined as:

η, ϑ, . . . := a | η ∪ ϑ | �Bη | η←
α, β, . . . := η | α ∪ β | α;β | α∗ | ϕ?

Only the lower level of ‘non-sequential’ actions η is closed under com-
plement, converse and (implicitly) intersection. Restriction of converse to
the lower action level does not cost us expressiveness: we saw in the proof
of theorem 2.3.2 that under the standard interpretation of action connec-
tives, converse can always be pushed down to the atomic action level. Re-
striction of complement and intersection to the lower action level does cost
us expressiveness. But it still enables us to give definitions for operations
such as fail ≡def �B(η ∪ �Bη) and skip ≡def ?. For the definition of
the next time relation RX we get exactly the same alternatives as for PDL:
RX ≡def R(([anyB]⊥)?) ∪ R(anyB) and RX ≡def R(anyB). Again, we can
use the first definition if we want to obey requirement 3, and the second if we
do not. Note that the anyB action is actually definable as anyB ≡def �Bα∪α
in the modal action logics over this levelled action syntax. So, if we choose
the second option for the next time relation, i.e. RX ≡def R(anyB), we have
the next time relation also as an action (anyK) in the action language. For
PDL we had to introduce the special general action x for this purpose.

By distinguishing two levels of action, and restricting complement to the
lower level, we avoid the problems concerning how to interpret temporal
modalities over modal action models for this action language. We show how
to define in the modal action logic over this levelled action syntax some mixed
time/action operators of the form A((.)Uw(.)), where the empty places are

3.5. THE µη-CALCULUS 109

either taken by conditions or actions. The intuitive meaning of for instance
A(ϕUw η) is ‘on all state traces condition ϕ is preserved at least until an ac-
tion η occurs’. The subscript w indicates that this is a weak notion of until,
for which it is not required that after finitely many next moments in time the
action η actually occurs.

Definition 3.4.2 (weak mixed action / time until operators)

A(ϕUw η) ≡def [(�Bη)+]ϕ
A(η Uw ϕ) ≡def [(η;¬ϕ?)∗][�Bη]⊥
A(η Uw ϑ) ≡def [�Bη]⊥ ∧ [η+][�B(η ∪ ϑ)]⊥

The strong version of the operators are not expressible in the modal action
logic over the leveled syntax for the same reason that the strong until operator
A(ψ U ϕ) is not expressible in PDL (see section 3.3). But we can increase the
expressiveness of the higher action level in order to define the strong version
of the operators. This is the subject of the next section, where for the higher
level we take a modal µ-calculus.

3.5 The µη-calculus

Informally the modal µ-calculus can be described as basic modal logic (usu-
ally referred to as the modal logic K) extended with a minimal and a maximal
fixed-point operator. The combination of fixed-point operators and standard
modal operators ♦ϕ and �ϕ enables the expression of a wide range of temporal
properties. The µ-calculus is known to subsume, among others, the temporal
logics CTL, LTL, CTL*, ACTL, ECTL* [51]. By considering fixed-point op-
erators in combination with the basic modal action operators 〈a〉ϕ and [a]ϕ,
we get what we call the ‘µa-calculus’, that among others, subsumes ACTL
and PDL [22]. In this section we go one step further, and combine fixed-point
operators with the modal action operators 〈η〉ϕ and [η]ϕ, where the actions
η are the actions from the lower action level in definition 3.4.1. We call the
resulting calculus the ‘µη-calculus’. All examples of µ-calculi over modal ac-
tion models in the literature [107, 184, 173, 23, 72, 25] have a less expressive
action fragment. The µ-calculus of De Giacomo and Chen [72], that lacks the
converse operation, comes closest to the one defined in this section.

Definition 3.5.1 (syntax µη-calculus) Taking ‘a’ to represent arbitrary el-
ements of a given set of atomic action symbols A, and ‘P ’ to represent arbi-
trary elements of a given set of proposition symbols P, and ‘Z’ to represent

110 CHAPTER 3. TEMPORALIZING MODAL ACTION LOGICS

arbitrary elements of a given set of state-set variables4 Z, the well-formed
formulas ϕ,ψ, . . . of the µη-calculus are defined by the following BNF:

η, ϑ, . . . := a | η ∪ ϑ | �Bη | η←
ϕ,ψ, . . . := P | Z | | ⊥ | ¬ϕ | ϕ ∧ ψ | [η]ϕ | µZ. ϕ

The set of all well-formed formulas is denoted L(µη).

The standard syntactic extensions are applied: ϕ ∨ ψ ≡def ¬(¬ϕ ∧ ¬ψ),
〈η〉ϕ ≡def ¬[η]¬ϕ, ϕ→ ψ ≡def ¬(ϕ∧¬ψ), ϕ↔ ψ ≡def ¬(ϕ∧¬ψ)∧¬(ψ∧¬ϕ).
State-set variables from Z are introduced as sub-formulas of general well-
formed formulas ϕ to be able to view these as a functions ϕ(Z) : 2S → 2S

on sets of states. This in turn makes it possible to define the semantics of
µZ. ϕ(Z) as a minimal fixed-point (a minimal set of states Z such that ϕ(Z) =
Z) of this function. We apply the usual restriction that a variable Z only
appears within the scope of an even number of negations in bounded formulas.
The restriction guarantees monotonicity of functions ϕ(Z) : 2S → 2S , which
in turn guarantees a solution to the fixed-point equation ϕ(Z) = Z. After this
short ‘look ahead’ into the semantics of the modal µη-calculus, we now give
the formal description of it. After that, we elaborate on how a fixed-point
µη-calculus formula can best be read.

The semantics is defined by extending the interpretation function V P :
P → 2S to the interpretation function Vε : L(µη) → 2S , where ε is an as-
signment function ε : Z → 2S assigning values form the set 2S to variables
form the set Z which are possibly present in formulas ϕ of L(µη). We only
consider formulas of L(µη) where all variables are bound by either a µ or ν.
To determine the assignment ε for the interpretation on a particular modelM
of a formula ϕ containing a variable Z as a sub-formula, we view the interpre-
tation Vε(ϕ) as a function Vε : 2S → 2S from state sets ranged over by Z to
state sets Vε(ϕ). We make this function explicit by writing: λZ. Vε(ϕ)5. The
value assigned to Z by ε is then obtained as the least or greatest fixed-point
(depending on whether Z is bound by a µ or ν respectively) of this function.
The role of the identities in definition 3.5.2 is thus twofold: (1) they define
Vε(ϕ) recursively in the structure of formulas ϕ, and (2) they define fixed-
point equations over functions λZ. Vε(ϕ), whose minimal or maximal solution
contributes to the assignment function ε. If we would allow variables to occur

4Usually these are called ‘state variables’. But we feel that ‘state-set variable’ is more
appropriate, since the variables range over sets of states.

5This is just a more accurate notation for the before used φ(Z).

3.5. THE µη-CALCULUS 111

free in formulas, the definition would allow us to assign arbitrary values to
them, leading to under-determination of the interpretation of formulas.

Definition 3.5.2 (semantics µη-calculus) Given a model M = (S,RA,
V P), the interpretation Vε(ϕ) of a well-formed formula ϕ on a model M and
an assignment ε of bound state-variables in ϕ are defined by:

R(a) = RA(a) for a ∈ A
R(η ∪ ϑ) = R(η) ∪R(ϑ)
R(η←) = {(s, t) | (t, s) ∈ R(η)}
R(�Bη) = (

⋃

a∈A
R(a) ∪R(a←)) \R(η)

Vε() = S
Vε(⊥) = ∅
Vε(P) = V P(P) for P ∈ P
Vε(Z) = ε(Z)
Vε(ϕ ∧ ψ) = Vε(ϕ) ∩ Vε(ψ)
Vε(¬ϕ) = S \ Vε(ϕ)
Vε([η]ϕ) = {s | ∀s′, (s, s′) ∈ R(η) implies s′ ∈ Vε(ϕ)}
Vε(µZ.ϕ) = the least fixed-point of the function λZ. Vε(ϕ)
Vε(νZ.ϕ) = the greatest fixed-point of the function λZ. Vε(ϕ)

A formula ϕ is valid in state s of a model M = (S,RA, V P) if and only if
s ∈ Vε(ϕ) and valid on a model M = (S,RA, V P) if and only if Vε(ϕ) = S. A
formula is generally valid if it is valid on all models.

Due to Tarski [175] the definition of the least fixed-point of the monotonic
function λZ. Vε(ϕ) can be written as

⋂{Z ⊆ S | λZ. Vε(ϕ) ⊆ Z}. In the
definition of the semantics we prefer just to write ‘the least fixed-point of the
function λZ. Vε(ϕ)’, because the characterization due to Tarski is less intuitive.

To understand the intuitive meaning of properties described by µ-calculus
formulas, it is useful to consider equivalent infinitary expansions. We have
to distinguish between the expansion of ν-formulas and the expansion of µ-
formulas. On standard models, satisfaction of a µ-calculus formula µZ. ϕ(Z)
corresponds to satisfaction of the infinitary formula ϕ(⊥) ∨ ϕ(ϕ(⊥)) ∨ . . . 6.
This means that a formula like µZ. ϕ ∧ [a]Z can be ‘read’ as the infinitary
formula (ϕ ∧ [a]⊥) ∨ (ϕ ∧ [a](ϕ ∧ [a]⊥)) ∨ (ϕ ∧ [a](ϕ ∧ [a](ϕ ∧ [a]⊥))) ∨ . . . ,
which helps in understanding its intuitive meaning. Satisfaction of a µ-calculus

6This identification assumes ∨-continuity of ϕ(Z).

112 CHAPTER 3. TEMPORALIZING MODAL ACTION LOGICS

formula νZ. ϕ(Z) corresponds to satisfaction of the infinitary formula ϕ() ∧
ϕ(ϕ())∧ . . . 7. And, with the help of the property ← ϕ()← ϕ(ϕ()) . . . ,
that follows from the monotonicity of ϕ(Z), we can see that νZ. ϕ(Z) is even
equivalent with the infinitary formula ϕ(ϕ(. . . ϕ() . . .))8. Then, a formula
like νZ. ϕ∧ [a]Z can be ‘read’ as the infinitary formula ϕ∧ [a](ϕ∧ [a](ϕ∧ . . .)).

Both PDL and CTL can be translated to the µη-calculus without any
difficulty. We first show how to translate converse-free PDL, MAL(ψ?,∪, ; ,∗)
in our notation, to the µη-calculus by means of a syntactic translation function
T ([22]). This PDL-translation makes no use of the lower action level of actions
η.

Proposition 3.5.1 The recursive function T : LMAL(ψ?,∪, ; ,∗) → L(µη)
that determines a map from PDL-formulas to equivalent µη-calculus formulas,
is defined as follows:

T (P) ≡ P T (Z) ≡ Z
T (ϕ ∧ ψ) ≡ T (ϕ) ∧ T (ψ) T (¬ϕ) ≡ ¬T (ϕ)
T ([a]ϕ) ≡ [a]T (ϕ) T ([α ∪ β]ϕ) ≡ T ([α]ϕ) ∧ T ([β]ϕ)
T ([α∗]ϕ) ≡ νZ. T (ϕ) ∧ T ([α]Z) T ([α;β]ϕ) ≡ T ([α][β]ϕ)
T ([ψ?]ϕ) ≡ T (ψ)→ T (ϕ)

Note that also state-set variables occur in the translation. This is because
they may appear as the result of translating formulas like [a∗]ϕ. With the
help of the infinitary expansion of formulas it is easy to check that the formula
〈a∗〉ϕ, which translates to the formula µZ. ϕ ∨ 〈a〉Z refers to all states in a
model where by a finite number of executions of a, we reach a state where ϕ
holds, and that [a∗]ϕ, which translates to νZ. ϕ ∧ [a]Z means that ϕ has to
hold after any number of executions of a.

The following proposition shows how we can define a translation from the
CTL-version of section 3.2 to the µη-calculus. Note that the translation takes
into account that the operators E(ϕUψ) and A(ϕUψ) defined in section 3.2
are not reflexive.

Proposition 3.5.2 The recursive function T : LCTL → L(µη) that deter-
mines a map from CTL-formulas to equivalent µη-calculus formulas, is defined
as follows:

7Assuming ∧-continuity.
8Monotonicity also implies ⊥ → ϕ(⊥) → ϕ(ϕ(⊥)) . . . , but this is of no use in the simpli-

fication of the reading of µZ. ϕ.

3.5. THE µη-CALCULUS 113

T (P) ≡ P
T (〈a〉ϕ) ≡ 〈a〉T (ϕ)
T (ϕ ∧ ψ) ≡ T (ϕ) ∧ T (ψ)
T (E(ϕUψ)) ≡ 〈anyB〉µZ. T (¬ψ)→ (T (ϕ) ∧ 〈anyB〉Z)
T (¬ϕ) ≡ ¬T (ϕ)
T (A(ϕUψ)) ≡ [anyB]µZ. T (¬ψ)→ (T (ϕ) ∧ [anyB]Z)

Also more expressive branching time temporal logics, such as CTL* and
ECTL* can be translated to µ-calculi [51]. But their translation is less straight-
forward.

The above two translations give an impression of how logics for dynamics
(PDL) and logics for branching time (CTL) are subsumed by the µη-calculus.
But also, the calculus enables the expression of mixed dynamic / temporal
properties. We show how to define the strong versions of the mixed action /
time operators of definition 3.5.3.

Definition 3.5.3 (strong mixed action / time until operators)

A(ϕU η) ≡def [�Bη]µZ. ϕ ∧ [�Bη]Z
A(η U ϕ) ≡def [�Bη]⊥ ∧ [η]µZ. ¬ϕ→ ([�Bη]⊥ ∧ [η]Z)
A(η U ϑ) ≡def [�Bη]⊥ ∧ [η]µZ. [�B(η ∪ ϑ)]⊥ ∧ [η]Z

By applying the translation of proposition 3.5.1 it is easy to check that
the weak versions of this definition, obtained by replacing the µ’s by ν’s, are
equivalent to the weak mixed action / time until operators of definition 3.5.3.
Note that these properties give evidence for the claim of section 2.5.1 that in
order to reason about the interactions of time and action, we need the notion
of ‘action complement’. In particular, the above until operators cannot be
defined without the relativized action complement ‘�B ’.

Finally, we show that the anyB-construct of the µη-calculus can be used
to define some important classes of temporal properties. A well-known clas-
sification of temporal properties for system specification concerns the distinc-
tion between liveness and safety [4]. More refined classifications, including
such properties as ‘reactivity’, ‘response’, ‘persistence’9, ‘obligation’10, and
‘guarantee’ have also been given [45]. Traditionally, safety and liveness are

9This notion of persistence is distinct from the notion of minimal change we discuss in
chapter 4.

10This notion of obligation is distinct from the deontic notion of obligation we discuss in
chapter 5.

114 CHAPTER 3. TEMPORALIZING MODAL ACTION LOGICS

considered linear time temporal notions, which means that they are defined
as formal properties of runs (which are equivalent with the ‘maximal state
traces’ of definition 3.2.4). Alpern and Schneider [4] characterize liveness and
safety in terms of structural properties of Büchi-automata, which have expres-
sive power equal to that of linear temporal logic. In our setting we assume
branching time. We saw that even determinism of action is not sufficient to
guarantee linearity of the temporal dimension. Stirling [173] mentions that in
such a branching time setting, we have to distinguish between strong and weak
notions of liveness and safety. ‘Strong’ means here that the property holds for
all runs through models / trees interpreting a branching time formula, while
‘weak’ means that there is at least one such run. Strong liveness is thus live-
ness with respect to all runs through a model. And in addition, we have weak
liveness that is defined as liveness of at least one run through a model. Stir-
ling [173] shows how to characterize these properties in terms of the modal
µm-calculus. Below we adapt his definitions to the µη-calculus. Intuitively,
liveness means that eventually a ‘good’ condition is met. Safety means that
a good condition is preserved over time. The definitions below abstract from
specific good and bad conditions by introduction of the propositions Good and
Bad, for which |=G Bad↔ ¬Good. First we show how to express strong and
weak liveness, that say that on all traces (respectively some trace) through
tree models eventually the condition ¬Bad will hold.

strong liveness wrt state conditions: µZ. Bad → (〈anyB〉 ∧
[anyB]Z)

weak liveness wrt state conditions: µZ. Bad→ 〈anyB〉Z

The notions of weak and strong safety, expressing that the condition Good
is preserved over respectively some trace / all traces, is defined next. If we
interchange the role of the special conditions Good and Bad, weak safety is the
negation of strong liveness, and strong safety is the negation of weak liveness.

weak safety wrt state conditions: νZ. Good∧([anyB]⊥∨〈anyB〉Z)

strong safety wrt state conditions: νZ. Good ∧ [anyB]Z

The above expressions for liveness and safety in a branching time setting con-
cern only state conditions. But it is a reasonable wish to be able to express
the liveness property that eventually a certain action is performed. Expression
of this type of properties requires the introduction of good and bad actions.
We abstract from particular good and bad actions by introducing the actions

3.6. CONCLUSIONS 115

good and bad such that always [�B(bad = �Bgood)]⊥. Now we define liveness
and safety with respect to action performances as follows:

strong liveness wrt action performance: µZ. 〈anyB〉 ∧ [bad]Z

weak liveness wrt action performance: µZ. [good]⊥ → 〈anyB〉Z

Note that weak liveness with respect to action performance follows from weak
liveness with respect to state conditions by substitution of [good]⊥ as the
bad state condition. But strong liveness with respect to action performance
cannot be obtained from strong liveness with respect to state conditions. Note
also that to define the difference between the strong and weak notions in this
action oriented setting, the relativized action negation �B is again crucial. In
section 2.5.1 we used this observation as one of the motivations to develop an
intuitive notion of action negation. As for the state-condition case, we may
define strong and weak safety properties. And again, these safety properties
are obtained as negations (after interchanging the role of the special actions
good and bad) of the liveness properties:

weak safety wrt action performance: νZ. 〈anyB〉 → 〈good〉Z
strong safety wrt action performance: νZ. [bad]⊥ ∧ [anyB]Z

3.6 Conclusions

In this chapter we formulated requirements based on intuitions for the inter-
pretation of temporal operators on modal action models. We showed how
to obey these requirements and how to interpret some well-known branching
time logics on modal action models. This enabled us to study some prop-
erties of the interaction of time and action. Difficulties were encountered in
case modal action logics are strong enough to express intersection of action
relations, i.e. concurrency. Actions corresponding to minimal time steps may
be concurrently composed with (sequences of) actions corresponding to non-
minimal time steps, which gives conflicting information for the duration of
concurrent actions. Seeing intersection of action relations as confluency of
courses of (non-Ockhamist) time was rejected, since intersection is already
used to model concurrency. As a possible solution we proposed to restrict
concurrency to non-sequential actions, which resulted in a two-layered action
syntax, where the lower level involves action complement, intersection (implic-
itly) and converse, and the higher level the sequential action combinators such
as sequence and iteration. We mentioned that in this language we can define

116 CHAPTER 3. TEMPORALIZING MODAL ACTION LOGICS

some weak mixed temporal / dynamic modalities. To be able to express the
strong versions of these operators we increased the expressiveness of the higher
action level, resulting in the µη-calculus. The µη-calculus features a number
of good properties: (1) it enables the expression of strong mixed action / time
operators, (2) due to its high expressive power it subsumes many branching
time temporal logics, (3) due to the underlying level of actions η its expressive
power also extends to dynamic reasoning, (4) the dynamic reasoning encom-
passes a relativized action negation and converse. In section 5.3 we exploit this
ability of the µη-calculus to express dynamic properties, to define a deontic
modal logic of regular action. The µa-calculus is decidable and has a complete
axiomatization [184]. Also there are several model checkers available for both
the µa-calculus [171, 49] and the µ-calculus [18]. In section 2.5.3 we studied
the modal action logic over actions η, and saw that the stronger ∼-logic coun-
terpart is decidable and complete. These observations justify the assumption
that also the µη-calculus is decidable and complete.

117

Chapter 4

Intended modal action models

The relevancy of the subject of this chapter, the definition of intended modal
action models for sets of modal action formulas, follows directly from our view-
point that a specifier may view the system he develops as a set of actions that
together are to produce the reactive behavior he has in mind. As a conse-
quence, we have to face some well-known problems from the area of reasoning
about action and change: the frame problem, the qualification problem and
the ramification problem. But why exactly do we have to face these problems
in the context of system specification? We want to use sets of modal action
logic formulas for the description of reactive behavior. As discussed in the
introduction chapter, logic assumes an open view on dynamics. One of the
implications is that an action description not only has to explicitly mention
every condition that is changed by the performance of an action, also every-
thing that does not change has to be specified explicitly. If action descriptions
are large, and are often extended or updated (in the development stage, a
specifier is expected to modify his action descriptions frequently), this task
of having to specify everything that does not change can be a cumbersome
process. One would like to have ways in which to generate such properties
as extensions of the original action description automatically. Definitions of
such extensions, which are also called ‘completions’ are examples of the ‘syn-
tactic approach’1 to the frame problem and other problems of the same type.
Syntactic approaches have semantic counterparts. The formulas used for ex-
tension, representing frame and other properties, have a semantic counterpart
in the concept of intended models for the non-completed action description.

1Another example of a syntactic approach is that of ‘circumscription’, which adds an
explicit expression of the frame assumption to action descriptions. The disadvantage is that
the expression of the frame assumption requires a higher order language.

118 CHAPTER 4. INTENDED MODAL ACTION MODELS

The intended models of a non-completed action description are precisely those
models that are standard models of the completed action description. Now
the semantic approach to the mentioned problems can be described as finding
‘intuitive’ characterizations of such intended models. Sandewall [163] gives the
following description of the approaches to reasoning with action (and change):

‘If Γ is a set of propositions (specifying action properties), we write
[[Γ]] for the set of classical models for Γ and Int([[Γ]]) for the set of
intended models2. (...) Conventional logic provides definitions and
the means of using [[Γ]]. The research problem is how to obtain
Int([[Γ]]) or the corresponding conclusions (formulae true in all
members of Int([[Γ]])) in terms of operations on formulae in Γ.’

The problem of defining and obtaining Int([[Γ]]) forms the base objective of
the semantic approach. Sandewall’s problem description also gives the cen-
tral problem of this chapter, provided we take into account that Sandewall
has the models of first order logic in mind, while we work with modal action
models. The central research question for this chapter is thus to establish in-
tuitive intended model semantics for modal action descriptions. This question
falls apart in two subquestions. First: what do we base ourselves on with re-
spect to the intuitiveness of such semantics? Checking the semantics against
one or two examples can hardly be enough evidence for calling a semantics
intuitive. And this is exactly what many (first-order logic-based) work on
semantics in reasoning about action and change has been criticized for (see
[163, 81]). Although we do test our solutions against some benchmark exam-
ples, we have independent reason to call our semantics correct. For the frame
problem, the qualification problem, and the mutual exclusion problem, a prob-
lem that was not described before in the literature on reasoning about action
and change, we obtain intended modal action models as minimal, maximal
and maximal elements respectively, in orderings of such models. Evidence for
the intuitive correctness of the solutions is provided by the way the orderings
for change, qualification and mutual exclusion are obtained as variations on
semantic equivalence relations for models of the modal action description lan-
guage that is used. We believe this strategy may contribute to the solution
of the problem of anomalous models in reasoning about action and change.
Some aspects of this approach were explored by us in [33, 31, 35, 37].

The second question is how to combine the proposed semantic solutions
to the frame, qualification and mutual exclusion problem. In section 4.6 we

2We have adapted Sandewall’s notation Σ(Γ) here to Int([[Γ]]).

4.1. THREE RELATED PROBLEMS FOR ACTION SPECIFICATION 119

show that the two orders in which to apply the two main orderings subse-
quently result in the same intended models. An interesting question is for
which modal action description languages these intended models are unique.
If intended models are unique for an action description, the task of (automati-
cally) completing the description in order to reason (through theorem proving)
about entailed properties using the standard semantics, can be replaced by the
process of explicit generation of the intended model in combination with effi-
cient modal model checking. In section 4.7 we define a modal action language
for concurrent actions for which intended models are unique up to semantic
equivalence.

4.1 Three related problems for action specification

In the literature [163] many claims can be found with respect to the relation-
ships between the problems with reasoning about action and change. In this
section we give our standpoint regarding this issue. We hope this will help
the reader to understand (1) the source of the interdependencies between the
problems, and (2) our use of terminology.

The frame problem When specifying effects of actions we do not want to
involve ourselves in describing explicitly and exhaustively for each indi-
vidual action what conditions do not change as the result of it.

The ramification problem We do not want to specify explicitly and ex-
haustively for each individual action what does change as the result of
executing it; we want to have the possibility to globally specify that
certain conditions (effects) are caused by other conditions (effects).

The qualification problem When specifying under what conditions actions
are possible, we do not want to involve ourselves in describing exhaus-
tively what circumstances prevent the possibility (qualification) of an
action.

The above problems have a strong parallel in problems with the modeling
of common sense reasoning about knowledge of action. An agent may know
about some effect of a certain action, and be ignorant about other effects. It is
a common reasoning pattern for such agents to assume that effects they do not
know about, do not occur (the closed world assumption). And indeed, agents
assume that other agents do exactly the same thing, witness such communica-
tions as ‘turning this switch will shut down that computer’, which will make

120 CHAPTER 4. INTENDED MODAL ACTION MODELS

the addressee of the message assume that any other computer in the room is
not shut down or started by turning the switch. So, when reasoning about
knowledge of action, agents may apply a very similar criterion of minimal
change. The epistemic assumption that conditions do not change whenever it
is not known that they will change, is called the ‘frame assumption’. But we
want to emphasize that agents can also adopt completely opposite assump-
tions when reasoning about action and their effects. It might be the case that
an agent knows that a certain action does not change a certain condition, and
assumes that other conditions might possibly change (non-deterministically).
This assumption is the opposite of a frame assumption. As an example, con-
sider the action bungeejump. It is perfectly normal for an agent to (1) know
that the action will preserve the condition Alive, and (2) assume that certain
other conditions of his body might change. Such an assumption should than
be called a ‘non-frame assumption’. Because of this confusion with epistemic
assumptions, we will explicitly talk about ‘action description assumptions’
when we refer to frame assumptions etc. in the context of action specification.
We pursue to incorporate these action description assumptions in the action
description semantics. So for the frame problem, the goal is to define an ac-
tion semantics that includes the description assumption of minimal change,
stipulating that changes that are not specified, are not possible. We do so in
section 4.3.

As two sub-problem areas of the frame problem, the representational prob-
lem and the over-commitment problem are often mentioned. The represen-
tational (or combinatorial) frame problem concerns the question of how to
make frame properties explicit as elements of an action language. So the rep-
resentational frame problem is not a semantic problem, but a problem of the
syntactic approach. The over-commitment problem concerns the fact that
minimization (of change) policies often are too strict, and rule out possibili-
ties that intuitively should not be disallowed. This problem is thus semantic.
The syntactic counterpart of this problem is that extension formulas that are
added to an action description to select the intended models, are too strict,
and rule out models that are intended. In section 4.3.1 we call such extensions
not ‘intention-safe’.

The two mentioned problems are usually classified as subproblems of the
frame problem exclusively. The reason is probably that the term ‘frame prob-
lem’ is often used as a common name for all problems of this type. We use
the term ‘frame problem’ only in the restricted sense, referring to the problem
of persistency. It should be clear then that the qualification problem can be
thought to have its own representational and over-commitment problem.

4.1. THREE RELATED PROBLEMS FOR ACTION SPECIFICATION 121

A modal action logic-based solution to the ramification problem involves
a careful formulation of causation rules in modal action logic. We see the
ramification problem as a problem of a nature that is very different from that
of the frame or qualification problem. We argue that the ramification problem
does not involve a description assumption. The ramification problem only calls
for supplementary expressive power of the action language; expressive power
that concerns the ability to express and reason correctly with derived effects.
So, in our view, the ramification problem is a pure representational problem.
We discuss this in section 4.5.

As a solution to the qualification problem we pursue an action seman-
tics that incorporates the description assumption stipulating that actions are
qualified (alternative terminology: ‘are possible’, ‘are enabled’), unless it is
specified that they are not. We call this description assumption ‘maximal
qualification’. For concurrent actions, we also propose a second, somewhat
speculative description assumption: minimal mutual exclusion. We observe
that for concurrent action, the standard semantic solution to the qualification
problem, that is, to maximize qualifications and specify only the conditions
under which actions cannot take place (in the form of necessary preconditions),
still requires the specification of an unreasonable amount of (non-)qualification
information. For each concurrent composition of atomic actions that appear
in an action description, we have to specify explicitly which conditions prevent
its possible occurrence. We argue that this problem calls for a new default
interpretation in the semantics of action descriptions: one that minimizes
or maximizes concurrent qualifications relative to qualifications of concurrent
constituent parts. The qualification problem, and its concurrent variant that
we call ‘the mutual exclusion problem’, are treated in section 4.4.

Of course we want a solution that solves all of the above described prob-
lems at the same time. But it is not obvious that solutions for the separate
problems can be added to arrive at one global solution. For instance, the
frame problem and the qualification problem seem to point in opposite direc-
tions in the influence they have on action. Minimal change constrains action
possibilities by preferring ones that change less. Maximal reachability, ‘en-
courages’ action possibilities by maximizing enablings. These are opposite
directions. And the frame and ramification problem meet where persistency
must be overridden in case of ramification. But at the same time ramification
should not be responsible for unintended extra effects, which is to say that the
frame assumption also has to be applied to ramifications (derived effects). A
similar overlap exists between the qualification problem and the ramification
problem: ramifications should also be subject to the possibility of preventing

122 CHAPTER 4. INTENDED MODAL ACTION MODELS

the qualification of an action [176]. Despite all these dependencies between
the three main problems, we will be able to separate them by providing ‘or-
thogonal’ solutions. In section 4.6 we show that the solutions we give for the
problems can be combined freely.

4.2 From semantic equivalence to orderings

We propose a two step approach to the definition of intended models for modal
action languages. The first step is to establish a model-based semantic equiv-
alence notion for the modal action logic. The second step is then to adapt, for
both the frame problem and the qualification problem, the notion of semantic
equivalence in a minimal way, such that it is turned into a preference ordering
of modal action models. In case of the frame problem, the adaptation imple-
ments the criterion of minimal change. In case of the qualification problem,
the adaptation implements maximal qualification (actions are possible, unless
the action description contains explicit information to the contrary). A jus-
tification for calling the orderings thus obtained intuitively appropriate is the
following. The fact that the resulting change ordering, as a solution to the
frame problem, is obtained as a minimal adaptation of the notion of semantic
equivalence, makes it possible to control that the ordering compares models
only on the aspect of minimal change, while all other information contained
in models is kept invariant modulo the expressive power of the modal action
logic. And the fact that the resulting qualification ordering, as a solution to
the qualification problem, is obtained as a minimal adaptation of the notion of
semantic equivalence, makes it possible to control that the ordering compares
models only on the aspect of action qualification (possibility) in certain states.
So by following this approach we can convince ourselves that the orderings
compare models exclusively on the relevant aspects (minimal change, maxi-
mal qualification, etc.), and that no unintended properties for intended models
sneak into the minimization (or maximization) strategy. Of course, this ap-
proach cannot guarantee that no unintended models are selected: the addition
of the minimal change and maximal qualification principles to semantic equiv-
alence notions can be done in a non-intuitive way. But taking the semantic
equivalence notions as a starting point for the definition of the orderings at
least gives us a certain level of confidence that no anomalous intended models
result.

We assume throughout this chapter that the modal actions logics used for
making action descriptions obey the finite model property. The equivalences
and orderings are thus relations between models with finite sets of states. In

4.3. THE FRAME PROBLEM 123

chapter 2 we mentioned that non-finite models only arise in case of intersection
and / or complement in combination with iteration. We will not consider such
strong logics in this chapter.

4.3 The frame problem

To single out the modal action models of an action description (AD) that
obey a criterion of minimal change we need to compare models on the aspect
of minimal change, while all other aspects of models are kept invariant modulo
the expressive power of the ADL. In particular, we do not want to compare
models on the condition of possibility of action in states. The only other change
ordering of modal action models proposed in the literature [62] does minimize
action possibilities as a side effect. We discuss in section 4.8 that this forces a
specifier to give preconditions that are sufficient for the possibility of an action.
This means that a solution to the qualification problem is blocked by the
ordering in [62]. Following the strategy described in the previous section, we
define orderings based on semantic equivalence notions. For the frame problem
we discuss three types of modal action description languages: ADLs where
(1) nesting of modalities is syntactically disallowed, and that are not strong
enough to express concurrency, (2) ADLs that do allow nesting of modalities,
but cannot express concurrency, and (3) ADLs that can express concurrency
of action.

4.3.1 Change over non-sequential action

In this section we define change orderings for ADLs whose model validi-
ties are preserved under (total surjective) 1-bisimulation, an instance of n-
bisimulation, whose general definition can be found in several textbooks (e.g.
[19]). This equivalence is adequate for modal action logics that do not allow
nesting of modalities, and that are not strong enough to enforce intersection
of action relations in modal action models. An example is the basic modal
action logic MAL(∅), with the syntactic restriction that the maximal modal
depth of formulas is 1. The following is a model-based semantic equivalence
relation for such logics.

Definition 4.3.1 (total surjective 1-bisimulation) Let M1 = (S1, R
A
1 ,

V P1) and M2 = (S2, R
A
2 , V

P
2) be two models over A and P. Then M1 /1b M2

(the subscript ‘1b’ for ‘1-bisimulation’) if and only if there is a total surjective
relation H ⊆ S1 × S2, such that for all s1 and s2 for which (s1, s2) ∈ H it
holds that:

124 CHAPTER 4. INTENDED MODAL ACTION MODELS

1. s1 ∈ V P1 (P) if and only if s2 ∈ V P2 (P) for all P

2. if there is a t1 such that (s1, t1) ∈ RA1 (a), then there is a t2 such that
(s2, t2) ∈ RA2 (a) and t1 ∈ V P1 (P) if and only if t2 ∈ V P2 (P) for all P

3. if there is a t2 such that (s2, t2) ∈ RA2 (a), then there is a t1 such that
(s1, t1) ∈ RA1 (a) and t1 ∈ V P1 (P) if and only if t2 ∈ V P2 (P) for all P

This notion of semantic equivalence between models differs from (total
surjective variant of) plain bisimulation [145, 19] in the sense that it is non-
recursive. This corresponds to the absence of nested modalities in the ADLs
for which this equivalence notion is appropriate.

Theorem 4.3.1 M1 /1b M2 if and only if for all formulas ϕ of LMAL(∅)
with maximal modal depth 1, it holds that M1 �∅M2, which stands for the
property that ϕ is valid on M1 if and only if it is valid on M2.

Proof
First we prove by induction on the structure of formulas ϕ thatM1 /1b M2

implies M1 �∅ M2. For proposition letters preservation is immediate from
condition 1. For the logic connectives ∧ and ¬, the property follows from the
induction hypotheses. This leaves us with the case 〈a〉ϕ. From the totality
and surjectivity of the relation H it follows that model validity of 〈a〉ϕ onM1

implies that for any state s1 ofM1 there has to be a witness for a in the form
of a state t1 such that (s1, t1) ∈ R(a) and M1, t1 |= ϕ. Now condition 2 says
that for any state s2 of M2 there is a state t2 such that (s2, t2) ∈ R2(a) and
M2, t2 |= ϕ. But then 〈a〉ϕ is valid onM2. This proofs the ‘only if’ direction.
The ‘if’ part is proven in the same way using condition 3.

Second we prove that M1 �∅ M2 implies M1 /1b M2. We prove the
contraposition. Assume that M1 �/1b M2. This means that either in M1 or
in M2 there is a state that is not 1-bisimilar to a state in the other model.
Assume this state is s1 in model M1. Now we consider the following cases.

(case 1) s1 is not 1-bisimilar with any state ofM2 because there is no state
s2 in M2 that meets condition 1 of definition 4.3.1, that is, there is no state
having the same valuation of propositional atoms. This means that for any
state s2 in M2 we can find a literal L, being a formula of the form P or ¬P ,
such that L holds in s2 but not in s1. Then the formula L1 ∨ L2 ∨ . . . ∨ Ln

holds on M2 but not on M1, because it is not satisfied in state s1 of M1.
Since we assume the finite model property in this chapter, the disjunction is
finite.

4.3. THE FRAME PROBLEM 125

(case 2) s1 is not 1-bisimilar with any state of M2 because among the
states in M2 with the same valuation of propositional atoms there is not one
that meets the first part of condition 2 in definition 4.3.1. Let {si2 | 1 ≤ i ≤ n}
be the set of states in M2 with the same valuation of propositional atoms
as for s1. Then for each si2 there is an action ai and a state ti1 such that
(s1, t

i
1) ∈ R1(ai) while there is no state ti2 such that (si2, t

i
2) ∈ R2(ai). Now let

ψ be a propositional formula that in model M2 distinguishes the valuation of
atomic propositions of the states si2 from the valuation of atomic propositions
in other states. Then the formula ψ → (¬〈a1〉 ∨ . . . ∨ ¬〈an〉) holds on M2

but not on M1, because it is not satisfied in state s1 of M1.
(case 3) s1 is not 1-bisimilar with any state ofM2 because among the states

inM2 satisfying condition 1 and the first part of condition 2 in definition 4.3.1,
there is not one satisfying the second part of condition 2. Now let {si2 | 1 ≤
i ≤ n} be the set of states in M2 with the same valuation of propositional
atoms and the same set of possible actions as for s1. Then for each si2 there is
an action ai, a state ti1 and a literal Li such that (s1, t

i
1) ∈ R1(ai) and Li holds

in ti1, while there is no state ti2 such that (si2, t
i
2) ∈ R2(ai) and Li holds in ti2.

Let ψ again be a propositional formula that in model M2 distinguishes the
valuation of atomic propositions of the states si2 from the valuation of atomic
propositions in other states. Then the formula ψ → (¬〈a1〉L1∨ . . .∨¬〈an〉Ln)
holds on M2 but not on M1, because it is not satisfied in state s1 of M1.

(case 4 + 5) Analogous to case 2 and 3, but now for condition 3 of definition
4.3.1.

The relation H relates models that are semantically equivalent. Now we
add the aspect of minimal change, thereby transforming the relation H into
an ordering. But first we need to establish a criterion of change. We define the
valuation change for two states to be the set of propositions whose valuation
in one state differs from that in the other state.

Definition 4.3.2 (valuation change) For any interpretation V P of propo-
sitional atoms P, the valuation change δ(s1, s2) with respect to the states
s1 and s2 is defined as the set of propositions {P | (s1 ∈ V P(P) and s2 �∈
V P(P)) or (s1 �∈ V P(P) and s2 ∈ V P(P))}.

Now we can add the change condition to the equivalence notion, thereby
turning it into an ordering 0ch

1b (the superscript ‘ch’ for ‘change’) of modal
action models.

126 CHAPTER 4. INTENDED MODAL ACTION MODELS

Definition 4.3.3 (depth 1 change ordering) LetM1 = (S1, R
A
1 , V

P
1) and

M2 = (S2, R
A
2 , V

P
2) be two models over A and P. Then M1 0ch

1b M2 if and
only if there is a total surjective relation H ⊆ S1×S2, such that for all s1 and
s2 for which (s1, s2) ∈ H it holds that:

1. s1 ∈ V P1 (P) if and only if s2 ∈ V P2 (P) for all P

2. if there is a t1 such that (s1, t1) ∈ RA1 (a), then there is a t2 such that
(s2, t2) ∈ RA2 (a) and δ(s1, t1) ⊆ δ(s2, t2)

3. if there is a t2 such that (s2, t2) ∈ RA2 (a), then there is a t1 such that
(s1, t1) ∈ RA1 (a) and δ(s2, t2) ⊇ δ(s1, t1)

Metaphorically speaking, going down in the 0ch
1b -ordering of models for an

action description AD, transitions from states look for ‘closer’ other states,
that is, states for which it only takes a subset of the current changes to reach
them. To get an impression of how this ordering compares modal action
models, we look at some models of the example formula ¬A ∧ ¬B ∧ ¬C →
[k](A ∨B).

M1

k

k

k

k
k

k

A

A

A,B

A,B,C

A

A,B,C

A,B,C

M2

M3

M4

A,B

k

A,B

A,B,C

A,B

A

Fig 5. a comparison of some models of ¬A ∧ ¬B ∧ ¬C → [k](A ∨B)

All models in figure 5 are models of ¬A ∧ ¬B ∧ ¬C → [k](A ∨ B). Of
course there are many other models. Models with other combinations of in-
terpretations of atomic propositions: models where k leads to states where
A does not hold, models where k is possible nowhere or in states with other
valuations. But the above set of models is the smallest displaying the relevant
issues, namely (1) that for atoms that are not specified as an effect (the atom
C is an example) the change is minimized to zero, that (2) for atoms that
appear disjunctive in an effect (the atoms A and B are examples) change is
minimized such that only one of the atoms is changed, and (3) that models
equivalent in the 0ch

1b -ordering are not necessarily semantically equivalent. Let
us look closely at the comparison of the above models under the 0ch

1b -ordering.
All models in figure 5 can be mutually compared in the 0ch

1b -ordering: for

4.3. THE FRAME PROBLEM 127

any comparison between two models we can choose the relation H such that
states with corresponding positions (and valuations) are related. It is easy to
check that by this choice for H, both state valuations and action possibilities
are preserved. First we define M �ch

1b M′ as M 0ch
1b M′ and M′ �0ch

1b M,
and M ≡ch

1b M′ as M 0ch
1b M′ and M′ 0ch

1b M. Now the following rela-
tions hold for the displayed models of the example formula: M1 �ch

1b M2,
M1 �ch

1b M3, M2 �ch
1b M4, M3 �ch

1b M4 and M2 ≡ch
1b M3. So, model M1

is a minimal model under the 0ch
1b -ordering, M2 and M3 are above M1 and

are mutually indistinguishable in the ordering, and M4 is the model that
forms the top of the ordering. Clearly M1 is not the only minimal model for
¬A ∧ ¬B ∧ ¬C → [k](A ∨ B) under the 0ch

1b -ordering, also the model where
action k only makes proposition B true is minimal. And M2 and M3 are
clearly not the only models that are in between the top model and the mini-
mal models. Figure 5 thus shows only a fragment of the ordering of models.

From this example, we might get the impression that minimization over the
0ch

1b -ordering always goes hand in hand with a reduction of non-determinism:
all ways to perform an action that change more than explicitly described by
the action description formula ¬A∧¬B∧¬C → [k](A∨B) are ruled out in the
above example. But this reduction of non-determinism is due to the special
form of this description formula. We now give an example that enforces non-
determinism as the result of minimization over the 0ch

1b -ordering. The example
formula is ¬A→ 〈k〉A.

M1 M2

k AAk

k

Fig 6. models for which M1 �ch
1b M2

The action k in the model on the left is ‘more non-deterministic’ than the
action k in the model on the right. But also, the model on the left is below
the model on the right in the 0ch

1b -ordering. And intuitively, this makes sense.
A natural language transcription of the formula ¬A → 〈k〉A is ‘it is possible
to change the value of A from false to true through execution of k’. Under a
minimal change description assumption, such an assertion only makes sense
if it is also possible to perform k in such a way that the value of A is not
changed, because if not, all ways to perform k would bring about a change
from ¬A to A, which means that we should have described (additionally) that
¬A→ [k]A.

128 CHAPTER 4. INTENDED MODAL ACTION MODELS

The example of figure 5 shows how to specify a lower bound for the changes
brought about by an action k. The example of figure 6 shows how to specify
an upper bound. So, in the example {¬A ∧ ¬B ∧ ¬C → 〈k〉(A ∧ B ∧ C),
¬A ∧ ¬B ∧ ¬C → [k]A}, we get that the minimum (the lower bound) of
change for k-actions is one that brings about A, and the maximum (the upper
bound) for change brings about A, B and C. So, by using formulas of the
forms ψ → [α]ϕ and ψ → 〈α〉ϕ, we can specify a lower and an upper bound
respectively, for the change brought about by an action α under the condition
ψ.

We define≡ch
1b -equivalence classes as sets of models that are ≡ch

1b -equivalent.
If M is a model, then |M|ch1b is its ≡ch

1b -equivalence class. The 0ch
1b -ordering

is a pre-order on models: reflexifivity and transitivity are immediate from the
definition. We extend this pre-order on models to a partial order over the
≡ch

1b -equivalence classes in the standard way. Anti-symmetry of this extended
0ch

1b -ordering, follows directly from the extension: if |M|ch1b 0ch
1b |M′|ch1b and

|M′|ch1b 0ch
1b |M|ch1b , then |M′|ch1b = |M|ch1b . Now the following proposition says

that semantically equivalent models are indistinguishable in the ≡ch
1b -ordering.

Proposition 4.3.2 For any two models M and M′ we have that M/1b M′

implies M≡ch
1b M′.

Proof
From the structural correspondence of the definitions for the 0ch

1b -ordering
and /1b-equivalence. If we replace the ⊆ and ⊇ symbols in the second and
third condition of definition 4.3.3 by the equal sign ‘=’, we arrive exactly at an
alternative formulation of the semantic equivalence notion of definition 4.3.1.
This proves the proposition, since absence of change (represented by substitu-
tion of the equal sign ‘=’) complies to the conditions δ(s1, t1) ⊆ δ(s2, t2) and
δ(s2, t2) ⊇ δ(s1, t1).

That the contraposition of this proposition does not hold, follows from the
example of figure 5. It holds thatM2 0ch

1b M3 andM3 0ch
1b M2. But there is

no /1b-equivalence, since the ‘middle’ transition in M2 has no equivalent in
M3. But in section 4.7 we define a modal action description language for which
minimal change models are semantically equivalent if and only if they cannot
be distinguished in the change ordering for that action description language.
This property also holds for the example action description of figure 5. We
do not prove that formally, but note that it is in agreement with the fact that
M2 and M3 are ≡ch

1b -equivalent, but not /1b-equivalent, which can only be
because they are non-minimal.

4.3. THE FRAME PROBLEM 129

Proposition 4.3.2 (and its proof) shows that the change ordering stays very
close to the equivalence notion, which is in support of the claim that it mini-
mizes nothing but change. We explained in section 4.2 why this is important.
But the property is important also for another reason. It implies that models
that are not equivalent in the ≡ch

1b -ordering, i.e. models that have different
change properties, are not semantically equivalent. And since theorem 4.3.1
states that semantic inequivalence implies modal inequivalence3, we have that
the models can be distinguished by formulas of the ADL. This means that we
do not have to increase expressiveness of the ADL to express frame properties:
if models differ in the change ordering, there must be formulas in the ADL
(that corresponds to the semantic equivalence relation the ordering is based
on) that separates them. And with the property that the number of relevant
models (modulo 1-bisimilarity) is bounded by the size of action descriptions
(which follows from the small model property) we get that we can always define
a finite extension to select a particular minimal model. This is also sufficient
to guarantee that each action description can be completed by one particular
set F that selects exactly all minimal models: for F we can take a disjunction
over all conjunctions of extension formulas for separate minimal models. The
finiteness of the number of relevant models ensures that F is finite.

The following theorem shows how for action descriptions with formulas of
the form ξ → [α]χ, extensions look like. Formulas of this form can express
(1) conditional effect information for actions: ξ is a condition under which
performing an action α brings about χ, and (2) necessary preconditions ¬ξ →
[α]⊥: action α can only take place if the condition ξ is satisfied . First we
introduce the notions ‘intention-safe’ and ‘intention-sufficient’ for extensions.
An extension is intention-safe whenever the formulas of the extension do not
exclude any intended model. An extension is intention-sufficient whenever the
formulas in the extension exclude all non-intended models. Note that for any
consistent action description the inconsistent extension is always intention-
sufficient but never intention-safe.

Definition 4.3.4 Using the notation Int([[AD]]) to denote the set of intended
models, and [[AD]] to denote the set of standard modal action models (defini-
tion 1.6.1) of an action description AD, we call a set of extension formulas C
intention-safe if and only if Int([[AD]]) ⊆ [[AD ∪C]], and intention-sufficient
if and only if [[AD ∪ C]] ⊆ Int([[AD]]).

3For standard bisimulation, this relation between semantic equivalence and modal equiv-
alence is known as the Hennessy-Milner property [19].

130 CHAPTER 4. INTENDED MODAL ACTION MODELS

Theorem 4.3.3 For any finite action description AD containing only action
description formulas of the form ξ → [α]χ, where formulas ξ and χ do not con-
tain modalities, and actions α are from an action language that does not have
sequence (;), iteration (∗), or intersection (∩), there is a finite set F of exten-
sion formulas of the form ψ ∧ ϕ→ [α]ϕ (ϕ and ψ do not contain modalities),
that is intention-safe and sufficient with respect to the 0ch

1b -minimal models of
AD.

Proof
Consider an action descriptionAD for which not all standard models [[AD]]

are 0ch
1b -minimal models. Take an arbitrary set F that is intention-safe but not

sufficient with respect to 0ch
1b -minimal models (the empty set suffices). The

lack of sufficiency for F implies that there is a modelM2 of AD∪F that is not a
0ch

1b -minimal model of AD. But then there is a 0ch
1b -minimal modelM1 of AD,

such that M1 �ch
1b M2. So M1 0ch

1b M2 and M2 �0ch
1b M1. Let H be a total

surjective relation that is a witness for the assertionM1 0ch
1b M2. Then, from

M2 �0ch
1b M1 it follows that there is a non-zero, finite number of ‘strict change

differences’ between the modelsM2 andM1, which are identified as elements
< s1, t1, s2, t2, a > obeying the properties (s1, s2) ∈ H and (s1, t1) ∈ RA1 (a)
and (s2, t2) ∈ RA2 (a) and δ(s1, t1) ⊂ δ(s2, t2). If there were not such strict
change differences, the relation H would also be a witness for the assertion
M2 0ch

1b M1, which contradicts M2 �0ch
1b M1. Now we demonstrate that for

each strict change difference we can construct a formula of the form ψ ∧ ϕ→
[α]ϕ that is valid onM1 and not on M2. This means that we can extend the
extension F with a conjunction of such formulas to exclude the non-minimal
change model M2, while leaving model validity of the minimal model M1

intact. For each specific strict change difference, we first obtain a set NMC
which is defined as the set of atoms δ(s2, t2) \ δ(s1, t1). These are the atoms
that are responsible for the non-minimal change through action a in state s2

of the model M2. Now let ϕ be the conjunction of literals L1 ∧ L2 ∧ . . . ∧ Ln

for which it holds that {P | P = Li or ¬P = Li for 1 ≤ i ≤ n} = NMC and
M2, s2 |= L1 ∧ L2 ∧ . . . ∧ Ln (and thus M1, s1 |= L1 ∧ L2 ∧ . . . ∧ Ln). And
let ψ be a propositional formula that distinguishes the valuation of atomic
propositions in s2 (and thus also in the state s1) from other valuations of
atomic propositions in states (on finite models it is always possible to find
such a formula). Then the formula ψ ∧ ϕ → [a]ϕ is valid on M1, and not on
M2. Non-validity of the formula onM2 follows directly from the existence of
the strict change difference that implies that the formula is not satisfied in s2.
For validity of the formula on M1 we have to show three things:

4.3. THE FRAME PROBLEM 131

(1) That it is valid in s1. Clearly we haveM1, s1 |= ψ ∧ ϕ, because ψ and
ϕ are constructed to be valid in s1. Then the formula demands that all ways
to perform a result in a state where ϕ. This follows from the minimality of
M1 and the form of the specification formulas (ξ → [α]χ).

(2) That the formula is valid in all states whose valuation of atomic propo-
sitions differs from that in s1. This holds because these states invalidate ψ.

(3) That in states s′1 with a valuation of atomic propositions identical to
the valuation for s1, the formula is valid. For this case, the argument is similar
to the argument for case 1.

If we drop the restriction for action description formulas, and go to a
stronger ADL for which /1b-equivalence holds, frame formulas of the form
ψ ∧ ϕ → [α]ϕ might no longer suffice to select the 0ch

1b -minimal models. The
example of figure 6 showed that minimization can introduce non-determinism.
Therefore we also need frame formulas of the form ψ∧ϕ→ 〈α〉ϕ for the general
case. We conjecture that for any action description language for which /1b-
equivalence holds, we can construct a conjunction of frame formulas of the
forms ψ ∧ ϕ → [α]ϕ and ψ ∧ ϕ → 〈α〉ϕ that is intention-safe and sufficient
with respect to 0ch

1b -minimal models. In such extensions formulas of the form
ψ ∧ ϕ → [α]ϕ are used to enforce that actions do not change more than
intended, and formulas of the form ψ ∧ ϕ → 〈α〉ϕ are used to ensure that
ways to perform an action that change less than other ways to perform it, are
actually possible.

If we allow stronger languages for the extensions, some frame properties
can be expressed more concisely. In section 2.5.3 we mentioned that in partic-
ular the relativized action negation enables an economic expression of frame
properties: the formula ψ∧¬ϕ→ [�Kα]¬ϕ expresses that under the condition
ψ, the condition ϕ can only be brought about by the action α. In section
2.5.1 we explained how we can use this type of formulas to encode Reiter’s
solution to the frame problem [155] in modal action logics. We do not go into
the question whether with formulas of this type together with formulas of the
form ¬ϕ→ 〈�Kα〉¬ϕ, we can build intention-safe and sufficient extensions.

The minimal elements in the 0ch
1b -ordering define an ‘intended’ minimal

change semantics of action descriptions. The minimal change semantics of an
action description AD is the set of 0ch

1b -minimal models of AD. Preferential
entailment under an ordering 0pref is defined as follows.

Definition 4.3.5 (preferential entailment) An action description AD pref-
erentially entails ψ, notation AD |=pref ψ, if and only if all 0pref -intended

132 CHAPTER 4. INTENDED MODAL ACTION MODELS

(maximal or minimal) models for AD are also models for ψ.

The Yale Shooting

The Yale shooting problem (YSP) [82] is a problem concerning the correct
behavior of fluent values along possible action traces through models for for-
mulas describing action effects at the atomic action level. In modal action
logic the relevant information of the action scenario is specified by:

¬Loaded → [load]Loaded
Loaded → [shoot]¬Loaded
Alive ∧ Loaded → [shoot]¬Alive
 → [wait]

The formula → [wait] is valid in any model, and thus superfluous
from a logic point of view. It is only added to the description to ensure that
the action wait is in the description signature. Now the intended, and the
unintended conclusion for the YSP are as follows (where we assume the use of
a modal action logic with sequence as an action query language):

The intended conclusion:

(Alive ∧ ¬Loaded→ [load](Alive ∧ Loaded)) ∧
(Alive ∧ ¬Loaded→ [load ;wait](Alive ∧ Loaded)) ∧
(Alive ∧ ¬Loaded→ [load ;wait ; shoot](¬Alive ∧ ¬Loaded))

The undesired conclusion:

(Alive ∧ ¬Loaded→ [load](Alive ∧ Loaded)) ∧
(Alive ∧ ¬Loaded→ [load ;wait](Alive ∧ ¬Loaded)) ∧
(Alive ∧ ¬Loaded→ [load ;wait ; shoot](Alive ∧ ¬Loaded))

Before we show that the intended conclusion is entailed, and the unin-
tended conclusion is not entailed by the 0ch

1b -minimal models, we take a closer
look at the YSP action description itself. Note that the description does not
contain qualification information. We claim that to show the correctness of the
change ordering for the YSP, it is important that indeed we leave qualification
information out. Other approaches that claim to solve the YSP [44, 91, 62] do
provide qualification information in their YSP action description (using suffi-
cient precondition formulas of the form ψ → 〈a〉). Foo et al. explicitly add

4.3. THE FRAME PROBLEM 133

〈load 〉, 〈wait 〉, and 〈shoot 〉. But since their minimal change semantics
also minimizes action possibilities, they have to add these explicit qualifica-
tions in order to make their entailment relation behave well. Of course, we
could also add qualification information to the above action description. This
would not destroy the correct behavior of our preferential entailment relation.
But our point is that it should not be necessary to add qualification infor-
mation in order to make the entailment relation behave well. We discuss the
ordering of Foo et al. in section 4.8.

We now take a closer look at the 0ch
1b -minimal models of the YSP action

description. There are only two fluents in the description, which implies that
0ch

1b -minimal models maximally involve four different valuations of propositions
in states. In each state of 0ch

1b -minimal models, actions load, wait and shoot
are either possible or not. The following is a 0ch

1b -minimal model for the YSP,
where in each state all of the actions are possible. Transitions with more than
one label are used to abbreviate separate transitions relating the same states,
and the fluents Loaded and Alive are abbreviated to respectively L and A.

M1

LA, L

A

wait
load

wait
load

wait
shoot

load

wait
shoot

shoot
load

shoot

Fig 7. a minimal model for the Yale shooting scenario

This is by far not the only 0ch
1b -minimal model. First of all there are

infinitely many models that are semantically equivalent (in the sense of defini-
tion 4.3.1) with this model. Such models can be constructed by, for instance,
‘unraveling’ the loops. Because the YSP action description does not contain
qualification information, each of the transitions in the above model can be
left out to obtain other minimal models. Leaving out transitions in the model
results in minimal models that are not comparable to the above one and to
each other (two models M and M′ are not comparable if M �0ch

1b M′ and
M′ �0ch

1b M), because the models will not be equal in the action sequences
that are possible. But the model of figure 7 is ‘canonical’ in the sense that
minimal models are either semantically equivalent with it or with minimal

134 CHAPTER 4. INTENDED MODAL ACTION MODELS

models that can be formed by leaving out transitions or states. Theorem
4.3.3 states that there has to be an extension that exactly selects all of these
0ch

1b -minimal models. A possibility for such an intention-safe and sufficient
extension with respect to the 0ch

1b -minimal models, is:

¬Alive → [wait]¬Alive
Alive → [wait]Alive
¬Loaded → [wait]¬Loaded
Loaded → [wait]Loaded
¬Alive → [load]¬Alive
Alive → [load]Alive
Loaded → [load]Loadedn
¬Alive → [shoot]¬Alive
¬Loaded → [shoot]¬Loaded
Loaded ∧ ¬Alive → [shoot]¬Alive
Alive ∧ ¬Loaded → [shoot](Alive ∧ ¬Loaded)

So, for the very small action description of the YSP, we already need 11
frame formulas. If we provide frame formulas by hand, it is very easy to
overlook certain persistencies. An example is the formula Loaded∧¬Alive→
[shoot]¬Alive. It says that the action shoot, in the context Loaded preserves
the value of ¬Alive. This particular formula also shows that it does not
suffice to provide only frame formulas of the form ϕ → [a]ϕ. Actions can
have different effects in different situations (contexts), which means that frame
formulas have to be made conditional on action preconditions. Therefore we
require the form ψ ∧ ϕ→ [a]ϕ for frame formulas.

It is clear from inspection of the ‘canonical’ minimal model of figure 7, and
from the extension given above, that the intended conclusion is entailed and
the unintended conclusion is not entailed by the 0ch

1b -minimal models of the
YSP description. Most other solutions to the YSP try to deal with the trade-
off between the minimizations concerning subsequent actions. The trade-off
is due to the fact that one tries to accomplish minimal change of effects of
separate actions through the minimization of a single abnormality predicate.
This results in two extensions for the YSP scenario: the intended one in which
the change of the wait action is none, and that of the shoot action is fatal, and
the unintended one in which the change in the shoot-action is none and that
of the wait-action is, surprisingly, non-empty (the gun becomes unloaded). In
our setting, this second extension is non-existent, because the minimal change
in the wait action is not ‘traded’ against minimal change in the shoot action.

4.3. THE FRAME PROBLEM 135

The solution sketched by Meyer and Doherty [136] behaves well on the YSP
for similar reasons.

4.3.2 Change over sequential action

In this section we extend expressiveness of ADLs by allowing the sequence
action operation and nested modalities. A typical example of such an ADL is
MAL(; ,∪,∗), in the literature known as PDL (without converse). Therefore we
take MAL(; ,∪,∗) as the central action description language in this section. For
other ADLs that allow reasoning about sequential action and exclude reasoning
about concurrency (intersection), slight adaptations of the definitions may be
required.

The presence of nested modalities complicates the definition of minimal
change models considerably. The difficulty is caused by the sequentiality of
actions. We will have to define a notion of minimal change that in a way
distributes over series of actions when performed one after the other. The
central issue is exemplified by the ‘stolen car problem’ (SCP) [106]. The YSP
and the SCP are dual. The YSP is about specifying change locally (the atomic
load, shoot and wait actions) and deriving the global change (after the sequence
load ;wait ; shoot), the SCP is about specifying a global change over several
actions and deriving possible local changes. In the SCP the change concerns
the condition that a car becomes stolen. Initially it is not stolen. Three
sequentially performed actions lead from the state where the car is not stolen
to the state where it is stolen, but no information is provided concerning
which of the actions is ‘responsible’ for the stealing. The criterion of minimal
change then imposes that it is either the first, second or third action, while
the possibility that the condition changes three times is excluded. The action
description information of the SCP-scenario is specified by the modal action
logic formula ¬Stolen → [a1; a2; a3]Stolen. The intended conclusion is that
maximally one of the three actions is responsible for the change. The intended
conclusion thus excludes that a1 changes the condition to Stolen, a2 changes it
back to ¬Stolen, and a3 changes it again to Stolen. An intended conclusion is
thus: ¬Stolen→ ¬〈a1〉(Stolen∧〈a2〉(¬Stolen∧〈a3〉Stolen)). This conclusion
can certainly not be inferred under the standard semantics, since nothing
excludes models of ¬Stolen → [a1; a2; a3]Stolen where the condition Stolen
changes value three times during the execution of a1; a2; a3. So, with the
SCP, we encounter a completely new aspect of the notion of minimal change,
an aspect that cannot be approached by minimizing change locally for non-
sequential action only. We have to adopt a more global view on minimal

136 CHAPTER 4. INTENDED MODAL ACTION MODELS

change.
Minimizing change, under preservation of all other information that is

stored in models, is much more difficult if the language we use to talk about
the models allows nesting of modalities or contains modalities over sequential
actions. The problem is that for sequences of actions, qualification information
and change information is not ‘encoded’ independently in models. For the non-
sequential case of the previous section we had a clear separation: if action a1 is
qualified in a state s, and if the change for a1 from s has to be minimized, we
can simply arrange that from s the action a1 reaches a ‘closer’ state, without
altering any of the qualification information in any of the states of the model.
But now consider the problem of minimizing the change of a sequence of
actions a1; a2 from a state s, while (1) the valuation in the start state s is
left unchanged, and (2) qualification information (throughout the model) is
left unchanged. Let s be the starting state, t the intermediate state, and u
and the end state. If the change in action a1 is not minimal and we want to
minimize it, while leaving the information that the sequential action a1; a2 is
possible from s unchanged, we cannot avoid to use an alternative ‘half-way’
state t′ and an alternative end state u′ for the action a1; a2: the half-way state
t′ is closer to s than the state t, and the end state u′ is as far from t′ as u from t
(the alternative end state is thus required to ensure that the amount of change
for the action a2 is left unaltered). It is clear that the new situation mixes up
the qualification information of the original model: for instance, a2 might not
be qualified for execution in t′. To steer clear from these dependency problems
we work with models where initial conditions (qualification information) and
process conditions (change information) are clearly separated: tree models
with initial states.

Definition 4.3.6 (tree models and initial states) A modal action model
with initial states M = (I, S,RA, V P) is a standard modal action model M =
(S,RA, V P) for which a set of initial states I such that I ⊆ S is distinguished.
A modal action tree-model with initial states M = (I, S, TA, V P) is a modal
action model with initial states where the interpretation function TA for atomic
actions is such that the actions form a set of trees with the initial states as
roots.

For models with initial states, satisfiability is defined as satisfiability in an
initial state, and validity on a model is defined as validity in all initial states.
We said in section 3.1 that by the restriction to models with initial states, a
modal action logic does not become stronger or weaker. As pointed out in
chapter 2 the difference reveals itself in the properties for entailment: for the

4.3. THE FRAME PROBLEM 137

global notion of entailment (|=G) we have on standard models that [a]P |=G

[a][a]P , and on models with initial states, that [a]P �|=I [a][a]P . However, for
the modal action logics we defined in chapter 2 there is a relation between
the two notions of entailment: AD |=G ϕ if and only if [anyS5](

∧
AD) |=I ϕ,

where |=G represents standard (global) entailment, and |=I entailment based
on validity in initial states. This property will be useful at the end of this
section, where we compare the sequential minimal change solution to the non-
sequential one.

Definition 4.3.7 (total surjective bisimulation for initial states) Let
M1 = (I1, S1, R

A
1 , V

P
1) and M2 = (I2, S2, R

A
2 , V

P
2) be two MA-models with

initial states. ThenM1 /b M2 (the subscript ‘b’ for ‘bisimulation’) if and only
if there is a total surjective relation I ⊆ I1 × I2 and a relation H ⊆ S1 × S2,
such that:

• I ⊆ H

and for all s1 and s2 for which (s1, s2) ∈ H it holds that:

1. s1 ∈ V P1 (P) if and only if s2 ∈ V P2 (P) for all P

2. if there is a t1 such that (s1, t1) ∈ RA1 (a), then there is a t2 such that
(s2, t2) ∈ RA2 (a) and (t1, t2) ∈ H

3. if there is a t2 such that (s2, t2) ∈ RA2 (a), then there is a t1 such that
(s1, t1) ∈ RA1 (a) and (t1, t2) ∈ H

The following theorem is a minor variant on standard results. An im-
portant difference with the corresponding theorem for the non-sequential case
(theorem 4.3.1) is that the we do not have the direction saying that modal
equivalence implies semantic equivalence.

Theorem 4.3.4 If for two models with initial states M1 and M2 it holds that
M1 /b M2, then for all formulas ϕ of MAL(; ,∪,∗) it holds that ϕ is valid on
M1 if and only if it is valid on M2 (notation M1 �;,∪,∗ M2).

Proof
By straightforward generalization of the proof for standard bisimulation

(see for instance [19]) to the total surjective, initial state case.

138 CHAPTER 4. INTENDED MODAL ACTION MODELS

The recursion guarantees semantic equivalence of states under nesting of
modalities and for modalities over sequential actions. This recursion is inher-
ited by the change ordering we obtain by adding the criterion of change to the
equivalence notion. The recursion in the change ordering ensures that minimal
change is distributed ‘fairly’ over sequence of action.

Definition 4.3.8 (sequential change ordering) Let M1 = (I1, S1, T
A
1 ,

V P1) and M2 = (I2, S2, T
A
2 , V P2) be two tree models with initial states. Then

M1 0ch
b M2 if and only if there is a total surjective relation I ⊆ I1 × I2 and

a relation H ⊆ S1 × S2, such that it holds that:

• I ⊆ H

and for all s1 and s2 such that (s1, s2) ∈ I it holds that:

• s1 ∈ V P1 (P) if and only if s2 ∈ V P2 (P) for all P

and for all s1 and s2 for which (s1, s2) ∈ H it holds that:

1. if there is a t1 such that (s1, t1) ∈ T1(a), then there is a t2 such that
(s2, t2) ∈ T2(a) and δ(s1, t1) ⊆ δ(s2, t2) and (t1, t2) ∈ H

2. if there is a t2 such that (s2, t2) ∈ T2(a), then there is a t1 such that
(s1, t1) ∈ T1(a) and δ(s2, t2) ⊇ δ(s1, t1) and (t1, t2) ∈ H

Just as for the non-sequential case, we define ≡ch
b -equivalence classes as

sets of models that are ≡ch
b -equivalent. If M is a model, then |M|chb is its

≡ch
b -equivalence class. The 0ch

b -ordering is a pre-order on models: reflexifivity
and transitivity are immediate from the definition. We extend this pre-order
on models to a partial order over the ≡ch

b -equivalence classes in the standard
way. Anti-symmetry of this extended 0ch

b -ordering, follows directly. As for
the non-sequential case, the ordering is very close to the equivalence notion.

Proposition 4.3.5 For any two models M and M′ it holds that M /b M′

implies M≡ch
b M′.

Proof
As in the proof for proposition 4.3.2, we replace the ⊆ and ⊇ symbols in

the forth and back clauses by the equal sign ‘=’. Then the recursion in the
definition ensures that the difference in change over any sequential composi-
tion of action relations in the two compared models is zero. Together with

4.3. THE FRAME PROBLEM 139

the clause that there is no difference in initial valuations either, it follows
that by this substitution, similarity in valuations is preserved over sequence
of actions. Therefore we arrive exactly at an alternative formulation of the
semantic equivalence notion of definition 4.3.7.

Since theorem 4.3.4 is only one way, we do not have, as for the non-
sequential case, that intention-safe and sufficient extensions matching the min-
imal models over the ordering of definition 4.3.8, always exist. An extra com-
plication is that for a logic such as MAL(; ,∪,∗), tree models need not be finite.
An example is the formula p ∧ [a∗](p → 〈a〉p), that cannot be satisfied on a
finite tree model. However, we conjecture that if we would weaken the se-
quential case by starting with (total surjective) n-bisimilarity as the semantic
equivalence notion, the results for the non-sequential case can be generalized.
Such an alternative change ordering for the sequential case could not be used
for modal action logics that have iteration, since this operation is not ‘safe’
for n-bisimulations. In the next section we discuss the stolen car scenario, and
show that minimization over the 0ch

b -ordering distributes minimal change over
sequence of action correctly.

The Stolen Car

We argue that the ordering of definition 4.3.8 sorts out the models that dis-
play the intended notion of minimal change in case of the stolen car problem
(SCP). The type of problems exemplified by the SCP are an important test
for the semantics, since they are about the minimal distribution of changes
over sequences of actions. An SCP action description should give no infor-
mation about possibility of actions, since, as argued before, absence of such
information is a prerequisite for assessing the correctness of the defined notion
of minimal change. With this restriction, the SCP scenario is described by:

¬Stolen→ [a1; a2; a3]Stolen

Consider the following three models for this action description, where the
left-most states are initial states.

140 CHAPTER 4. INTENDED MODAL ACTION MODELS

M1

a1 a2 a3

stolen

M2

stolen

a1 a2 a3

stolen stolen

M3

stolen

a1 a2 a3

stolen

Fig 8. models for the stolen car scenario

To compare the models, we need to establish the ‘comparison’ relations I
and H. The relation I compares initial states, which for this example, are
the left-most states in the models. The relation H then can be chosen such
that the first, second, third and fourth states of any pair of separate models
are compared. The models M1 andM2 are both minimal for the SCP action
description under the 0ch

b -ordering. That one of the models is not below or
above the other in the 0ch

b -ordering is seen as follows. Both contain the action
sequence a1, a2, a3. In M1 the first two of these actions change less than the
corresponding ones in M2, but the third one changes more. So we have that
M1 �0ch

b M2 and M2 �0ch
b M1, which means that M1 and M2 are mutually

not ordered. That they are both minimal is seen by comparing them to model
M3. In M3, after the first action the car is stolen, after the second it has
become non-stolen mysteriously, and after the third it is stolen again. Clearly
here the change from stolen to not stolen is not minimally distributed over
the sequence of three actions. Comparison ofM1 andM3 gives that both the
first and second action change less, while the third changes as much as the
corresponding action in M3. This means that M1 0ch

b M3 andM3 �0ch
b M1,

and thus M1 is below M3 in the ordering. A similar argumentation can be
given for the claim that atM2 is below M3 in the ordering. A third minimal
model of this type is of course the one where the stealing takes place during
the second action.

Of course, models can be much more extensive than the ones of figure 8.
In particular we can have infinite tree models. In figure 9 below we represent
two such tree models implicitly: the tree models are obtained by unraveling
the models from the left most, initial states.

4.3. THE FRAME PROBLEM 141

M1

a1, a2, a3

stolen

a1, a2 a1, a2, a3

M2 stolen

a1, a2 a1, a2, a3

a1, a2, a3

a2

Fig 9. more models for the stolen car scenario

Model M1 is 0ch
b -minimal for the SCP action description. We exemplify

this by showing that modelM2 is aboveM1 in the 0ch
b -ordering. The relation

I is again simple: it relates the initial (left most) states of the models. But,
it is rather difficult to describe in words what the relation H that is a witness
for the claim that M1 0ch

b M2 looks like. But it should be clear that H
can be taken such that all action trees that start with the a2-branch that in
model M2 goes back to the state for which ¬Stolen, are strictly ‘above’ the
corresponding a2-branch in modelM1 that results in the state where Stolen.

Back to the Yale shooting

The SCP example suggests that the ordering of definition 4.3.8 performs well
for ADLs with nested modalities and modalities for sequential action. And
except for the addition of the concept of ‘initial states’, definition 4.3.8 looks
like a neat generalization of the corresponding definition for non-sequential ac-
tions. But it turns out that the ordering for nested modalities does not perform
well on the example for the non-sequential case: the Yale shooting problem.
Let us again consider dynamic logic, or, in our terminology, MAL(; ,∪,∗) as
an ADL. If we want to give an action description of the YSP in this logic,
using the ordering of definition 4.3.8 to sort out the minimal change models,
we have to account for the fact that we have moved to a system with initial
states and a corresponding alternative notion of entailment. To get the same
reasoning, we use the earlier mentioned connection: AD |=G ϕ if and only if
[any](

∧
AD) |=I ϕ (|=I is the entailment notion based on initial states). So,

to get the same reasoning as in section 4.3.1, we have to prefix the YSP action
description formulas with a modality that ensures that they hold in all states
reachable from the initial state. In PDL we do not have the any modality.

142 CHAPTER 4. INTENDED MODAL ACTION MODELS

But for individual action descriptions, it is not hard to simulate it: we prefix
the formulas of the YSP scenario description of section 4.3.1 with formulas
[(load∪wait∪ shoot)∗](.). Using the ‘simulated’ any, the YSP scenario can be
expressed as:

[(load ∪ wait ∪ shoot)∗](¬Loaded→ [load]Loaded)
[(load ∪ wait ∪ shoot)∗](Loaded→ [shoot]¬Loaded)
[(load ∪ wait ∪ shoot)∗](Alive ∧ Loaded→ [shoot]¬Alive)
[(load ∪ wait ∪ shoot)∗](→ [wait])

Now we ask whether the 0ch
b -minimal models of this action description cor-

respond to the 0ch
1b -minimal models of description in section 4.3.1. It turns out

that this is not the case. The following two models provide a counterexample.

M1

LA, L

A

wait
load

wait
load

wait
shoot

load

wait
shoot

shoot load
shoot

M2

LA, L

A

load
wait
load

wait
shoot

wait
shoot

shoot

load

shoot

wait load

Fig 10. two models for the YSP scenario

The state in the lower-left corner of both models is the initial state, from
where the models are thought to be unraveled into infinite trees. Under local
minimization, that is, by using the 0ch

1b -ordering, it holds that M1 �ch
1b M2.

This follows directly from the observation that the atomic wait action from
the upper-left state in modelM2 performs a non-minimal change. In the 0ch

b -
ordering we do not minimize over atomic actions but over sequences of actions
from the initial states. From the initial state in model M2, the sequence
load ;wait ; shoot performs a change in the wait action, while in model M1,
the same sequence performs a change in the shoot action. The problem is the
ordering of definition 4.3.8 does not prefer one of both sequences: the change in
the wait action of modelM1 is strictly less than the change in modelM2, but
the change in the shoot action of modelM2 is strictly less than the change in
modelM1. This means that with definition 4.3.8 that enables us to minimize
over sequential action, we have brought back the Yale shooting problem.

4.3. THE FRAME PROBLEM 143

It is tempting to assume that it should be possible to reconcile the orderings
of the previous and present section and arrive at one definition that provides
a semantic solution to both the YSP and the SCP. But we argue that the
analysis actually shows that both problems cannot be solved at the same time,
since they reflect incompatible intended interpretations (action description
assumptions). The YSP was solved by the minimization strategy for non-
sequential action in the previous section. We may describe the strategy for this
non-sequential case as a minimization that is global with respect to states (it is
imposed for all states in models) and local with respect to action (it is aimed at
minimizing changes over atomic actions). The strategy of the present section is
in a sense the opposite: it is local with respect to states (only for initial states),
and global with respect to action (minimization of change distributes over
sequence of action). Although opposites, both strategies seem exactly right
for their task. To solve the YSP, we need minimization that is local to atomic
actions: as soon as we allow a ‘trade off’ between minimizations for separate
atomic actions, such as for the global minimization strategy in this section, or
as for many standard approaches in the literature (such as minimization with
respect to one abnormality predicate), we get back two alternatives to obey
minimal change, one of which is the famous counter-intuitive one. But on the
other hand, for a solution to the SCP, such a trade off between minimizations
for atomic actions is exactly what is needed: if the first action brings about
the change, the second and third do not, but if the second brings it about, the
first and the third do not, etc. A solution to the SCP thus requires that on
the local level of individual atomic actions, change is not minimized ‘blindly’:
minimization depends on the minimization of change for other actions in the
sequence. The solutions to the YSP and the SCP thus require incompatible
minimization strategies, which means that we cannot combine them.

4.3.3 Change over concurrent action

The principle of minimal change has to be applied with much more caution if
concurrent actions are involved. Imposing separate minimal change descrip-
tion assumptions for separate actions that each bring about a change, results
in the impossibility to perform the actions concurrently: each action would
violate the minimal change criterion for the other actions, since effects of con-
stituent concurrent parts add up in modal action logic. We thus have to apply
the minimal change criterion to the concurrent actions themselves, and not to
the individual actions that constitute a concurrent action. This follows auto-
matically by applying the approach described in section 4.2. In this section

144 CHAPTER 4. INTENDED MODAL ACTION MODELS

we take the modal action logic MAL(∪,∩) as a paradigmatic example. Def-
initions for other modal action logics that can express intersection follow by
generalizations. In order not to get involved in the issue of sequential concur-
rent minimal change, we assume that in the ADL modalities are not allowed
to occur nested. For such an ADL, we can define a notion of semantic equiva-
lence between models by specialization of definition 2.4.9. But first we give a
definition that specializes definition 2.4.8 concerning strict graph relatedness
of states in models, for the use of these concepts for the logic MAL(∪,∩). For
this simpler logic, the notion of action graph reduces to that of a ‘step’, which
is the parallel composition of a set of atomic actions.

Definition 4.3.9 (step relatedness) For any given modelM = (S,RA, V P)
and set of atomic actions T , we say that states s and t are T related relative
to M, notation ‘s(T)�t’, if and only if T ⊆ {a | (s, t) ∈ RA(a)}.

Then the following definition specializes definition 2.4.9 for the case
MAL(∪,∩), and at the same time generalizes it by lifting the comparison
of states to a comparison of models.

Definition 4.3.10 (total surjective step 1-bisimulation) LetM1 = (S1,
RA1 , V P1) and M2 = (S2, R

A
2 , V

P
2) be two MA-models. Then M1 /s1b M2 (the

subscript ‘1sb’ for ‘step 1-bisimulation’) if and only if there is a total surjective
relation H ⊆ S1 × S2, such that for all s1 and s2 for which (s1, s2) ∈ H it
holds that:

1. s1 ∈ V P1 (P) if and only if s2 ∈ V P2 (P) for all P

2. if there is a t1 such that for some step T it holds that s1(T)�t1 relative to
M1, then there is a t2 such that s2(T)�t2 relative to M2 and t1 ∈ V P1 (P)
if and only if t2 ∈ V P2 (P) for all P

3. if there is a t2 such that for some step T it holds that s2(T)�t2 relative to
M2, then there is a t1 such that s1(T)�t1 relative to M1 and t2 ∈ V P2 (P)
if and only if t1 ∈ V P1 (P) for all P

Theorem 4.3.6 M1 /s1b M2 if and only if for all formulas ϕ of MAL(∪,∩)
with maximal modal depth 1, it holds that ϕ is valid on M1 if and only if it is
valid on M2 (notation M1 �∪,∩M2).

4.3. THE FRAME PROBLEM 145

Proof
In section 2.4.3 in theorem 2.4.5 we proved for the more general case of

action graph bisimulation, that validity is preserved in states. It is straightfor-
ward to generalize this result to the total surjective case (while we need only
the case for MAL(∪,∩) to prove the present theorem). The other direction is
similar to the proof for theorem 4.3.1 under replacement of atomic actions a
by steps T .

The turn from equivalence to the ordering is very much like the turn for
the non-sequential non-concurrent case. The only difference is that we now
take concurrent steps instead of atomic actions as the unit of action over which
change is minimized. This results in the following ordering:

Definition 4.3.11 Let M1 = (S1, R
A
1 , V

P
1) and M2 = (S2, R

A
2 , V

P
2) be two

MA-models. Then M1 0ch
s1b M2 if and only if there is a total surjective

relation H ⊆ S1 × S2, such that for all s1 and s2 for which (s1, s2) ∈ H it
holds that:

1. s1 ∈ V P1 (P) if and only if s2 ∈ V P2 (P) for all P

2. if there is a t1 such that for some step T it holds that s1(T)�t1 relative to
M1, then there is a t2 such that s2(T)�t2 relative to M2 and δ(s1, t1) ⊆
δ(s2, t2)

3. if there is a t2 such that for some step T it holds that s2(T)�t2 relative to
M2, then there is a t1 such that s1(T)�t1 relative to M1 and δ(s2, t2) ⊇
δ(s1, t1)

Results for the non-concurrent, non-sequential case of section 4.3.1 are
straightforwardly generalized to the concurrent case. We thus have that finite
intention-safe and sufficient extension (using formulas of the same logic) exist,
and that for description formulas of the form ξ → [α]χ, it suffices to use
extension formulas of the form ψ ∧ ϕ→ [α]ϕ.

The bowl of soup

To show that the ordering performs well on concurrent action descriptions, we
again consider the bowl of soup problem we discussed in sections 2.4.1 and
2.5.1.

146 CHAPTER 4. INTENDED MODAL ACTION MODELS

AD = {
[left-lift]UpLeft, UpLeft ∧ ¬UpRight→ Spilled,
[right-lift]UpRight, UpRight ∧ ¬UpLeft→ Spilled,
UpLeft ∧ UpRight→ ¬Spilled, ¬UpLeft ∧ ¬UpRight→ ¬Spilled}
To keep the example as simple as possible, we model the ramification of

Spilled with the help of global constraints. To check whether the minimiza-
tion of change is performed correctly over concurrent action, we question the
minimal change models of this small action description with formulas of the
strictly stronger language MAL(∪, �K). Note that also in the YSP example, we
used a stronger language, namely PDL, as an action query language. It is eas-
ily verified that the intended conclusions ¬UpLeft∧¬UpRight→ [right-lift∩
�K left-lift]Spilled and ¬UpLeft ∧ ¬UpRight → [left-lift ∩ �Kright-lift]Spilled
hold on 0ch

s1b-minimal models of the action description. In section 2.5.1 we
argued that the same intended conclusions can be drawn after extension of
the description with the frame formulas ¬UpLeft→ [�K left-lift]¬UpLeft and
¬UpRight→ [�Kright-lift]¬UpRight. Thus, if we allow that the language for
extensions of action descriptions is stronger than the language for the descrip-
tions themselves, we can use frame formulas of the form ψ ∧ ¬ϕ → [�Kα]¬ϕ,
instead of frame formulas of the form ψ ∧ ϕ → [α]ϕ to express persistency
information more economically.

The correct conclusions are drawn while staying within a reasoning context
of open actions, because [right-lift ∩ �K left-lift]Spilled says that Spilled holds
after any concurrent action containing right-lift as a concurrent component and
excluding left-lift. This contradicts the claim by Giordano et al. [75] saying
that to model the correct reasoning in this example, it is necessary to introduce
closed actions.

4.4 The qualification problem

In section 4.1 we described the qualification problem as the problem how to
avoid having to specify sufficient conditions for the possibility of actions. That
ψ is a sufficient precondition for an action α is expressed as ψ → 〈α〉. But
obtaining correct information of this type, i.e. establishing conditions ψ for
a certain action domain, is usually very hard for two reasons. First of all,
when making action descriptions, it is very difficult to extract all relevant
information concerning conditions that prevent the possibility of an action
from a description domain. A standard example is from McCarthy [129] who

4.4. THE QUALIFICATION PROBLEM 147

describes what conditions may prevent the possibility of a boat crossing a
river. It may be leak, the weather may be bad, the peddles may be broken,
etc. Second, if logic action descriptions are large, the difficulty may also come
from ‘inside’ the description. It may for instance be the case that the specifier
of an action domain does not notice that effect information (ψ → [α]ϕ) and
static information (χ), specified as part of an extensive action description AD,
conspires (AD ∧ϕ∧ χ is not consistent) to logically imply that α cannot take
place under the condition ψ (i.e. ψ → [α]⊥). In such a situation addition of a
formula ψ → 〈α〉 results in the global entailment of ¬ψ, which might not be
intended.

A semantic solution to these problems is provided by the principle of max-
imal qualification, that takes a default interpretation with respect to qualifica-
tion information: an action is possible in a certain situation whenever it does
not follow from the action description that it is not possible. So, under an
intended maximal qualification interpretation of action descriptions, we may
only provide necessary preconditions for the possibility of actions. We call this
default interpretation ‘maximal qualification’. Such a default interpretation
is also assumed in the languages A and C developed by Gelfond and Lifschitz
[69], where it is called ‘qualification completeness’.

For the concept of maximal qualification we follow the same approach as
for minimal change: we take the equivalence notion for a class of logics and
adapt it such that it compares models on the aspect of qualification. For
minimal change, we did not want to compare models on action possibilities,
which meant that it was necessary to leave the back and forth structure of
the equivalence notion in tact, and only focus on the change of valuations in
states. For maximal qualification we have the opposite. We want to compare
models only on the possibility to do certain actions in states. This means we
have to eliminate either the forth or back clause in equivalence notions, such
that action possibilities are preserved only in one ‘direction’. Furthermore, we
do not have to look at valuations in states reached by actions. Qualification is
not about the decision whether non-deterministic actions can be performed in
a certain way, but about the decision whether non-deterministic actions can be
performed at all. If maximization of qualifications would involve maximization
of all ways to perform an action, it would as a side effect maximize non-
determinism.

148 CHAPTER 4. INTENDED MODAL ACTION MODELS

4.4.1 Qualification of non-sequential action

For non-sequential action we start with the equivalence notion of definition
4.3.1. Elimination of the ‘back’ condition and of the comparison of post-
conditions, results in the qualification ordering 0ql

1b (the superscript ‘ql’ for
‘qualification’) for non-sequential actions.

Definition 4.4.1 (qualification ordering) Let M1 = (S1, R
A
1 , V

P
1) and

M2 = (S2, R
A
2 , V

P
2) be two models over A and P. Then M2 0ql

1b M1 if
and only if there is a total surjective relation H ⊆ S1 × S2, such that for all
s1 and s2 for which (s1, s2) ∈ H it holds that:

1. s1 ∈ V P1 (P) if and only if s2 ∈ V P2 (P) for all P

2. if there is a t2 such that (s2, t2) ∈ RA2 (a), then there is a t1 such that
(s1, t1) ∈ RA1 (a)

Analogous to what we defined for the change orderings, we define M ≡ql
1b

M′ asM0ql
1b M′ andM′ 0ql

1b M, and ≡ql
1b-equivalence classes as sets of mod-

els that are ≡ql
1b-equivalent. IfM is a model, then |M|ql1b is its ≡ql

1b-equivalence
class. The 0ql

1b-ordering is a pre-order on models: reflexifivity and transitivity
are immediate from the definition. As for the change orderings, we extend
this pre-order on models to a partial order over the ≡ql

1b-equivalence classes
in the standard way. Preferential entailment is defined as in definition 4.3.5.
The following proposition says that semantically equivalent models are indis-
tinguishable in the ≡ql

1b-ordering.

Proposition 4.4.1 For any two models M and M′ it holds that M /1b M′

implies M≡ql
1b M′.

Proof
Directly from the correspondence between definition 4.4.1 for the 0ql

1b-
ordering and definition 4.3.1 for /1b-equivalence. All the conditions in the
ordering are also conditions of the semantic equivalence.

So, models that are not equivalent in the ≡ql
1b-ordering, i.e. models that

have different qualification properties, are not semantically equivalent. Then,
it follows from proposition 4.3.1 that the models can be distinguished by for-
mulas of MAL(∅). The following theorem states that we can always define
an extension of a finite action description AD that selects exactly the models
maximal under the 0ql

1b-ordering, by using formulas of the form ψ → 〈α〉.

4.4. THE QUALIFICATION PROBLEM 149

Theorem 4.4.2 For any finite action description AD in an action descrip-
tion language for which /1b-equivalence holds, there is a finite set F of exten-
sion formulas of the form ψ → 〈α〉, that is intention-safe and sufficient with
respect to the 0ql

1b-maximal models of AD.

Proof
Consider an action descriptionAD for which not all standard models [[AD]]

are 0ql
1b-maximal models. Take an extension set F that is intention-safe but

not sufficient with respect to 0ql
1b-maximal models (the empty set suffices). So

there is a modelM2 of AD ∪F that is not a 0ql
1b-maximal model of AD. But

then there is a 0ql
1b-maximal model M1 of AD, such that M2 �ql

1b M1. So
M2 0ql

1b M1 and M1 �0ql
1b M2. Let H be a total surjective relation that is a

witness for the assertionM2 0ql
1b M1. Then, fromM1 �0ql

1b M2 it follows that
there is a non-zero, finite number of ‘strict qualification differences’ between
the models M2 and M1, which are identified as tuples < s1, s2, a > obeying
the conditions (s1, s2) ∈ H and there is a t1 such that (s1, t1) ∈ RA1 (a) while
there is no t2 such that (s2, t2) ∈ RA2 (a). If there were not such strict qual-
ification differences, the relation H would also be a witness for the assertion
M1 0ql

1b M2, which contradicts M1 �0ql
1b M2. Now we show that for each

strict qualification difference we can give a formula of the form ψ → 〈α〉
that is valid on M1 and not on M2. This means that we can extend the
extension F with a conjunction of such formulas to exclude the non-maximal
qualification model M2, while leaving model validity of M1 intact. Let for
any strict qualification difference < s1, s2, a >, ψ be a propositional formula
that distinguishes the valuation of atomic propositions in s2 (and thus also in
the state s1) from other valuations of atomic propositions in states (on finite
models it is always possible to find such a formula). We show that the formula
ψ → 〈a〉 is valid onM1, and not onM2. Non-validity of the formula onM2

follows directly from the existence of the strict qualification difference that
implies that the formula is not satisfied in s2. For validity of the formula on
M1 we have to show three things:

(1) That it is valid in s1. This follows directly from the existence of the
strict qualification difference.

(2) That the formula is valid in all states whose valuation of atomic propo-
sitions differs from that in s1. This holds because these states invalidate ψ.

(3) That in states s′1 with a valuation of atomic propositions identical to
the valuation for s1, the formula is valid. This follows from the maximality of
M1 in the 0ql

1b-ordering.

150 CHAPTER 4. INTENDED MODAL ACTION MODELS

4.4.2 Qualification of sequential action

By extending the expressiveness of ADLs with modalities over sequential ac-
tion, we arrive at languages for which model validity is preserved under the
semantic equivalence notion of definition 4.3.7. For these languages we define
the following qualification ordering.

Definition 4.4.2 (sequential qualification ordering) Let M1 = (I1, S1,
TA1 , V P1) and M2 = (I2, S2, T

A
2 , V P2) be two tree models with initial states.

Then M2 0ql
b M1 if and only if there is a total surjective relation I ⊆ S1×S2

and a relation H ⊆ S1 × S2, such that it holds that:

• I ⊆ H

and for all s1 and s2 such that (s1, s2) ∈ I it holds that:

• s1 ∈ V P1 (P) if and only if s2 ∈ V P2 (P) for all P

and for all s1 and s2 for which (s1, s2) ∈ H it holds that:

• if there is a t2 such that (s2, t2) ∈ T2(a), then there is a t1 such that
(s1, t1) ∈ T1(a) and (t1, t2) ∈ H

It is straightforward to generalize proposition 4.4.1 to this sequential case.
However, as for the sequential minimal change case, we do not have that
intention-safe and sufficient extensions matching the intended (maximal) mod-
els always exist.

4.4.3 Qualification of concurrent action and the mutual exclu-
sion problem

As for the frame problem, for the case of concurrent action we restrict ourselves
to modal action logics over steps (concurrent atomic actions). The generaliza-
tion of the theory is straightforward and deserves no further explication. We
get the following qualification ordering for steps.

Definition 4.4.3 Let M1 = (S1, R
A
1 , V

P
1) and M2 = (S2, R

A
2 , V

P
2) be two

MA-models. Then M2 0ql
s1b M1 if and only if there is a total surjective

relation H ⊆ S1 × S2, such that for all s1 and s2 for which (s1, s2) ∈ H it
holds that:

1. s1 ∈ V P1 (P) if and only if s2 ∈ V P2 (P) for all P

4.4. THE QUALIFICATION PROBLEM 151

2. if there is a t1 such that for some step T it holds that s2(T)�t2 relative
to M2, then there is a t1 such that s1(T)�t1 relative to M1

Maximization over the above ordering reflects the description assumption
that concurrent actions are possible whenever an action description contains
no information to the contrary. Definitions, propositions and theorems for the
non-concurrent (and non-sequential) case generalize smoothly to the concur-
rent case, which is why we do not present them. But we do want to discuss
an extra complication for the specification of qualification information, that
only occurs in the context of concurrent action. We call it ‘the mutual exclu-
sion problem’ [37]. Our investigation of this problem is still preliminary, and
should be considered more as a possible direction for future research, than as
a worked out theory.

The mutual exclusion problem

We argue that for concurrent action, the qualification problem, as it is de-
scribed in section 4.1, becomes considerably harder. This is because the
number of possible different concurrent actions grows exponentially with the
number of atomic actions used for action description. This means that for
concurrent actions the qualification problem is exponentially intensified: for
any possible concurrent composition of actions a specifier has to decide on the
qualification information when making an action description. The principle of
maximal qualification does not help us very much: it stipulates that all of the
concurrent possibilities are included by default. A specifier then has to provide
formulas of the form ¬ψ → [a1 ∩ a2 ∩ . . . ∩ an]⊥ saying that in states where
¬ψ holds it is not possible to perform the atomic actions a1∩a2∩ . . .∩an con-
currently. Following standard terminology from concurrency theory, we refer
to such formulas as ‘mutual exclusions’. The problem of having to specify all
mutual exclusions is thus ‘caused’ by the principle of maximal qualification in
combination with the incorporation of concurrent actions in the description
language.

The decision task for the specifier is partially alleviated by an ‘add-up’
property for qualifications of concurrent actions. In the modal action logics
we study, it is the case that if ψ is a necessary precondition for α, then it is also
a necessary precondition for α∩β. This follows from the semantics defined in
section 2.4.2: ¬ψ → [α]⊥ |= ¬ψ → [α∩β]⊥ is a valid conclusion. Thus a speci-
fier does not have to decide on all exponentially many qualification possibilities
for concurrent actions: if he decides to exclude a ∩ b, he implicitly decides to
exclude a ∩ b ∩ c, etc. Yet, this only gives a partial alleviation of the prob-

152 CHAPTER 4. INTENDED MODAL ACTION MODELS

lem. The space of actions for which the specifier has to make a qualification
decision is still exponential: that he can prune this space quite effectively due
to the add-up principle, does not take this problem away. We argue that this
problem of having to specify all mutual exclusions is an important problem in
itself, that requires a solution independent from the qualification problem.

The mutual exclusion problem When specifying preconditions for actions,
we do not want to involve ourselves in describing exhaustively together
with which other actions, actions may or may not occur concurrently.

We suggest that preferably one would like to assume a default interpretation
with respect to the issue raised by the mutual exclusion problem, a position of
the same type as the minimal change principle for the frame problem and the
maximal qualification principle for the qualification problem. Just as for these
other famous problems, we would like to assume something general about the
action description that alleviates the problem of having to specify all mutual
exclusion. We propose the following description assumption: if actions are
both possible concurrently and in isolation, we assume the concurrent possi-
bility at the cost of the isolated possibilities. That is, we want to minimize
mutual exclusion, or equivalently, maximize concurrency, and only specify the
exceptions as explicit mutual exclusions. This characterizes the mutual exclu-
sion problem as a problem similar to the frame and qualification problem.

Minimal mutual exclusion thus deals with the problem whether isolated
and concurrent execution of an action can both be qualified or that only one
of the two is (preferably) qualified, and it decides this choice in favor of con-
current executions. The difference with the standard qualification problem is
that minimal mutual exclusion is not a default interpretation about individ-
ual actions as such, but about mutual concurrent in- or exclusions of actions.
Maximal qualification just maximizes all possible occurrences, either isolated
or concurrent.

The problem of wanting to engage in a default interpretation with respect
to possibilities of concurrent actions relative to constituent concurrent parts
also arises in the context of the semantics of statecharts, a graphical specifica-
tion formalism for reactive systems [89, 150, 10]. A basic problem in assigning
intuitive semantics to statecharts is how to deal with the concurrent executions
of parallel components of the statechart. Often a criterion of ‘maximal steps’
or ‘maximal parallelism’ is assumed ([100]). Another argument for taking this
particular default interpretation is related to the problem of the state space
explosion that is encountered if we try to apply model checking techniques
to the verification of concurrent system specifications [86]. The state space

4.4. THE QUALIFICATION PROBLEM 153

explosion is a name for the problem that the number of concurrent actions
grows exponentially with the number of atomic actions. Now the state space
is most drastically reduced if we adopt a default interpretation of minimal
mutual exclusion. It is perceivable that by doing so, we can derive interest-
ing properties of the concurrent system that would otherwise haven taken too
much computation time to calculate.

We now show how we might approach the mutual exclusion problem in
the same way as we approached the frame and the qualification problem.
We only consider the non-sequential case. We adapt the equivalence notion of
definition 4.3.1 such that it compares models on the aspect of mutual exclusions
of actions. The forth condition is changed such that (concurrent) actions that
are qualified in lower models are either (1) qualified in higher models, or are
a concurrent composition of actions that are qualified in higher models. The
back condition guarantees that steps of actions that are qualified in higher
models are either (1) also qualified in lower models, or (2) are concurrently
subsumed by steps that are qualified in lower models.

Definition 4.4.4 (mutual exclusion ordering) Let M1 = (S1, R
A
1 , V

P
1)

and M2 = (S2, R
A
2 , V

P
2) be two MA-models. Then M1 0me

s1b M2 if and only
if there is a total surjective relation H ⊆ S1 × S2, such that for all s1 and s2

for which (s1, s2) ∈ H it holds that:

1. s1 ∈ V P1 (P) if and only if s2 ∈ V P2 (P) for all P

2. if there is a t1 such that for some step T ′ it holds that s1(T ′)�t1 relative to
M1, then there are states t12, t

2
2, . . . , t

n
2 and there are steps T 1, T 2, . . . , Tn

such that s2(T 1)�t12, s2(T 2)�t22, . . . , s2(T n)�tn2 relative to M2, and T ′ =
T 1 ∪ T 2 ∪ . . . ∪ T n

3. if there is a t2 such that for some step T it holds that s2(T)�t2 relative to
M2, then there is a t1 such that for some step T ′ it holds that T ⊆ T ′,
and s1(T ′)�t1 relative to M1

Metaphorically speaking, going down in the mutual exclusion ordering,
actions look around for concurrent partners. If an action has found a partner,
it sticks to it in the models lower down in the ordering. And concurrent
parts of actions in models lower in the ordering always originate from isolated
actions in higher models. To give some evidence that this ordering does what
it promises to do, we consider two examples where models are compared under
the 0me

s1b-ordering.

154 CHAPTER 4. INTENDED MODAL ACTION MODELS

M1

a

b
M2

a

b

Fig 11. models for which M1 �me
s1b M2

Assuming that the relation H relates corresponding positions in the mod-
els, it follows that M1 0me

s1b M2 and M2 �0me
s1b M1. Thus, if two different ac-

tions performed in isolation can also be performed concurrently, models with
the concurrent possibility are preferred, if we minimize over the 0me

s1b-ordering.

M1

a

b
M2

a

b

a

b

Fig 12. models for which M1 �me
s1b M2

Again it holds that M1 0me
s1b M2 and M2 �0me

s1b M1. Thus, situations
where actions can only be performed concurrently are favored (by minimization
over the 0me

s1b-ordering) over situations where there is a choice to perform
actions concurrently or in isolation. The two examples thus make it clear
that whenever an action description specifies compatible postconditions for
two actions, in 0me

s1b-minimal models for the description they are only possible
concurrently.

The 0me
s1b-ordering is reflexive and transitive. In the same way as for

the other orderings, we may define ≡me
s1b-equivalence classes and a general-

ized partial 0me
s1b-ordering over these classes. From the construction of the

0me
s1b-ordering as an adaptation of /1b-equivalence, it is not difficult to con-

clude that M / M′ if and only if models M and M′ belong to the same
≡me

s1b-equivalence class. The minimal mutual exclusion semantics of an action
description AD is the set of 0me

s1b-minimal models of AD. Preferential en-
tailment under minimal mutual exclusion is defined analogous to preferential
entailment under minimal change, and maximal qualification.

That the mutual exclusion problem is more than just the qualification
problem for concurrent action, follows from the observation that we cannot
use the extension formulas ψ → 〈α〉 to define intention-safe and sufficient
extensions. If, for instance, we want to enforce that in the situations where
ψ, atomic actions a and b are only possible concurrent but not in isolation,

4.5. THE RAMIFICATION PROBLEM 155

it is not sufficient to specify ψ → 〈a ∩ b〉: this formula ensures that action
a ∩ b is possible, but does not exclude that a and b are not also possible in
isolation. But also we cannot add ψ → 〈a〉⊥ and ψ → 〈b〉⊥, since then the
action is not longer possible concurrently. What we need, to ensure that the
action is only possible concurrently is the following formula ψ → [�K(a∩ b)]⊥.
This formula excludes models where from states where ψ holds only an a, only
a b or no a or b are possible: it only allows a and b concurrent. We thus
need the extra expressiveness of the relativized action negation as defined in
section 2.5.3 to define extensions: the expressiveness of the ADL itself (in this
case modal action logics for which validity is preserved under total surjective
1-bisimulation) does not suffice. We conjecture that in general minimization
over the mutual exclusion ordering of definition 4.4.4 is intention-safe and
sufficient with respect to extensions with formulas of the form ψ → [�Kα]⊥.

4.5 The ramification problem

The ramification problem was described in section 4.1 as the problem of how
to specify that certain effect properties are the secondary result of other effects
being brought about. We refer to such relations between effects / conditions
as causal relations. But in the literature on action and change, the term
‘causation’ is somewhat overloaded with meaning. The term is also used for
effects being ‘caused’ by actions, and for actions being ‘caused’ (triggered) by
conditions becoming true. We use the term ‘causation’ exclusively to refer to
a dependency between (post) conditions (and actions are not conditions, al-
though in the deontic logic literature they have been viewed as such, as we will
recall in section 5.4). A main characteristic of causal relations (in the interpre-
tation as a dependency between conditions) is the impossibility to use them
contrapositively, that is, if the condition A is being caused by the condition
B, then it is not necessarily the case that the condition ¬B is being caused by
the condition ¬A. This means that we cannot use the material implication of
propositional logic to specify causal dependencies between conditions. This is
illustrated by the two switches example [115, 177]. In this example we have two
switches that both need to be switched on to cause a room to be illuminated4.
The static domain constraint Sw1 ∧ Sw2 → Light, under its standard propo-
sitional logic semantics, does not suffice to model the causal relations in this

4Thielscher’s [177] example is slightly different, since it concerns the light of a lamp in
an electric circuit, which ensures that we have Sw1 ∧ Sw2 ↔ Light. We adapt the example
in order to emphasize that the problem concerns the contrapositive use of the material
implication.

156 CHAPTER 4. INTENDED MODAL ACTION MODELS

example. If we make Sw2 to hold, coming from a state where (1) Sw1 is on,
(2) Sw2 is off and (3) Light is off, we have two equivalent possibilities to obey
minimal change. The first one makes Light true, and is associated with the
propositional logic inference Sw1,Sw2,Sw1∧Sw2→Light

Light . The second makes Sw1

false, and is associated with the inference Sw2,¬Light,¬Light→¬(Sw1∧Sw2)
¬Sw1

. The
first inference is intended. The second inference, that involves contrapositive
reasoning with the material implication, is not intended. The static constraint
Sw1 ∧Sw2 → Light is thus not strong enough to rule out the non-causal con-
trapositive inference. The formula can be said to lack information (see also
[74]) about ‘in what way’ its integrity is to be preserved.

Foo and Zhang [61] give a solution to this problem that can be applied
to the modal action logics we defined. The solution involves an extension of
the modal action languages with modalities [ψ]ϕ, which are read as ‘condition
ψ causes condition ϕ’. The formal interpretation of these modalities involves
an extension of modal action models with a function R : L → 2S×S, with L
the set of well-formed propositional formulas, such that (1) if M, s |= ϕ then
(s, s) ∈ R(ϕ) for any ϕ ∈ L and (2) if |= ψ → ϕ, then R(ψ) ⊆ R(ϕ). This
means that the modality [ψ]ϕ is a weakening of the test-modality [ψ?]ϕ. The
difference is that [ψ]ϕ can be invalid in a state where ψ → ϕ, while [ψ?]ϕ
cannot. The modality [ψ]ϕ does not obey the scheme [ψ]ϕ → [¬ϕ]¬ψ, which
shows that it meets the important criterion that causal relations cannot be
used contrapositively. Foo et al. show that the causal information in the two
switches example can be modeled correctly with the formulas [Sw1∧Sw2]Light
and [¬Sw1∨¬Sw2]¬Light. These properties imply the static constraint Sw1∧
Sw2 → Light. In general it holds that [ψ]ϕ→ (ψ → ϕ). This follows directly
from the semantic condition that if M, s |= ϕ then (s, s) ∈ R(ϕ) for any
ϕ ∈ L. This feature is criticized by Giordano and Schwind [76], who claim
that it reintroduces the problems connected to modeling causality with the
material implication. We do not agree. Above we argued that indeed, the
global constraint Sw1∧Sw2 → Light is not strong enough. We need a stronger
expression that in addition encodes in what way Sw1∧Sw2 → Light has to be
preserved. Since this expression has to be stronger, it should imply the static
constraint.

We do not elaborate any further on this solution to the ramification prob-
lem. For details, we refer to the papers of Foo and Zhang.

4.6. ORTHOGONALITY OF THE PROBLEMS 157

4.6 Orthogonality of the problems

In previous sections we studied the frame problem, the qualification problem
and the ramification problem in isolation. Here we investigate how to com-
bine the solutions. We show that for the non-sequential, concurrent case the
solutions are orthogonal, that is, we can apply the solutions for the separate
problems independently. Orthogonality is important, since it shows that the
intended semantics is decomposed into two independent action description as-
sumptions.

Theorem 4.6.1 For any set of modal action models Ω we denote the set of
0ch

s1b-minimal models by MinCh(Ω), and we denote the set of 0ql
s1b-maximal

models by MaxQl(Ω). Then for any action description AD in a modal action
logic for which model validity is preserved under total surjective 1-bisimulation
(definition 4.3.1) it holds that MaxQl(MinCh([[AD]])) =
MinCh(MaxQl([[AD]])).

Proof
It is easy to check that definitions 4.3.11 and 4.4.3 ensure thatM1 0ch

s1b M2

only if M1 ∈ |M2|qls1b (and thus M2 ∈ |M1|qls1b). So the qualification order-
ing partitions the models of an action description into separate qualification
equivalence classes, while the change ordering always minimizes models within
these qualification equivalence classes. Thus, it does not matter which order
we assume. If we first minimize the change of the models for AD, due to the
above property we always minimize within each qualification equivalence class.
Subsequent maximization then selects only those minimal change equivalence
classes that are part of a maximal qualification equivalence class. If we start
with maximizing qualification, we obtain the maximal qualification equivalence
classes first. Then minimization of change for the maximal qualification equiv-
alence classes results in the same minimal change equivalence classes within
these maximal qualification equivalence classes.

Clearly, also for the combined ordering we have that semantic equivalence
implies equivalence for the orderings. The other direction does not hold. Even
the models in the classes that are minimal in the change ordering and max-
imal in the qualification ordering, are not semantically equivalent. A sim-
ple counterexample is the set we gave in section 4.3.1: {¬A ∧ ¬B ∧ ¬C →
〈k〉(A ∧B ∧C),¬A ∧ ¬B ∧ ¬C → [k]A}. The formulas specify that the lower
bound for the change brought about by action k is {A}, and the upper bound

158 CHAPTER 4. INTENDED MODAL ACTION MODELS

{A,B,C}. Due to maximal qualification, all the (valuation maximal) models
contain the action k. But in some models k brings about only A, in others A
and B, and in yet others A, B and C. This means that these models are not
semantically equivalent in the sense of definition 4.3.1 (and its generalization
to concurrent action in definition 4.3.10).

In section 4.4.3 we identified a problem concerning concurrent qualifica-
tions: the mutual exclusion problem. We argued that a possible solution to
this problem is to minimize mutual exclusions. As a solution we proposed the
mutual exclusion ordering of definition 4.4.4. Minimization over the ordering
favors mutual inclusions over mutual exclusions. However, this solution is not
independent of the qualification ordering. It makes no sense to apply max-
imal qualification first: the possibilities of both (1) concurrent actions and
(2) their concurrent constituents will be maximized, and a further selection of
models that favors inclusions over exclusions is not possible anymore. Thus,
if we want to adopt the action description assumption that corresponds with
minimization over the ordering of definition 4.4.4, we have to apply minimal
mutual exclusion before maximal qualification in the subsequent application
of orderings.

The solution to the ramification problem we discussed in section 4.5 does
not involve an action description assumption. Therefore, the solution to the
ramification problem does not interfere with the minimizations and maximiza-
tions over orderings that were given as solutions to the other problems.

4.7 Unique intended models

We call the models of an action description that obey both minimal change and
maximal qualification the ‘intended models’. In the previous section we showed
that intended models can be ‘captured’ by extensions. Here we investigate
how strongly we have to restrict the ADL in order to arrive at a language
for which intended models for action descriptions are unique up to semantic
equivalence. This makes it possible to generate intended models and calculate
entailed properties through model checking. Although we have to restrict
ADLs quite severely to reach this goal, still most common action description
properties can be expressed, including properties of concurrent actions. First
we investigate some obstacles for the uniqueness of intended models.

A condition that has to be satisfied to enable a comparison of two models
in any of the orderings discussed in the previous sections, is that for any pair
of states s1, s2 related by the comparison relation H it holds that s1 ∈ V P1 (P)
if and only if s2 ∈ V P2 (P) for all P in an action description. Thus, models of

4.7. UNIQUE INTENDED MODELS 159

action descriptions can only be compared if the same diversity of valuations
of atomic propositions is present in both models. This means that models
that differ in this respect never belong to the same equivalence classes for the
combined minimal change / maximal qualification ordering. We thus get sep-
arate intended models for each subset of the admissible valuations for atomic
propositions in an action descriptions AD. This implies that even for action
descriptions with no modalities at all, intended models are not unique: for
instance, the action description consisting of the single static formula A ∨ B
has seven intended modal action models: we can construct 3 different modal
action models with one world, 3 with two worlds, and 1 with three worlds.
But, the model with three worlds, each corresponding to a separate propo-
sitional model of the formula, is the one that already encodes all relevant
information. We would like to consider only such ‘valuation maximal’ models,
and prove uniqueness of intended models with respect to them. We prove that
preferential entailment is not affected by the restriction to valuation maximal
models.

Definition 4.7.1 (valuation maximal models) A valuation maximal
model M = (S,RA, V P) of an action description AD is a model of AD that
is maximal in the following ordering. Let M1 = (S1, R

A
1 , V

P
1) and M2 =

(S2, R
A
2 , V

P
2) be two models over A and P. Then M1 0v M2 if and only if

there is a total function H : S1 → S2, such that for all P s1 ∈ V P1 (P) if and
only if H(s1) ∈ V P2 (P).

As exemplified above, for a formula that contains no modalities, a typical
valuation maximal (modal action) model is the one where each propositional
logic model of the formula corresponds with a valuation of propositions in one
of the states of the model. Valuation maximal models have also been called
‘full models’ [170].

Definition 4.7.2 (valuation maximal global entailment) An action de-
scription AD vm-globally entails ψ, notation AD |=vm

G ψ, if and only if all
valuation maximal models for AD are also models for ψ.

Proposition 4.7.1 Φ |=G ψ if and only if Φ |=vm
G ψ.

Proof
(⇒) Immediate from definition 2.1.4 for entailment, and definition 4.7.2 for

valuation maximal global entailment that says that valuation maximal models
are a subset of the set of all models for an action description.

160 CHAPTER 4. INTENDED MODAL ACTION MODELS

(⇐) From negative demonstration. Assume that Φ |=vm
G ψ and Φ �|=G ψ.

Then there is a model M1 for Φ that is not valuation maximal, and that is
not a model for ψ. Now take an arbitrary valuation maximal model M2 for
Φ. Then, the disjoint unionM1 2M2 is also valuation maximal. For disjoint
unions it holds that a finite set of formulas is globally valid onM1 and onM2

if and only if it is globally valid onM12M2. But then, with Φ |=vm
G ψ, we get

that ψ is globally valid on M1 2M2, and thus also on M1. This contradicts
that M1 is not a model for ψ.

So, it is justified to consider only valuation maximal models, since this does
not affect the reasoning. Therefore, we also consider the uniqueness question
(up to semantic equivalence) only with respect to valuation maximal models.
We now consider some examples for which valuation maximal intended models
are not unique (in the sequel we simply talk of ‘intended models’, in order not
to have to repeat the adjective ‘valuation maximal’ every time).

For the action description {¬A ∧ ¬B → [a](A ∨ B)} there are intended
models that are not semantically equivalent. In particular, the intended model
where there is exactly one way to perform a, that brings about A, but not B,
and the intended model where there is exactly one way to perform a, that
brings about B, but not A, are not semantically equivalent. The models are
both intended since they are maximal in the qualification ordering (in both
models a is possible under the condition ¬A), and minimal in the change
ordering. Obviously, the non-uniqueness is caused by the disjunctive effect
information.

In the action description {¬A→ [a]A,¬(¬A∧¬B∧¬C)→ [a]⊥, A→ (B∨
C)} the absence of disjunctive information in the effect formulas ¬A → [a]A
is not sufficient to ensure determinism of action: the non-determinism is due
to non-deterministic indirect effects that are specified by the static constraint.
There is an intended model where action a brings about A and B, and there
is an intended model where action a brings about A and C.

For the action description {¬A ∧ ¬B ∧ ¬C → [a]A,¬A ∧ ¬B ∧ ¬C →
〈a〉(B ∧ C)} we have that in intended models, the action a in the situation
where ¬A ∧ ¬B ∧ ¬C brings about at least A and at most A and B and C.
But then the model where from a state where ¬A∧¬B ∧¬C the action a has
two transitions, one corresponding to the minimum change that brings about
A, and one corresponding to the maximum change bringing about A and B
and C, and the model that in addition has the middle transition that brings
about A and B, are both intended but not semantically equivalent.

The action description {¬A → ([a]⊥ ∨ [b]⊥)} expresses that either a or

4.7. UNIQUE INTENDED MODELS 161

b is not qualified under the condition ¬A. Maximal qualification thus gives
two intended models: one for which under the condition ¬A the action a is
possible, and one where b is possible (minimal change information plays no
role in this example).

We define the syntax of an action description language that avoids the
causes for non-uniqueness of intended models in the above examples.

Definition 4.7.3 (restricted ADL syntax) Given a set A of action sym-
bols with a ∈ A, and a set P of proposition symbols with P ∈ P, the syntax of
an action description formula σ is defined as:

σ, τ, . . . ::= (L1 ∧ . . . ∧ Lu) ∨ (L1 ∧ . . . ∧ Lv) | ϕ→ [α](L1 ∧ . . . ∧ Lw)
L ::= P | ¬P
ϕ,ψ, . . . ::= P | ¬ϕ | ϕ ∧ ψ
α, β, . . . ::= a | α ∩ β

This language for action descriptions AD is a subset of the language of
the logic MAL(∩), that (1) limits the use of modalities to formulas of the
form ϕ → [α](L1 ∧ . . . ∧ Lw), thereby excluding nestings of modalities, and
(2) constrains the form of non-modal formulas (static constraints) to the form
(L1∧. . .∧Lu)∨(L1∧. . .∧Lv). It is easy to check that none of the examples with
non-unique intended models is expressible. The semantics for the ADL follows
from the semantics of the individual operators defined in chapter 2. Note that
the effect formulas only enable the specification of lower bounds for changes.
In combination with the minimization of change we thus get that effects of
concurrent actions are completely determined (we make use of this property
in the proof for the next theorem). This gives rise to the following property,
that we give without a proof: M1 /ch

s1b M2 if and only if M1 ≡ch
s1b M2. The

following theorem says that for the defined ADL intended models are unique.

Theorem 4.7.2 For any action description AD in the language of definition
4.7.3, there is a valuation maximal, 0ch

s1b-minimal, 0ql
s1b-maximal model that

is unique up to /s1b-equivalence.

Proof
By negative demonstration. Assume that there are two intended valuation

maximal modelsM1 andM2 for AD, that by definition 4.3.10 are not seman-
tically equivalent. The definition gives three possible reasons for two models
not to be semantically equivalent.

162 CHAPTER 4. INTENDED MODAL ACTION MODELS

The first case concerns the situation where there is a state in one of the
models that cannot be matched (by a relation H) to a state with an identical
valuation of atomic propositions in the other model. But this contradicts the
valuation maximality of both models.

The second case concerns the situation where models do agree on the diver-
sity of valuations of atomic propositions in states, but not on all qualifications
of concurrent actions in these states. Thus, without loss of generality we may
assume that for some pair of states (s1, s2) with s1 ∈ S1 and s2 ∈ S2 obey-
ing s1 ∈ V P1 (P) if and only if s2 ∈ V P2 (P) for all P , it holds that there is
a concurrent step T and some t1 such that s1(T)�t1 relative to M1, while
there is no t2 such that s2(T)�t2 relative to M2. So, although s1 and s2 have
the same valuation of atomic propositions, there is a strict qualification dif-
ference between them: step T is possible in s1 but not in s2. Since M2 is
maximal in the 0ql

s1b-ordering, there has to be a set of formulas Φ of the form
ϕ → [

⋂
A](L1 ∧ . . . ∧ Lw) (with A a set of atomic actions) in AD such that

M2, s2 |= ϕ and A ⊆ T , such that the set Λ of all effect literals appearing in
effects of formulas in Φ in combination with the set Ψ of static constraints of
the form (L1 ∧ . . .∧Lu)∨ (L1 ∧ . . .∧Lv) in AD form an inconsistent set. But
then, the sets Φ and Ψ also prevent the qualification of T in state s1 of model
M1, which contradicts the presence of a strict qualification difference between
s1 and s2.

The third case concerns the situation where the models agree on the di-
versity of valuations of atomic propositions in states, and on all qualifications
of concurrent actions, but not on all postconditions for concurrent actions.
Thus, for some pair of states (s1, s2) and step T obeying s1 ∈ S1 and s2 ∈ S2

and s1 ∈ V P1 (P) if and only if s2 ∈ V P2 (P) for all P and there is state t1 such
that it holds that s1(T)�t1 relative toM1, it holds that for some state t2 such
that s2(T)�t2 relative to M2 it is not the case that t1 ∈ V P1 (P) if and only if
t2 ∈ V P2 (P) for all P . This contradicts the property that for the above ADL,
the 0ch

s1b-ordering determines a unique successor valuation (not a unique state,
see example below) for any state and qualified concurrent action T . We show
how to construct the unique successor valuation for step T in s1. Again we
consider the set of effect formulas Φ in AD that is relevant for this step in
this state, and the set Λ of corresponding effects (in the form of literals whose
validity is brought about). We consider two cases:

Case 1: The update of the valuation of atomic proposition in s1 with the
literals of Λ (this update is defined in an obvious way) results in a valuation
for which there is a state t1 in S1. This means that we have found a unique
successor valuation. It is unique, since the minimal change enforced by the

4.8. RELATED WORK 163

effect formulas in Φ is uniquely described by Λ.

Case 2 The update of the valuation of atomic proposition in s1 with
the literals of Λ results in a valuation for which there is no state t1 in S1.
This means that the static constraints give rise to secondary effects. As-
sume, without loss of generality, that there is a subset Ξ of static constraints
(L1 ∧ . . .∧Lu)∨ (L1 ∧ . . .∧Lv) in AD for which the left conjunction of literals
is inconsistent with the update of the valuation for s1 with the literals in Λ.
It cannot be that for such formulas also the right conjunction of literals gives
an inconsistency in this sense, for then step T would not be qualified. So,
for all static constraints in Ξ, we may add the literals of the right side to the
‘effect literals’ in Λ to obtain Λ′, and update the valuation of s1 with Λ′. Then
the process repeats itself. We check whether there is a state with a valuation
corresponding to the new update, and if not, we again select a set of static
constraints Ξ′ to obtain an ‘extended’ update. Since the step T is qualified,
and since there are only finitely many static constraints, the process will stop
after a finite amount of repetitions, such that eventually a unique update set
Λ′′ is obtained. The unique minimal change determined by the update set Λ′′

gives a unique successor valuation for the performance of T in s1.

The proof shows that the language enables a quite straightforward con-
struction of intended models. Such models are valuation maximal, but not
valuation unique, i.e. it is not the case that each state in the unique intended
model has a unique valuation of atomic propositions. A counter example is
AD = {¬A → [a ∩ b]⊥,¬A → [a]A,¬A → [b]A}. Actions a and b cannot be
performed concurrently, but have the same effect. Under minimal change this
means that they update the state where ¬A holds in exactly the same way, but
that they have separate resulting states. These two separate resulting states
thus have identical valuations of atomic propositions.

4.8 Related work

In this section we discuss some approaches that are related to ours. We distin-
guish two categories: the purely syntactic approaches based on the definition
of extensions, and the semantic modal approaches.

164 CHAPTER 4. INTENDED MODAL ACTION MODELS

4.8.1 Approaches to extension construction in modal action
logics

We discus some approaches to the frame problem that focus on the construc-
tion of extensions. In several approaches it is assumed that it is possible
to express persistency in modal action logics by defining extensions with the
help of formulas of the type L → [a]L, with L a positive or negated propo-
sitional constant, and a an atomic action. For instance, Castilho, Gasquet
and Herzig [91, 44] make use of an explication of the dependency of fluents
on action occurrences, and use this explication to define how formulas of the
form L→ [a]L should be added to action descriptions to obtain the intended
semantics. Another approach that attempts to define extensions with formulas
of the form L → [a]L is that by Giordano, Martelli and Schwind [75]. Just
as for the language of Castilho, Gasquet and Herzig, the method only applies
to the fragment of modal action logic without iteration. But the language of
Giordano, Martelli and Schwind does include concurrency. The basic idea is
to define extensions of action descriptions by adding formulas L → [α]L in
such a way that it is not derivable from the resulting completed description
that action α does change the value of the literal L. Weaknesses of the ap-
proach are the appearance of multiple extensions and the absence of solutions
to related problems, such as the qualification and ramification problem.

We have some general objections against approaching the frame problem
by focusing on formulas of the form L → [a]L. First of all, for more general
modal action logic formulas ψ → [α]ϕ, the actions nor the properties that
change value are required to be atomic. So in general the question of how to
explicitly construct such extensions correctly and systematically is far from
trivial, especially if there is no formal intended semantics with respect to
which we can prove intention-safety and -sufficiency. A second problem for
this approach is that indeed extensions with formulas of the form L→ [a]L are
in general not intention-sufficient. First of all, action effect information can be
conditional on pre-conditions, which means that also persistency information
has to be conditional on action pre-conditions. But also we sometimes need
formulas that express that it is possible to perform an action in such a way that
it preserves a certain value. In section 4.3.1 we mentioned that for examples
where lower bounds and upper bounds for changes are specified, we need frame
formulas of both the forms ψ ∧ ϕ→ [α]ϕ and ψ ∧ ϕ→ 〈α〉ϕ.

Also stronger languages for the expressions of frame properties have been
considered in the literature. First of all there is De Giacomo’s encoding [73]
of Reiter’s monotonic solution [155, 20] to the frame problem that uses the
notion of action complement. We mentioned this solution in section 2.5.1,

4.8. RELATED WORK 165

where we used it to justify the importance of the notion of action complement
for reasoning about action and persistency. The main idea of this approach is
to first take stock of all actions in an action description that may influence a
certain atomic property. This way the dependency of value changes of fluents
on execution of actions is described explicitly. After this process is completed,
formulas (successor state axioms) saying that certain formulas are exclusively
influenced by certain actions can be added to impose the intended semantics.
For his approach De Giacomo uses an action negation similar to the relativized
action negation �K that we defined in section 2.5.3. Formulas of the form
ψ∧L→ [�Kα]L and ψ∧¬L→ [�Kα]¬L can be used to express that performance
of other actions than α leave the value of L unchanged. De Giacomo does not
define a general procedure for addition of formulas of the form ψ ∧ ¬L →
[�Kα]¬L. The main contribution is thus that it is shown that with the help of
action complement we can express frame properties succinctly.

Prendinger [153] focuses on how to express frame properties in an easy,
intuitive and economic way in PDL. His main contributions are the addition
of the following operators to PDL: (1) terminal preservation expressed by
tpress(ϕ,α), with the intended meaning that ϕ holds before and after execu-
tion of α, (2) chronological preservation expressed by cpress(ϕ,α) with the in-
tended meaning that ϕ is preserved throughout the execution of α. Prendinger
defines the semantics of these constructs together with their axiomatization,
and gives classical soundness and completeness results for the resulting logic.
But the notions of terminal and chronological preservation can also be given
as a definitional extension.

Proposition 4.8.1 The notions of terminal preservation tpres(ϕ,α) and
chronological preservation cpres(ϕ,α) of ϕ over α, as defined by Prendinger
[153] can be defined in PDL.

Proof
We define a translation T of formulas tpres(ϕ,α) and cpres(ϕ,α) to plain

PDL:

T (tpres(ϕ,α)) ≡ ϕ→ [α]ϕ
T (cpres(ϕ, a)) ≡ T (tpres(ϕ, a)) for a ∈ A
T (cpres(ϕ,α ∪ β)) ≡ T (cpres(ϕ,α)) ∧ T (cpres(ϕ, β))
T (cpres(ϕ,α;β)) ≡ T (cpres(ϕ,α)) ∧ [α]T (cpres(ϕ, β))
T (cpres(ϕ,α∗)) ≡ [α∗]T (cpres(ϕ,α))

166 CHAPTER 4. INTENDED MODAL ACTION MODELS

It is straightforward to check that each of the above translation clauses
preserves Prendinger’s semantics of tpres(ϕ,α) and cpres(ϕ,α) on modal ac-
tion models.

An implication of the proposition is that the properties tpress(ϕ,α) and
cpress(ϕ,α) do not add expressiveness to PDL, but are just convenient ab-
breviations for complex PDL formulas. Only in this way the preservation
constructs contribute to the representational aspect of the frame problem.
Another implication is a refinement of the commonly made claim (e.g. [90])
that in PDL we cannot talk about properties that hold ‘along the way’ when
executing a program: it is true that we cannot say in PDL for instance ‘there
is a possibility to successfully execute α while preserving ϕ along the way’,
but definition 4.8.1 demonstrates that we can say ‘for all possible executions
of α we preserve ϕ along the way’.

A natural question is whether extensions using the formulas tpress(ϕ,α)
and cpress(ϕ,α) can be proven intention-safe and sufficient with respect to
the semantics for sequential minimal change we gave in section 4.3.2. This
seems very difficult. The extension will have to account for the delicate way in
which minimal change is distributed over sequences of actions. The constructs
cpress(ϕ,α) and cpress(ϕ,α) do not help much, because in such examples as
the stolen car scenario a construct that defines persistency ‘along the way’
cannot be used to impose that the change is brought about by either the first,
second or third action.

4.8.2 Semantic modal approaches

It is surprising that most existing approaches to the problems with reasoning
about action and change focus on representational issues and extension pro-
cedures. This is even more surprising if we realize that the emphasis in most
first-order-based approaches to the same problems (e.g. [155, 163, 80, 178])
is on the semantics, that is, on the selection of the intended first-order mod-
els of action descriptions. An exception to this is the work by Foo e.a. [62]
who give a syntactic and a semantic characterization of their modal action
logic-based solution to the frame problem, and prove that it is intention-safe
and intention-sufficient (in our terminology). We already mentioned in sec-
tion 4.3.1 that their minimization strategy for change does not only minimize
change, but also action possibilities. Therefore, in action descriptions, it is
required to give sufficient preconditions for all actions, such that action pos-
sibilities are not minimized by the change ordering. We argued that it should

4.8. RELATED WORK 167

not be required to give qualification information in order to guarantee that
the minimization strategy for change works correctly.

Definition 4.8.1 (minimal change models of Foo e.a. [62]) Let
Chg(M) be defined by: (a, P, s) ∈ Chg(M) if and only if there exists an
accessible state s′ to s on action a such that the truth value of P is differ-
ent at s and s′. Then, for any M1 = (S1, R

A
1 , V

P
1) and M2 = (S2, R

A
2 , V

P
2)

satisfying a modal action description, it holds that M1 �Foo M2 if and only
if:

1. S1 = S2

2. V P1 (P) = V P2 (P) for all P

3. Chg(M1) ⊂ Chg(M2)

Intuitively, M1 �Foo M2 means M1 has less state change than M2.

In this ordering, change is not separated from action possibility (qualifica-
tion). Now assume that we use this ordering to select minimal change models
for the YSP action description we gave in section 4.3.1. This action descrip-
tion did not contain any qualification information. This means that there are
models of the YSP action description for which the relation structure is empty.
Because the above ordering minimizes action qualifications, we get such mod-
els as the result of minimization. Foo et al. explicitly add 〈load 〉, 〈wait 〉,
and 〈shoot 〉 to prevent this. So they have to add explicit qualifications in
order to make their minimal change entailment relation behave well.

The second semantic approach we want to mention is the one embodied
by the languages A and C, initiated by Gelfond and Lifschitz [114, 69]. This
approach shares some basic concepts with ours, such as the distinction be-
tween an action description language (ADL) and an action query language
(AQL) and the maximization of qualifications. A notable difference is that
our approach stays within the tradition of (multi) modal logic. An advantage
of a modal approach is that we can use established modal techniques and re-
sults to tackle the problems of action reasoning. The fact that we support the
intuitiveness of our semantics with its relation to (variations on) well-known
semantic equivalence notions for modal logics (i.e. bisimulations), is a clear
example of this. Another example is the possibility to use well established
modal model checking techniques for the calculation of properties of unique
intended models.

168 CHAPTER 4. INTENDED MODAL ACTION MODELS

4.9 Conclusions

In this chapter we concentrated on the classical problems of reasoning about
action and change. We argued that these problems are relevant for system
specification with the modal action logics we defined in chapter 2. The three
classical problems we discussed are the frame problem, the qualification prob-
lem and the ramification problem. For the ramification problem we discussed
a solution of Foo and Zhang [61] that can be imported in our setting without
much difficulty. We proposed semantic solutions to the frame and qualifica-
tion problem for non-sequential, sequential and concurrent action. We defined
orderings over modal action models, where we take the model-based semantic
equivalence notions for ADLs as the starting point. To our knowledge, the
relevancy of semantic equivalence notions was not recognized before in the
area of reasoning about action and change. Extensions that are intention-
safe and sufficient with respect to intended models defined by minimizations
and maximizations over the orderings were shown to exist, but not explicitly
constructed. For concurrent action we also identified a possible problem not
mentioned before in the literature on reasoning about action and change: the
mutual exclusion problem. Finally, we showed how to combine the solutions
for the separate problems, and investigated for modal action logic with con-
currency, how much we have to restrict the language in order to arrive at an
ADL for which intended models are unique up to semantic equivalence.

A possible point of criticism to our work is that it is mainly semantic: for
some ADLs, the form of extension formulas is established and the existence
of intention-safe and sufficient extensions with this formulas is proven, but
extensions were not explicitly generated. However, one should realize that es-
tablishing a correct (intuitive) intended semantics is a most important part of
the research program that is concerned with the modeling of reasoning about
action and change. As an example of the kind of important issues raised by
such semantic studies, we mention our claim that the stolen car problem and
the Yale shooting problem concern incompatible action descriptions assump-
tions, which means that they cannot be solved by one and the same intended
semantics. We believe that the conceptually attractive abstract representa-
tion of action domains as modal action structures enables us to approach such
conceptual difficulties more fruitfully.

A main point of criticism on many other semantic solutions in the litera-
ture, to the problems discussed in this chapter is that they lack foundational
ideas and are mainly example-driven. Sandewall ([163], page 468) says the
following about this:

4.9. CONCLUSIONS 169

‘The most important weakness, however, is that various logics have
been proposed to be ‘solutions to the frame problem’ just on basis
of intuitions and a few examples, only to be very quickly refuted
by the arrival of more examples.’

We argue that this criticism does not apply to our approach. The present
approach is motivated from first principles (minimal change, maximal qualifi-
cation) and modal theory (bisimulations and related semantic equivalences).
Therefore, our approach is not mainly example-driven: the examples only play
a role in the testing of intuitions, but do not form the starting point of our
research.

We did not consider solutions to the problems for ADLs with action nega-
tion. In section 2.5.3 we mentioned that for such languages we need semantic
equivalence relations that are stronger than those for ∩-logics. Since we did
not yet work out the theory of such equivalence notions for languages with
action complement fully, we leave this as a subject for future work.

170 CHAPTER 4. INTENDED MODAL ACTION MODELS

171

Chapter 5

Deontic modal action logic

In this chapter we are concerned with normative reasoning about action. The
chapter consists of two parts: one about what we call goal norms and a second
about process norms. This classification, that was not explicitly defined before
in the literature, typically applies to the kind of norms we study: norms
over actions from an explicit action language. The class of goal norms takes
an action norm to be a norm about the result / goal / effect of an action,
while normative repercussions for sequential sub-actions are absent. Thus,
goal norms may only be violated in the result state of an action; violations
cannot occur in the process of reaching this state. We denote norms of this
types with the symbols O�(α), P�(α) and F�(α), where O, P and F stand for
Obligation, Permission and Prohibition (‘Forbiddeness’) respectively, and the
subscript ‘3’ depicts that norms concern action goals. For goal norms it holds,
for instance, that each of the formulas P�(a; b) ∧ ¬P�(a), F�(a) ∧ ¬F�(a; b),
and O�(a; b) ∧ ¬O�(a) is consistent. Thus, it can be permitted to perform
a; b, while at the same time a permission to perform a is lacking. It may even
be the case that a is explicitly forbidden1, meaning that a brings us to a state
satisfying conditions that are not allowed. The point is that it is the result
of the action that matters: action a; b is permitted, because it brings about
a result that is allowed. This view on norms as compliance to action goals
was first adopted by Meyer [135]. Some of our work on deontic action logic
takes the same perspective [30, 29, 26, 28]. The view is closely related to views
on dealing with planning problems in dynamic logic. For planning in AI, the
problem is to find compound actions whose execution results in a compliance
to a certain goal (see e.g. [169]). In section 5.2 we develop the goal directed
view on action norms. The definition of the logics in this section hinges heavily

1Note that we do not assume that P (α) ↔ ¬F (α), but only that ¬(P (α) ∧ F (α)).

172 CHAPTER 5. DEONTIC MODAL ACTION LOGIC

on the definition of the relativized action negation of section 2.5.3.
The other class we consider, is the class of action process norms. We

denote norms of this types with the symbols O�(α), P�(α) and F�(α), where
the subscript ‘�’ depicts that the norms concern the whole process. For norms
of this class, we take the alternative position, that is, that each of the formulas
P�(a; b) ∧ ¬P�(a), F�(a) ∧¬F�(a; b), and O�(a; b) ∧¬O�(a) is inconsistent.
So, a permission to perform a sequential compound action requires permissions
for all sub-actions. In general we can say that for this type of norms violations
may occur at any point during the process of action performance. This view
was first adopted by Van der Meyden [132], who criticized the goal view for
not being intuitive in general. Our standpoint is that both views may coexist,
as long as a specifier does not confuse the two alternative interpretations. Van
der Meyden does not deal with the deontic notion of obligation. In section
5.3, we study this type of norms. The material in this section hinges heavily
on the temporal view, as developed in chapter 3. The section is a reflection of
the work we presented in [34, 36].

For both goal norms and process norms we define reductions of deontic
operators to modal action logic operators. Due to these reductions, normative
assertions are reduced to statements about violation conditions of pre- and
postconditions of actions. Thus, normative assertions are interpreted on the
same models as assertions about action, and, as we saw in chapter 3, temporal
assertions. The goal norm reduction reduces action norms to violation condi-
tions of action postconditions. This is explained in section 5.2. The process
norm reduction does not only look at the postcondition of compound actions,
but requires obedience of violation conditions during the entire process. To
express this, we use (variants of) the modal µη-calculus, as defined in section
3.5. This reduction is defined in section 5.3. But first we discuss in section 5.1
an issue that is relevant for both types of norms: the distinction between free
and imposed choice.

5.1 Free choice versus imposed choice

The distinction between goal and process norms concerns two alternative views
on the deontic properties of sequence. A similar situation arises for the choice
combinator: do we assume that the pairs P (a ∪ b) and ¬P (a), F (a) and
¬F (a∪ b), and O(a∪ b) and ¬O(a) are consistent, or not? We need a coherent
view on the interpretation of the choice combinator, that decides all these
questions from one central and clear intuition. This view needs to serve the
use as specification logics we envision for deontic modal action logics.

5.1. FREE CHOICE VERSUS IMPOSED CHOICE 173

We have to ask ourselves in what sense non-deterministic choice actually
is non-deterministic. Who or what is it, lacking determination of choice? In
our application of deontic reasoning, a system designer enacts norms in order
to exercise control over the behavior of a reactive system. The choice in
actions α∪ β is then non-determinism that reflects an explicit renunciation of
the possibility to exercise control. In other words, non-determinism of action
reflects deliberate under-specification: the actual outcome of the action is not
specified; only that the outcome satisfies certain properties. The specifying
agent does not control, and also does not want to control (decide on) the choice
in α∪β. In particular, he cannot rely on the system being subject to the norm
to perform the non-deterministic action α∪β in such a way that no norms are
violated. So, if he considers F (α∪β), he means that there is a way to perform
α ∪ β that leads to a violation. And, since he does not (want to) control the
choice, this means that the non-deterministic action α ∪ β is forbidden. In
other words: we consider F (a) ∧ ¬F (a ∪ b) to be inconsistent. We can draw
a parallel with the situation where a father is ‘specifying’ desired behavior of
his child. Because of the non-determinism in the child’s activities, he cannot
control the behavior of his child completely, even if the child is fully obedient.
Assume the father considers the action of climbing the stairs. He knows that
his child is capable of climbing the stairs without falling, but he also knows
that there is the possibility that he will fall. Because of this ‘violation’ that
is associated with a particular way to perform the stair climbing action, the
father declares it to be forbidden to climb the stairs. When an actual execution
of a forbidden action does not result in a state that embodies a violation, we
just have a lucky coincidence. It does not mean that it was not right after
all to have called the action forbidden. The action was forbidden because it
could have resulted in a violation state. We give an example on free choice
prohibition in section 5.3 on process norms.

For permission, we have a dual situation: specifying P (α ∪ β), without
(wanting) the control over the choice represented by ∪, means that any way to
perform the action α∪β is permitted. Thus, P (a∪ b)∧¬P (a) is inconsistent.

If a specifier enacts O(a ∪ b) without (wanting) to enforce any control
over the way in which α ∪ β is performed, he merely means that any action
c for which R(c) ⊆ R(a ∪ b) complies to the obligation, while any action c
such that R(c) \ R(a ∪ b) �= ∅ does not comply to the obligation, since it has
possible outcomes that violate it. This shows that for obligation the situation
is somewhat more complicated. At this stage it is too early to go into the
semantics of obligation in detail. But we have that O(a∪b)∧¬O(a) is actually
consistent under the proposed interpretation of choice. Also our view on choice

174 CHAPTER 5. DEONTIC MODAL ACTION LOGIC

does not imply inconsistency of O(a∪ b)∧O(a). The free choice semantics for
obligation we define does actually not impose any logical relation on formulas
O(a ∪ b) and O(a) and O(b). The logics in this chapter will consider any one
of these three expressions as primitive.

Alternatively, we can take the viewpoint of the system being subject to
a choice norm. We do not think of reactive systems as ‘having control’ or
‘not having control’, since we do not view them as autonomous. But let us,
for now, assume that we do specify autonomous agents. Then, we may say
that the explicit renunciation of control on the specification (enactment) part
implies that the subject agent is free to choose. This is why we adopt the
term ‘free choice’ for our view on choice. We use this name in order to be
consistent with the (ought-to-be) deontic logic literature [103, 92, 121] where
the property P (ψ∨ϕ)↔ P (ψ)∧P (ϕ) stands for ‘free choice permission’. But,
we saw that the free choice view is not limited to permissions alone: it extends
to prohibition and obligation.

The alternative position, we call it ‘imposed choice’, is studied most exten-
sively in the literature. In an imposed choice view on norms, P (a∪b)∧¬P (a) is
consistent. Also the work on dynamic deontic logic initiated by Meyer [135, 56]
has developed according to the imposed choice view. However, we have some
difficulty accepting this view as a conceptual alternative. The imposed choice
interpretation seems to suffer from an internal confusion: expressions P (a∪ b)
are interpreted to mean that the action a ∪ b is permitted, but it is not ex-
cluded that we have a violation when performing a∪b: the action is permitted
if performed in a certain way, and possibly not permitted if performed in some
other way. What justification is there for calling an action a ∪ b permitted, if
there are possible ways to perform it that are not permitted? The imposed
choice principle is defended with examples like the following: ‘I permit you to
drive my car’ does not imply that ‘I permit you to drive my car and drink (a
concurrent action that by the open interpretation of concurrency as explained
in section 2.4.1, counts as a way to perform the driving action)’. But the
problem with this is that it does not attack the principle of free choice, but
only reveals the incompleteness of normative assertions in normal discourse.
In normal discourse, the actual meaning of assertions involves many implicit
default assumptions. The agent enacting this norm meant ‘I permit you to
drive my car, unless at the same time you drink, use your telephone, violate
traffic regulations, etc.’. With such an exhaustive set of exceptions added to
it, the choice that is present in the car driving action is indeed free. But,
in general, such exceptions are not spelled out explicitly: they are assumed
as general background knowledge. For a study on how to deal with default

5.1. FREE CHOICE VERSUS IMPOSED CHOICE 175

information in deontic logic, we refer to the work of Van der Torre [179].
The distinction between free and imposed choice operators is very much like

the distinction between weak and strong deontic operators in the literature.
However, it is not right to associate ‘free’ with ‘strong and ‘imposed’ with
‘weak’. The notions of free choice permission [103, 121, 55, 56], free choice
prohibition and free choice obligation we consider in this chapter correspond
to strong permission [191, 92, 192, 6, 160], weak prohibition [183] and strong
obligation [38, 183] respectively.

In section 5.3.1 we discuss that for process norms, the notion of free choice
has to be generalized in order to apply to choices that are made during ex-
ecution of compound sequential actions. This results in the notions of ‘free
process choice’ and ‘imposed process choice’. In the above mentioned litera-
ture on the formalization of the deontic properties of choice, these concepts
are not identified.

Finally we note that the free/imposed distinction has an analogy in the
distinction between internal and external choice for process algebras. The con-
nection between external choice and imposed choice is that the lack of choice of
an agent that is performing a trace, can be viewed as choice that is externally
forced upon the agent by the environment. Internal choice corresponds to free
choice, because all choices during execution can be thought of as internal to,
or ‘under control’ of the agent.

5.1.1 The ought-to-be case

The deontic interpretation of choice for ought-to-be deontic logics, has been
the subject of quite some controversy. In most ought-to-be deontic logics,
P (ϕ ∨ ψ) ∧ ¬P (ϕ) is consistent. However, many authors have claimed that
this is counterintuitive, since in many examples it seems that a permission
for a choice intuitively implies permission of the individual alternatives that
make up a choice. This then leads to the property P (ϕ ∨ ψ)→ P (ϕ) ∧ P (ψ),
a principle that is known under the name ‘free choice permission’. But for
ought-to-be deontic logics we do not consider this to be a valid principle. We
agree with those authors (e.g. [60]) that claim that the free choice permission
‘paradox’ for ought-to-be deontic logics is simply a misunderstanding of the
intended semantic content of ought-to-be deontic expressions. Indeed, if P (ϕ)
is correctly interpreted as ‘it is permitted to satisfy the condition ϕ’ it makes
perfect sense to say that this entails that ‘it is permitted to satisfy the condition
ϕ ∨ ψ’, because the condition in this latter assertion is a (propositional) logic
consequence of the former condition. For an idealized reasoner it is absurd

176 CHAPTER 5. DEONTIC MODAL ACTION LOGIC

to be permitted to satisfy a certain condition while not being permitted its
(propositional) logic consequences2. This gives a strong justification for the
ought-to-be deontic implication P (ϕ) ∨ P (ψ) → P (ϕ ∨ ψ)3. And indeed, this
reading excludes a free choice permission reading of P (ϕ ∨ ψ), because we
would then have both P (ϕ)∨P (ψ) → P (ϕ∨ψ), and P (ϕ∨ψ)→ P (ϕ)∧P (ψ),
and thus P (ϕ)∨P (ψ)→ P (ϕ)∧P (ψ). This leads to a degenerate logic where
the permission to satisfy some condition implies the permission to satisfy any
condition.

It is argued [93, 121] that for the ought-to-be case, the source of the free
choice confusion resides in people’s linguistic extra-logical habit to ‘abbreviate’
P (ϕ) ∧ P (ψ) (or even P (ϕ) ∧ P (ψ) ∧ P (ϕ ∧ ψ)) by P (ϕ ∨ ψ). We argue that
a possible other source of the confusion is that ought-to-do permissions are
often mistaken for ought-to-be norms. As an example, consider the norm
P�(go-north ∪ go-west). It is clearly a norm about actions, the actions of
going north and going west. And it is very natural to give it a free choice
interpretation: an agent who considers himself to be subject to this norm, and
that is free to choose, has permission to go north and permission to go west.
The above argumentation concerning ‘absurdity of not being permitted logical
consequences’, is irrelevant, because of the absence of a logical connection: the
action go-west cannot be said to ‘logically entail’ the action go-north∪go-west,
simply because they are not propositions. In the modal action logics we study
in this thesis, actions are what Castañeda [41, 42, 43] calls ‘practitions’. A
practition is not a proposition, that is, not something that can be true of a
world / situation / state / moment. But we can have propositions that are
about practitions. In the modal action logics we study in this thesis, the basic
forms of the propositions concerning actions (practitions) α are 〈α〉ϕ and [α]ϕ.

5.2 Action goal norms

In this section, we study reductions of deontic operators representing goal
norms to the modal action operators 〈α〉ϕ and [α]ϕ and violation conditions.
Such a reduction was first proposed by Meyer [135]. We define our version
of such a reduction in section 5.2.1, and demonstrate its intuitiveness in two

2Note that this is closely related to the omni-science problem [96] for reasoning about
knowledge, that is in a sense dual: reasoners are in general not ideal, that is, they do not
know all the logic consequences of a proposition. Also, the same problem arises in reasoning
about intentions and desires [50].

3But note that it gives no justification for the property P (p) ∨ P (q) ↔ P (p ∨ q), obeyed
by many deontic systems.

5.2. ACTION GOAL NORMS 177

ways: first, we show that it gives rise to intuitive deontic validities, and sec-
ond, we show that it avoids well-known anomalies from the literature. Hilpinen
[94] argues that Castañeda’s distinction between practitions and propositions
about practitions provides solutions to many of the contrary to duty bench-
mark examples, but not to the one about the ‘gentle murderer’. We show that
our approach avoids this problem.

In the reduction proposed by Meyer the violation condition corresponds
with validity of the proposition V , and the negation of an action α is denoted
by α.

Definition 5.2.1 (Meyer’s reduction to modal action logic)

P�(α) ≡def 〈α〉¬V
F�(α) ≡def [α]V
O�(α) ≡def [α]V

The reduction is faithful to the goal norm intuition in the sense that vio-
lations are modeled as postconditions of compound actions α. Meyer’s action
negation is part of an action algebra that obeys axioms that are considered
intuitively desired. It is shown that these axioms are consistent by providing a
model theory. The algebra is then used as an interpretation for dynamic logic
actions: syntactically, the actions of the algebra are identified with the actions
within the modal box of dynamic logic, and semantically, a connection is made
between the algebraic semantics and the relational semantics on dynamic logic
models. However, the connection between the modal part and the algebraic
part leaves room for alternative interpretations, which makes it unclear how
to lift the algebraic axioms to the modal level. Also, it is not clear how to gen-
eralize the action negation α such that it encompasses iteration and converse
of action. Another possible drawback of the action algebra is that its notion
of action negation seems to conflict with the goal norm intuition. The action
negation obeys the following axion of the action algebra: α;β = α ∪ α;β4.
This in turn, with the above reduction, gives rise to the following property for
obligations: O�(α;β)↔ O�(α)∧[α]O�(β). However, this property is not con-
sistent with the goal view on action norms: the implication O�(α;β) → O�(α)
shows a normative repercussion for the sequential sub-action α, because the
norm O�(α;β) is already violated if α is not performed. We deal with such
possible violations for sequential sub-actions in section 5.3, where we study
the process view on norms.

4Note that there seems to be some structural correspondence with the validity
〈�I(α;β)〉ϕ → [α]〈�Iβ〉ϕ that we met in chapter 2.

178 CHAPTER 5. DEONTIC MODAL ACTION LOGIC

5.2.1 A cautious reduction

We deviate from Meyer’s reduction in definition 5.2.1 on four points. First of
all, we use the relativized action negation as defined in 2.5.3, thereby avoid-
ing the above mentioned problems with the negation α. In section 2.5.3 we
mentioned that the relativized action negation aims at modeling the notion
of ‘alternative action’. This is exactly the interpretation that is required for
deontic modal action logic, as we will see.

The second aspect on which we deviate from Meyer, is the interpretation
of choice. The reduction of definition 5.2.1 takes the imposed view on choice:
an action is permitted if and only if there is a way to perform it that does not
lead to a violation. In the previous section we argued that we adopt the free
choice paradigm in this chapter.

The third aspect concerns the interdefinability of the operators in the
reduction: equivalently, we could have defined F�(α) ≡def ¬P�(α), and
O�(α) ≡def F�(�Iα). In the reduction we define below, we avoid these strong
interdefinabilities. The definition P�(α) ≡def ¬F�(α) is avoided in order to
leave room for action not being normed. In section 1.4.4 we argued this is im-
portant to allow for the possibility of ‘gaps’. We avoid O�(α) ≡def F�(�Iα),
because we assume that it is not always the case that O�(α) ← F�(�Iα)
holds. We thus assume that for an obligation to perform an action it some-
times takes more than a prohibition to perform any other action. Obligations
that follow from prohibitions for alternative action can said to be ‘negatively’
motivated. The problem then is, that nothing is said about possible violations
after performance of the negatively motivated action itself. For instance, a
prohibition to do anything but wait, does not imply the free choice obligation
to wait, because the sub-action of waiting and smoking may also be forbidden.
Also in the other branches of ought-to-do deontic logics, the interdefinabilities
have been disputed. Hintikka [95] and Maibaum [120], avoid interdefinabili-
ties F�(¬p) ≡def O�(p) and ¬P�(¬p) ≡def O�(p) for reasons similar to ours.
And Von Wright emphasized [194] that since ‘norm and action’ ([190]), he
has considered obligation and permission to be not interdefinable. We avoid
the interdefinabilities between permission, prohibition and obligation by in-
troducing a ‘violation proposition’ for each of them: VF for the violation of a
prohibition, VO for the violation of an obligation, and VP for lack of explicit
permission.

Finally, we also deviate from Meyer in that we impose the ‘ought implies
may’ principle [6, 142]. This is the standpoint that it is inconsistent to as-
sert that O(α) ∧¬P (α). This says that enacting a (free choice) obligation for
an action α necessarily (logically) subsumes the enactment of a (free choice)

5.2. ACTION GOAL NORMS 179

permission for the same action. This seems not only intuitively valid, it also
blocks Ross’ ‘paradox’ [159, 133], which is embodied by the undesirable prop-
erty O(α) → O(α ∪ β). Assume that we have O(α). We show that applying
both the ‘ought implies may’ principle and Ross’ property leads to an incon-
sistent logic. Intuitively, the obligation O(α) implies that action other than
α is forbidden. In particular, under the free interpretation of choice, for any
action β for which R(β) \R(α) �= ∅ it holds that F (β). Then, if we conclude
O(α∪β) by following Ross’ property, we run into a contradiction: with ‘ought
implies may’ we conclude from O(α ∪ β) that P (α ∪ β), which under the free
choice interpretation contradicts with F (β).

With the above four deviations from Meyer’s definition, we arrive at the
following reductions for the operators for permission, prohibition and obliga-
tion, where (a) free choice permission for α is identified as the absence of a
possibility to do α in a way that results in a permission violation, (b) free
choice prohibition for α is identified as the possibility to do α in a way that
results in a prohibition violation, and (c) free choice obligation for α is iden-
tified as the conjunction of free choice permission for α and the occurrence of
an obligation violation after any action performance not involving α:

Definition 5.2.2 (A cautious reduction to modal action logic)

(a) P�(α) ≡def ¬〈α〉VP
(b) F�(α) ≡def 〈α〉VF
(c) O�(α) ≡def P�(α) ∧ [�Iα]VO

Except for O�(α)→ P�(α), this reduction to modal action logic does not
impose any relation between the deontic modalities. But we can introduce
these relations by defining dependencies between the different types of viola-
tion. We may for instance define, as in Meyer [135], that there is no difference
between the violation of an obligation, the violation of a prohibition, and the
absence of accordance with a permission: VO ↔ VF ↔ VP . But then, we
get the strong interdefinabilities back. We can be much more cautious. We
require, that we cannot at the same time (1) be in accordance with a permis-
sion and violate a prohibition, and (2) violate an obligation and not violate a
prohibition. In formulas:

Definition 5.2.3 (Violation dependencies)

(d) ¬(¬VP ∧ VF)
(e) ¬(VO ∧ ¬VF)

180 CHAPTER 5. DEONTIC MODAL ACTION LOGIC

Note that under these constraints states may satisfy ¬VP ∧ ¬VO ∧ ¬VF ,
indicating that there is room for indifference with respect to normation (see
section 1.4.4). The reduction of definition 5.2.2 is easily adapted in order to
satisfy other requirements. We not only can get back the strong interdefin-
abilities between deontic modalities, we can also adapt the reduction in such
a way that we exchange free choice for imposed choice. Several variations are
possible. In the next section we discuss the deontic properties this definition
gives rise to.

5.2.2 Some deontic properties

We give some deontic logic validities induced by the reduction of definition
5.2.2 and 5.2.3. To assess the intuitive correctness of the properties it is
important that choice is to be read as ‘free choice’, and that concurrency has
an open interpretation, as explained in section 2.4.1. The first four properties
say that: an action cannot be (1) at the same time permitted and forbidden, (2)
at the same time be obliged and not permitted, (3) obliged, while alternative
actions. i.e. actions with a possible (remember free choice) different outcome,
are not forbidden, (4) obliged, while an action whose set of possible outcomes
is different is also obliged. In formulas:

Proposition 5.2.1

(1) ¬(P�(α) ∧ F�(α))
(2) ¬(O�(α) ∧ ¬P�(α))
(3) 〈β ∩ �Iα〉 → ¬(O�(α) ∧ ¬F�(β))
(4) 〈�I(α � β)〉 → ¬(O�(α) ∧O�(β))

Proof
Logic property 1 follows easily from the properties a, b and d. Property 2

follows directly from c. To show that property 3 holds, we apply the reduction
to obtain 〈β ∩ �Iα〉 → ¬(¬〈α〉VP ∧ [�Iα]VO ∧ ¬〈β〉VF). We rewrite this as
〈β ∩ �Iα〉 → 〈α〉VP ∨ 〈�Iα〉¬VO ∨ 〈β〉VF . Then, with VP ∨ ¬VO that follows
from (d) and (e) this is easily seen to be valid in any �I -logic. Property 4 is
verified in the same way. It reduces to 〈�I(α � β)〉 → ¬(¬〈α〉VP ∧ [�Iα]VO ∧
¬〈β〉VP ∧ [�Iβ]VO), which is also easily checked with the property ¬(VO∧¬VP),
that follows from (d) and (e).

The first two properties together imply the property ¬(O�(α) ∧ F�(α)).
Note that the properties 3 and 4 are stronger than respectively the properties

5.2. ACTION GOAL NORMS 181

O�(α) → F�(�Iα) and O�(α) → ¬O�(�Iα). That is, O�(α) not only implies
the prohibition of the action �Iα, it implies the prohibition of any action
whose outcome (effect) might (recall that choice is free) violate the obligation.
And O�(α) not only implies the absence of the obligation to do the action
�Iα, it implies the absence of any obligation to do an action whose set of
possible outcome states is different. A simple consequence of this property is
[α∩β]⊥ → ¬(O�(α)∧O�(β)), saying that if two actions cannot be performed
concurrently, they cannot be both obliged. Property 4 reflects that obligation
is a much stronger operator than permission or prohibition. An obligation
for α divides the reachable state-space in two categories: the states reachable
by α obey ¬VP ∧ ¬VO ∧ ¬VF , and the states that form the complement of
α with respect to what is reachable by any compound action in the action
language (the relativized action negation), obey VP ∧VO∧VF . Permission and
prohibition impose much weaker conditions on the state-space, in particular
they do not completely determine the value of all three violation conditions
VF , VO and VP in each state in the state-space.

The above properties mainly concern the interactions between separate
deontic modalities. Below we formulate for each modality individually how
it interacts with (free) choice and (open action) concurrency. It holds that:
(5) permission to choose between α and β is equivalent to permission to do
α together with permission to perform β, (6) permission to perform α im-
plies permission to perform α concurrent with β (remember the open action
interpretation and free choice), (7) prohibition to choose between α and β is
equivalent to prohibition to do α or prohibition to perform β, (8) prohibi-
tion to perform α and β simultaneously implies prohibition to perform α and
prohibition to perform β, (9) the obligation to perform α and the obligation
to perform β together are equivalent with the obligation to perform α and β
simultaneously. In formulas:

Proposition 5.2.2

(5) P�(α ∪ β)↔ P�(α) ∧ P�(β)
(6) P�(α ∩ β)← P�(α) ∨ P�(β)
(7) F�(α ∪ β)↔ F�(α) ∨ F�(β)
(8) F�(α ∩ β)→ F�(α) ∧ F�(β)
(9) O�(α ∩ β)↔ O�(α) ∧O�(β)

Proof
The association of the permission operator with a dynamic logic box op-

erator (a) ensures that permission obeys the properties for free choice. The

182 CHAPTER 5. DEONTIC MODAL ACTION LOGIC

properties for choice and concurrency all follow from the choice for either a
box or a diamond operation for these modalities.

We cannot avoid to test the above deontic properties for choice and con-
currency against the notorious benchmark examples for them in the literature.
The two famous Benchmark examples for the deontic properties of choice are
the paradox of free choice permission and Ross’ paradox [159] concerning choice
and obligation. We already discussed both problems. The free choice problem
was discussed in section 5.2, where we explained that we intend to design our
logics such that they avoid the problem. Property 5 shows that indeed our
version of the reduction does enable free choice permission.

Ross’ anomaly concerns the problem of how to avoid the undesirable prop-
erty O�(α) → O�(α ∪ β), that is often instantiated with the sentence ‘if I
am obliged to post the letter, I am obliged to post or burn it’. We already
discussed this is in section 5.2.1. The reduction of section 5.2.1 avoids it by
imposing the ‘ought implies may’ principle. Let us give an example of how
application of the ‘ought implies may’ principle achieves avoidance of Ross’
property. We take the instantiation: O�(listen) → O�(listen ∪ leave). This
is intuitively undesirable, and is not valid according to the reduction. With
the background information that [listen ∩ leave]⊥ (it is not possible to listen
and leave simultaneously), it follows that O�(listen) implies F�(leave). And
if F�(leave) and O�(listen ∪ leave) can hold at the same time, we would vio-
late the ‘ought implies may’ principle O�(α) → P�(α). Actually, among the
members of the above list of properties, there is not one that characterizes
a logic relation between between O�(α ∪ β) and the components O�(α) and
O�(β). So not only Ross’ property is avoided, also the reverse implication is.

Finally we mention some deontic properties of sequence, that reflect the
goal orientedness of the norms.

Proposition 5.2.3

(10) P (α;β)↔ [α]P (β)
(11) F (α;β) ↔ 〈α〉F (β)
(12) O(α;β)↔ [α]O(β)

Property 12 holds due to the implementation of the ought implies may
principle in the definition O(α) ≡def P (α)∧ [�Iα]VO. If we would have defined
O(α) ≡def [�Iα]VO we would not have property 12, but for the two strongest �I -
logics we defined in section 2.5.3, due to the property NegSeq-R: 〈α〉[�Iβ]ϕ→
[�I(α;β)]ϕ, we would have 〈α〉O(β)→ O(α;β).

5.2. ACTION GOAL NORMS 183

Of course, the above selection of deontic properties is not necessarily com-
plete in the sense that together they capture the intended deontic reasoning.
But that they do not need to, since we have a reduction to �I -logics. All of
the properties are just relativized negation modal action logic properties in
disguise: the deontic reasoning can be carried out completely in these modal
action logics.

5.2.3 Contrary to duty goal norms

A contrary to duty norm (CTD-norm, for short) with respect to some primary
normN is a norm that expresses additional normative information for the cases
where N is violated. The most problematic anomalies of deontic logic concern
CTD-norms [46, 112, 63]. Before we discuss one of the examples discussed
in the literature, we explain the temporal interpretation of CTD-norms that
naturally arises in the modal action logic context. This temporal view will be
our dominant view on CTD-norms.

In the view on norms as embodied by the reduction in section 5.2.1, vio-
lating a norm corresponds to attending a violation state. The temporal view
on CTD-norms is that they stipulate what norms are valid in such violation
states. This gives a clear and unproblematic conception of CTD-norms. The
interpretation of actions as binary relations over states naturally leads us to
distinguish between the normative conditions that hold before and after execu-
tion of an action. Normative conditions that are in force before execution, are
only violated in the state that results after execution. Therefore, in the tem-
poral view, CTD-norms, and the norms that they are the CTD of (the primary
norms), are never in force in the same state. A temporal solution to the famous
anomalies of CTD-reasoning involves the addition of a temporal dimension to
the reasoning domain and the recognition that the examples can be formalized
such that the situation where the primary norm is in force and the situation
where the CTD-norm is in force can be temporally separated. In the temporal
view, contrary to duty norms typically concern some compensating action: an
action that ‘makes up’ for the violation. Take the following example. I am
obliged to pay a debt. If I do not pay the debt, I am obliged to pay the debt
plus a penalty. In a formula: O�(pay-debt) ∧ [�Ipay-debt](O�(pay-debt) ∧
O�(pay-penalty)). From property 9 of section 5.2.2, it follows that this is
equivalent with O�(pay-debt)∧ [�Ipay-debt]O�(pay-debt∩ pay-penalty), which
means that it is obliged to pay debt plus penalty simultaneously, in other
words: the debt is raised with a penalty. An example from the ought-to-be
deontic literature that describes a situation where a temporal solution is ap-

184 CHAPTER 5. DEONTIC MODAL ACTION LOGIC

propriate is the ‘good Samaritan problem [112]: one ought not to be robbed,
but if one is robbed one ought to be helped.

In the deontic logic literature, only those CTD-norms are studied for which
the primary norm is an obligation. But in most of these studies prohibition
and permission are definable in terms of obligations. Since we have separated
violations concerning obligations, prohibitions and permissions, we can actu-
ally distinguish three different types of CTD: one for each deontic modality.
The above example concerning the payment of debts gives a CTD-norm with
respect to obligation. CTD-norms with respect to prohibitions F�(α) are more
problematic. The point is that for the temporal interpretation of such CTD-
norms, we need to able to refer to the states where the violation VF occurs,
in order to specify what CTD-norm holds in these states. But the violation
states for a norm F�(α), in the weak interpretation we gave it, can be any of
the states reached by α: we do not know for which of these states VF holds
and for which not. The CTD with respect to permissions P�(α) is equally
problematic. We may assume that probably in some of the states not reach-
able through α the violation VP occurs, but we cannot say in general which
states these are.

In the deontic logic literature, examples have been formulated where tem-
poralization of the reasoning domain is claimed not to disentangle the problems
of CTD-reasoning. One of these examples is the Chisholm anomaly [46], that
reverses the temporal order: the primary norm violation is thought to occur af-
ter the CTD-norm situation. The following CTD-norm appears in Chisholm’s
example: ‘It ought to be that Jones goes to the aid of his neighbors, but if
Jones does not go to the aid of his neighbors, then he ought not to tell them
he is coming’. The obligation to help is the primary obligation, the obligation
not to tell is the CTD-norm. We have the impression that the sentence is a
somewhat forced attempt to place the violation condition temporally after the
coming into force of the CTD-norm. And in our opinion, it does not succeed in
doing so: it makes sense to say that Jones’ CTD-obligation not to tell actually
refers to the moment at which he decides not to come. Then, this moment of
decision coincides with the point of violation and with the point of coming into
force of the CTD. The reasoning (that corresponds with concluding to a logi-
cally rational decision) thus has to deal with all information on a ‘temporally
equivalent’ basis, that is, we can no longer view the primary norm and the
CTD-norm as referring to separate points in time: both apply to the moment
of decision.

The view that primary norms and their CTD-norms are not temporally
separated, but refer to the same state / moment, is dominant for deontic action

5.2. ACTION GOAL NORMS 185

logics that represent actions by propositions or unary act predicates. For such
logics we thus have no a priori distinction between execution and result states
of actions. This may be the reason that in standard possible worlds semantics
for ought-to-do deontic logics of this type, such as for standard deontic logic
(SDL) [189, 5, 93], a norm and its CTD-norm are usually thought to be in force
in the same state. This semantically puzzling situation has been approached in
various ways. A natural approach is to associate CTD-norms with preferences.
One ought to satisfy ϕ, but if one does not (decides not to), one should satisfy
ψ. Obedience of the first norm is preferred, but obedience of the second is
second best. This leads to concepts such as ‘sub-optimal worlds (the best
worlds among the bad worlds)’. A famous example designed to enforce time-
simultaneity of CTD-norms is Forrester’s ‘gentle murder’ example [63]. The
gentle murderer anomaly arises in the modeling of the following sentences.

1. It is forbidden for Smith to kill his mother.

2. If Smith kills his mother, he ought to kill her gently.

3. Smith kills his mother.

Sentence 1 expresses the primary norm, and sentence 2 the CTD-norm. A
temporal solution is not appropriate, since both the primary norm and the
CTD-norm apply to the same moment: the moment of killing. Since the
example is formulated in terms of ought-to-do norms, we can formulate it in
deontic modal action logic. Surprisingly, the property that is easiest to express
in deontic logics of the ought-to-be type, is the hardest to express in modal
action logic, namely, the simple fact that Smith kills his mother. This is a fact
about the occurrence of an action. In modal action logics we can only talk
about possibility (enabling) of action. Then, the following is as close as we
can get: the kill action is possible, and other actions are not. We formalize
the information as follows:

1. It is forbidden for Smith to kill his mother: F�(kill)

2. If Smith kills, he is obliged to perform it in such a way that it is a gentle
kill: O�(kill ⊆I kill-gentle)

3. It is possible for Smith to kill his mother, and it is not possible for Smith
not to kill his mother: 〈kill 〉 ∧ [�Ikill]⊥

4. Background information: gently killing is a way of killing. In other
words: an action cannot simultaneously be a gentle kill and not a kill.
In our formalization: [kill-gentle ∩ �Ikill]⊥

186 CHAPTER 5. DEONTIC MODAL ACTION LOGIC

It is not hard to assess that the formulas are consistent. The (non-deterministic)
kill action is possible, and at least one of the ways to kill leads to a violation.
At the same time, all ways of killing that are not gentle, also lead to a viola-
tion. The ‘ought implies may’ principle does not destroy consistency: it just
imposes that all states that do not violate the obligation are also permitted.
We thus have arrived at a consistent, non-temporalized interpretation of the
CTD-example in deontic modal action logic. A possible objection against this
formalization of the example is that it is only consistent due to the weakness of
the prohibition. The free choice prohibition F�(kill) only says that there are
ways of killing that are forbidden. Meyer [134] gives an alternative consistent
formalization of this puzzle in deontic modal action logic.

Castañeda [41, 42, 43] has argued that many anomalies of CTD-reasoning
are not inherited by deontic logics distinguishing actions (he calls them ‘practi-
tions’) from act propositions (conditions), such as in the modal action setting.
However, Hilpinen [94] showed that the gentle murderer reasoning example is
not solved by Castañeda’s proposal. Hilpinen discusses that Castañeda’s ap-
proach in particular fails to model the ‘gentle mode’ of the killing. Above we
showed that in our modal action logic setting there is a natural and consistent
interpretation of the Chisholm example. In our formalism, ‘gentle’ is just a
certain way of killing: there are many ways in which to kill, which is expressed
by the non-determinism of the action. One of the ways of killing is killing
gently.

5.3 Process norms

In this section we consider the class of action ‘process’ norms. We denote these
norms with the subscript ‘�’. As said in the introduction, for process norms
we take the position that the formulas P�(a; b) ∧ ¬P�(a), F�(a) ∧ ¬F�(a; b),
and O�(a; b) ∧ ¬O�(a) are all inconsistent. So, a permission to perform a
sequential compound action requires permissions for all sub-actions. In general
we can say that for this type of norms violations may occur at any point
during the process of action performance. In this section we show that with
formulas of µ-calculi we can enforce the right (non)-violation conditions along
the execution traces of actions. We define reductions of formulas P�(α), and
F�(α), and O�(α), with α a ‘regular’ action, to formulas of µ-calculi.

But let us first give some preliminary intuitions concerning process oriented
deontic modalities over sequence (;) and (free) choice (∪), starting with ‘Prohi-
bition’. If a doctor forbids the sequence eat; sport, prohibition of eat; sport; sleep
should be implied, but not necessarily prohibition of eat. Also, being forbidden

5.3. PROCESS NORMS 187

the free choice over steal∪buy (where we assume that the agent or system sub-
ject to this norm has full control over the choice denoted by ∪, as discussed in
section 5.1) should imply being forbidden the free choice over steal∪ buy∪ask,
but not necessarily being forbidden the action buy. Intuitions for prohibition
of iteration (∗) over an action a follow directly from the intuitions for sequence
and choice, since a∗ stands for the choice over all possible finite sequences of
actions a. Generalizing, we may say that (1) forbidden actions can never
serve as constituent parts of actions that are not forbidden, and that (2) con-
stituent actions of forbidden compound actions are not necessarily themselves
forbidden. These intuitions comply with the following formulas:

F�(a; b)↔ F�(a) ∨ 〈a〉F�(b)
F�(a ∪ b)↔ F�(a) ∨ F�(b)
F�(a∗)↔ 〈a∗〉F�(a)

An intuition for the permission of sequence is given by a possible regulation
for crossing a border to some country saying that it is permitted to perform
the sequence cross-border; buy-liquor. This regulation should imply permis-
sion of cross-border, but not necessarily permission of cross-border; buy-liquor;
cross-border, because this comes down to importing liquor, which in this ex-
ample is assumed to be forbidden. For choice we have the intuition that being
permitted the choice eat ∪ drink should imply being permitted the action eat,
but not being permitted the choice eat∪ drink∪ smoke. In general we can say
that any action that is a constituent of a permitted compound action should
itself be permitted, and that permission of a constituent action is not suffi-
cient to guarantee permission of a compound action. Deontic modal action
logic formulas reflecting these intuitions are:

P�(a; b)↔ P�(a) ∧ [a]P�(b)
P�(a ∪ b)↔ P�(a) ∧ P�(b)
P�(a∗)↔ [a∗]P�(a)

Note that if we define P�(α) = ¬F�(α), the above formulas for per-
mission are equivalent with those for prohibition. For obligation, intuitions
are more complicated. For the obligation of sequence the same intuitions as
for permission apply: any action that is a sub-action of an obliged sequence
of actions should itself be obliged. For instance, if we are obliged to per-
form LookLeft;LookRight;LookLeft;CrossStreet then first we are obliged
to perform LookLeft, and when we have performed LookLeft, we are obliged

188 CHAPTER 5. DEONTIC MODAL ACTION LOGIC

to perform LookRight;LookLeft;CrossStreet, etc. But for the obligation of
choice, no intuitive reduction seems possible. Take as an example a norm for
students in class: being obliged to listen or leave, denoted O�(listen ∪ leave).
This obligation cannot be identified with O�(listen) ∧ O�(leave), because
intuitively this says that there is an obligation to do both actions, which con-
tradicts the interpretation that we can obey O�(listen∪ leave) by performing
either the action listen or the action leave. But also O�(listen) ∨ O�(leave)
is no alternative, since this formula is implied by O�(listen) in propositional
logic. This means that we would have to accept O�(a) → O�(a ∪ b) as a
validity, which is Ross’ anomaly [159] again.

Since the iteration operator also encompasses choice, the irreducibility of
obligation of choice also affects obligation of iteration. This means that for
obligation we only have the intuition concerning sequence:

O�(a; b)↔ O�(a) ∧ [a]O�(b)

Thus, obligation is a difficult case. But it turns out that the irreducibility
of obligation of choice occurs only on the level of atomic action. In the full
process-type deontic logic of regular action we define, obligations concerning
choice between compound actions are reduced to obligations over choice be-
tween atomic actions. A preliminary example of this reduction is given by the
formula O�((a; b) ∪ (c; d)) ↔ (O�(a ∪ c) ∧ [a]O�(b) ∧ [c]O�(d)), where the
obligation over the choice between the two compound actions a; b and c; d is
expressed in terms of the obligation over the choice between the atomic actions
a and c5.

In section 5.3.1 we give semantic characterizations of deontic modalities
over regular actions in terms of conditions on modal action models. The
conditions on models are defined in terms of deontic primitives on choices
over atomic actions. In section 5.3.2, we define µa-calculus characterizations
of the semantic conditions. In section 5.3.3 we study the compositionality of
the defined notions in the regular action combinators sequence, choice and
iteration. It will turn out that permission and prohibition are compositional,
and that obligation is not compositional in these action combinators. In section
5.3.4 we show how to go from the µa-calculus (the fragment of the µη-calculus
defined in section 3.5 where actions η are atomic) characterization over atomic
choice actions to reductions that completely translate deontic formulas to (1)

5We assume here that a �= c. For situations where a and c are the same action, our
definitions give O� ((e; b) ∪ (e;d)) ↔ (O� (e) ∧ [e]O� (b ∪ d)).

5.3. PROCESS NORMS 189

the µm-calculus of Bradfield and Stirling, and (2) the µη-calculus of section
3.5. In section 5.3.5 we discuss contrary to duty process norms.

5.3.1 Semantic conditions and free process choice

In this section we work towards semantic characterizations of the deontic no-
tions P�(α), F�(α) and O�(α) for regular actions α in terms of conditions
on modal action models. In subsequent sections we capture these conditions
with the help of µa-calculus expressions. Regular actions encompass choice ∪,
sequence ; and iteration ∗, which are the combinators of PDL (section 2.3),
without the converse and the test.

Definition 5.3.1 (regular action) Taking ‘a’ to represent arbitrary elements
of a given set of atomic action symbols A, the syntax of regular actions is de-
fined by the following BNF:

α, β, . . . := a | skip | α ∪ β | α;β | α∗

We interpret a regular action by a (possibly infinite) set of action traces,
which are finite concatenations of atomic actions and states. Atomic actions a
constitute elementary action traces in themselves, and skip refers the ‘point’
trace consisting of one individual state. The action combinator ∪ is associated
with union of action traces, ; with concatenation, and ∗ with union of all finitely
repeated self-concatenations, respectively. The trace interpretation of regular
action is a specialization of the notion of ‘action graph’ as defined in section
2.4.3 in definition 2.4.7: action traces are thus action graphs for actions that do
not encompass the concurrency, action complement, and converse combinators.
We use the notation introduced in section 2.4.3, i.e. we denote that a trace
(action graph) G interprets α by G ∈ Γ(α). However, in this chapter we use
〈a1, a2, . . . , an〉 as a shorthand for the action trace (graph) Θa1 ◦Θa2 ◦. . .◦Θan .

We saw in section 5.2.1 how to incorporate the deontic realm in modal ac-
tion models with the help of violation propositions, in the style of Meyer [135]:
if V is a violation proposition, 〈α〉V represents that α is (weakly) forbidden
(F (α)) because it may lead to a violation. Van der Meyden [132] assigns vio-
lation labels to action traces instead of to postconditions: if 〈a〉, and there
is an action trace for α that is marked as a violation trace, we have that α is
(weakly) forbidden. On a modal action logic for which validity is preserved
under standard bisimulation, these two views are equivalent, as was argued
in section 1.6.1 of the introductory chapter. There is however a straightfor-
ward third way to introduce the deontic realm in modal action models. For all

190 CHAPTER 5. DEONTIC MODAL ACTION LOGIC

atomic actions a ∈ A, we can interpret atomic propositions F (a) (it is forbid-
den to perform a) in states of models. This approach seems the one that stays
closest to the objective of the logic, namely, to model the entailment relations
between normative expressions over complex (regular) actions and normative
expressions over more elementary and, in particular, atomic actions.

However, we do not define models that valuate atomic propositions F (a).
We start by investigating the deontic logic over a subset of complex actions,
namely, actions that are more complex than atomic choice actions of the form
a1∪a2∪. . .∪an. We show that normative expressions over such complex actions
can be reduced to normative expressions over atomic choice actions. The logic
that defines the relation between normative expressions over atomic choice
actions and atomic actions, is postponed to section 5.3.4. To enable a semantic,
model based investigation of the logic over actions that are more complex
than atomic choice actions, we define models that include interpretations of
all deontic primitives of the form P�(a1 ∪ a2 ∪ . . .∪ an), F�(a1 ∪ a2 ∪ . . .∪ an)
and O�(a1 ∪ a2 ∪ . . . ∪ an) (it is permitted / prohibited /obliged to perform
the choice of atomic actions a1 ∪ a2 ∪ . . . ∪ an). Since we postpone the logic
for atomic choice actions to section 5.3.4, these interpretations say nothing
about the logic relation between for instance P�(a∪ b) and P�(a): it may for
instance be true in a state of a model that P�(a∪ b)∧¬P�(a), while in other
states P�(a ∪ b) ∧ P�(a).

The inclusion of separate primitives for each deontic modality shows that,
as in section 5.2.1, we are cautious, and do not a priori impose interdefin-
abilities for permission, prohibition and obligation. We concentrate on the
logic properties of the individual modalities, and show that for each sepa-
rate modality we can reduce the normative properties of complex actions to
normative properties for atomic choice actions. This means that also the in-
teractions between the modalities depend on the interactions at the level of
atomic choice actions. So also the interactions are postponed to section 5.3.4
where we discuss possible logics for atomic choice actions.

Definition 5.3.2 (normative choice models) Given a countable set A of
atomic action symbols and a countable set P of atomic proposition symbols,
a normative choice model M = (S,RA, PA, FA, OA, V P) over A and P is
defined as follows:

• S is a non-empty set of possible states.

• RA is an action interpretation function RA : A → 2(S×S), assigning a
binary relation over S × S to each atomic action a in A.

5.3. PROCESS NORMS 191

• PA is an interpretation function PA : 2A → 2S, assigning to each set of
actions {a1, a2, . . . , an} the subset of states in S for which P�(a1 ∪ a2 ∪
. . . ∪ an) is valid.

• FA is an interpretation function FA : 2A → 2S, assigning to each set of
actions {a1, a2, . . . , an} the subset of states in S for which F�(a1 ∪ a2 ∪
. . . ∪ an) is valid.

• OA is an interpretation function OA : 2A → 2S, assigning to each set of
actions {a1, a2, . . . , an} the subset of states in S for which O�(a1 ∪ a2 ∪
. . . ∪ an) is valid.

• V P is an interpretation function V P : P → 2S assigning to each propo-
sition P of P the subset of states in S for which P is valid.

Having defined regular actions together with their semantics and modal
action models, we can formulate our central question(s) more accurately: are
we able to give an intuitive meaning to the process norms P�(α), F�(α) and
O�(α) for general regular actions α, in terms of the primitive interpretations
of P�(a1 ∪ a2 ∪ . . . ∪ an) and O�(a1 ∪ a2 ∪ . . . ∪ an) for atomic choice actions
a1 ∪ a2 ∪ . . . ∪ an using some form of modal action logic, and if so, what
are the implications for the logical relations between (1) P�(α), F�(α) and
O�(α) and corresponding deontic properties of constituting parts of α, and
(2) P�(α), F�(α) and O�(α) mutually? In the next two subsections, we focus
on the possible meaning of P�(α), F�(α) and O�(α) in terms of conditions
on trajectories through the models of definition 5.3.2.

Free process choice semantics for permission and prohibition

We start by formulating a base-intuition concerning the free choice semantics
for the notions of permission and prohibition of regular action.

P�(α) ≡ it is permitted to perform any action trace that interprets
α

F�(α) ≡ there is an action trace that interprets α that is forbidden

Our starting point is thus that being permitted a (regular) action is being per-
mitted all possibilities (all action traces in the action trace-set) to perform the
action, which corresponds with the free-choice view on permission, as discussed
in section 5.1. In order to define a formal semantics of P�(α) and F�(α), we
have to capture this intuition in terms of a condition on modal action models.

192 CHAPTER 5. DEONTIC MODAL ACTION LOGIC

Action traces for α have to be related to trajectories from a state s in a model
M where the property P�(α), respectively F�(α) is thought to hold. Let us
first formally define the distinction between action traces and trajectories. A
trajectory through a modelM = (S,RA, PA, FA, OA, V P) is a series of states
and actions: τ = 〈s0, a1, s1, . . . , sn−1, an, sn〉, where possibly si = sj and/or
ai = aj for some i and j such that i �= j, and where ∀i such that 0 ≤ i ≤ n it
holds that si ∈ S, and ∀i such that 1 ≤ i ≤ n it holds that (si−1, si) ∈ RA(ai).
Then, given a trajectory τ = 〈s0, a1, s1, . . . , sn−1, an, sn〉 we denote the ac-
tion trace 〈a1, a2, . . . , an〉, i.e. the concatenation of all elementary ai-graphs
(remember that 〈a1, a2, . . . , an〉 is a shorthand for Θa1 ◦ Θa2 ◦ . . . ◦ Θan), by
G(τ).

Using the notions of trajectory and action trace, it seems straightforward to
reformulate the above intuition as a formal condition on models. To guarantee
that all action traces of an action α are permitted, in a given state s0 it seems
sufficient to demand that when following a trajectory corresponding to an
action trace for α, on all states of the trajectory, the next action a in the action
trace is permitted, that is, if P�(a1 ∪ . . . an) holds in that state, for some i it
holds that ai = a. But it turns out that this characterization is naive: we will
have to be more precise about the semantics of P�(α) and F�(α), because the
characterization leaves room for more than one interpretation, as can be seen
from the following example models for P�(a; (b ∪ c)).

a

a

b

c

a

b

c
P(a)P(a)

P(b)

P(c)

P(b U c)

Fig 13. (1) free process choice (2) partially imposed process choice

Both models, in their left most state, obey the ‘naive’ semantic characteri-
zation if applied to P�(a; (b∪c)), since in both models, both action traces 〈a, b〉
and 〈a, c〉 for a; (b ∪ c) follow trajectories where on all states the next action
in the trace is permitted. But from a modal point of view, the models are not
equivalent since they do not bisimulate: model 1 satisfies P�(a)∧ [a]P�(b∪ c),
and model 2 only satisfies the weaker P�(a) ∧ [a](P�(b) ∨ P�(c)). These two
formulas correspond with two different views on how choice is dealt with dur-
ing the process of action execution. If we think of the notion of permission as
part of the logic governing an agent, we can say that model 1 corresponds to

5.3. PROCESS NORMS 193

the logic of an agent that reasons about a future course of events α where it has
full control over all choices between actions during execution of α. The agent
reasons ‘if initially I am permitted to perform either ab or ac, then after I have
done a, I can choose either b or c, which implies that after I have performed a,
I am permitted both b and c’. This is exactly what is reflected by the formula
P�(a) ∧ [a](P�(b ∪ c)). We refer to this interpretation of permission as the
‘free process choice’ semantics.

Model 2 corresponds to the logic of an agent that reasons about a future
course of events where it has only partial control over choice. During execution
it has no control over choice: after it has performed a, it is only permitted (say,
by its environment) to perform either b or c. But at the start, the agent is free
to choose, since it is permitted both traces ab and ac. The agent may reason
‘initially I am permitted to perform either ab or ac, but I am not permitted
to choose between b and c after I have done a, which means that after I have
performed an a, I will either be permitted b or c’. This is exactly what is
reflected by the formula P�(a) ∧ [a](P�(b) ∨ P�(c)). Another way of looking
at this mixed free initial choice / partially imposed process choice situation is
to say that under this semantics for P�(a; (b∪c)), the agent has to make up his
mind about future choices in advance: it is permitted both ab or ac, but before
it performs an a, it has to choose what it wants to do afterwards, because it is
not allowed a choice at ‘runtime’, in particular, once it has performed the a.
Under the free process choice interpretation (free at the start and free during
the rest of the execution) of P�(a; (b ∪ c)) it is allowed to change its mind at
‘runtime’, in particular, after the a has been performed.

In model 2 we thus have a mixture of free and imposed choice: free choice at
the start, and imposed choice for all subsequent actions. We can also imagine
a situation where during the complete process, including the start, the agent is
deprived of choice. When we interpret choice according to this view, we speak
of an ‘imposed choice semantics’. The recognition of the difference between
free process choice and imposed process choice thus generalizes the notions
of free choice and imposed choice as discussed in section 5.1 to the process
case. The need for such a generalization does not come as a surprise: for
process norms, violations may occur on all occasions during execution, which
means that the distinction between free and imposed choice also applies to all
possibilities of choice during execution.

Now, if we want to define a deontic process logic, we will have to decide
which semantics we pursue: free process choice or imposed process choice. In
other work on process norms in a modal logic setting [130, 132] one seems
not to be aware of this distinction, but the choice implicitly made is that in

194 CHAPTER 5. DEONTIC MODAL ACTION LOGIC

favor of free process choice. Here we also pursue this semantics. However,
the imposed process choice semantics, in its most stringent form, where the
deprivation of choice occurs at all stages of action execution, is characterizable
by a simple adaptation of the µa-calculus constructions we give.

It is also conceivable, as in model 2 of the previous example, that the
deprivation of runtime choice is only partial. But, the separation of free choice
and imposed choice points need not be as clear as in model 2. An agent might
be deprived of choice only at certain specific points in the future course of
events described by a regular action α. We can easily give examples of more
extensive models in which this is the case. In such models, each point where
a non-deterministic atomic action appears represents a point where a choice
concerning subsequent actions is forced upon an agent from the outside (in
model 2 of the previous example, we have that a is non-deterministic in the
initial state, which means that a choice concerning the subsequent actions b
and c is forced upon the agent after a has been executed). Each of these models
would have a separate modal action logic formula characterizing it. But we do
not define such a logic. A logic that enables the expression of ‘partially imposed
process choice’, would have to be based on an action language that is more
expressive than the language of regular action. Such an action language would
have to represent and distinguish both situations of figure 13, for instance by
relying on trees instead of action traces as interpretations for action symbols.

The example shows that to reflect the free process choice intuition in terms
of conditions on models, it is not enough to simply demand that on all points
on trajectories, the right primitive normative condition holds for the next
action of the action trace. Adoption of a free process choice semantics means
that in any state si of a trajectory τ we are not only permitted to do the next
action ai+1 in the action trace G(τ) for α (if we follow such an action trace);
we are also permitted to do any action being a next action in any other action
trace G for α that shares an identical i-prefix with the action trace G(τ).

Definition 5.3.3 (free process choice permission and prohibition) The
semantic characterization of the notions P�(α) and F�(α), both in words and
as a formal condition on models M = (S,RA, PA, FA, OA, V P), is defined as:

P�(α) holds in a state s iff on any state si on trajectories from s
that follow an action trace for α, it holds that P�(b1∪ b2∪ . . .∪ bn)
for the set of actions B = {b1, b2, . . . bn} that keeps us ‘within’ the
action trace-set for α

5.3. PROCESS NORMS 195

M, s0 |= P�(α) iff for all τ = 〈s0, a1, s1, . . . , si−1, ai, si〉 through
M, it holds that if the set Bi+1 = {ai+1 | 〈a1, . . . , ai, ai+1, . . . , an〉 ∈
Γ(α)} is non-empty, then si ∈ PA(Bi+1)

F�(α) holds in a state s iff there is a state si on a trajectory
from s that follows an action trace for α, for which it holds that
F�(b1∪ b2∪ . . .∪ bn) for the set of actions B = {b1, b2, . . . bn} while
performance of one of the actions bi keeps us ‘within’ the action
trace-set for α

M, s0 |= F�(α) iff there is a τ = 〈s0, a1, s1, . . . , si−1, ai, si〉 through
M, such that the set Bi+1 = {ai+1 | 〈a1, . . . , ai, ai+1, . . . , an〉 ∈
Γ(α)} is non-empty and si ∈ FA(Bi+1)

The reader may check that according to this semantic definition of P�(α)
the formula P�(a; (b∪c)) holds in the left-most state of model 1 of the example,
but not in model 2.

Free process choice semantics for obligation

For obligation, the base-intuition can be formulated as:

O�(α) ≡ it is obliged to perform an action trace for α

But as for permission (and its counterpart prohibition) we have to become
more precise. Being obliged α can be interpreted under free process choice
or under imposed process choice. In the first, weaker case, an agent reasons
about a situation where it has committed itself to perform an action trace
interpreting α, and where it has free process choice, or in other words, can
‘change traces’ during runtime. In the second case it reasons about a future
course of events under the condition that it has to choose and commit itself
to one particular trace from the beginning, which points to a considerably
stronger obligation. Note that compared to the situation for permission, the
role of the terms ‘strong’ and ‘weak’ is interchanged. Except for this shift in
perspective, the discussion on free/imposed process choice is analogous to that
for permission. Therefore we immediately turn to a precise characterization
of free process choice obligation, in words, and in more formal terms.

Definition 5.3.4 (the semantics of free process choice obligation) The
semantic characterization of the notion O�(α), both in words and as a formal
condition on models M = (S,RA, PA, FA, OA, V P), is defined as:

196 CHAPTER 5. DEONTIC MODAL ACTION LOGIC

O�(α) holds in a state s iff on any state si on trajectories from
s that follow an action trace for α, that do not correspond with
a point where an action trace for α has been executed completely,
it holds that O�(b1 ∪ b2 ∪ . . . ∪ bn) for the set of actions B =
{b1, b2, . . . bn} that keeps us ‘within’ the action trace-set for α

M, s0 |= O�(α) iff for all τ = 〈s0, a1, s1, . . . , si−1, ai, si〉 through
M for which 〈a1, . . . , ai〉 �∈ Γ(α), it holds that if the set Bi+1 =
{ai+1 | 〈a1, . . . , ai, ai+1, . . . , an〉 ∈ Γ(α)} is non-empty, then si ∈
OA(Bi+1)

Note that this definition is very close to the one for permission. The only
structural difference is the condition concerning the complete execution of an
action trace. The characterization says that the condition O�(b1∪b2∪ . . .∪bn)
is not imposed on all states of trajectories through the model that corre-
spond to an action α, but only on states that are not the final state of the
execution of an action trace interpreting α. This marks an intrinsic differ-
ence between the process versions of the notions of permission and obliga-
tion. The difference is exemplified by the meaning of the two expressions
P�(b; a∗) and O�(b; a∗). The trace-set Γ(b; a∗) for the regular action b; a∗ is
{〈b〉, 〈b, a〉, 〈b, a, a〉, 〈b, a, a, a〉, . . . }. The semantic characterization for permis-
sion says that in states of trajectories that result from the execution of the
final action of such traces we are permitted to perform the action a, since it
keeps us within the trace-set. Intuitively this is what should hold, since we
are permitted any of the traces. But, for obligation a similar condition should
not hold: if in states of trajectories that result from the execution of the final
action of such a trace we would be obliged to do an action that keeps us within
the trace-set, we would be forced always to ‘jump’ to longer traces by doing
an extra a. This obligation would force us to keep on performing a’s forever,
and we would thus be obliged to perform an a-loop. This does not correspond
to the intuition that O�(b; a∗) stands for an obligation to perform one of the
traces interpreting b; a∗ (with freedom to switch between traces for b; a∗ during
execution). By demanding in definition 5.3.4 that only on pre-final states we
are forbidden to do actions that bring us out of the trace-set, we allow for
the possibility to do an ‘escaping’ action in the final state. That is exactly
what is intended: we have fulfilled our obligation, since we have performed
one of the action traces for α. And when we have fulfilled the obligation, we
should not any longer be constrained in the performance of actions6. The

6Note that the fulfillment of an obligation does not ‘cause’ an ‘obligation to stop’.

5.3. PROCESS NORMS 197

semantics of definition 5.3.4 implies that O�(a∗) = for any atomic action a,
and O�(skip) = , since we can already comply to these obligations by doing
nothing, which is always a possibility. This makes these obligations void.

Now that we have come to the point that the deontic notions we want to
formalize are characterized as semantic conditions on modal action models, we
may concentrate on the question how to capture the defined notions with the
help of modal action logic formulas. We have already seen, for the example
property P�(a; (b ∪ c)), how this can be achieved as P�(a) ∧ [a](P�(b ∪ c)).
But for general regular actions that involve iteration, a simple modal action
logic formula does not suffice.

5.3.2 µa-calculus characterizations through DFAs

We now turn to the µa-calculus characterizations of the deontic notions of
section 5.3.1. These characterizations constitute a recursive composition from
atomic deontic notions, governed by the structure of deterministic finite au-
tomatons (DFAs) of a regular action. The role of DFAs in the µa-calculus
characterization is twofold. On the one hand, DFAs are used as a sort of
action models that interpret µa-calculus formulas in their starting state, and
on the other hand DFAs are used to define a syntactical, recursive relation
with µa-calculus formulas. The µa-calculus is the fragment of the µη-calculus
defined in section 3.5 where actions η are atomic. Thus, from now on we
assume that the µη-calculus syntax of definition 3.5.1 is restricted to atomic
actions a, and is extended to include the primitives P�(a1 ∪ a2 ∪ . . . ∪ an),
F�(a1 ∪ a2 ∪ . . . ∪ an) and O�(a1 ∪ a2 ∪ . . . ∪ an). The resulting language is
what we call ‘the µa-calculus’.

µa-calculus characterizations for permission and prohibition

The first step in the µa-calculus definition of deontic notions of regular action is
to associate a regular action with a deterministic finite automaton (DFA) that
describes the same set of action traces. The second step is to express P�(α)
and F�(α) completely in terms of the primitive notion P�(a1∪a2∪ . . .∪an) by
building a µa-calculus formula based on the DFA. There is always more than
one DFA for a given regular action, but we show that µa-calculus translations
of different DFAs of the same regular action are logically equivalent. To get a
first impression of this approach, two initial examples are given.

Example 5.3.1 Consider the properties: P�(a∗; b) and P�((a; b∗)∗; c). DFAs
of the regular actions a∗; b and (a; b∗)∗; c are:

198 CHAPTER 5. DEONTIC MODAL ACTION LOGIC

a

b

a

a

b

c

c

Fig 14. two example DFAs

The property P�(a∗; b) expressed in terms of P�(a) and P�(b) by means
of a µa-calculus formula: νZ. P�(a ∪ b) ∧ [a]Z. In words: “the permission to
perform the action a∗; b equals the permission to initially choose between the
atomic actions a and b, and if a is chosen to reach this same deontic state
again”.

The property P�((a; b∗)∗; c) expressed in terms of P�(a), P�(b) and P�(c)
by means of a µa-calculus formula: P�(a ∪ c) ∧ [a](νZ. P�(a) ∧ P�(b ∪ c) ∧
[a]Z ∧ [b]Z)7. In words: “the permission to perform the action P�((a; b∗)∗; c)
equals the permission to initially choose between the atomic actions a and c,
and if a is chosen, to reach a state where one is permitted to choose between
the atomic actions a, b and c, and where if one chooses either an a or a b one
reaches the same deontic state again”.

The examples show that the µa-calculus formula expressing the deontic no-
tion is related directly to the automaton. We now give the precise definition of
how the formula is built. First the notions of ‘grounded loop’ and ‘automaton
return state’ for DFAs are defined.

Definition 5.3.5 A grounded loop of a deterministic finite automaton DFA =
(Q,A,N, qi, T), with Q a set of automaton states, A a set of automaton ac-
tions, N : Q × A → Q the transition function, qi ∈ Q the initial automaton
state and T ⊂ Q the set of terminal automaton states, is a sequence of edges
e1, e2, . . . , en (ei ∈ E and E ⊂ Q×A×Q) such that:

• e1 leaves the initial automaton state qi

• each ei leaves the automaton state that is entered by ei−1

7Note that in this example the regular action does not contain the choice operator
∪ but that in the µa-calculus translation to permissions over atomic actions, many non-
deterministic choices appear. This is the non-determinism that is part of the semantics of
the iteration.

5.3. PROCESS NORMS 199

• there is an ei with i < n such that ei and en enter the same automaton
state

• there is no other pair of edges ej and ek that enter the same automaton
state

An automaton state that is entered by the final edge en of a grounded loop
is called an ‘automaton return state’. In the following, the set of automaton
return states of a DFA is denoted by R.

Proposition 5.3.1 Given a deterministic finite automaton, there are finitely
many grounded loops, and each grounded loop involves a finite number of edges.

Proof
From negative demonstration: an infinite number of grounded loops can

only be realized with an infinite number of edges and thus with an infinite
automaton, and a grounded loop of infinite length can only be realized with an
infinite number of edges in combination with an infinite number of automaton
states, since in a grounded loop we cannot visit an automaton state for the
second time (the only exception is the automaton return state at the end of a
loop, but there the loop ends).

In general there are many grounded loops, and many automaton return
states of these loops coincide. In the procedure defined next, the procedure
that builds a µa-calculus formula from a given deterministic finite state ma-
chine, each automaton state that is the automaton return state of one or more
grounded loops is assigned a separate µa-calculus state variable.

Definition 5.3.6 Let α be a regular action, and Uα = (Q,A,N, qi, T) a cor-
responding deterministic finite automaton with Q a set of automaton states,
A a set of automaton actions, N : Q×A→ Q the transition function, qi ∈ Q
the initial automaton state, and T ⊂ Q the set of terminal automaton states.
Furthermore, let R ⊆ Q be the set of automaton return states of the DFA, let
Zq be a µa-calculus state variable associated with an automaton return state
q ∈ R, and let Out(q) be the set of outgoing automaton actions of an automa-
ton state q ∈ Q. Then a µa-calculus formula for P�(α) is built with the help
of the following recursive function f that associates a µa-calculus formula to
each automaton state:

200 CHAPTER 5. DEONTIC MODAL ACTION LOGIC

if q ∈ Q \R, f(q) = P�(
⋃
Out(q)) ∧ ∧

a∈Out(q)

[a]f(N(q, a))

if q ∈ R, f(q) = νZq. P�(
⋃
Out(q)) ∧ ∧

a∈Out(q)

[a]f(N(q, a))

if q ∈ R, f ′(q) = Zq

An automaton return state q ∈ R has two associated formulas: f(q) and
f ′(q). The value f(q) is used if in a thread of recursive calls of the function
f , the automaton return state q is visited for the first time, and the value
f ′(q) is used if in this same thread the automaton state is attended for the
second time. If automaton states have no outgoing automaton actions, their
associated formula is . The µa-calculus characterization of P�(α) is defined
as the formula associated to the initial automaton state of the automaton:
P�(α) = f(qi).

The reader is invited to check that this recursive procedure, applied to the
deontic notions of example 5.3.1, returns the µa-calculus formulas mentioned
in the example. For prohibition F�(α) we can define a separate recursive
function with ∨ instead of ∧, 〈 〉 instead of [] and µ instead of ν. Because
of this straightforward duality, we do not give an explicit definition of the
µa-calculus reduction of prohibition.

Proposition 5.3.2 The recursive function f in definition 5.3.6 always re-
turns a finite, well-formed µa-calculus formula.

Proof
Each ‘thread’ of recursive calls of the function f either follows a grounded

loop through the finite automaton or ends in a terminal automaton state of
the finite automaton. Since (1) a finite automaton contains only finitely many
grounded loops, and (2) the loops of a finite automaton involve only a finite
number of automaton edges, and (3) on second attendance of an automaton
return state in the recursive evaluation of f no further function calls are in-
voked, the recursive calls eventually stop. The well-formedness follows directly
from the well-formedness of the separate cases distinguished in the definition
of the function f .

We now turn to the claim that this µa-calculus characterization captures
the intuition of free process choice permission of section 5.3.1.

5.3. PROCESS NORMS 201

Theorem 5.3.3 The µa-calculus characterization of definition 5.3.6 is correct
and sufficient with respect to the semantics of P�(α) and F�(α) of definition
5.3.3.

Sketch of a proof
If we denote the initial automaton state qi of a deterministic finite automa-

ton Uα corresponding to a regular action α by qi(Uα), correctness says that
in states of models where the semantic condition for P�(α) of definition 5.3.3
holds, the formula f(qi(Uα)) is valid. We first consider a special DFA-based
model for P�(α) that satisfies the semantic conditions, and that by definition
satisfies the formula f(qi(Uα)). The second step is to show that any other
state of any other model satisfying the semantic conditions for P�(α) is re-
lated to the initial state of the special DFA-model by a mapping that preserves
validity of f(qi(Uα)). The DFA-model we consider is based on the DFA for
α: automaton states Q are turned into modal action model states S, and the
transition function N for automaton actions A is turned into an action in-
terpretation function RA. Furthermore, we define that for the interpretation
PA it holds that s ∈ PA(Out(q)), where q is the automaton state associated
to the modal action model state s. We first have to show that in its initial
state (the state corresponding to the automaton state qi) this model satisfies
the semantic conditions for P�(α). The semantic condition of definition 5.3.3
imposes primitive normative conditions only on trajectories that correspond
to sub-traces of action traces that interpret α. Clearly, in the DFA-model, all
trajectories correspond to action traces that are sub-traces of action traces in-
terpreting α. The semantic condition is that on all states of trajectories, those
actions that keep us within the trace set are permitted. In the DFA-model,
these are exactly the outgoing actions of a state. Since for the DFA-model
we have defined that s ∈ PA(Out(q)), the semantic condition is obeyed (Note
that this explains why we use DFAs and not NDFAs: for NDFAs, the outgoing
actions of automaton states may be only a subset of the actions that keep us
within the action trace set described by the automaton). Now we have to
ascertain that the µa-calculus formula f(qi(Uα)) holds in the initial state of
the special DFA-model. The formula f(qi(Uα)) only contains ν-modalities.
In section 3.5 we explained that satisfaction of a ν-formula is equivalent with
satisfaction of its infinitary expansion. In the construction of f(qi(Uα)), these
infinitary expansions can be formed by dropping the condition that if a return
state is attended for the second time, a µ-calculus state-variable is introduced:
instead we simply get another call of the function f . Also if return states are
attended for the third, fourth, etc. time we keep calling the function f , and
the formula f(qi(Uα)) is infinitely expanded. Now it is fairly easy to see, that

202 CHAPTER 5. DEONTIC MODAL ACTION LOGIC

by induction over the structure of the DFA-model from the initial state, the
infinitary expansion of the formula f(qi(Uα)) is satisfied in the initial state.
It remains to be shown that models other than the DFA-model, satisfying the
same semantic conditions, also satisfy f(qi(Uα)). We claim that any other
model satisfying the semantic condition of definition 5.3.3 can be constructed
from the special DFA-model by model transformations that do not affect va-
lidity of the formula f(qi(Uα)) in the initial state. In what way can models
that satisfy the semantic condition of definition 5.3.3 differ from the special
DFA-model? First of all there might be many trajectories from the initial state
that are not sub-traces of action traces interpreting α. Clearly, the presence
of such trajectories does not affect validity of f(qi(Uα)), since the modalities
in the formula do not concern actions that are not in the action trace set for
α. Second, the tree structure of the set of trajectories in the DFA-model that
do follow an action trace from α, may be different in other models satisfying
the semantic condition. In particular, it need not be that in models satis-
fying the semantic condition, common prefixes of action traces for α follow
the same trajectory in a model (such as in the DFA-model). But this also
does not affect validity of f(qi(Uα)), since it contains only non-negated nested
ν-modalities, that cannot distinguish a tree from a set of traces through the
tree. Third, models satisfying the semantic condition might differ form the
DFA-model in the sense that trajectories from the initial state are completely
or partially absent. Again, due to the fact that it contains only non-negated
nested ν-modalities, this does not affect validity of f(qi(Uα)).

We call the opposite direction to prove, ‘sufficiency’. To prove sufficiency,
we have to show that the formula f(qi(Uα)) imposes the conditions of defini-
tion 5.3.3 on traces. This follows from the µa-calculus semantics of the formula
f(qi(Uα)), but is also ascertained by the standard semantics for infinite ex-
pansion of the formula f(qi(Uα)).

A regular action is equivalent with many different DFAs. According to
definition 5.3.6, all of these DFAs can be used to form a µa-calculus expression
for a property P�(α). The following proposition states that if for two different
DFAs for the same α, by applying definition 5.3.6 two different µa-calculus
characterizations follow, the two formulas are logically equivalent.

Proposition 5.3.4 µa-calculus translations of different DFAs describing the
same set of traces are logically equivalent.

5.3. PROCESS NORMS 203

Sketch of a proof
We do not prove this in detail, but reveal the intuition behind the proof.

From automaton theory it is known that for any DFA (and even FA) there
is a unique minimal DFA (MDFA) that describes the same trace-set, and,
that DFAs differ from the MDFA only in the sense that some MDFA-states
have equivalent copies. The recursive function of definition 5.3.6 is not able to
distinguish between DFAs that only differ in the sense that certain automaton
states have copies. This is illustrated by a small example .

a

b

b

a a

a

a

b

a

a

b

Fig 15. two trace-equivalent DFAs

Both the DFAs of the example represent the trace-set {〈a, a, a〉, 〈a, b, a〉}.
The right DFA is minimal. The left DFA contains copies of the end and
before-end state of the minimal DFA. This is a very simple example of copies
of automaton states. In general also automaton return states can be copied,
which may lead to DFAs that are not easily recognizable as equivalent to
a minimal form. It is not difficult to see that for both DFAs the function
f of definition 5.3.6 returns exactly the same µa-calculus formula. If copies
of automaton return states are involved, µa-calculus formulas may differ in
the names of state-set variables Zs with s ∈ R. But this does not have any
influence on the validity of the formula.

A µa-calculus characterization for obligation

In section 5.3.1 we saw that the semantic characterization of obligation closely
resembles the one for permission. The main difference is that primitive nor-
mative conditions are absent in states where an action trace has been executed
completely. This difference comes back in the automaton based µa-calculus
characterization for obligation, defined below.

Definition 5.3.7 Let α be a regular action, and Uα = (Q,A,N, qi, T) a cor-
responding deterministic finite automaton with Q a set of automaton states,
A a set of automaton actions, N : Q×A→ Q the transition function, qi ∈ Q
the initial automaton state, and T ⊂ Q the set of terminal automaton states.

204 CHAPTER 5. DEONTIC MODAL ACTION LOGIC

Furthermore, let R ⊆ Q be the set of automaton return states of the DFA,
let Zq be a µa-calculus state variable associated with the automaton return
state q ∈ R, and let Out(q) be the set of outgoing automaton actions of an
automaton state q of Q. Then a µa-calculus formula for O�(α) is built with
the help of a recursive function f that associates a µa-calculus formula to each
automaton state:

if q ∈ Q \ (R ∪ T), f(q) = O�(
⋃
Out(q)) ∧ ∧

a∈Out(q)

[a]f(N(q, a))

if q ∈ R \ T , f(q) = νZq. O�(
⋃

Out(q)) ∧ ∧

a∈Out(q)

[a]f(N(q, a))

if q ∈ T \R, f(q) =
∧

a∈Out(q)

[a]f(N(q, a))

if q ∈ R ∩ T , f(q) = νZq.
∧

a∈Out(q)

[a]f(N(q, a))

if q ∈ R, f ′(q) = Zq

The distinction between primed and unprimed values is the same as in
definition 5.3.6. The µa-calculus characterization of O�(α) is defined as the
formula associated to the initial state of the automaton: O�(α) = f(qi).

The differences with the definition of the function f for permission follow
directly from the semantic choices discussed in section 5.3.1. First, on the level
of atomic actions, we have of course O�(

⋃
Out(q)) instead of P�(

⋃
Out(q)).

Second, the assignment of µa-calculus formulas to terminal automaton states
q ∈ T is different from the assignment to non-terminal automaton states.
There are even two cases, one describing the formula f(q) for terminal states
that are not at the same time return states (q ∈ T \R), and one for terminal
states that are return states (q ∈ R ∩ T). The difference with the definition
of f(q) for the non-terminal automaton states q ∈ Q \ (R ∪ T) and q ∈ R \
T is that the obligations O�(

⋃
Out(q)) are left out, which corresponds to

the semantic choice that in the states of trajectories that correspond to the
complete execution of an action trace (terminal states in the automatons)
no atomic obligations should hold. We now formulate the theorem that says
that this characterization is equivalent to the semantic characterization of
obligation in definition 5.3.4.

Theorem 5.3.5 The translation O�(α) = f(qi(Uα)), is correct and sufficient
with respect to the semantic characterization of definition 5.3.4.

Sketch of a proof

5.3. PROCESS NORMS 205

The proof of the correctness and sufficiency differs only in details from the
one for P�(α), and follows from the correspondence of the semantic charac-
terization in terms of traces, and the structure of automatons, seen as action
models for O�(α).

We conclude this section with two examples.

Example 5.3.2 Consider the properties: O�((a; b)∗) and O�((a ∪ b)∗; b; a).
DFAs of the regular actions (a; b)∗ and (a ∪ b)∗; b; a are:

a

a

b

b

a

b

a

b

Fig 16. two example DFAs

The µa-calculus expression for O�((a; b)∗) is: νZ. [a](O�(b) ∧ [b]Z). Note
that �|= O�((a; b)∗) → O�(a), while for permission: |= P�((a; b)∗) → P�(a).
Again this shows the difference between permission and obligation with respect
to normative properties holding in states where an action trace has been exe-
cuted completely.

The µa-calculus expression for O�((a∪ b)∗; b; a) is: νZ. O�(a∪ b)∧ [a]Z ∧
[b](νY. O�(a ∪ b) ∧ [b]Y ∧ [a]([b]Y ∧ [a]Z)). This example shows that it is not
always straightforward to recognize that a regular action and a DFA describe
the same set of traces. Consequently, a µa-calculus expression is not always
easily recognized as describing a certain deontic action notion.

5.3.3 Compositionality in action combinators

The µa-calculus characterization of P�(α) and O�(α) shows a particular form
of compositionality of the semantics of these notions, namely, in terms of the
primitives P�(a1 ∪ a2 ∪ . . . ∪ an) and O�(a1 ∪ a2 ∪ . . . ∪ an), through an
automaton-based translation. In this section we discuss the compositionality
of the defined semantics with respect to the regular action combinators choice,
sequence and iteration.

Compositionality of permission and prohibition

We formulate properties that define the compositionality of permission and
prohibition with respect to the regular action combinators. For permission,

206 CHAPTER 5. DEONTIC MODAL ACTION LOGIC

we first observe that according to the free choice interpretation, the primitive
P�(a1 ∪ a2 ∪ . . . ∪ an) is actually no primitive, since it is intuitive to decom-
pose it into P�(a1) ∧ P�(a2) ∧ . . . ∧ P�(an). This means that for permission,
we could have taken the notion P�(a) for atomic actions a as primitive. We
did not do that in order to stress the similarities between the automaton-
based µa-calculus characterizations of the notions of permission and obliga-
tion for actions that are more complex than atomic choice actions of the form
a1 ∪ a2 ∪ . . .∪ an. However, in this section about compositionality, we assume
that indeed normative atoms of the form P�(a) are primitive. The seman-
tic characterizations of definition 5.3.3, are adapted accordingly, by making
the identification P�(a1 ∪ a2 ∪ . . . ∪ an) ≡ P�(a1) ∧ P�(a2) ∧ . . . ∧ P�(an).
Assuming this identification, we give some examples of the compositionality
of the semantics for permission in terms of the regular action combinators.
We start with compositionality with respect to ∪ for which we again consider
the example P�((a; b) ∪ (c; d)). The corresponding µa-calculus expression is
P�(a∪c)∧ [a]P�(b)∧ [c]P�(d). Now ∪-compositionality should guarantee that
this is expressible in terms of P�(a; b) and P�(c; d), for which the µa-calculus
expressions are P�(a)∧ [a]P�(b) and P�(c)∧ [c]P�(d). With the identification
P�(a1∪a2∪. . .∪an) ≡ P�(a1)∧P�(a2)∧. . .∧P�(an) it follows immediately that
P�((a; b) ∪ (c; d)) ≡ P�(a; b) ∧ P�(c; d). To investigate ∗-compositionality, we
consider the formula P�(a∗) as an example. The µa-calculus characterization
is νZ. P�(a)∧[α]Z, which shows how P�(a∗) is decomposed in terms of P�(a).
Finally, it is easy to check that P�(a; b) is decomposed into P�(a)∧ [a]P�(b),
which exemplifies ;-compositionality.

Proposition 5.3.6 With the identification P�(a1)∧P�(a2)∧ . . .∧P�(an) ≡
P�(a1 ∪ a2 ∪ . . . ∪ an), the following properties are correct and sufficient with
respect to the semantic characterization of definition 5.3.3:

P�(skip) ↔ F�(skip) ↔ ⊥
P�(α;β) ↔ P�(α) ∧ [α]P�(β) F�(α;β) ↔ F�(α) ∨ 〈α〉F�(β)
P�(α ∪ β) ↔ P�(α) ∧ P�(β) F�(α ∪ β) ↔ F�(α) ∨ F�(β)
P�(α∗) ↔ νZ. P�(α) ∧ [α]Z F�(α∗) ↔ µZ. F�(α) ∨ 〈α〉Z

Note that fix-point formulas only appear in the decomposition of P�(α∗)
and F�(α∗). In some of the above decompositions, formulas of the form [α]ϕ
and 〈α〉ϕ appear, which for a further decomposition rely on the µa-calculus
translation of PDL from section 2.3.
Sketch of a proof

5.3. PROCESS NORMS 207

For correctness of P�(α;β) ↔ P�(α) ∧ [α]P�(β) we have to prove that
this formula holds given that for the action traces for P�(α;β), P�(α), and
P�(β) the conditions of definition 5.3.3 hold. By way of example, we prove
the direction from left to right. Now consider a state in a model where the
semantic conditions for P�(α;β) hold. These semantic conditions concern all
states on trajectories corresponding to the action traces from Γ(α;β). Then
these same semantic conditions ensure that also P�(α)∧[α]P�(β) holds. Recall
(section 2.4.3) that the action traces from Γ(α;β) are concatenations of traces
from Γ(β) to action traces from Γ(α). Then, the conditions for P�(α) are
obeyed on the trajectories that correspond to the first part of concatenated
action traces. And, since [α]ϕ means that ϕ holds after all trajectories that
follow an action trace from Γ(α), the property [α]P�(β) is obeyed, because
it reflects that on the second part of concatenated trajectories the semantic
conditions are met. It is illustrative to verify this for the example models
for P�(a; (b ∪ c)) given earlier. The property ‘decomposes’ P�(a; (b ∪ c)) into
P�(a)∧ [a]P�(b∪ c). The right hand side states that in both traces ab and ac,
after a is performed, the permission property P�(b∪c) must hold. Correctness
of P�(α ∪ β) ↔ P�(α) ∧ P�(β) and P�(α∗) ↔ νZ. P�(α) ∧ [α]Z can be
ascertained by similar arguments.

To prove sufficiency we have to go the other way: given the validity of the
formulas we have to prove that the right conditions on traces are imposed.
This can be seen as follows. The properties, together with the µa-calculus ex-
pressions for PDL of definition 3.5.1, can be used to ‘break down’ any formula
P�(α) and F�(α) into formulas containing only primitive deontic formulas of
the form P�(a) and ν-modalities over atomic actions a. What we actually get
by following this procedure, is an alternative, but equivalent µa-calculus char-
acterization. We can then use the same prove technique as for the sufficiency
of the µa-calculus characterization of definition 5.3.6, that is, we can consider
the infinite expansion of the µa-calculus characterization, and ascertain that
it imposes exactly the right conditions on models, by an induction argument
over the formula structure.

Compositionality of obligation

For permission we observed that the free choice intuition forced us to accept
that formulas P�(a1 ∪ a2 ∪ . . . ∪ an) we used as primitives, can actually be
broken down. However, for obligation, the free choice interpretation does not
give us that the normative elements O�(a1∪a2∪. . .∪an) hide more elementary

208 CHAPTER 5. DEONTIC MODAL ACTION LOGIC

primitives. A decomposition into O�(a1) ∧ O�(a2) ∧ . . . ∧ O�(an) is simply
not intuitive, as discussed in section 5.3. This non-compositionality of choice
at the atomic level, causes a non-compositionality of choice at the general
action level. Consider the example O�((a; b) ∪ (c; d)). The corresponding µa-
calculus expression is O�(a∪c)∧ [a]O�(b)∧ [c]O�(d). Now ∪-compositionality
would guarantee that this is expressible in terms of O�(a; b) and O�(c; d), for
which the µa-calculus expressions are O�(a)∧ [a]O�(b) and O�(c)∧ [c]O�(d).
A reduction would thus require that the obligation O�(a ∪ c) is reduced to
O�(a) and O�(c). This is not possible, since all three these expressions are
primitives.

The notion of process obligation is also not compositional in the iteration
combinator. But, for a different reason. In the semantics for O�(α∗), we
defined that α is not obliged at any state that corresponds to a complete
execution of one of the traces for α∗. This means, for instance, that the
obligation O�(a∗) for an atomic action a is void (equivalent with): the
states where a has been executed zero, one or more times, all correspond
to a complete execution of one of the action traces, which means that no
conditions are imposed whatsoever. To show that in general O�(α∗) cannot
be decomposed in terms of O�(α), we look at the example: O�(a; b)∗. A
corresponding µa-calculus expression is νZ. [a](O�(b) ∧ [b]Z). This is not
expressible in terms of O�(a; b), which is identified with O�(a) ∧ [a]O�(b),
because it encompasses the primitive notion O�(a) that does not play any
role in νZ. [a](O�(b) ∧ [b]Z).

Finally we argue that the notion of process obligation is also not compo-
sitional in the sequence combinator. Consider the example O�(a∗; b). This
formula is not expressible in terms of O�(a∗) and [a∗]O�(b). The µa-calculus
formulas characterizations are νZ. O�(a ∪ b) ∧ [a]Z, and νZ. O�(b) ∧ [a]Z.
We cannot express the first of these formulas in terms of the other two be-
cause all three formulas O�(a∪ b), O�(a) and O�(b) are primitive. And even
if we would assume, as for permission, that we could break down O�(a ∪ b),
the formulas would still be incomparable, because obligations concerning the
atomic action a are completely absent in the second two formulas. Note how-
ever, that this counterexample only proves non-compositionality with respect
to the compound operation ‘∗;’. Indeed, for regular actions in which the ;
is never preceded by a ∗, we can prove that O�(α;β) ↔ O�(α) ∧ [α]O�(β)
holds. The non-compositionality with respect to sequence is thus ‘caused’ by
the non-compositionality with respect to iteration.

Summarizing we may say that the non-compositionality of obligation, with
respect to the regular action syntax, has two main causes. The first is that

5.3. PROCESS NORMS 209

obligation of (free) choice is not compositional, which traces back to non-
compositionality at the level of choice over atomic action. The second is that
obligation of iteration is non-compositional, which is caused by the fact that
we can comply with an obligation concerning an iteration by doing nothing.
This relates to the absence of primitive obligations in states that correspond
to complete execution of action traces.

5.3.4 Reductions to the µm- and the µη-calculus

in section 5.3.1 we introduced the notions P�(a1 ∪ a2 ∪ . . .∪ an), F�(a1 ∪ a2 ∪
. . .∪an) and O�(a1∪a2∪ . . .∪an) as primitives for deontic process reasoning.
By introducing these primitives, we temporarily discarded the deontic logic of
atomic choice actions themselves, and also, the logic of the interactions be-
tween the separate normative modalities. Since we have shown in definitions
5.3.6 and 5.3.7 how to reduce normative expressions concerning complex regu-
lar actions to µa-calculus expressions over the above mentioned primitives, the
interactions of the modalities are completely determined by the interactions
at the atomic choice level. We give two possible definitions for the logic of
atomic choice actions and the interactions.

The first possibility involves a shift from the normative choice models of
definition 5.3.2 to standard modal action models, where we introduce nor-
mativity in the same way as Meyer does, that is, by distinguishing a special
violation proposition VF . This shift goes hand in hand with a shift in language,
from the µa-calculus to the µm-calculus as defined by Bradfield and Stirling
[23, 173, 25]. The µm-calculus extends the µa-calculus with the elementary
action language m,n, . . . := a1, a2, . . . , an | − (a1, a2, . . . , an) for ai ∈ A
(this explains why we use the term ‘µm-calculus’ for the calculus defined by
Bradfield and Stirling, while the authors themselves refer to their calculus
simply as ‘the modal µ-calculus’). The actions a1, a2, . . . , an are interpreted
as a choice over the atomic actions ai. So they correspond to what we have
called ‘atomic choice actions’. An action −(a1, a2, . . . , an) is interpreted as the
choice over all actions other than a1, a2, . . . , an, that is, over the actions in
A\{a1, a2, . . . , an}. So the µm-calculus actually contains a rudimentary notion
of action complement. For the reduction to normative expressions over atomic
choice actions, we did not need the action complement. But now that it comes
down to defining the relation between separate modalities, we need it again.
In the µm-calculus, the primitives P�(a1∪a2∪ . . .∪an), F�(a1 ∪a2∪ . . .∪an)
and O�(a1 ∪ a2 ∪ . . . ∪ an) can be defined as follows.

210 CHAPTER 5. DEONTIC MODAL ACTION LOGIC

Definition 5.3.8 (a µm-calculus reduction) Reductions for the normative
primitives in the µm-calculus:

F�(a1 ∪ a2 ∪ . . . ∪ an) ≡def 〈a1, a2, . . . , an〉VF
P�(a1 ∪ a2 ∪ . . . ∪ an) ≡def [a1, a2, . . . , an]¬VF
O�(a1 ∪ a2 ∪ . . . ∪ an) ≡def [−(a1, a2, . . . , an)]VF

Note that this definition imposes the same relation between obligation
and prohibition as the reduction for goal norms in definition 5.2.2. Thus,
O�(m) not only implies the prohibition of the action −m, it also implies the
prohibition of any action n whose outcome (effect) is possibly different than
any possible outcome for m. It is not too difficult to see that this property for
the atomic choice level, also holds for the general regular action level. This
property could thus be seen as the process norm version of the deontic principle
that ‘being obliged’ implies ‘being forbidden not to’.

With definition 5.3.8 we have completed a full reduction of expressions
P�(α), F�(α), and O�(α) for regular actions α to the standard µm-calculus
defined by Stirling and Bradfield [25] extended with one distinguished violation
proposition VF . Normative expressions are consistent iff their µm-calculus
translations are consistent, entailment relations between normative expressions
(possibly involving different deontic modalities) exist if and only if entailment
relations between their µm-calculus translations exist, etc.

The second possibility for defining the logic of the primitives P�(a1 ∪ a2 ∪
. . . ∪ an), F�(a1 ∪ a2 ∪ . . . ∪ an) and O�(a1 ∪ a2 ∪ . . . ∪ an) follows from the
observation that atomic choice actions do not involve sequence or iteration,
which means that the difference between goal and process norms should not
give rice to different logics for such actions. We can thus base ourselves on
the insights developed in section 5.2, and take a goal norm logic to function as
the logic of the primitives for process norms. As for the µm-calculus approach
defined above, this involves a (small) shift of models and of language. For
the models we take standard modal action models, and introduce normativity
in these models by distinguishing the violation propositions VP , VF and VO,
as in section 5.2.1. And, as for the µm-calculus approach defined above, we
add an action language, which in this case is much more powerful. We add
the language η, ϑ, . . . := a | η ∪ ϑ | �B η | η←. With this addition we get
the µη-calculus, as defined in section 3.5. Recall that in the µη-calculus we
distinguish two action layers: the layer η, ϑ, . . . := a | η ∪ ϑ | �B η | η←, and a
layer on top of that, that in this case is layer of regular actions over actions η:
α, β, . . . := η | skip | α∪β | α;β | α∗. This second layer is not explicitly defined

5.3. PROCESS NORMS 211

in the syntax of the µη-calculus, since it is syntactically definable in terms of
µη-calculus formulas, as shown in section 3.5. Then, the deontic logic over the
lower level actions η, can be taken as in section 5.2.1. In the µη-calculus, the
primitives P�(a1∪a2∪ . . .∪an), F�(a1∪a2∪ . . .∪an) and O�(a1∪a2∪ . . .∪an)
can thus be defined as follows.

Definition 5.3.9 (a µη-calculus reduction) µη-calculus reductions for the
normative primitives N�(η) over atomic choice actions η = a1 ∪ a2 ∪ . . .∪ an:

F�(η) ≡def F�(η) ≡def ¬〈η〉VP
P�(η) ≡def P�(η) ≡def 〈η〉VF
O�(η) ≡def O�(η) ≡def P�(η) ∧ [�Bη]VO

With this definition, we have completed a full reduction of expressions
P�(α), F�(α), and O�(α) for regular actions α to the standard µη-calculus
defined in section 3.5. Note that with the introduction of the converse at
the lower action level, we have implicitly introduced the converse also at the
process level. Given an arbitrary action term α← where α is an action of the
two layered syntax mentioned above (and in definition 3.4.1), we can use the
reduction rules defined in the proof of theorem 2.3.2 to the level of actions η,
where it is well-defined.

For the deontic logic over actions η at the lower action level, all the issues
for goal norms mentioned in section 5.2.1 are relevant. The choices made
at this level have repercussions for the logic of process norms at the higher
action level. One such issue is the incorporation of the ‘ought implies may’
principle. In definition 5.3.9 above, we included it to emphasize that we can
use the goal norm definitions of section 5.2.1 here directly as definitions for the
logic of the non-sequential process norm primitives. The reader might check
that the inclusion in definition 5.3.9 of the property O�(a1 ∪ a2 ∪ . . . ∪ an)→
P�(a1∪a2∪ . . .∪an), does not mean that the ought implies may principle also
holds at the process norm level. This is due to the difference between the µa-
calculus reductions for process permission and process obligation of definitions
5.3.6 and 5.3.7. In particular, we do not have that O�(a∗) → P�(a∗), since
O�(a∗) is obeyed in any state of any model and P�(a∗) is not.

5.3.5 Contrary to duty process norms

In section 5.2.3 we discussed that we can adopt two different views on the
interpretation of CTD-norms: the temporal view, and the synchronous view.
For process norms, it seems very hard to find a satisfying interpretation of

212 CHAPTER 5. DEONTIC MODAL ACTION LOGIC

CTD-norms in the synchronous view. The intuitions for a temporal view on
process norm CTD-norms are much clearer. We only consider CTD-norms
for primary norms that are obligations. We mentioned in section 5.2.3 the
possibility of notions of contrary to duty for prohibition and permission. We
do not consider these, and leave their investigation for future research. The
temporal view on CTD-norms encompasses that CTD-norms hold in states
where a primary norm is violated. So, if we want to use this view in the
definition of CTD-norms for process norms, we need to be able to refer to the
states where primary norms are violated. These are exactly the states where
the violation proposition VO holds. So, if we want to express that a norm
N�(α) comes into force at the point where a primary norm O�(α) is violated,
we can take the µm-calculus or µη-calculus translation of the norm O�(α) and
substitute the formula N�(α) for every occurrence of the proposition VO. But
then, we could also substitute the µm-calculus or µη-calculus translation of
the norm N�(α) for VO. This simple procedure thus shows how we can also
translate CTD-norms into the µm-calculus or µη-calculus.

5.4 Related work

Our work can be suitably given a place in the tradition on dynamic deontic
logic [135, 185, 137, 186, 132, 56]. In section 5.2.1 we already discussed the
work of Meyer, who initiated this line of work. In this section we want to give
an impression of the situatedness of the work on dynamic deontic logic in the
extensive deontic logic literature.

A well-established classification of deontic logics is the distinction between
ought-to-do and ought-to-be logics. Ought-to-be logics take conditions refer-
ring to properties of situations, system states, worlds or states of affairs as
arguments for deontic modalities. So in ought-to-be deontic logics, we typi-
cally have a modal expression P (A) saying ‘it is permitted to be in a static
situation that satisfies the condition A’. In ought-to-do logics, on the other
hand, deontic modalities take actions or act-propositions as their arguments.
So in an ought-to-do logic, an expression P (act) roughly means ‘it is permit-
ted to perform activity act’. The deontic logics in this chapter are all of the
ought-to-do type. Both Segerberg [167] and Von Wright [190, 194] emphasize
that any ought-to-do deontic logic should be based on a proper logic of ac-
tion. For this purpose, we used the modal action logics developed in chapters
2 and 3. But it is good to realize that in the literature, action theories of a
quite different nature have functioned as a basis for ought-to-do deontic logics.
There are at least three important ways in the literature, in which the deontic

5.4. RELATED WORK 213

expressions O(act), P (act) and F (act), with act a term representing action in
some way, are interpreted as normative assertions about action.

In his 1951-work [189], Von Wright uses a standard propositional logic for-
malism for act and reads atomic expressions p as ‘act predicates’: F (p) means
that any act is prohibited that is in the extension of the predicate p. This leads
to the view ([94]) that individual actions form the domain of interpretation
of compound act-formulas (using the standard logical connectives), and that
it is possible to view deontic operators as quantifiers that bind variables of
act-predicates to the domain of individual actions. Hintikka [95] has argued
that under this reading of deontic formulas, many traditional deontic princi-
ples, such as the interdefinabilities O(p) = F (¬p), and O(p) = ¬P (¬p), do not
follow. He says:

‘I would say that the logical structure of obligations, prohibitions
and permissions pertaining to kinds of acts is more complicated
than what is usually assumed.’

The well-studied STIT (Seeing To It That) logics [11, 166, 168, 99, 12], which
are close to older work on, what we call, BIAT (Bringing It About That) logics
[104, 105, 116, 151], consider elements act to be of the form Eip, representing
‘agent i sees to it that p’. Terms Eip, are studied as operators in their own right
and are often referred to as ‘action modalities’. But whereas in Von Wright’s
1951-view, actions are explicit in the interpretation of act predicates, in the
STIT-approach actions are left implicit all together. The logic of the operator
Eip is much more concerned with a normative view on agency (the parameter
i in Eip) and the bringing about, through (implicit) action, of conditions (the
propositions p in Eip), than with a normative view on ‘activity’ itself. For
instance, STIT theory does not enable a distinction between being allowed to
bring about condition A through action α, but not through action β.

STIT-approaches include a notion of ‘not seeing to it’ which is often called
‘refraining’. Refraining is conceptually related to action complement: re-
fraining from an action means that alternative actions are performed. But
the correspondence with the notion of relativized action negation of section
2.5.3 is restricted to the conceptual level, since STIT-formalisms do not have
an explicit action language. Furthermore, refraining for STIT-formalisms is
not an non-controversial concept, and it has several alternative formalizations
[151, 12].

Von Wright [192, 194] notes that deontic action logics that are not based
on an explicit action language have a problem in distinguishing between ‘see-
ing to it that’ and ‘preventing that it will occur that not’. He argues that

214 CHAPTER 5. DEONTIC MODAL ACTION LOGIC

this calls for an explicit action language and norms pertaining directly to ac-
tion. Observations similar to those made by Von Wright, inspired Castañeda
to divide ought-to-do norms into those pertaining directly to ‘practitions’, and
those pertaining to action propositions, being conditions under which actions
may occur. A practition is not a predicate describing some ‘act property’, or
a condition being brought about by an act performed by some agent, but the
act (event) itself. Castañeda [41, 42, 43] observed that many anomalies of de-
ontic reasoning are not inherited by logics that interpret normative assertions
as taking ‘practitions’ as an argument. It was argued by Hilpinen [94] that
the group of dynamic deontic logics [135, 185, 132, 56, 36] can be viewed as
deontic ‘practition’ logics. A short comment about terminology is required
here. Hilpinen, Meyer, and several other researchers view the term ‘dynamic
logic’ as referring to the whole group of modal logics that is characterized by
the insertion of action terms into the modal box and diamond. Under this
definition, all of the modal action logics discussed in chapter 2 are dynamic
logics. However, we consider dynamic logic to be a specific modal action logic:
the one with the action combinators sequence, choice iteration and converse
(see 2.3). So, where Hilpinen and several other authors speak of ‘dynamic
deontic logics’, we speak of ‘deontic modal action logics’. This is the category
of deontic logics studied in this chapter. And, following the view presented by
Hilpinen [94], we might refer to the logics as ‘practition-type deontic modal
action logics’.

Dynamic deontic logics study normative notions over complex actions.
This gives rise to a whole range of questions not considered before in ought-to-
do deontic logic. We saw in section 5.1.1 that, for instance, the deontic logic
properties of choice were also studied in other settings. To some extent, the
same holds for concurrency. But the study of the deontic logic properties of
sequence, iteration, and converse is characteristic for the work on dynamic de-
ontic logics. A good example is the work by Van der Meyden on the dynamic
logic of permissions [132]. He defines two notions of permission for regular
action: a free choice variant, and a variant he calls ‘not forbidden’. This dis-
tinction is similar to our distinction between free process choice and imposed
process choice. But Van der Meyden does not discuss the free choice intuitions
thoroughly, does not recognize the possibility of partial imposed choice, and
does not explain the connection with free choice semantics for non-sequential
actions. And most importantly, Van der Meyden does not deal with obligation.

The three mentioned paradigms, i.e. the act-predicate approach, the STIT
/ BIAT-approaches, and the practition-type approaches are not as distinct as
may seem at first sight. An interesting approach to the possible reconciliation

5.5. CONCLUSIONS 215

of the BIAT and practition views is proposed by Segerberg [165], who intro-
duces actions δip in dynamic logic representing ‘agent i brings it about that
p’. Also the act-predicate view closes in on the practition view if we consider
act-predicates to be of the binary type, with possible states as the domain of
interpretation.

5.5 Conclusions

In the introduction to this chapter we introduced a distinction between goal
norms and process norms. For both types of action norm categories we defined
reductions to modal action logics: for goal norms we defined reductions to
the modal action logics with a relativized action complement of section 2.5.3,
and for process norms we defined reductions to the µη-calculus defined in
section 3.5. The reductions show that ought-to-do normativity can be given
an purely dynamic interpretation. The first conclusion to be drawn from the
possibility of such reductions, is that it gives ‘proof’ for the normative stance
we formulated in section 1.4.1. The normative stance is essentially that if
we adopt another viewpoint, we can see dynamic behavior in a normative
manner. The reductions we defined in the present chapter can then be seen
as the formal counterparts of going back from a normative viewpoint to a
non-normative one.

A central theme for both reductions is the treatment of choice. We treat
choice as under control, in the sense that a system (or agent) that is subject
to the specified norms has the exclusive power to decide on the choice in
complex actions α. A system can thus freely choose among the possibilities
available according to the norms imposed on it; in particular it cannot be that
it performs a permitted choice action and run into a violation. This alludes
to the concept of ‘free choice permission’. Our work shows that it is actually
possible to define deontic logics of free choice permission. In the deontic logic
literature it is generally assumed that the introduction of free choice permission
leads to inconsistent or degenerate logics [121, 158].

For action goal norms we defined a ‘cautious’ reduction to modal action
logic that deviates from the reduction defined by Meyer [135] in many respects:
we do not assume the strong interdefinabilities between the separate deontic
modalities, we avoid the free choice anomaly, and finally, the resulting deontic
dynamic logics deal with converse and iteration of action. The definition was
shown to be intuitive: it obeys many desired logic properties for ought-to-do
dynamic deontic logics, and performs well on the standard reasoning examples
concerning choice and contrary to duty norms.

216 CHAPTER 5. DEONTIC MODAL ACTION LOGIC

For process norms the concept of free choice had to be refined, which
led to the concept of ‘free process choice’. Semantic characterizations for
fee process choice norms were defined, and a DFA-based translation to µ-
calculi was shown to correspond to this semantics. The analyses revealed
that some detailed semantic choices have to be made in the formalization
of the process norm versions of obligation and permission. In particular, we
mentioned two important differences between the process notions of permission
and obligation: the latter behaves differently with respect to choice over atomic
action, and with respect to iteration.

217

Chapter 6

Discussion and conclusion

In chapter 1 we formulated as the central theme of research for this Ph.D. the-
sis, the development of a logic framework that combines reasoning about (1)
action composition (using action combinators), (2) (discrete) time, (3) action
effects, action possibilities, and (4) norms on action performances. In the pre-
ceding chapters we focussed on each of these individual reasoning tasks: in
chapter 2 we focussed on concurrent action composition and action negation,
in chapter 3 on temporal reasoning, in chapter 4 on reasoning about effects and
qualifications accounting for action description assumptions, and in chapter 5
on reasoning about action norms. In this concluding chapter we investigate in
how far we have reached the goal of designing a logic framework that combines
the mentioned types of reasoning.

Combining (modal) logics is an area of research in itself [14, 67]. The
first concern when combining two logics is how to combine them syntactically.
There are several options. One is to merge the languages of separate logics
without any restrictions. This is the most rigorous route; it needs a generalized
semantic structure, that allows interpretation of both types of formulas, and
indeed, of merged formulas. As an attractive possibility for such generalized
semantic structures we mention multi-dimensional modal structures [127, 164,
13]. Due to interactions between modalities, the complexities of combined
logics are in general much higher then the sum of the complexities of the
individual logics. Therefore all kinds of weaker forms of combining logics are
studied. A natural step is to consider layered logics: formulas of one modal
type may occur within the scope of modalities of another modal type, but not
the other way round.

We defined many different syntaxes in the preceding chapters. However,
there is no reason whatsoever to consider constraints on the way in which the

218 CHAPTER 6. DISCUSSION AND CONCLUSION

syntaxes are combined. This holds in particular for the combination of ‘bare’
action modalities (as studied in chapter 2) and normative action modalities:
we saw that goal oriented and process oriented normative expressions over
complex actions can be syntactically reduced to �I -logics and the µη-calculus,
respectively.

But, there is also a general reason for not having to restrict the way in
which to combine the languages. The logics in this Ph.D. thesis are designed
around a common semantic ground, namely, modal action models. In chapter
2 we showed how we can interpret concurrency and action complement on
modal action models. In chapter 3 we showed how to interpret the temporal
dimension on modal action models. In chapter 4 we showed how action de-
scription assumptions can be interpreted in terms of orderings of modal action
models. Finally, in chapter 5, we showed how two separate types of action
norms, i.e. goal norms and process norms, can be interpreted on modal action
models. The common semantic ground enables us to interpret the logics that
are formed by merging the separate languages, without generalizing the se-
mantic structures. Thus, by using modal action models for all three types of
reasoning, we have made a non-trivial step in achieving the goal mentioned in
the central problem definition. In the sections below we focus on some specific
interactions of the separate types of reasoning.

6.1 Action and time

In chapter 3 we showed how to combine action and time reasoning on modal
action models. We introduced modalities that explicitly refer to both action
and time. This enables us to express properties such as ‘action α is performed
until condition ϕ is met’, and ‘actions alternative to α are performed forever’.
In our view, the relation between action and time is close, which is why time
and action do not need separate modal accessibility relations (see e.g. the
work on STIT-logics [12] for a different opinion on this issue). In chapter 2 we
showed how to formalize the intuition that time, in a sense, is ‘realized’ by ac-
tion. The main conclusion to be drawn is that reasoning about action and time
can be combined fairly well in our framework. Difficulties were encountered
in case modal action logics are strong enough to express intersection of action
relations, i.e. concurrency. Atomic actions that take a minimal time-step may
be concurrently composed with actions taking non-minimal time steps, which
results in conflicting information for the duration of such concurrent compo-
sitions. The possibility to see intersection of action relations as confluency
of courses of (non-Ockhamist) time is rejected, because intersection cannot

6.2. ACTION DESCRIPTION ASSUMPTIONS AND TIME 219

be used to model concurrency and time-confluency at the same time. As a
possible solution to the problem concerning minimal time-steps for concurrent
action, we proposed to restrict concurrency and action complement to non-
sequential actions, which resulted in a two-layered action syntax. We showed
how to define mixed temporal / dynamic modalities over modal action models,
using this syntax.

6.2 Action description assumptions and time

In this section we shortly discuss the interactions between the solutions for
the incorporation of description assumptions we proposed in chapter 4, and
the solutions concerning the expression of temporal properties, as developed
in chapter 3.

In chapter 3 we showed for several modal action logics how to define the
basic temporal relations on models in order to define mixed action / time modal
action logics. If we abstract from the details and the exceptions we discussed
in chapter 3, we may roughly identify the time-line with the transitive closure
of all action relations. In chapter 4 we showed that to implement the action
description assumptions of minimal change and maximal qualification, we can
filter the set of modal action models and arrive at the intended ones, i.e. the
ones obeying these description assumptions. For instance, minimization of
change filters out models where individual action applications change less. We
showed for several sub-formalisms that the application of action description
assumptions corresponds to the application of sets of extension formulas in
the same language. This brings back any action description under an intended
model interpretation to an extended action description under a standard modal
action logic semantics. It is clear that on any model of such a set of standard
modal action logic formulas, we can interpret the temporal formulas defined
in chapter 3. In this sense, no problems arise.

Note however that adopting an intended interpretation with respect to
action description formulas may have temporal consequences. For instance,
minimization of change may cause some action of a sequence of actions to
reach a closer state, from where the successor action in the sequence is not
possible any longer. This shows that minimization of change may alter the pos-
sible course of events, and thereby, the temporal information stored in models.
Also maximization with respect to qualifications has an effect on the tempo-
ral information contained in models: maximization of qualifications actually
means that actions are possible by default. So, along with the maximization
of action possibilities, we may say that possible futures are maximized. A

220 CHAPTER 6. DISCUSSION AND CONCLUSION

specifier using the action description assumptions should be aware of these
temporal consequences of intended interpretations.

6.3 Action description assumptions and norms

We defined deontic action logics as reductions to plain modal action logics
using violation propositions VP , VF and VO. We see no problems in combining
this approach to normative reasoning with the intended model approach we
developed for reasoning under action description assumptions in chapter 4. We
can combine the approaches freely, as long as the violation propositions VP ,
VF and VO are left out of the minimization strategy for minimal change. Then,
also in extensions of action descriptions corresponding to these minimization
and maximization strategies, these propositions are not allowed to occur.

However, it might be interesting to consider what happens if we do allow
the interference with minimal change. Then we would have a situation where
by default violations and non-violations are preserved.

6.4 Action norms and time

We can easily combine the temporal logics of chapter 3 and the normative
logics of chapter 5. For instance, in the µη-calculus we can reason about the
mix of dynamic, temporal and normative properties: in chapter 3 we showed
how to express mixed dynamic / temporal reasoning in this calculus, and
in chapter 5 we showed how to reduce deontic reasoning to reasoning in the
calculus. But, we should not be so uncareful as to claim that we can suitably
model all aspects of this combined reasoning domain. After all, the interplay
between (action) norm-violation and time is a delicate one. And there may be
properties in this domain that are not expressible using our approach. In the
following we undertake a short investigation.

The relation between norms and time is a central theme in the work of
Maibaum. In an overview paper [120] of his (joint) work in deontic logic he
defines two logic systems. The first uses a, what he calls, ‘immediate’ notion
of obligation. An obligation is immediate if its fulfillment is not postponable
to a future point in time, i.e. the obligation has to be fulfilled now, and we
may not defer it and first do another action. In our setting, the goal obliga-
tion O�(α) and the process obligation O�(α) are also immediate obligations.
Maibaum argues that the immediate notion of obligation is not very useful
for specification. He says that, referring to industrial trials to the application

6.4. ACTION NORMS AND TIME 221

of his logic, ‘in most situations, a requirement to perform some action in the
future was more appropriate’.

Clearly, our approach enables us to specify non-immediate obligations. We
can for instance specify that an obligation only holds after performance of some
other action.

‘if ψ holds, it is obliged to perform α immediately after (conditional
on performance of) β’: ψ → [β]O(α)

Or, an obligation holds at certain specific future moments:

‘whatever (atomic) action is performed first, it is always obliged to
perform α next’: AXO(α)

‘if ψ holds, there is a possible future course of events where per-
forming α is obliged forever’1: ψ → EGO(α)

In these examples we left unspecified which of the two action norm variants
of chapter 5 we have in mind: effect norms or process norms. Note that we
freely use the branching time operators of CTL: goal norms can be reduced
to the plain relativized action modalities of chapter 2, for which we showed in
chapter 3 how to combine them with branching time temporal logics such as
CTL. And, for process norms we defined a reduction to the modal µη-calculus,
that also subsumes CTL (definition 3.5.2).

An interesting question is whether these are actually the kind of properties
referred to by Maibaum when he claims that ‘in most situations, a requirement
to perform some action in the future was more appropriate’. The central
question is whether we consider the following two normative assertions to be
equivalent or not: ‘after some finite number of actions it is obliged to perform
α’ and ‘it is obliged to perform α after some finite number of actions’. The first
assertion fits neatly to the formula AFO(α) (on all paths, some time in future
it is obliged to perform α) of our logic framework. But it is not clear how to
represent the second assertion. We claim that this is because it embodies a
semantic confusion.

Maibaum attempts a formalization of the second assertion. His approach
involves the direct association of this type of obligations with liveness prop-
erties and the direct association of permissions with safety properties. This
association is not strange. The obligation featuring in the above assertion is

1Note that this does not necessarily mean that on this path where α is obliged globally,
no violations can occur.

222 CHAPTER 6. DISCUSSION AND CONCLUSION

essentially an obligation to comply to a liveness property: the obligation will
have to be discharged at ‘some’ (finitely reachable) point in future, which is
the ‘good’ thing liveness properties talk about (see the end of section 3.5).
Likewise, a permission might be thought of as a property that, if it is not
explicitly withdrawn at some point, is preserved over time. But as Maibaum
indicates in the conclusion of his paper [120], this association with liveness
and safety does not allow contrary to duty specification. For, if an obligation
is considered to be a liveness property (or an obligation to obey a liveness
property), its violation cannot occur after any finite number of actions. This
points to an ‘internal’ semantic confusion of assertions of the type ‘it is obliged
to perform α after some finite number of actions’. The problem is that nothing
is said about at what point in the future the obligation has to be discharged.
This makes such ‘obligations’ too weak to be useful, since at any point during
a future course of events reactive systems (agents) can postpone the obligation
to yet another future point2.

What is missing from assertions of the mentioned type is a deadline for
the obligation. We take the notion of a ‘deadline’ here in a general sense,
meaning that it is not necessarily specified in what in computer science is
called ‘real time’. A deadline states, for instance, that the obligation has to be
fulfilled before a certain action or condition occurs. Note that for immediate
obligations, we also have a deadline of this type: the obligation has to be
fulfilled now, i.e. before any other action is performed. Adding a deadline
to the mentioned assertion, gives something like: ‘it is obliged to perform η
before the condition ϕ occurs’ (since we do not want to get involved in the
delicate issue of what it means if the condition ϕ occurs during the execution of
the action, from this point on we restrict ourselves to non-sequential actions
η). It is an interesting question whether or not we can express this in our
logic system (see also [58] for an approach to the specification of normative
deadlines in deontic modal action logics). In a first attempt we may make a
semantic identification with the following assertion:

‘for all possible future courses of events, either η is obliged now,
the last moment before ϕ occurs, or any moment in between’:
¬E(¬O(η)Uϕ)

A natural language description that is closer to the form of the formula is:
‘it is not the case that there is a possible future course of events such that
for all time points in between now and the point where ϕ occurs, there is no

2I am sure that some readers will suspect that α stands for ‘finish ones PhD-thesis’.

6.4. ACTION NORMS AND TIME 223

obligation to perform η’. However, intuitively there is something wrong with
the identification of ‘it is obliged to perform η before the condition ϕ occurs’
with ‘either η is obliged now, the next moment, etc., or the last moment
before ϕ occurs’. This can be seen by looking at the violation conditions of
¬E(¬O(η)Uϕ). In most models of the formula ¬E(¬O(η)Uϕ), violations may
occur in states that are not pre-final with respect to the occurrence of ϕ. A
model where η is obliged immediately, while the condition ϕ is not obeyed in
the next state, satisfies it. Therefore, in this model the obligation can also
be violated by the first action. This violation is counter-intuitive, since the
obligation we are trying to find an expression for only demands that we have
to perform η before ϕ occurs. Then, if ϕ does not occur yet, why should there
be a violation?

We may ask ourselves then, what the ‘right’ violation conditions for the
assertion ‘it is obliged to perform η before the condition ϕ occurs’ are. Ap-
parently a violation can only occur in states that are pre-final with respect
to the occurrence of the condition ϕ, since the performance of η can always
be postponed to these points without violating the norm. It is thus justified
to semantically identify the assertion ‘for all possible future courses of events
it is obliged to perform η before the condition ϕ occurs’ with the following
assertion:

‘for all possible future courses of events it holds that if the action η
has not yet been done in the state before ϕ occurs, there is an im-
mediate obligation in that state to perform it’: ¬E(�Bη U (EXϕ∧
¬O(η)))

The natural language description that is closer to the form of the formula is:
‘there is no future course of events where we can perform actions alternative
to η until we reach a state where it is possible to do an action with ϕ as a
possible result and where it is not obliged to perform η immediately’. In this
property three of the four major research themes of this Ph.D. thesis meet:
(1) we need the action complement of chapter 2 to make the obligation in the
state that is pre-final with respect to the occurrence of ϕ conditional on the
absence of actions η in the course of action leading to this state3, (2) we need
the temporal / dynamic until-operator of chapter 3 to express the temporal
conditions of the involved actions, and (3) we need the obligation operators
of chapter 5 to account for the normative conditions in the pre-final state.

3Note that this is not the only aspect of the deadline property where the action comple-
ment plays a role. In chapters 3 and 5 we discussed its crucial role in the specification of
mixed dynamic / temporal modalities as such, and in obligation modalities, respectively.

224 CHAPTER 6. DISCUSSION AND CONCLUSION

Therefore, in a nutshell, this single formula demonstrates the usefulness of
much of the work in this Ph.D. thesis, which makes this a good point to end
it.

6.5 Final remarks

A very general conclusion to be drawn from this doctoral thesis concerns the
importance of semantic analysis. The analysis of deontic deadlines in the pre-
vious section reveals that semantic content can be much more subtle than
expected. These semantic issues may seem rather specialized material. But it
is actually at the semantic level where design faults are easily made: formulas
or programs may turn out to give rise to slightly other behavior than was
intended or expected by the specifier. This emphasizes the importance of a
logic framework in which these semantic issues can be represented and ana-
lyzed. And using a formal logic system with a clear model-theoretic semantics
to specify such semantically critical system properties, may help to reduce the
tension that can exist between what is intended by a specifier and the actual
behavior displayed by his system design.

Finally, we want to confess that this Ph.D. thesis has one apparent omis-
sion: a worked out case study that demonstrates that the developed logic
framework is actually useful in practical situations. We decided not to include
such a worked out example of the specification and verification of a reactive
system, since we felt that demonstrating a serious application of the theory
developed in this thesis is enough work for a separate Ph.D. thesis.

225

Bibliography

[1] M. Abadi and L. Lamport. Conjoining specifications. ACM Transactions on
Programming Languages and Systems, 17(3):507–534, 1995.

[2] C.E. Alchourrón. A sketch of logic without truth. In The 2nd International
Conference on Artificial Intelligence and Law, pages 165–179. ACM Press, 1989.

[3] C.E. Alchourrón. Philosophical foundations of deontic logic and the logic of
defeasible conditionals. In J.-J.Ch. Meyer and R.J. Wieringa, editors, Deontic
Logic in Computer Science: Normative System Specification, pages 43–84. John
Wiley and Sons, 1993.

[4] B. Alpern and F.B. Schneider. Recognizing safety and liveness. Distributed
Computing, 2:117–126, 1987.

[5] A.R. Anderson. A reduction of deontic logic to alethic modal logic. Mind,
67:100–103, 1958.

[6] L. Åqvist. Deontic logic. In D.M. Gabbay and F. Guenthner, editors, Handbook
of philosophical logic, vol. II, pages 605–714. D. Reidel Publishing Company,
1984.

[7] J.C.M. Baeten and W.P. Weijland. Process Algebra, volume 18 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1990.

[8] P. Balbiani and D. Vakarelov. Iteration-free PDL with intersection: a complete
axiomatization. Fundamenta Informaticae, 45(3):173–194, 2001.

[9] H. Barringer, R. Kuiper, and A. Pnueli. Now you may compose temporal logic
specifications. In Proceedings of the 16th Annual ACM Symposium on Theory
of Computing, pages 51–63, 1984.

[10] M. von der Beeck. A comparison of Statecharts variants. In H. Langmaack,
W.P. de Roever, and J. Vytopil, editors, Formal Techniques in Real-Time and
Fault-Tolerant Systems, volume 863 of Lecture Notes in Computer Science,
pages 128–148. Springer, 1994.

[11] N. Belnap and M. Perloff. Seeing to it that: a canonical form for agentives.
Theoria, 54(3):175–199, 1988.

226 BIBLIOGRAPHY

[12] N. Belnap, M. Perloff, and M. Xu. Facing the future. Oxford University Press,
2001.

[13] B. Bennet, A.G. Cohn, F. Wolter, and M. Zakharyaschev. Multi-dimensional
multi-modal logics as a framework for spatio-temporal reasoning. Applied In-
telligence. forthcoming.

[14] B. Bennett, C. Dixon, M. Fisher, E. Franconi, I. Horrocks, U. Hustadt, and
M. de Rijke. Combinations of modal logics. Journal of AI Reviews, 17(1):1–20,
2002.

[15] J.F.A.K. van Benthem. Minimal deontic logics. Bulletin of the Section of Logic,
8(1):36–42, 1979.

[16] J.F.A.K. van Benthem. Correspondence theory. In D.M. Gabbay and F. Guen-
thner, editors, Handbook of philosophical logic, vol. II. D. Reidel Publishing
Company, 1984.

[17] J.F.A.K. van Benthem. Programming operations that are safe for bisimulation.
Studia Logica, 60(2):311–330, 1998.

[18] A. Biere. mu-cke - efficient mu-calculus model checking. In O. Grumberg, editor,
International Conference on Computer-Aided Verification (CAV’97), volume
1254 of Lecture Notes in Computer Science, pages 468–471. Springer, 1997.

[19] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic, volume 53 of Cam-
bridge Tracts in Theoretical Computer Science. Cambridge University Press,
2001.

[20] A. Borgida, J. Mylopoulos, and R. Reiter. On the frame problem in procedure
specifications. IEEE Transactions on Software Engineering, 21:785–798, 1995.

[21] S.-E. Bornscheuer and M. Thielscher. Representing concurrent actions and
solving conflicts. Journal of the Interest Group in Pure and Applied Logics
(IGPL). Special issue of the ESPRIT project MEDLAR, 4(3):355–368, 1996.

[22] J.C. Bradfield. Verifying Temporal Properties of Systems. Birkhäuser Boston,
Massachussetts, 1992.

[23] J.C. Bradfield. On the expressivity of the modal mu-calculus. In C. Puech
and R. Reischuk, editors, Proceedings 13th Annual Symposium on Theoretical
Aspects of Computer Science (STACS ’96), volume 1046 of Lecture Notes in
Computer Science, pages 479–490. Springer, 1996.

[24] J.C. Bradfield and C. Stirling. Verifying temporal properties of processes. In
J.C.M. Baeten and J.W. Klop, editors, CONCUR ’90: Theories of Concurrency:
Unification and Extension, volume 458 of Lecture Notes in Computer Science,
pages 115–125. Springer, 1990.

[25] J.C. Bradfield and C. Stirling. Modal logics and mu-calculi: An introduction. In
J.A. Bergstra, A. Ponse, and S.A. Smolka, editors, Handbook of Process Algebra,
pages 291–330. Elsevier Science, 2001.

BIBLIOGRAPHY 227

[26] J.M. Broersen. A new action-base for dynamic deontic logics. In J. Horty and
A.J.I. Jones, editors, Pre-proceedings 6th International Workshop on Deontic
Logic in Computer Science (DEON’02), pages 21–37, 2002.

[27] J.M. Broersen. Relativized action negation for dynamic logics. In Pre-
proceedings Advances in Modal Logic (AiML 2002), 2002. submitted to World
Scientific.

[28] J.M. Broersen, M. Dastani, Z. Huang, and L.W.N. van der Torre. Trust and
commitment in dynamic logic. In H. Shafazand and A. Min Tjoa, editors,
Eurasia-ICT 2002: Information and Communication Technology, volume 2510
of Lecture Notes in Computer Science, pages 677–684. Springer, 2002.

[29] J.M. Broersen, M. Dastani, and L.W.N. van der Torre. Commitment and trust
in dynamic logic. In A van den Bosch and H. Weigand, editors, Proceedings
of the 12th Belgium-Netherlands Artificial Intelligence Conference, pages 3–11,
2000.

[30] J.M. Broersen, M. Dastani, and L.W.N van der Torre. Leveled commitment and
trust in negotiation. In Proceedings of the Autonomous Agents 2000 Workshop
on Deception, Fraud and Trust in Agent Societies, 2000.

[31] J.M. Broersen and R.J. Wieringa. Preferential semantics for action specifica-
tions in first-order modal action logic. In Proceedings of the ECAI’98 Workshop
on Practical Reasoning and Rationality (PRR’98), 1998.

[32] J.M. Broersen and R.J. Wieringa. A logic for the specification of multi-object
systems. In P. Ciancarini, A. Fantechi, and R. Gorrieri, editors, Formal Methods
for Open Object-Based Distributed Systems, pages 241–258. Kluwer Academic
Publishers, 1999.

[33] J.M. Broersen, R.J. Wieringa, and R.B. Feenstra. Minimal semantics for ac-
tion specifications in PDL. In J. Engelfriet and M. Spaan, editors, Proceedings
Accolade ’96, pages 15–30, Department of Mathematics and Computer Science,
University of Amsterdam, 1997. Dutch Graduate School in Logic.

[34] J.M. Broersen, R.J. Wieringa, and J.-J.Ch. Meyer. Mu-calculus-based deon-
tic logic for regular actions. In R. Demolombe and R. Hilpinen, editors, Pre-
proceedings 5th International Workshop on Deontic Logic in Computer Science
(DEON’00), pages 43–61, 2000.

[35] J.M. Broersen, R.J. Wieringa, and J.-J.Ch. Meyer. A semantics for persistency
in propositional dynamic logic. In J. Lloyd, V. Dahl, U. Furbach, M. Kerber, K.-
K. Lau, C. Palamidessi, L. Moniz Pereira, Y. Sagiv, and P.J. Stuckey, editors,
Proceedings First International Conference on Computational Logic (CL2000),
volume 1861 of Lecture Notes in Artificial Intelligence, pages 912–925. Springer,
2000.

228 BIBLIOGRAPHY

[36] J.M. Broersen, R.J. Wieringa, and J.-J.Ch. Meyer. A fixed-point character-
ization of a deontic logic of regular action. Fundamenta Informaticae, 48(2,
3):107–128, 2001. Special Issue on Deontic Logic in Computer Science.

[37] J.M. Broersen, R.J. Wieringa, and J.-J.Ch. Meyer. The mutual exclusion prob-
lem in reasoning about action and change. In P. Doherty and M. Thielscher,
editors, Pre-proceedings NMR2002, 2002.

[38] M.A. Brown. Doing as we ought: towards a logic of simply dischargeable obli-
gations. In M.A. Brown and J. Carmo, editors, Deontic logic, agency, and
normative systems. Proceedings DEON ’96, pages 47–65. Springer, 1996.

[39] M.A. Brown and V. Goranko. An extended branching-time Ockhamist temporal
logic. Journal of Logic, Language, and Information, 8(2):143–166, 1999.

[40] J. Carmo. Deontic database constraints, violation and recovery. Studia Logica,
1/2 (57):139–165, 1996.

[41] H.-N. Castañeda. Thinking and Doing. The Philosophical Foundations of Insti-
tutions. D. Reidel Publishing Company, 1975.

[42] H.-N. Castañeda. The paradoxes of deontic logic: the simplest solution to all
of them in one fell swoop. In R. Hilpinen, editor, New Studies in Deontic
Logic: Norms, Actions and the Foundations of Ethics, pages 37–85. D. Reidel
Publishing Company, 1981.

[43] H.-N. Castañeda. Aspectual actions and davidson’s theory of events. In
B.P. McLaughlin E. LePore, editor, Actions and Events: Perspectives on the
Pholosophy of Donald Davidson, pages 294–310. Basil-Blackwell, 1985.

[44] M.A. Castilho, O. Gasquet, and A. Herzig. Formalizing action and change in
modal logic I: the frame problem. Journal of Logic and Computation, 9(5),
1999.

[45] E.S. Chang, Z. Manna, and A. Pnueli. Characterization of temporal property
classes. In W. Kuich, editor, Proceedings of the 19th International Colloquium
on Automata, Languages, and Programming (ICALP 1992), volume 623 of Lec-
ture Notes in Computer Science, pages 474–486. Springer, 1992.

[46] R.M. Chisholm. Contrary-to-duty imperatives and deontic logic. Analysis,
24:33–36, 1963.

[47] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Transactions
on Programming Languages and Systems, 8(2), 1986.

[48] E.M. Clarke, O. Grumberg, and D. Long. Verification tools for finite-state
concurrent systems. In A decade of concurrency, volume 803 of Lecture Notes
in Computer Science, pages 124–175. Springer, 1993.

BIBLIOGRAPHY 229

[49] R. Cleaveland and S. Sims. The NCSU concurrency workbench. In R. Alur and
T. Henzinger, editors, Computer-Aided Verification (CAV ’96), volume 1102 of
Lecture Notes in Computer Science, pages 394–397. Springer, 1996.

[50] P.R. Cohen and H.J. Levesque. Intention is choice with commitment. Artificial
Intelligence, 42(3):213–261, 1990.

[51] M. Dam. CTL* and ECTL* as fragments of the modal mu-calculus. Theoretical
Computer Science, 126:77–96, 1994.

[52] R. Danecki. Nondeterministic propositional dynamic logic with intersection is
decidable. In A. Skowron, editor, Proceedings of the 5th Symposium on Compu-
tation Theory, volume 208 of Lecture Notes in Computer Science, pages 34–53,
1984.

[53] D.C. Dennett. The intentional stance. The MIT Press, 1987.

[54] F.P.M. Dignum and J.-J.Ch. Meyer. Negations of transactions and their use
in the specification of dynamic and deontic integrity constraints. In M.Z.
Kwiatkowska, M.W. Shields, and R.M. Thomas, editors, Semantics for Con-
currency, pages 61–80. Springer, 1990.

[55] F.P.M. Dignum, J.-J.Ch. Meyer, and R.J. Wieringa. Contextual permission: A
solution to the free choice paradox. In A.J.I. Jones and M. Sergot, editors, 2nd
International Workshop on Deontic Logic in Computer Science (DEON’94),
pages 107–130. Norwegian Research Center for Computers and Law, 1994.

[56] F.P.M. Dignum, J.-J.Ch. Meyer, and R.J. Wieringa. Free choice and contextu-
ally permitted actions. Studia Logica, 57:193–220, 1996.

[57] E.A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, volume B: Formal Models and Semantics,
chapter 14, pages 996–1072. Elsevier Science, 1990.

[58] H. Weigand F. Dignum and E. Verharen. Meeting the deadline: on the formal
specification of temporal deontic constraints. In Z.W. Ras and M. Michalewicz,
editors, Foundations of Intelligent Systems, number 1079 in Lecture Notes in
Artificial Intelligence, pages 243–252. Springer, 1996.

[59] M.J. Fischer and R.E. Ladner. Propositional dynamic logic of regular programs.
Journal of Computer and System Sciences, 18(2):194–211, 1979.

[60] D. Føllesdal and R. Hilpinen. Deontic logic: An introduction. In R. Hilpinen,
editor, Deontic Logic: Introductory and Systematic Readings, pages 1–35. D.
Reidel Publishing Company, 1971.

[61] N. Foo and D. Zhang. Extended propositional dynamic logic for expressing
the indirect effect of actions. In Advances in Modal Logic, volume 3. CSLI
Publications, 2001.

230 BIBLIOGRAPHY

[62] N. Foo, D. Zhang, Y. Zhang, S. Chopra, and B.Q. Vo. Encoding solutions of the
frame problem in dynamic logic. In T. Eiter, W. Faber, and M. Truszczyński,
editors, Logic Programming and Nonmonotonic Reasoning (LPNMR’01), vol-
ume 2173 of Lecture Notes in Artificial Intelligence, pages 240–253. Springer,
2001.

[63] J.W. Forrester. Gentle murder, or the adverbial Samaritan. Journal of Philos-
ophy, 81(4):193–197, 1984.

[64] J.W. Forrester. Being Good and Being Logical: Philosophical Groundwork for
a New Deontic Logic. M.E. Sharpe, 1996.

[65] D.M. Gabbay. The declarative past and imperative future: executable temporal
logic for interactive systems. In Temporal logic in specification, volume 398 of
Lecture Notes in Computer Science, pages 409–448. Springer, 1989.

[66] D.M. Gabbay, A. Pnueli, S. Shela, and J. Stavi. On the temporal analysis
of fairness. In Proceedings 7th ACM symposium on principles of programming
languages, pages 163–173, 1980.

[67] D.M. Gabbay and M. de Rijke, editors. Frontiers of Combining Systems 2,
volume 7 of Studies in Logic and Computation. John Wiley and Sons, 2000.

[68] G. Gargov and S. Passy. A note on boolean modal logic. In P. Petkov, ed-
itor, Mathematical Logic. Proceedings of The Summer School and Conference
”Heyting’88”, pages 311–321. Plenum Press, 1990.

[69] M. Gelfond and V. Lifschitz. Action languages. Electronic Transaction on AI,
16(3), 1998.

[70] G. De Giacomo. Decidability of class-based knowledge representation for-
malisms. PhD thesis, Universita’ di Roma “La Sapienza”, 1995.

[71] G. De Giacomo. Eliminating ”converse” from converse PDL. Journal of Logic,
Language and Information, 5:193–208, 1996.

[72] G. De Giacomo and X.J. Chen. Reasoning about nondeterministic and concur-
rent actions: A process algebra approach. In Proceedings of the 13th National
Conference on Artificial Intelligence (AAAI’96), pages 658–663. The MIT Press,
1996.

[73] G. De Giacomo and M. Lenzerini. PDL-based framework for reasoning about ac-
tions. In Proceedings of the 4th Congress of the Italian Association for Artificial
Intelligence (AI*IA’95), volume 992 of Lecture Notes in Artificial Intelligence,
pages 103–114. Springer, 1995.

[74] M.L. Ginsberg and D.E. Smith. Reasoning about action II: The qualification
problem. Artificial Intelligence, 35:311–342, 1988.

[75] L. Giordano, A. Martelli, and C. Schwind. Dealing with concurrent actions in
modal action logic. In H. Prade, editor, Proceedings 13th European Conference
on Artificial Intelligence (ECAI’98), 1998.

BIBLIOGRAPHY 231

[76] L. Giordano and C. Schwind. Towards a conditional logic of actions and cau-
sation. In P. Doherty and M. Thielscher, editors, Pre-proceedings NMR2002,
2002.

[77] R.J. van Glabbeek. Comparative Concurrency Semantics and Refinement of
Actions, volume 109 of CWI Tract. CWI, Amsterdam, 1996. Second edition of
dissertation.

[78] V. Goranko. Modal definability in enriched languages. Notre Dame Journal of
Formal Logic, 31(1):81–105, 1990.

[79] E. Grädel. Why are modal logics so robustly decidable. Bulletin of the EATCS,
68:90–103, 1999.

[80] P. Grünwald. Causation and nonmonotonic temporal reasoning. In G. Brewka,
C. Habel, and B. Nebel, editors, KI-97: Advances in Artificial Intelligence,
volume 1303 of Lecture Notes in Artificial Intelligence, pages 159–170. Springer,
1997.

[81] P. Grünwald. The Minimum Description Length Principle and Reasoning un-
der Uncertainty. PhD thesis, Universiteit van Amsterdam, Institute for Logic,
Language and Computation, ILLC Dissertation Series 1998-03, 1998.

[82] S. Hanks and D. Mc Dermott. Default reasoning, nonmonotonic logics, and
the frame problem. In Proceedings of the National Conference on Artificial
Intelligence (AAAI86), pages 328–333. Morgan Kaufmann Publishers, 1986.

[83] D. Harel. First Order Dynamic Logic, volume 68 of Lecture Notes in Computer
Science. Springer, 1979.

[84] D. Harel. Statecharts: a visual formalism for complex systems. Science of
Computer Programming, 8:231–274, 1987.

[85] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. The MIT Press, 2000.

[86] D. Harel, O. Kupferman, and M.Y. Vardi. On the complexity of verifying
concurrent transition systems. In A.W. Mazurkiewicz and J. Winkowski, edi-
tors, Proceedings 8th International Conference on Concurrency Theory (CON-
CUR ’97), volume 1243 of Lecture Notes in Computer Science, pages 258–272.
Springer, 1997.

[87] D. Harel and D. Peleg. Process logic with regular formulas. Theoretical Com-
puter Science, pages 307–322, 1985.

[88] D. Harel and A. Pnueli. On the development of reactive systems. In K.R. Apt,
editor, Logics and Models of Concurrent Systems, volume F-13 of NATO ASI
Series, pages 477–498. Springer, 1985.

[89] D. Harel, A. Pnueli, J.P. Schmidt, and R. Sherman. On the formal semantics
of statecharts. In Proceedings Symposium on Logic in Computer Science, pages
54–64. Computer Science Press, 1987.

232 BIBLIOGRAPHY

[90] D. Harel and E. Singerman. Computation paths logic: An expressive, yet el-
ementary, process logic (abridged version). In P. Degano, R. Gorrieri, and
A. Marchetti-Spaccamela, editors, Proceedings 24th International Colloquium
on Automata, Languages and Programming (ICALP’97), volume 1256 of Lec-
ture Notes in Computer Science, pages 408–418. Springer, 1997.

[91] A. Herzig and O. Rifi. Propositional belief base update and minimal change.
Artificial Intelligence, 115(1):107–138, 1999.

[92] R. Hilpinen. Conditionals and possible worlds. In G. Fløstad, editor, Contem-
porary Philosophy, a New Survey, volume 1, pages 299–335. Martinus Nijhoff,
1981.

[93] R. Hilpinen. New studies in deontic logic. D. Reidel Publishing Company, 1981.

[94] R. Hilpinen. Actions in deontic logic. In J.-J.Ch. Meyer and R.J. Wieringa,
editors, Deontic Logic in Computer Science: Normative System Specification,
pages 85–100. John Wiley and Sons, 1993.

[95] J. Hintikka. Some main problems of deontic logic. In R. Hilpinen, editor,
Deontic Logic: Introductory and Systematic Readings, pages 59–104. D. Reidel
Publishing Company, 1971.

[96] J. Hintikka. Impossible worlds vindicated. Journal of Philosophical Logic, 4:475–
484, 1975.

[97] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[98] W. van der Hoek. Modalities for Reasoning about Knowledge and Quantities.
PhD thesis, Faculteit der Wiskunde en Informatica, Vrije Universiteit Amster-
dam, 1992.

[99] J.F. Horty. Agency and Deontic Logic. Oxford University Press, 2001.

[100] C. Huizing, R. Gerth, and W.P. de Roever. Modeling Statecharts in a fully
abstract way. In M. Dauchet and M. Nivat, editors, 13th Colloquium on Trees in
Algebra and Programming (AAP’88), volume 299 of Lecture Notes in Computer
Science, pages 271–294. Springer, 1988.

[101] L. Humberstone. Inaccessible worlds. Notre Dame Journal of Formal Logic,
24:346–352, 1983.

[102] A.J.I. Jones and M. Sergot. On the characterization of law and computer sys-
tems: The normative sytems perspective. In J.-J.Ch. Meyer and R.J. Wieringa,
editors, Deontic Logic in Computer Science: Normative System Specification,
pages 275–307. John Wiley and Sons, 1993.

[103] H. Kamp. Free choice permission. Aristotelian Society Proceedings N.S., 74:57–
74, 1973-1974.

BIBLIOGRAPHY 233

[104] S. Kanger. New foundations for ethical theory. In R. Hilpinen, editor, Deontic
Logic: Introductory and Systematic Readings, pages 36–58. D. Reidel Publishing
Company, 1971.

[105] S. Kanger. Law and logic. Theoria, 38(3):105–132, 1972.

[106] H.A. Kautz. The logic of persistence. In Proceedings of the National Confer-
ence on Artificial Intelligence (AAAI86), pages 401–405. Morgan Kaufmann
Publishers, 1986.

[107] D. Kozen. Results on the propositional mu-calculus. Theoretical Computer
Science, 27:333–354, 1983.

[108] D. Kozen and R. Parikh. An elementary proof of the completeness of PDL.
Theoretical Computer Science, 14:113–118, 1981.

[109] D. Kozen and J. Tiuryn. Logics of programs. In J. van Leeuwen, editor, Hand-
book of Theoretical Computer Science, volume B: Formal Models and Semantics,
pages 789–840. Elsevier Science, 1990.

[110] R. Ladner. The computational complexitiy of provability in systems of propo-
sitional modal logic. SIAM Journal on Computing, 6:467–480, 1977.

[111] E.J. Lemmon and D.S. Scott. The ‘Lemmon Notes’: an introduction to modal
logic. Blackwell, 1977.

[112] D. Lewis. Semantic analysis for dyadic deontic logic. In S. Stunland, editor,
Logical Theory and Semantical Analysis, pages 1–14. D. Reidel Publishing Com-
pany, 1974.

[113] D. Lewis. On the Plurality of Worlds. Basil Blackwell, 1986.

[114] V. Lifschitz. Two components of an action language. Annals of Mathematics
and Artificial Intelligence, 21(1), 1997.

[115] F. Lin and R. Reiter. State Constraints Revisited. Journal of Logic and Com-
putation, 4(5):655–678, 1994. Special Issue on Action and Processes.

[116] L. Lindahl. Position and Change - A Study in Law and Logic. Number 112 in
Synthese Library. D. Reidel Publishing Company, 1977.

[117] K. Lodaya, R. Parikh, R. Ramanujan, and P.S. Thiagarajan. A logical study
of distributed transition systems. Information and Computation, 119:91–118,
1995.

[118] C. Lutz and U. Sattler. The complexity of reasoning with boolean modal logic.
In Advances in Modal Logic, volume 3. CSLI Publications, 2000.

[119] C. Lutz and U. Sattler. The complexity of reasoning with boolean modal logic
(extended version). Technical Report LTCS-Report 00-02, Aachen University
of Technoligy, 2001.

234 BIBLIOGRAPHY

[120] T.S.E. Maibaum. Temporal reasoning over deontic specifications. In J.-J. Ch.
Meyer and R.J. Wieringa, editors, Deontic Logic in Computer Science: Norma-
tive System Specification, pages 141–202. John Wiley and Sons, 1993.

[121] D. Makinson. Stenius’ approach to disjunctive permission. Theoria, 50:138–147,
1984.

[122] D. Makinson. On a fundamental problem of deontic logic. In P. McNamara and
H. Prakken, editors, Norms, Logics and Information Systems. New Studies on
Deontic Logic and Computer Science, pages 29–53. IOS Press, 1998.

[123] D. Makinson and L.W.N. van der Torre. Input-output logics. Journal of Philo-
sophical Logic, 29:383–408, 2000.

[124] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent
Systems: Specification. Springer, 1992.

[125] M. Marx. Relativized relation algebras. Algebra Universalis, 41:23–45, 1999.

[126] M. Marx and Y. Venema. Local variations on a loose theme: modal logic and
decidability. In M.Y. Vardi and S. Weinstein, editors, Finite Model Theory and
its Applications. Springer. forthcoming.

[127] M. Marx and Y. Venema. Multi-Dimensional Modal Logic, volume 4 of Applied
Logic Series. Kluwer Academic Publishers, 1997.

[128] J. McCarthy. Ascribing mental qualities to machines. Philosophical Perspectives
in Artificial Intelligence, 1979.

[129] J. McCarthy. Circumscription—a form of non-monotonic reasoning. Artificial
Intelligence, 13:27–39, 1980.

[130] L.T. McCarty. Modalities over actions I. Model theory. In J. Doyle, E. Sande-
wall, and P. Torasso, editors, Proceedings of the 4th International Conference
on Principles of Knowledge Representation and Reasoning (KR’94), pages 437–
448. Morgan Kaufmann Publishers, 1994.

[131] R. van der Meyden. A clausal logic for deontic action specification. In Proceed-
ings International Logic Programming Symposium. The MIT Press, 1991.

[132] R. van der Meyden. The dynamic logic of permission. Journal of Logic and
Computation, 6(3):465–479, 1996.

[133] J.-J.Ch Meyer. Free choice permissions and ross’ paradox: internal vs exter-
nal non-determinism. Technical Report IR-130, Faculty of Mathematics and
Computer Science, Vrije Universiteit, Amsterdam, 1987.

[134] J.-J.Ch Meyer. A simple solution to the ”deepest” paradox in deontic logic.
Logique et Analyse, (117-118):81–90, 1987.

[135] J.-J.Ch. Meyer. A different approach to deontic logic: Deontic logic viewed as
a variant of dynamic logic. Notre Dame Journal of Formal Logic, 29:109–136,
1988.

BIBLIOGRAPHY 235

[136] J.-J.Ch. Meyer and P. Doherty. Preferential action semantics (preliminary re-
port). In J.-J.Ch. Meyer and P.-Y. Schobbens, editors, Formal Models of Agents,
volume 1760 of Lecture Notes in Artificial Intelligence, pages 187–201. Springer,
1999.

[137] J.-J.Ch. Meyer and R.J. Wieringa. Deontic logic: a concise overview. In J.-
J.Ch. Meyer and R.J. Wieringa, editors, Deontic Logic in Computer Science:
Normative System Specification, pages 3–16. John Wiley and Sons, 1993.

[138] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes
in Computer Science. Springer, 1980.

[139] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[140] R. De Nicola, A. Fantechi, S. Gnesi, and G. Ristori. An action-based framework
for verifying logical and behavioural properties of concurrent systems. Computer
Networks and ISDN Systems, 25:761–778, 1993.

[141] R. De Nicola and F. Vaandrager. Action versus state based logics for transition
systems. In I. Guessarian, editor, Semantics of Concurrency, volume 469 of
Lecture Notes in Computer Science, pages 407–419. Springer, 1990.

[142] D. Nute. Apparent obligation. In D. Nute, editor, Defeasible Deontic Logic,
pages 287–315. Kluwer Academic Publishers, 1997.

[143] E. Orlowska. Dynamic logic with program specification and its relational proof
system. Journal of Applied Non-Classical Logics, 3(2):147–171, 1993.

[144] R. Parikh. The completeness of propositional dynamic logic. In Proceedings 7th
Symposium on Mathematical Foundations of Computer Science, volume 64 of
Lecture Notes in Computer Science, pages 403–415. Springer, 1978.

[145] D. Park. Concurrency and automata on infinite sequences. In P. Deussen, editor,
Proceedings 5th GI-Conference on Theoretical Computer Science, volume 104 of
Lecture Notes in Computer Science, pages 167–183. Springer, 1981.

[146] S. Passy and T. Tinchev. An essay in combinatory dynamic logic. Information
and Computation, 93:263–332, 1991.

[147] D. Peleg. Communication in concurrent dynamic logic. Journal of Computer
and System Sciences, 35:23–58, 1987.

[148] D. Peleg. Concurrent dynamic logic. Journal of the ACM, 34:450–479, 1987.

[149] A. Pnueli. The temporal logic of programs. In Proceedings of the 18th IEEE
Symposium on the Foundations of Computer Science (FOCS-77), pages 46–57.
IEEE Computer Society Press, 1977.

[150] A. Pnueli and M. Shalev. What is in a step: on the semantics of statecharts.
In T. Ito and A.R. Meyer, editors, Theoretical Aspects of Computer Software,
volume 526 of Lecture Notes in Computer Science, pages 244–264. Springer,
1991.

236 BIBLIOGRAPHY

[151] I. Pörn. Action Theory and Social Science: Some Formal Models. D. Reidel
Publishing Company, 1977.

[152] V.R. Pratt. Semantical considerations on Floyd-Hoare logic. In Proceedings
17th IEEE Symposium on the Foundations of Computer Science, pages 109–
121. IEEE Computer Society Press, 1976.

[153] H. Prendinger and G. Schurz. Reasoning about action and change, a dynamic
logic approach. Journal of Logic, Language and Information, 5:209–245, 1996.

[154] A.N. Prior. Past, Present, and Future. Clarendon Press, 1967.

[155] R. Reiter. The frame problem in the situation calculus: A simple solution
(sometimes) and a completeness result for goal regression. In V. Lifschitz,
editor, Artificial Intelligence and Mathematical Theory of Computation: Papers
in Honor of John McCarthy. Academic Press, 1991.

[156] M. de Rijke. A system of dynamic modal logic. Journal of Philosophical Logic,
27:109–142, 1998.

[157] J.A. Robinson. Computational logic: Memories of the past and challanges
for the future. In J. Lloyd, V. Dahl, U. Furbach, M. Kerber, K.-K. Lau,
C. Palamidessi, L. Moniz Pereira, Y. Sagiv, and P.J. Stuckey, editors, Proceed-
ings First International Conference on Computational Logic (CL2000), volume
1861 of Lecture Notes in Artificial Intelligence, pages 1–24. Springer, 2000.

[158] R. van Rooy. Permission to change. Journal of Semantics, 17(2), 2000.

[159] A. Ross. Imperatives and logic. Theoria, 7:53–71, 1941.

[160] L. Royakkers and F.P.M. Dignum. Giving permission implies giving choice. In
E. Schweighofer, editor, Proceedings 8th international conference and workshop
on database and expert system applications, 1997.

[161] J. Rushby. Calculating with requirements. In Proceedings 3rd IEEE Interna-
tional Symposium on Requirements Engineering, pages 144–146. IEEE Com-
puter Society Press, 1992.

[162] B. Russell. On denoting. Mind, 14:479–493, 1905. Reprinted in Bertrand
Russell, Essays in Analysis, London: Allen & Unwin, 103-119, 1973.

[163] E. Sandewall and Y. Shoham. Non-monotonic temporal reasoning. In D.M.
Gabbay, C.J. Hogger, and J.A. Robinson, editors, Handbook of Logic in Artificial
Intelligence and Logic Programming-Epistemic and Temporal reasoning (Volume
4), pages 439–498. Clarendon Press, 1994.

[164] K. Segerberg. Two-dimensional modal logic. Journal of Philosophical Logic,
2:77–96, 1973.

[165] K. Segerberg. Bringing it about. Journal of Philosophical Logic, 18(4):327–347,
1989.

BIBLIOGRAPHY 237

[166] K. Segerberg. Getting started: Beginnings in the logic of action. Studia Logica,
51, 1992.

[167] K. Segerberg. Outline of a logic of action. Technical Report 5–2000, Department
of Philosophy University of Uppsala, 2000.

[168] M. Sergot and F. Richards. On the representation of action and agency in the
theory of normative positions. Fundamenta Informaticae, 34, 2001. Special
issue, proceedings DEON2000.

[169] L. Spalazzi and P. Traverso. A dynamic logic for acting, sensing and planning.
Journal of Logic and Computation, 10(6):787–821, 2000.

[170] P.A. Spruit, R.J. Wieringa, and J.-J.Ch. Meyer. Axiomatization, declarative
semantics and operational semantics of passive and active updates in logic
databases. Journal of Logic and Computation, 5(1):27–50, 1995.

[171] B. Steffen, R. Cleaveland, and J. Parrow. The concurrency workbench: A
semantics–based verification tool for finite state systems. ACM Transactions
on Programming Languages and Systems, TOPLAS, 15:36–72, 1993.

[172] C. Stirling. Modal and temporal logics. In S. Abramsky, D.M. Gabbay, and
T.S.E. Maibaum, editors, Handbook of Logic in Computer Science, pages 477–
563. Oxford University Press, 1992.

[173] C. Stirling. Modal and temporal logics for processes. In Banff Higher Order
Workshop, volume 1043 of Lecture Notes in Computer Science, pages 149–237.
Springer, 1996.

[174] A. Tarski. On the calculus of relations. Journal of Symbolic Logic, 6:73–89,
1941.

[175] A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific
Journal of Mathematics, 5, 1955.

[176] M. Thielscher. Qualified ramifications. In B. Kuipers and B. Webber, editors,
Proceedings of the 14th National Conference on Artificial Intelligence (AAAI).
The MIT Press, 1997.

[177] M. Thielscher. Ramification and causality. Artificial Intelligence, 89(1–2):317–
364, 1997.

[178] M. Thielscher. From situation calculus to fluent calculus: State update axioms
as a solution to the inferential frame problem. Artificial Intelligence, 111(1–
2):277–299, 1999.

[179] L.W.N. van der Torre. Reasoning about Obligations: Defeasibility in Preference-
based Deontic Logic. PhD thesis, Erasmus University Rotterdam, 1997.

[180] L.W.N. van der Torre and Y.H. Tan. The many faces of defeasibility in defeasible
deontic logic. In D. Nute, editor, Defeasible Deontic Logic, pages 79–121. Kluwer
Academic Publishers, 1997.

238 BIBLIOGRAPHY

[181] A.M. Turing. The word problem in semi-groups with cancellation. 52, 1950.

[182] Y. Venema. Modal definability, purely modal. In J. Gerbrandy, M. Marx, M. de
Rijke, and Y. Venema, editors, JFAK. Essays dedicated to Johan van Benthem
on the occasion of his 50th birthday (CD-Rom). Vossiuspers AUP, 1999.

[183] P. Vranas. New foundations for deontic logic: a preliminary sketch. In J. Horty
and A.J.I. Jones, editors, Pre-proceedings 6th International Workshop on De-
ontic Logic in Computer Science (DEON’02), 2002.

[184] I. Walukiewicz. Completeness of Kozen’s axiomatisation of the propositional
µ-calculus. In Proceedings LICS’95, pages 14–24, 1995.

[185] R.J. Wieringa and J.-J.Ch. Meyer. Actors, actions, and initiative in normative
system specification. Annals of Mathematics and Artificial Intelligence, 7:289–
346, 1993.

[186] R.J. Wieringa and J.-J.Ch. Meyer. Applications of deontic logic in computer
science: A concise overview. In J.-J.Ch. Meyer and R.J. Wieringa, editors,
Deontic Logic in Computer Science: Normative System Specification, pages 17–
40. John Wiley and Sons, 1993.

[187] P. Wolper. On the relation of programs and computations to models of temporal
logic. In B. Banieqbal, H. Barringer, and A. Pnueli, editors, Temporal Logic in
Specification, volume 398 of Lecture Notes in Computer Science, pages 75–123.
Springer, 1989.

[188] M. Wooldridge. Reasoning about rational agents. Intelligent robotics and au-
tonomous agents. The MIT Press, 2000.

[189] G.H. von Wright. Deontic logic. Mind, 60:1–15, 1951.

[190] G.H. von Wright. Norm and action; a logical enquiry. International Library of
Philosophy and Scientific Method. Routledge & Kegan Paul, 1963.

[191] G.H. von Wright. Deontic logic and the theory of conditions. In R. Hilpinen,
editor, Deontic Logic: Introductory and Systematic Readings, pages 159–177.
D. Reidel Publishing Company, 1971.

[192] G.H. von Wright. On the logic of norms and actions. In R. Hilpinen, editor,
New Studies in Deontic Logic, pages 3–35. D. Reidel Publishing Company, 1981.

[193] G.H. von Wright. Norms, truth and logic. In A.A. Martino, editor, Deontic
Logic, Computational Linguistics and Legal Information Systems (Volume 2),
pages 3–20. North-Holland Publishing Company, 1982.

[194] G.H. von Wright. Deontic logic - as I see it. In P. McNamara and H. Prakken,
editors, Norms, Logics and Information Systems. New Studies on Deontic Logic
and Computer Science, pages 15–25. IOS Press, 1999.

[195] A. Zanardo and J. Carmo. Ockhamist computational logic: Past-sensitive ne-
cessitation in CTL. Journal of Logic and Computation, 3(3):249–268, 1993.

239

Abstract

This Ph.D. thesis focuses on modal logics whose inference mechanisms can
be of assistance in the process of design and verification of reactive systems.
We argue that the intuitions for such logics follow from the specific ‘view’ on
system properties adopted by a specifier. The first and most important aspect
of this ‘specifier view’ we assume, is that a system under development can
be seen as a collection of coherent actions that together are to produce the
system behavior the specifier has in mind. This choice implies that to model
the reasoning involved in the initial stages of design, we should consider logics
of action.

We consider four aspects of reasoning about action that we deem relevant
for the system specification domain: (1) action composition, (2) action and
time, (3) action description assumptions (such as the frame problem), and (4)
normative properties of action. Action composition is studied by considering
certain specific action combinators. We concentrate on concurrent action com-
position and action complement. Concurrency is central to reactive systems
in that, by definition, they operate concurrently with their environment. But,
more in general we want to be able to reason about the effects of concurrent
actions as related to the effects of their constituent parts. Action complement
is studied in detail, because its definition forms a prerequisite for establishing
logics of action and time, the economic specification of frame properties, and
for the logics of action and norms. Existing definitions for action complement
in the literature are discussed and we argue that they do not fit our purposes.
As an alternative we define a relativized version of the action complement.

Traditionally, the temporal domain is deemed important for system speci-
fication. We investigate how in a modal action logic context, reasoning about
action and reasoning about time can be combined. This results in mixed lan-
guages that enable the specification of mixed properties such as ‘for all possible
futures only actions α occur until the condition ϕ is met’.

A less well-considered problem for system specification is the modeling

240

of ‘action description assumptions’. The most famous example of such an
assumption is the frame assumption. We propose semantic solutions to the
frame problem and the qualification problem, for different types of modal
action description languages. We consider sequence and concurrency of action
in this context.

We argue that the normative view is important for reasoning about reactive
systems because it enables a specifier to represent valuable information about
his system in a convenient way. A typical normative property has the form
‘under condition ψ the system is obliged to perform α, but if it fails to do so,
it should perform β to compensate for not having done α’. The formulation of
such properties requires a certain ‘stance’ towards the specification of system
properties. We call this stance the ‘normative stance’. We develop two types
of normative action logics: one for which only the result of an action is normed,
and one for which also the way the result is obtained is normed. For both types
of normative action logics we show how to define reductions of normative
expressions to purely dynamic modalities. These reductions can be seen as
formal counterparts of the normative stance.

The normative dimension, the action dimension and the temporal dimen-
sion are all interpreted on the same relational structures in modal action mod-
els. This allows free combination and nesting of temporal, dynamic (action),
and normative formulas. In the conclusion of this Ph.D. thesis we show how
this enables us to analyze the concept of a ‘deontic deadline’, which combines
elements from each of these three reasoning domains.

241

Samenvatting (Dutch
abstract)

Dit proefschrift behandelt modale actielogica’s waarvan de inferentiemecha-
nismes gebruikt kunnen worden voor de verificatie en het ondersteunen van het
ontwerpproces van reactieve systemen. We stellen dat de intüıties voor deze
logica’s volgen uit de manier van kijken van degene die het systeem beschrijft.
Het eerste, meest belangrijke door ons aangenomen aspect van deze manier
van kijken, is dat een systeem kan worden gezien als een coherente verzamel-
ing van acties die samen het door de beschrijver gewenste gedrag produceren.
Deze keuze impliceert dat we voor het modelleren van het soort van redeneren
dat belangrijk is in de fase van het initiële systeemontwerp, moeten kijken naar
actielogica’s.

We onderzoeken vier aspecten van het redeneren over acties die ons be-
langrijk lijken voor het systeembeschrijvingsdomein: (1) actiecompositie, (2)
actie en tijd, (3) actiebeschrijvingsaannames (zoals het ‘frame’-probleem), en
(4) normatieve eigenschappen van acties. We bestuderen actiecompositie door
te kijken naar specifieke actiecombinatoren. We concentreren ons daarbij op de
noties van parallellisme en actiecomplement. Parallellisme staat centraal in de
studie van reactieve systemen, omdat een reactief systeem per definitie in pa-
rallelle samenhang met zijn omgeving opereert. Meer in het algemeen willen we
in staat zijn te redeneren over de manier waarop effecten van parallelle acties
samenhangen met de effecten van deelacties. We bestuderen het actiecomple-
ment tot in detail, omdat een goede definitie daarvan een voorwaarde vormt
voor het formuleren van logica’s van actie en tijd, de economische expressie
van frame-aannames, en de logica’s van actie en normen. Bestaande definities
voor het actiecomplement in de literatuur worden onder de loep genomen en
ongeschikt bevonden. Als alternatief definiëren we een gerelativiseerde versie
van het actiecomplement.

Traditioneel wordt het temporele domein als zeer belangrijk beschouwd

242

voor systeemspecificatie. We onderzoeken hoe in de context van modale ac-
tielogica redeneren over actie en tijd kan worden gecombineerd. Dit resulteert
in gemengde talen die de specificatie van gemengde eigenschappen mogelijk
maken, zoals ‘voor alle mogelijke tijdslijnen geldt dat de acties α worden uit-
gevoerd totdat aan de conditie ϕ wordt voldaan’.

Een probleem dat minder aandacht heeft gekregen in de literatuur over
systeemspecificatie is het modelleren van ‘actiebeschrijvingsaannames’. Het
meest bekende voorbeeld van zo’n aanname is de frame-aanname. We on-
twikkelen semantische oplossingen voor het frame-probleem en het kwalifi-
catieprobleem, voor verschillende soorten modale actiebeschrijvingstalen. We
kijken naar sequentie en parallellisme van acties in deze context.

We stellen dat de normatieve manier van kijken belangrijk is voor het re-
deneren over reactieve systemen, omdat het een beschrijver in staat stelt op
een handige manier waardevolle informatie over het systeem te representeren.
Een typische normatieve eigenschap zoals die gebruikt kan worden bij systeem-
specificatie, heeft de vorm ‘wanneer aan de conditie ψ voldaan wordt, dan is
het systeem verplicht de actie α uit te voeren, maar wanneer het dat niet doet,
dan moet het daarvoor ter compensatie β uitvoeren’. Het formuleren van dit
soort eigenschappen vergt een bepaalde ‘houding’ tegenover het specificeren
van systeemeigenschappen. We noemen deze houding de ‘normatieve houd-
ing’. We ontwikkelen twee soorten normatieve actielogica’s: een waarvoor
geldt dat alleen het resultaat van acties is genormeerd, en een waarvoor ook
de manier waarop tot een resultaat wordt gekomen is genormeerd. Voor beide
soorten logica’s laten we zien hoe er een reductie van normatieve expressies
naar puur dynamische modaliteiten gedefinieerd kan worden. Deze reducties
kunnen worden gezien als de formele tegenhangers van ‘de normatieve houd-
ing’.

De normatieve dimensie, de actiedimensie en de temporele dimensie worden
alle gëınterpreteerd in termen van dezelfde relationele structuren in modale
actiemodellen. Daardoor kunnen we temporele, dynamische en normatieve
formules vrijelijk combineren. In de conclusie van dit proefschrift laten we
zien dat dit ons in staat stelt het concept ‘deontische deadline’ te analyseren,
een concept dat elementen van elk van de drie genoemde redeneerdomeinen in
zich draagt.

243

SIKS Dissertation Series

1998-1 Johan van den Akker (CWI) DEGAS - An Active, Temporal Database
of Autonomous Objects

1998-2 Floris Wiesman (UM) Information Retrieval by Graphically Browsing
Meta-Information

1998-3 Ans Steuten (TUD) A Contribution to the Linguistic Analysis of Business
Conversations within the Language/Action Perspective

1998-4 Dennis Breuker (UM) Memory versus Search in Games

1998-5 E.W. Oskamp (RUL) Computerondersteuning bij Straftoemeting

1999-1 Mark Sloof (VU) Physiology of Quality Change Modelling; Automated
modelling of Quality Change of Agricultural Products

1999-2 Rob Potharst (EUR) Classification using decision trees and neural nets

1999-3 Don Beal (UM) The Nature of Minimax Search

1999-4 Jacques Penders (UM) The practical Art of Moving Physical Objects

1999-5 Aldo de Moor (KUB) Empowering Communities: A Method for the Le-
gitimate User-Driven Specification of Network Information Systems

1999-6 Niek J.E. Wijngaards (VU) Re-design of compositional systems

1999-7 David Spelt (UT) Verification support for object database design

1999-8 Jacques H.J. Lenting (UM) Informed Gambling: Conception and Anal-
ysis of a Multi-Agent Mechanism for Discrete Reallocation.

2000-1 Frank Niessink (VU) Perspectives on Improving Software Maintenance

2000-2 Koen Holtman (TUE) Prototyping of CMS Storage Management

2000-3 Carolien M.T. Metselaar (UVA) Sociaal-organisatorische gevolgen van
kennistechnologie; een procesbenadering en actorperspectief.

244

2000-4 Geert de Haan (VU) ETAG, A Formal Model of Competence Knowledge
for User Interface Design

2000-5 Ruud van der Pol (UM) Knowledge-based Query Formulation in Infor-
mation Retrieval.

2000-6 Rogier van Eijk (UU) Programming Languages for Agent Communica-
tion

2000-7 Niels Peek (UU) Decision-theoretic Planning of Clinical Patient Manage-
ment

2000-8 Veerle Coupé (EUR) Sensitivity Analyis of Decision-Theoretic Networks

2000-9 Florian Waas (CWI) Principles of Probabilistic Query Optimization

2000-10 Niels Nes (CWI) Image Database Management System Design Consid-
erations, Algorithms and Architecture

2000-11 Jonas Karlsson (CWI) Scalable Distributed Data Structures for Database
Management

2001-1 Silja Renooij (UU) Qualitative Approaches to Quantifying Probabilistic
Networks

2001-2 Koen Hindriks (UU) Agent Programming Languages: Programming with
Mental Models

2001-3 Maarten van Someren (UvA) Learning as problem solving

2001-4 Evgueni Smirnov (UM) Conjunctive and Disjunctive Version Spaces with
Instance-Based Boundary Sets

2001-5 Jacco van Ossenbruggen (VU) Processing Structured Hypermedia: A
Matter of Style

2001-6 Martijn van Welie (VU) Task-based User Interface Design

2001-7 Bastiaan Schonhage (VU) Diva: Architectural Perspectives on Informa-
tion Visualization

2001-8 Pascal van Eck (VU) A Compositional Semantic Structure for Multi-
Agent Systems Dynamics.

2001-9 Pieter Jan ’t Hoen (RUL) Towards Distributed Development of Large
Object-Oriented Models, Views of Packages as Classes

2001-10 Maarten Sierhuis (UvA) Modeling and SimulatingWork Practice BRAHMS:
a multiagent modeling and simulation language for work practice analysis
and design

245

2001-11 TomM. van Engers (VUA) Knowledge Management: The Role of Mental
Models in Business Systems Design

2002-01 Nico Lassing (VU) Architecture-Level Modifiability Analysis

2002-02 Roelof van Zwol (UT) Modelling and searching web-based document col-
lections

2002-03 Henk Ernst Blok (UT) Database Optimization Aspects for Information
Retrieval

2002-04 Juan Roberto Castelo Valdueza (UU) The Discrete Acyclic DigraphMarkov
Model in Data Mining

2002-05 Radu Serban (VU) The Private Cyberspace Modeling Electronic Envi-
ronments inhabited by Privacy-concerned Agents

2002-06 Laurens Mommers (UL) Applied legal epistemology; Building a knowledge-
based ontology of the legal domain

2002-07 Peter Boncz (CWI) Monet: A Next-Generation DBMS Kernel For Query-
Intensive Applications

2002-08 Jaap Gordijn (VU) Value Based Requirements Engineering: Exploring
Innovative E-Commerce Ideas

2002-09 Willem-Jan van den Heuvel (KUB) Integrating Modern Business Appli-
cations with Objectified Legacy Systems

2002-10 Brian Sheppard (UM) Towards Perfect Play of Scrabble

2002-11 Wouter C.A. Wijngaards (VU) Agent Based Modelling of Dynamics: Bi-
ological and Organisational Applications

2002-12 Albrecht Schmidt (Uva) Processing XML in Database Systems

2002-13 Hongjing Wu (TUE) A Reference Architecture for Adaptive Hypermedia
Applications

2002-14 Wieke de Vries (UU) Agent Interaction: Abstract Approaches to Mod-
elling, Programming and Verifying Multi-Agent Systems

2002-15 Rik Eshuis (UT) Semantics and Verification of UML Activity Diagrams
for Workflow Modelling

2002-16 Pieter van Langen (VU) The Anatomy of Design: Foundations, Models
and Applications

246

2002-17 Stefan Manegold (UVA) Understanding, Modeling, and Improving Main-
Memory Database Performance

2003-1 Heiner Stuckenschmidt (VU) Onotology-Based Information Sharing In
Weakly Structured Environments

