
B
R

IC
S

R
S

-98-53
J.C

.B
radfield:

F
ixpointA

lternation:
A

rithm
etic,Transition

S
ystem

s,and
the

B
inary

Tree

BRICS
Basic Research in Computer Science

Fixpoint Alternation: Arithmetic,
Transition Systems, and the Binary Tree

Julian C. Bradfield

BRICS Report Series RS-98-53

ISSN 0909-0878 December 1998

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tidsskrift.dk (Det Kongelige Bibliotek)

https://core.ac.uk/display/233661780?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright c© 1998, Julian C. Bradfield
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/98/53/

Fixpoint alternation: arithmetic,

transition systems, and the binary tree1

J. C. Bradfield

BRICS,2 Department of Computer Science, Aarhus University,
Bygning 540, Ny Munkegade, 8000 Århus C, Denmark

and
LFCS,3 Division of Informatics, University of Edinburgh,

Edinburgh, United Kingdom, EH9 3JZ (email: jcb@dcs.ed.ac.uk)

Abstract: We provide an elementary proof of the fixpoint al-
ternation hierarchy in arithmetic, which in turn allows us to
simplify the proof of the modal mu-calculus alternation hier-
archy. We further show that the alternation hierarchy on the
binary tree is strict, resolving a problem of Niwiński.

1 Introduction

The modal mu-calculus, or Hennessy–Milner logic with fixpoints, is a pop-

ular logic for expressing temporal properties of systems. It was first stud-

ied by Kozen in [Koz83], and since then there has been much work on

both theoretical and practical aspects of the logic. The feature of the

logic that gives it both its simplicity and its power is that it is possi-

ble to have mutually dependent minimal and maximal fixpoint operators.

This makes it simple, as the fixpoints are the only non-first-order oper-

ators, and powerful, as by such nesting one can express complex proper-

ties such as ‘infinitely often’ and fairness. A measure of the complexity

1 This is a manuscript submitted for publication. It extends and revises [Bra98],
a preprint of which appeared as LFCS technical report ECS–LFCS–98–385.
2 Danish National Research Foundation Centre for Basic Research in Computer
Science
3 Laboratory for Foundations of Computer Science

1

of a formula is the alternation depth, that is, the number of alternat-

ing blocks of minimal/maximal fixpoints. Formulae of alternation depth

higher than 2 are notoriously hard to understand, and in practice one

rarely produces them—not least because they are so hard to understand.

For some years, it was not even known whether formulae of high alter-

nation depth were necessary, that is, whether the alternation hierarchy

was indeed a strict hierarchy of expressive power—a problem with sev-

eral interesting ramifications, as well as its intrinsic interest. In 1996 the

strictness of the hierarchy was established by the present author [Bra97],

and independently by Lenzi [Len96]. The proof technique in [Bra97] relied

on the existence of a similar fixpoint alternation hierarchy in arithmetic

with fixpoints (mu-arithmetic). Mu-arithmetic appears, somewhat surpris-

ingly, not to have been studied in the recursion-theoretic literature, apart

from the deep and technical recursion-theoretic study of mu-arithmetic by

Robert Lubarsky [Lub93], which incidentally implies the hierarchy. Thus

the proof of [Bra97] was not self-contained; furthermore, it was apparently

not feasible to exhibit examples of strict alternation depth n formulae, as

the strict mu-arithmetic formulae of [Lub93] are not constructible with

any reasonable amounts of paper, ink and patience—there is only a high

level description of the complex coding required, which not only estab-

lishes the hierarchy but also gives a precise characterization in terms of

large admissible ordinals.

Another question is whether the alternation hierarchy remains strict

on trees of bounded branching degree, in particular the binary tree. This is

closely related to another long-standing alternation problem arising from

Damian Niwiński’s study of fixpoint algebras over trees. In his papers

[Niw86,Niw97] he has a fixpoint logic for such algebras in which formulae

are built from n-ary function symbols, disjunction, and least and greatest

fixpoint operators. The structures are infinite trees such that each node

with n children is labelled with some n-ary function symbol; a node sat-

isfies the formula f(φ1, . . . , φn) if the node is labelled by f and the ith

child satisfies φi; the fixpoints are taken over sets of nodes; a tree satisfies

a formula if its root does. Niwiński established a number of results about

such algebras, including intimate and now well-known relationships to au-

tomata theory. One result in particular concerns us here: he established

a strict hierarchy of tree languages definable according to the number

of alternating fixpoint quantifiers in the formula. In fact this hierarchy

2

is closely connected to the hierarchy of Rabin indices in Rabin automata

languages. However, in this study, as we have mentioned, the only boolean

operator was union, and not intersection. Although intersection is easily

added as a function symbol, many of the results rely on it not being a

primitive of the language; and in particular, the alternation hierarchy the-

orem is not established for the languages with intersection. This problem

has remained open.

In this paper we address these problems. The first result is an ele-

mentary proof of the alternation hierarchy in mu-arithmetic. This proof

uses the standard technique for recursion-theoretic hierarchies; thus we

remove the reliance on [Lub93]. Furthermore, the proof constructs very

simple examples of strict level n formulae of mu-arithmetic; and by using

a simplified version of the techniques of [Bra97], we are able to construct

even simpler examples of strict level n modal mu-calculus formulae. These

examples are of just the form that one expects, if one is a modal mu-

calculus hacker. In addition, we can also show that the formulae defining

the existence of a winning strategy in a parity game are examples of strict

formulae—indeed, a referee has observed that this can be shown already

from [Bra97]. We then show how the proof can be carried through for

the case of bounded branching degree systems, and then for the case of

Niwiński’s logic, so resolving the problem left open in [Niw86].

The material of sections 3–5 was first presented at STACS ’98 [Bra98];

sections 6–7 were presented at FICS in Brno in 1998 [Bra98a].

2 Preliminaries

2.1 Modal mu-calculus

We assume some familiarity with the modal mu-calculus, so in this section

we give brief definitions to establish notations and conventions. Expository

material on the modal mu-calculus may be found in [Bra91,Sti91].

The modal mu-calculus, with respect to some countable set L of la-

bels, has formulae Φ defined inductively thus: variables Z and the boolean

constants tt, ff are formulae; if Φ1 and Φ2 are formulae, so are Φ1∨Φ2 and

Φ1 ∧ Φ2; if Φ is a formula and l a label, then [l]Φ and 〈l〉Φ are formulae;

and if Φ is a formula and Z a variable, then µZ.Φ and νZ. Φ are formulae.

Note that we adopt the convention that the scope of the binding op-

erators µ and ν extends as far as possible. For consistency, we also apply

3

this convention to the ∀ and ∃ of first-order logic, writing ∀x. (∃y. P) ∨Q
rather than the logicians’ traditional ∀x [∃y [P] ∨Q].

Observe that negation is not in the language, but any closed mu-

formula can be negated by using the usual De Morgan dualities—µ and ν

are dual by ¬µZ.Φ(Z) = νZ.¬Φ(¬Z). Where necessary, we shall assume

that free variables can be negated just by adjusting the valuation. We shall

use ⇒ etc. freely, though we must ensure that bound variables only occur

positively.

We use the symbol � to mean ‘µ or ν as appropriate’.

Given a labelled transition system T = (S ,L ,−→), where S is a

set of states, L a set of labels, and −→ ⊆ S ×L ×S is the transition

relation (we write s
l−→ s′), and given also a valuation V assigning subsets

of S to variables, the denotation ‖Φ‖T
V
⊆ S of a mu-calculus formula

Φ is defined in the obvious way for the variables and booleans, for the

modalities by

‖[l]Φ‖TV = { s | ∀s′. s l−→ s′ ⇒ s′ ∈ ‖Φ‖TV }

‖〈l〉Φ‖TV = { s | ∃s′. s l−→ s′ ∧ s′ ∈ ‖Φ‖TV } ,

and for the fixpoints by

‖µZ.Φ‖TV =
⋂
{S ⊆ S | ‖Φ‖TV [Z:=S] ⊆ S }

‖νZ. Φ‖TV =
⋃
{S ⊆ S | S ⊆ ‖Φ‖T

V [Z:=S] } .

It is often useful to think of µZ and νZ as meaning respectively finite

and infinite looping from Z back to µZ (νZ) as one ‘follows a path of the

system through the formula’. Examples of properties expressible by the

mu-calculus are ‘always (on a-paths) P ’, as νZ. P ∧ [a]Z, ‘eventually (on

a-paths) P ’, as µZ. P ∨ 〈a〉Z, and ‘there is an {a, b}-path along which b

happens infinitely often’, as νY. µZ. 〈b〉Y ∨ 〈a〉Z. (For the latter, we can

loop around Y for ever, but each internal loop round Z must terminate.)

There are several notions of alternation. The naive notion is simply to

count syntactic alternations of µ and ν, resulting in the following defini-

tion: A formula Φ is said to be in the classes Σµ0 and Πµ
0 iff it contains no

fixpoint operators (‘S’ for ‘simple’ or ‘syntactic’). The class Σµn+1 is the

least class containing Σµn ∪Πµ
n and closed under the following operations:

(i) application of the boolean and modal combinators; (ii) the formation of

4

µZ.Φ, where Φ ∈ Σµn+1. Dually, to form the class Πµ
n+1, take Σµn∪Πµ

n, and

close under (i) boolean and modal combinators, (ii) νZ. Φ, for Φ ∈ Πµ
n+1.

Thus the examples above are in Πµ
1 , Σµ1 , and Πµ

2 (but not Σµ2) respectively.

We shall say a formula is strict Σµn if it is in Σµn −Πµ
n.

For the modal mu-calculus, it is usual to define stronger notions of

alternation [EmL86,Niw86], which capture the true interdependency of

alternating fixpoints, rather than just their syntactic position. In [Bra97],

the analysis is carried out for the strongest notion, that of [Niw86], giving

the classes called ΣNµn in [Bra97], as well as for the simple notion. In this

paper, we shall not worry about the distinction, as the arguments apply

whichever notion is used. Hence we shall just write Σµn.

2.2 The arithmetic mu-calculus

In [Lub93] Robert Lubarsky studies the logic given by adding fixpoint con-

structors to first-order arithmetic. Precisely, the logic (‘mu-arithmetic’ for

short) has as basic symbols the following: function symbols f, g, h; predi-

cate symbols P,Q,R; first-order variables x, y, z; set variables X,Y, Z; and

the symbols ∨,∧, ∃, ∀, µ, ν,¬,∈. As with the modal mu-calculus, ¬ can be

pushed inwards to apply only to atomic formulae, by De Morgan duality.

The language has expressions of three kinds, individual terms, set

terms, and formulae. The individual terms comprise the usual terms of

first-order logic. The set terms comprise set variables and expressions

µ(x,X). φ and ν(x,X). φ, where X occurs positively in φ. Here µ binds

both an individual variable and a set variable; henceforth we shall write

just µX. φ, and assume that the individual variable is the lower-case of the

set variable. The formulae are built by the usual first-order construction,

together with the rule that if τ is an individual term and Ξ is a set term,

then τ ∈ Ξ is a formula.

This language is interpreted over the structure N of first-order arith-

metic with all recursive functions and predicates—in particular, let 〈–, –〉,
(–)0 and (–)1 be standard pairing and unpairing functions. The semantics

of the first-order connectives is as usual; τ ∈ Ξ is interpreted naturally;

and the set term µX. φ(x,X) is interpreted as the least fixpoint of the

functional X 7→ {m ∈ N | φ(m,X) } (where X ⊆ N).

The simplest examples of mu-arithmetic just use least fixpoints to rep-

resent an inductive definition. For example, µX. x = 0∨ (x > 1∧ (x−2) ∈
X) is the set of even numbers. Of course, the even numbers are also

5

the complement of the odd numbers: the odd numbers are defined by

µX. x = 1 ∨ (x > 1 ∧ (x − 2) ∈ X), so by negating we can express the

even numbers as a maximal fixpoint νX. x 6= 1 ∧ (x > 1 ⇒ (x − 2) ∈ X).

To produce natural examples involving alternating fixpoints is rather dif-

ficult, since even one induction is already very powerful, and most natural

mathematical objects are simple.

One can define the syntactic alternation classes for arithmetic just as

for the modal mu-calculus: First-order formulae are Σµ0 and Πµ
0 , as are set

variables. The Σµ
n+1 formulae and set terms are formed from the Σµn ∪Πµ

n

formulae and set terms by closing under (i) the first-order connectives and

(ii) forming µX. φ for φ ∈ Σµn+1.

A crucial lemma is the following:

Lemma 1 [Lub93,Bra97] A Σµn formula of mu-arithmetic can be put into

a normal form of the following shape:

τn ∈ µXn. τn−1 ∈ νXn−1. τn−2 ∈ µXn−2. . . . τ1 ∈ �X1. φ

where φ is first-order—that is, a string of alternating fixpoint quantifiers,

and a first-order body.

(See [Bra97] for detailed definitions and proof.)

The analysis of [Lub93] provides the following

Theorem 2 [Lub93] The hierarchy of the sets of integers definable by Σµn
formulae of the arithmetic mu-calculus is a strict hierarchy.

2.3 Summary of [Bra97]

Our results here require the results and proof techniques of [Bra97], so we

now give a summary of these, skipping the fine details.

We define a recursively presented transition system (r.p.t.s.) to be a

labelled transition system (S ,L ,−→) such thatS is (recursively codable

as) a recursive set of integers,L likewise, and −→ is recursive. Henceforth

we consider only recursively presented transition systems, with recursive

valuations for the free variables. We have the following theorem, which is

proved by a trivial translation of the semantics of the modal mu-calculus

into mu-arithmetic:

Theorem 3 [Bra97] For a modal mu-calculus formula Φ ∈ Σµn, the deno-

tation ‖Φ‖ in any r.p.t.s. is a Σµn definable set of integers.

6

We also have the converse

Theorem 4 [Bra97] Let φ(z) be a Σµn formula of mu-arithmetic. There

is a r.p.t.s. T with recursive valuation V and a Σµn formula Φ of the

modal mu-calculus such that φ((s)0) iff s ∈ ‖Φ‖T
V

. (Thus if φ is not Σµn−1-

definable, neither is ‖Φ‖.)

This theorem is not inherently difficult; it is established by coding

the evaluation of mu-arithmetic formulae into a r.p.t.s. and a modal mu-

calculus formula, in such a way that arithmetic computation is handled

by the transitions of the system, and the fixpoints of φ are handled by the

fixpoints of Φ. The proof is then a fairly straightforward induction. In this

paper, we shall see a simplified version of this technique.

These two theorems establish the modal alternation hierarchy: use The-

orem 4 to code an arithmetic strict Σµn set of integers by a strict Σµn modal

mu-formula Φ on a r.p.t.s. T ; by Theorem 3, no Σµn−1 modal formula can

have the same denotation in T , and so no Σµn−1 modal formula is logically

equivalent to Φ.

2.4 Tree algebras

Niwiński’s papers [Niw86,Niw97] contain an extensive study of fixpoint al-

gebras. For our purposes here, we consider just the most concrete versions,

namely those over trees. Refer to [Niw97], which is an excellent exposi-

tion, for further details and for the generalizations which do not concern

us here.

Let Σ be a signature containing a finite number of operators each

with an arity. For example, take Σ = {a(−,−), b(−), c}, with one binary,

one unary and one nullary operator. A tree over Σ is a possibly infinite

tree with nodes labelled by operators, such that a node labelled by f has

arity(f) children.

Define a fixpoint logic over Σ thus: variables Z, and tt and ff are

formulae; conjunction ∧ and disjunction ∨ of formulae are formulae; for

each operator f ∈ Σ with arity n and formulae φ1, . . . , φn, f(φ1, . . . , φn)

is a formula; for a formula φ with free variable Z, µZ. φ and νZ. φ are

formulae.

Given a particular tree t, this logic is interpreted over the set of nodes of

t in the obvious way: a node satisfies f(φ1, . . . φn) if it is labelled by f and

its children satisfy respectively φ1, . . . φn. The fixpoints are interpreted as

7

in the modal mu-calculus: a formula with free variable Z defines a function

on the powerset lattice of nodes. We define the fixpoint alternation classes

of formulae in the usual way.

We say that a tree satisfies φ if its root does. An important property

of these logics is the ‘internalization property’ [Niw97]: given a tree t and

a node n of t, the node n satisfies a formula φ iff the subtree of t rooted

at n satisfies φ.

For examples of this logic with the signature above, we can consider

the following. µZ. a(Z,Z)∨ b(Z)∨ c defines the set of finite trees; νZ. b(Z)

defines the infinite linear tree • b−→ • b−→ · · · ; νY. µZ. a(c, Y) ∨ a(Z,Z) ∨
b(Z) defines the set of trees such that on every path there are infinitely

many a nodes with a c left child, and c only occurs as the left child of a.

A tree algebra is then the set of all trees over a given signature, with

the operations defined by the interpretations of the logical operators. We

have no need to consider the algebraic view, and can stick to the logic. The

problem left open by Niwiński can be stated as follows: is there a signature

Σ such that the hierarchy of sets of trees definable by Σµn formulae is strict?

For the case where intersection ∧ is not a primitive symbol of the logic,

[Niw86] showed strictness; however, the proof does not go through for

the case with intersection, and indeed the exhibited hard Σµn formulae for

the intersection-free case are in fact all equivalent to alternation depth 2

formulae with intersection.

3 A simple proof of the alternation hierarchy in mu-arithmetic

The first result of this paper is to observe that the alternation hierarchy

theorem in mu-arithmetic can be proved simply along the lines of the

proof of the strictness of the Kleene arithmetic hierarchy. The technique

is to show that the truth of Σµn formulae can itself be expressed by a Σµn
formula, and to use a diagonalization argument to show that this formula

cannot be equivalent to any Πµ
n formula.

Firstly, take a suitable Gödel numbering of mu-arithmetic. We con-

sider only formulae without free set variables; wlog, we may assume that

all encoded formulae are in normal form, and are normalized so that

the free individual variables are z0, . . . , zk, the first-order quantifiers bind

zk+1, . . . , and for a formula of alternation depth n, the fixpoint variables

are Xn, . . . ,X1, with associated individual variables xn, . . . , x1. We use

8

sans-serif type to indicate that the variable is being seen as part of an

encoded object-level formula; normal italic type indicates a meta-level

variable. We use corner quotes to denote the Gödel coding. We also need

coded assignments which map an encoded variable to a value: we write

[v/z] for the assignment that maps z (strictly, the code �z�) to the inte-

ger v, and a[v/z] for the updating of a by [v/z]. We use double quotes

to indicate the appropriate meta-language formalization of the informal

statement inside the quotes.

Now suppose that Satn(x, y) is a formula of mu-arithmetic expressing

the truth of Σµn formulae, so that if φ is a Σµn formula and a an assignment

of values ~v to the free variables ~z of φ, then Satn(�φ�, a) is true just in case

φ(~v/~z) is true. We have the

Lemma 5 Satn(z0, [z0/z0]) is not equivalent to any Πµ
n formula.

Proof. The proof is exactly as for the arithmetical hierarchy. Suppose

the contrary, i.e. that ¬Satn(z0, [z0/z0]) is equivalent to some Σµn formula

θ(z0). Then we have θ(�θ�) iff ¬Satn(�θ�, [�θ�/z0]) iff ¬θ(�θ�), which is a

contradiction.

It remains to show that Satn exists and is indeed a Σµn formula.

Theorem 6 Satn is a Σµn formula of mu-arithmetic, for n > 0.

Proof. We start by constructing Sat0, truth in first-order arithmetic, both

as a Σµ1 formula and as a Πµ
1 formula. Sat0(x, y) is defined as:

〈x, y〉 ∈ µ(w,W). “(w)0 = �P (τ)� and pred(�P �, eval(�τ�, (w)1))”

∨ “(w)0 = �φ1 ∧ φ2� and (〈�φ1�, (w)1〉 ∈W ∧ 〈�φ2�, (w)1〉 ∈W)”

∨ “(w)0 = �φ1 ∨ φ2� and (〈�φ1�, (w)1〉 ∈W ∨ 〈�φ2�, (w)1〉 ∈W)”

∨ “(w)0 = �∃zi. φ1� and ∃v. 〈�φ1�, (w)1[v/zi]〉 ∈ W”

∨ “(w)0 = �∀zi. φ1� and ∀v. 〈�φ1�, (w)1[v/zi]〉 ∈ W”

where eval(t, a) is the recursive function which evaluates a coded term

t = �τ� under the variable assignment a, and pred(p, x) is the computable

predicate which is true if the value x satisfies the predicate coded by

p = �P �.

9

We have here skipped the details of the coding, which are standard.

For example, if we look in more detail at the clause for ∀, it actually says:

f((w)0) = �∀� ∧ ∀v. 〈g((w)0), h((w)1, v, g
′((w)0))〉 ∈W

where f extracts the top-level connective of a coded formula, g extracts

the body of a ∀ formula and g′ extracts the bound variable, and h(a, v, z)

takes the variable assignment a and updates the variable whose code is

z by the value v. The fact that these functions f, g, h are recursive is

obvious, and since we allow ourselves all recursive functions as primitives,

that is sufficient; but explicit definitions in standard arithmetic may be

found in references such as [Kay91].

It is clear that this fixpoint formula simply encodes directly the def-

inition of truth in arithmetic. The formula is Σµ1 , but since the encoded

recursive function terminates on all arguments—it is just a definition by

induction on the structure of formulae—it does not matter whether we

use a minimal or maximal fixpoint to achieve the recursion. Thus we may

also obtain Sat0 as a Πµ
1 formula.

In order to encode within mu-arithmetic the evaluation of formulae

with fixpoints, it is necessary to have the same fixpoint structure in the

Sat formula as in the formula it’s evaluating. Recall that we assume pair-

normal form, and suppose that we wish to evaluate Σµn formulae where n

is odd, that is, formulae of the form

τn ∈ µXn. τn−1 ∈ νXn−1 τ2 ∈ νX2. τ1 ∈ µX1. φ (∗)

where φ is first-order. The interpretation of the pure first-order part of φ

may be done with the Σµ1 version of Sat0—but φ may also now contain

formulae τ ∈ Xi. We cannot code as integers the sets referred to by the Xi,

so they must be represented by set variables in the meta-language. We use

the meta-level variable Xi to represent the object variable Xi, and extend

the body of Sat0 by the clauses (for each 1 ≤ i ≥ n)

∨ “(w)0 = �τ ∈ Xi� and eval(�τ�, (w)1)) ∈ Xi”.

Let Sat′0 denote the adjusted Sat0.

10

With these adjustments, we have that (∗) is true with free variable

assigment a just in case

eval(�τn�, a) ∈ µXn.

eval(�τn−1�, a[xn/xn]) ∈ νXn−1. . . .

eval(�τ1�, a[xn, . . . , x2/xn, . . . , x2]) ∈ µX1.

Sat′0(�φ�, a[xn, . . . , x1/xn, . . . , x1])

Now we just parametrize on (∗): let f1(x, y) be the function that given

x encoding a Σµn formula (∗) and an assignment y, computes eval(�τn�, y),

and so on, and let g(x) extract the body of (∗). Then we have Satn(x, y)

in the form

fn(x, y) ∈ µXn. fn−1(x, y[xn/xn]) ∈ νXn−1. . . .

f1(x, y, [xn, . . . , x2/xn, . . . , x2]) ∈ µX1.

Sat′0(g(x), y[xn, . . . , x1/xn, . . . , x1])

which is Σµn as required. If n is even, we use the Πµ
1 version of Sat0 instead.

The fact that Satn does indeed code truth is easily shown: show by

induction on i that each meta-level fixpoint set Xi coincides with the

object-level set Xi. The base case follows from the correctness of Sat′0, and

the induction step is easy.

It may be noted that we have also skipped details of what the functions

f1 etc. should do if given ill-formed arguments. Any convenient trick may

be used; the details are unimportant.

4 The simple examples in the modal mu-calculus

To construct examples of strict Σµn formulae in the modal mu-calculus, it

would suffice to apply the general construction of Theorem 4 to Satn. How-

ever, Satn contains a large number of function symbols, and the translation

would contain many labels. By specializing the general construction, we

can eliminate most of these labels, and obtain very simple examples. The

following presentation is self-contained, but terse; for a longer explanation

of the technique, see [Bra97].

11

We aim to construct a transition system T and a Σµn modal mu-

calculus formula Φ such that the set of states satisfying Φ is defined by

the strict Σµn arithmetic formula Satn.

The transition system T should be viewed as a machine for evaluating

arithmetic expressions in the same way that Satn does: the computation

happening in the body of Sat′0 will be dealt with by the definition of the

transitions of T , and the arithmetic fixpoints are translated into modal

fixpoints in Φ.

The states of T encode several pieces of information. Namely, a state

s contains: a formula ψs of the form (∗), and a variable assignment as, and

a pointer ps into ψs which keeps track of where we are in the evaluation.

We use the notation of (∗) to refer to parts of ψs.

The labels of T are used to distinguish various steps of computation;

we shall start with enough labels to make the construction clear, and

then argue the number down a little. In the interests of clarity, we shall

use roman letters for the modal labels: so x is a meta-level arithmetic

variable, x is an object-level arithmetic variable, and x is a modal label

associated with x.

The transitions of T from a state s are defined thus:

• If ps points at τi (or after �Xi+1. , which we consider to be the same),

then s
xi−→ s′ where ψs′ = ψs, and as′ = as[eval(τi, as)/xi] and ps′ points

after �Xi. That is, the term τi is evaluated in the current assignment,

xi is set to its value, and we start evaluating the inner fixpoint.

Otherwise, ps points at a subformula of φ. The transition from s mimics

the appropriate clause of Sat′0. The ψ component is not altered by any

transition, and the a component is unchanged unless otherwise stated.

• If ps points at P (τ), then s
a−→ sa (‘a’ for atom), where sa is a special

state with no structure, only if P (τ) is true with variable assignment

as; otherwise there are no transitions from s.

• If ps points at φ1 ∧ φ2, then s
c−→ sk (‘c’ for conjunction) for k = 1, 2,

where psk points at φk.

• If ps points at ∀zi. φ1, then s
c−→ sk (universal quantification is treated

as conjunction) for k ∈ N, where psk points at φ1, and ask = as[k/zi].

• If ps points at φ1 ∨ φ2, then s
d−→ sk (‘d’ for disjunction) for k = 1, 2,

where psk points at φk.

• If ps points at ∃zi. φ1, then s
d−→ sk (existential quantification is treated

as disjunction) for k ∈ N, where psk points at φ1, and ask = as[k/zi].

12

• If ps points at τ ∈ Xi, then s
xi−→ s′, where ps′ points after �Xi. ,

and as′ = as[eval(τ, as)/xi]. That is, τ is evaluated, copied to the input

variable xi of the fixpoint Xi, and evaluation of the fixpoint started.

It is clear that T is a recursively presented transition system.

Now consider the following modal mu-calculus formula:

MuSatn
def
= 〈xn〉µXn. 〈xn−1〉νXn−1. . . . 〈x1〉µX1. µW.

〈a〉tt ∨ (〈c〉tt ∧ [c]W) ∨ 〈d〉W

∨ 〈x1〉X1 ∨ . . . ∨ 〈xn〉Xn

By the construction of T , we have:

Theorem 7 s |= MuSatn just in case ps points at ψs, and Satn(�ψs�, as).

Hence MuSatn is a strict Σµn modal formula.

Proof. The proof is a special case of the proof of Theorem 4, the details

of which are in [Bra97].

MuSatn is already quite a simple formula, but it is interesting to try

to simplify it further, which we shall do in stages.

Firstly, is it necessary to have the double occurrence of 〈xi〉, or can we

remove the guards from the fixpoint formulae? Yes, we can: consider the

formula

MuSat′n
def
= µX ′n. νX

′
n−1. . . . µX

′
1. µW. Ψ

where Ψ is formed from the body of MuSatn by priming the Xis. The

relation between MuSatn and MuSat′n is that X ′n = . . . = X ′1 = X1) (note

that in MuSatn, we have X1 ⊇ X2∪ . . .∪Xn), and conversely Xi = 〈xi〉X ′i
for i = n, . . . , 2. The denotation of MuSat′n is still a strict Σµn set, since

the denotation of MuSatn is a projection of it.

Next, the occurrence of 〈c〉tt is irritating. Its purpose is to assert that

ps is indeed pointing at an ∧-subterm of ψs—of course, [c]W is true at any

state with no c-transitions from it. However, we can render it unnecessary

by modifying T : if s is any state other than an ∧-subterm state, then add

a transition s
c−→ s. Since W is a least fixpoint variable, if W is true at a

state with a c-loop, it is true by virtue of some other disjunct than [c]W ,

and it is not true if it was not true before the loop was added.

13

We can also eliminate the requirement for a separate a-transition, by

modifying the modification: for all those states s with an a-transition,

remove the c-loop added in the previous paragraph; now [c]W is true at

those states, so we can discard the 〈a〉tt clause.

Finally, we note that W = X ′1, and they are adjacent least fixpoints,

so we can amalgamate them; further, the job of the d transition can as

well be done by x1, since they work on disjoint sets of states.

Hence we arrive at the following very simple example of a strict Σµn
modal formula (replacing X ′ by X again):

MuSat′′n
def
= µXn. νXn−1. . . . µX1. [c]X1 ∨ 〈x1〉X1 ∨ . . . ∨ 〈xn〉Xn

5 Relation to parity games.

In the earliest version of this paper, we showed that if one chooses to look

at models with no action labels, but with atomic propositions, the above

formula appears in a form that is the same as the formula describing the

existence of a winning strategy in a parity game of rank n, and hence that

formula is strict Σµn.

When this paper was submitted to STACS, one of the referees pointed

out that the strictness of the winning strategy formula can be shown di-

rectly from [Bra97] and the game interpretation of modal mu-calculus

[EmJ91], without requiring the explicit use of the arithmetic formula Satn.

As this is an elegant proof, we outline it here, and then comment on the

similarities to MuSat.

A parity game of rank n [EmJ91] is played on a directed graph with the

following properties: every vertex belongs either to Player or Opponent,

and every vertex has an index between 1 and n. If the current vertex

belongs to player A, then A moves by choosing a successor vertex. (In

[EmJ91], the graph is bipartite so that Player and Opponent alternate, but

this is not essential.) In a given play, Player wins if either Opponent gets

stuck, or if the greatest index occurring infinitely often is even. (‘greatest’

is sometimes replaced by ‘least’, e.g. in [Wal96].) For simplicity, assume

henceforth that n is odd.

Given such a graph, let P be true at Player vertices, O be true at

Opponent vertices, and Ri true at vertices of index i. It is easy to show

14

[EmJ91,Wal96] that the modal mu-calculus formula

Parn
def
= µXn. νXn−1. . . . µX1.(

P ⇒ 〈〉
∧

1≤i≤n(Ri ⇒ Xi)
)
∧
(
O ⇒ []

∧
1≤i≤n(Ri ⇒ Xi)

)
defines exactly the set of vertices from which Player has a winning strategy.

Now take a strict Σµn formula φ(z) of mu-arithmetic, and construct

the r.p.t.s. T and modal formula Φ of Theorem 4. Given a Σµn modal

formula, one can easily, and recursively, construct a parity game G of

rank n, whose vertices are pairs (s, Ψ) of states of T and subformulae of

Φ, such that Player wins from (s, Ψ) iff s �T Ψ . Hence (s, Φ) �G Parn iff

φ(s0). Therefore ‖Parn‖G is an arithmetic Σµn-hard set, and so by Theorem

3 we conclude

Theorem 8 Parn is a strict Σµn modal formula.

The alternative approach for showing the strictness of Parn is to work

from the transition system T of Theorem 7, and replace the action labels

by atomic propositions, so that P is true at disjunctive states, O at con-

junctive states, and Ri at Xi states. With a little manipulation along the

lines of the construction of MuSat′′n from MuSatn, one obtains exactly the

formula Parn as the modal encoding of Satn. Thus we use Satn explicitly,

and use a specialization of the proof of Theorem 4. The STACS referee’s

suggestion avoids this work, and so produces the Parn examples from

[Bra97] without using the simple proof of the mu-arithmetic hierarchy.

6 Modal mu-calculus alternation on bounded-branching sys-

tems.

Our next step is to show that the alternation hierarchy remains strict

even on bounded-branching systems, and in particular on systems with a

maximum branching degree of 2.

Consider the formula

Hardn
def
= µXn. νXn−1. . . .�X1. 〈a〉tt ∨ (〈c〉tt ∧ [c]X1)

∨〈d〉X1 ∨ 〈x1〉X1 ∨ . . . ∨ 〈xn〉Xn

which is the same as MuSatn except that we have amalgamated the adja-

cent fixpoints X1 and W . The transition system on which we considered

15

this formula had the convenient property that every state has outgoing

transitions of only one label. However, many states had infinitely many

successors; we need to address this. To solve Niwiński’s problem, we shall

also need to deal with the issue that the formula uses n+2 different labels;

but this is a simple encoding issue.

For reasons that will become apparent when we consider Niwiński’s

trees, we should like to have a transition system with exactly two labels,

l, r such that every state has no successor or one l and one r successor.

Using standard techniques, we build a new transition system T ′n in

which the new labels code the old labels. For concreteness, let us say that

if s
α−→ t in Tn, where α is a or xi, then becomes

s
l−→ t

↓r
Tα

and if s
β−→ ti, where β is c or d, and 1 ≤ i ≤ k for k = 2 or k = ∞, ac-

cording as s has two successors (when coding a conjunction or disjunction)

or infinitely many successors (when coding a box or diamond), then

s
l−→ u1

l−→ · · · l−→ uk
l−→ u0

↓r ↓r · · · ↓r
Tβ t1 · · · tk

where the u states are new ‘junk’ states, and Tα is a particular finite binary

tree coding the label. For example, Ta might be the binary tree •, Tc the

tree (•, •), Td the tree ((•, •), •), and so on. Let Ψα be a modal formula

characterizing Tα: for example, Ψc would be 〈l〉[]ff ∨ 〈r〉[]ff.

We now need to translate the formula Hardn for the new system. Ob-

viously we can translate 〈xi〉Φ into 〈r〉Ψxi ∧ 〈l〉Φ etc., but the translation

of the c and d modalities requires introducing additional fixpoints. The

(sometimes infinite) branching box 〈c〉tt∧[c]X1 becomes 〈r〉Ψc∧[l]νY. [l]Y ∧
[r]X1; and the branching diamond 〈d〉X1 becomes 〈r〉Ψd ∧ 〈l〉µY. 〈r〉X1 ∨
〈l〉Y .

Since the construction of T ′n is recursive, the new formula Hard′n still

denotes an arithmetic Σµn-hard set of states. Unfortunately, Hard′n is now a

modal Σµn+1 formula, owing to the introduction of the new fixpoints! This

is still sufficient to establish the hierarchy, since it cannot be equivalent to

16

any modal Πµ
n formula. However, we could also obtain a direct proof that

it cannot be equivalent to any modal Πµ
n+1 formula, since it can be shown,

by extending an analysis of [Bra96], that on a bounded degree recursive

transition system a modal Σµn formula denotes a set of at most arithmetic

Σµn−1 complexity.

We now have the result

Theorem 9 There is a class of transition systems with branching degree

≤ 2 on which the modal mu-calculus alternation hierarchy is strict.

7 Alternation in tree algebras.

Owing to the way in which we have set up T ′n, the transfer to tree algebras

is almost immediate. We take the signature Σ with a binary function

symbol a and a nullary function symbol c. The left and right children of

a node labelled a correspond to the l and r successors of a non-leaf node

in Tn; thus a tree over this signature is a transition system of the form

specified for T ′n, and conversely the unwinding T ′′n of T ′n is a tree over this

signature. Since unwinding is a recursive operation, we can say that given

a Σµn tree mu-formula, the set of nodes of T ′′n satisfying it is of arithmetic

complexity Σµn−1. However, we can translate Hard′n into a tree formula

Hard′′n:

µXn. . . .�X1. a(tt, ψa)

∨ a(νY. a(Y,X1), ψc)

∨ a(µY. a(Y, tt) ∨ a(tt, X1), ψd)

∨ a(X1, ψx1) ∨ . . . ∨ a(Xn, ψxn)

where ψα is the translation of Ψα, for example ψa = c, ψc = a(c, c), ψd =

a(a(c, c), c) and so on. Hence the nodes of T ′′n satisfying Hard′′n are exactly

those that are the unwindings of states of T ′n satisfying Hard′n; and hence

this set is arithmetic Σµn-hard. It follows that for any formula φ of lower

alternation depth, there is a node on which φ and Hard′′n disagree. Now

by the crucial fact that a node satisfies a formula iff the subtree rooted at

17

that node satisfies it (the ‘internalization property’ of [Niw97]), there is a

tree on which φ and Hard′′n disagree. Hence we have

Theorem 10 The fixpoint alternation hierarchy over the Niwiński tree

logic with signature {a(−,−), c} and intersection is strict.

Of course, as for the intersection-free result of [Niw97], this signature

is the minimal signature: we need at least one constant with arity 2, and

at least one other symbol. With a more generous signature, the coding is

less messy, and simpler hard formulae can be presented, as was done in

[Bra98a] (for the signature {a(−,−), b(−)}).
It is interesting to note that even though we are establishing a hierar-

chy with intersection, the hard formulae do not themselves use intersec-

tion once they are expressed in the tree logic; they need only the ‘implicit’

intersection given by the binary symbol a. However, unlike the hard for-

mulae of [Niw97], which are in fact all equivalent to level Σµ2 formulae in

the intersection-full hierarchy, the implicit conjunction conjoins different

fixpoints. One may also compare the disjunctive formulae of [JaW95].

8 Remarks

Although this approach has solved the problem of Niwiński, one might

reasonably object to it on aesthetic grounds. It should be possible to solve

a problem about a fairly weak logic on the binary tree without resorting

to the use of arithmetic and Gödel encodings. Indeed, one might hope

that the diagonalization argument, used to prove this hierarchy as many

others, could be carried out directly on the trees. This hope is not vain:

by the time this work was presented at FICS, André Arnold [Arn9?] had

discovered an elegant technique which uses a form of diagonalization on

the binary tree, together with some basic (ultra-)metric space theory, to

show the hardness of all the example formulae produced by myself, Lenzi,

and others.

9 Acknowledgements

I especially thank Alex Simpson, who suggested to me that there must be

a simple proof of the mu-arithmetic hierarchy along these lines. Thanks

also to Igor Walukiewicz, who pointed me at the parity game formulae. In

18

addition to the referee who provided the improved proof for parity game

formulae, other STACS referees provided helpful suggestions; I am grateful

to them. André Arnold pointed out a minor lacuna in [Bra98a].

I am supported by an Advanced Fellowship from the United King-

dom Engineering and Physical Sciences Research Council; also BRICS,

the Danish National Research Foundation Centre for Basic Research In

Computer Science, is supporting my visit to Aarhus.

Version Control: rairo.tex:1.4; suppprelims.tex:1.8; niwprelims.tex:1.2; suppmain.tex:1.9; suppparity.tex:1.2.

19

References

[Arn9?] A. Arnold, paper submitted for publication
[Bra91] J. C. Bradfield, Verifying Temporal Properties of Systems (Birkhäuser,

Boston, 1991).
[Bra96] J. C. Bradfield, On the expressivity of the modal mu-calculus, in: C.

Puech and Rüdiger Reischuk, eds., Proc. STACS ’96, LNCS 1046
(Springer, Berlin, 1996) 479–490.

[Bra97] J. C. Bradfield, The modal mu-calculus alternation hierarchy is strict,
Theor. Comput. Sci. 195 133–153 (1997).

[Bra98] J. C. Bradfield, Simplifying the modal mu-calculus alternation
hierarchy, in: M. Morvan, C. Meinel and D. Krob, eds., Proc. STACS
98, LNCS 1373 (Springer, Berlin, 1998) 39–49.

[Bra98a] J. C. Bradfield, Fixpoint alternation on the binary tree, Workshop on
Fixpoints in Computer Science (FICS), Brno, 1998.

[EmJ91] E. A. Emerson and C. S. Jutla, Tree automata, mu-calculus and
determinacy, in: Proc. FOCS 91. (1991)

[EmL86] E. A. Emerson and C.-L. Lei, Efficient model checking in fragments of
the propositional mu-calculus, in: Proc. 1st LICS (IEEE, Los Alamitos,
CA, 1986) 267–278.

[JaW95] D. Janin and I. Walukiewicz, Automata for the µ-calculus and related
results, in Proc. MFCS ’95, LNCS 969 (Springer, Berlin, 1995) 552–
562.

[Kay91] R. Kaye, Models of Peano Arithmetic. (Oxford University Press,
Oxford, 1991).

[Koz83] D. Kozen, Results on the propositional mu-calculus, Theoret. Comput.
Sci. 27 (1983) 333–354.

[Len96] G. Lenzi, A hierarchy theorem for the mu-calculus, in: F. Meyer auf der
Heide and B. Monien, eds., Proc. ICALP ’96, LNCS 1099 (Springer,
Berlin, 1996) 87–109.

[Lub93] R. S. Lubarsky, µ-definable sets of integers, J. Symbolic Logic 58 (1993)
291–313.

[Niw86] D. Niwiński, On fixed point clones, in: L. Kott, ed., Proc. 13th ICALP,
LNCS 226 (Springer, Berlin, 1986) 464–473.

[Niw97] D. Niwiński, Fixed point characterization of infinite behavior of finite
state systems. Theoret. Comput. Sci. 189 (1997) 1–69.

[Sti91] C. P. Stirling, Modal and temporal logics, in: S. Abramsky, D. Gabbay
and T. Maibaum, eds., Handbook of Logic in Computer Science, Vol. 2
(Oxford University Press, 1991) 477–563.

[Wal96] I. Walukiewicz, Monadic second order logic on tree-like structures, in:
C. Puech and Rüdiger Reischuk, eds., Proc. STACS ’96, LNCS 1046
(Springer, Berlin, 1996) 401–414.

20

Recent BRICS Report Series Publications

RS-98-53 Julian C. Bradfield. Fixpoint Alternation: Arithmetic, Transi-
tion Systems, and the Binary Tree. December 1998. 20 pp.

RS-98-52 Josva Kleist and Davide Sangiorgi.Imperative Objects and Mo-
bile Processes. December 1998. 22 pp. Appears in Gries and
de Roever, editors,IFIP Working Conference on Programming
Concepts and Methods, PROCOMET ’98 Proceedings, 1998,
pages 285–303.

RS-98-51 Peter Krogsgaard Jensen.Automated Modeling of Real-Time
Implementation. December 1998. 9 pp. Appears inThe 13th
IEEE Conference on Automated Software Engineering, ASE ’98
Doctoral Symposium Proceedings, 1998, pages 17–20.

RS-98-50 Luca Aceto and Anna Inǵolfsdóttir. Testing Hennessy-Milner
Logic with Recursion. December 1998. 15 pp. Appears in
Thomas, editor,Foundations of Software Science and Computa-
tion Structures: Second International Conference, FoSSaCS ’99
Proceedings, LNCS 1578, 1999, pages 41–55.

RS-98-49 Luca Aceto, Willem Jan Fokkink, and Anna Inǵolfsdóttir. A
Cook’s Tour of Equational Axiomatizations for Prefix Iteration.
December 1998. 14 pp. Appears in Nivat, editor,Foundations
of Software Science and Computation Structures: First Inter-
national Conference, FoSSaCS ’98 Proceedings, LNCS 1378,
1998, pages 20–34.

RS-98-48 Luca Aceto, Patricia Bouyer, Augusto Burguẽno, and Kim G.
Larsen. The Power of Reachability Testing for Timed Automata.
December 1998. 12 pp. Appears in Arvind and Ramanujam,
editors, Foundations of Software Technology and Theoretical
Computer Science: 18th Conference, FST&TCS ’98 Proceed-
ings, LNCS 1530, 1998, pages 245–256.

RS-98-47 Gerd Behrmann, Kim G. Larsen, Justin Pearson, Carsten
Weise, and Wang Yi. Efficient Timed Reachability Analysis us-
ing Clock Difference Diagrams. December 1998. 13 pp. To ap-
pear in Computer-Aided Verification: 11th International Con-
ference, CAV ’99 Proceedings, LNCS, 1999.

