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Abstract

This paper introduces deontic logic of regular actions as a fragment of the modal

��calculus� Semantic characterizations of deontic notions for regular actions are given

in terms of conditions on ��calculus structures� and ��calculus formulas capturing this

semantics are constructed�
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� Introduction

This paper proposes a deontic logic for regular actions� which are actions built from atomic
actions and the action connectives non�deterministic choice� sequence and iteration� The
deontic logic notions for non�deterministic choice have been studied extensively in the liter�
ature� The notions for sequence have been studied much less �e�g� �	
��� and for iteration
we are aware of only two studies� one by Van der Meyden �	
�� who studies the notions of
permission and prohibition but does not study obligation� and one by Mc Carty �	��� who
studies the notions in a logic programming context� We think deontic notions for sequence
and iteration are of big relevance to the application of deontic logic to� for example� the
speci�cation of soft integrity constraints and exception handling in triggering systems for
databases and the speci�cation of fault tolerant systems� In all these areas� we need the
ability to specify obligation properties of non�atomic processes and properties that express
what must be done if such an obligation is violated� Generally� we claim that if we pursue
normative logical speci�cations of systems in terms of non�atomic� complex actions� possibly
in the form of an automaton or program� we must have a clear and complete understanding
of deontic notions for sequence and iteration of actions� This paper studies these notions in
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the context of the modal ��calculus� which is a temporal and process logic that� due to its
�xed point semantics� is typically suited for reasoning with iterated actions�

In section � we give semantic characterizations of deontic notions for regular actions
in terms of conditions on labeled Kripke structures� In section 
 we introduce the modal
��calculus and the ��calculus translation of propositional dynamic logic� In section 
 we
de�ne compositional ��calculus expressions that capture the semantic characterizations for
permission and prohibition of section �� Obligation can not be characterized in ��calculus
formulas in the same way� Therefore� in section �� we de�ne weakly compositional ��calculus
characterizations� These characterizations apply to permission� prohibition and obligation�
For both prohibition and obligation� we also very shortly discuss the contrary to duty notions�
Section � concludes with a discussion� and related and future work�

� Semantic characterizations

It seems appropriate �rst to say something about the language and interpretation of regular
actions themselves�

De�nition � Given a set A of atomic action symbols� the syntax of a regular action ��� is
de�ned as follows�

� ��� a j skip j � � �� j ���� j ��

The semantics of regular actions � is de�ned in terms of sets of traces� which are �nite
concatenations of atomic actions� Atomic actions a constitute elementary traces in them�
selves� and skip refers to the empty trace� The action connective � is associated with union of
traces� and � and � with concatenation and union of all �nitely repeated self�concatenations�
respectively�

In this section we characterize the deontic notions P ���� F ��� and O��� for regular
actions �� The intended meaning is respectively� �Permission to perform ��� �Prohibition to
perform �� and �Obligation to perform ��� Meyer �	
� incorporates the deontic realm in his
dynamic logic with the help of a predicate V that denotes �violation states�� Van der Meyden�s
approach �	
� can be seen as assigning violation predicates to possible transitions instead of
states� Here we take yet another approach� that is conceptually strongly appealing� and
that simpli�es de�nitions considerably� We take atomic propositions P �a� �it is permitted
to perform atomic action a� as primitive� and introduce valuations of these propositions in
labeled Kripke structures�

De�nition � Given a �nite set A of action symbols� a structure S � �S� �� RA� is de�ned as
follows�

� S is a nonempty set of possible states

� � is a total function A� �S �if s � ��a�� we say that P �a� holds in s�

� RA is an A�indexed collection of �reachability� relations over S � S

�



Until section 
� where we introduce the modal �a�calculus� we assume a standard modal
action logic over these labeled Kripke structures� In these logics �a�� has the interpretation
�all performances of action a lead to a state where � holds�� We need this in the next two
subsections� where we discuss how to de�ne deontic notions for regular actions as conditions
on traces through the structures�

��� Permission and Prohibition

We start by formulating a �rst rough intuition concerning a possible semantics for the notions
of permission and prohibition of regular actions�

P ��� � F ��� � it is permitted � forbidden to choose and perform any
trace of �

In an attempt to de�ne a logic based on this intuition� we relate it to the structures of
de�nition 	� Traces of � are now seen as traces from a state s in a structure S � �S� �� RA�
where the property P ���� respectively F ��� is thought to hold� We use the following notations
concerning traces� ���� is a trace that interprets the regular action �� a trace � �of length
n� denoted length��� � n� where the length refers to the number of traversed states� is a
sequence s�� � a

�
� � � � � � s

�
n��� a

�
n��� s

�
n of states s�i and actions a�i � Now if we de�ne F �a� to be

�P �a�� we may try to reformulate the above intuition in terms of properties of individual
traces from a state s in S as�

P ��� � in each s�i on each ����� P �a�i � holds

F ��� � there is an s�i on a ���� for which F �a�i �

These statements attempt to express the intuitions for permission and prohibition of a regular
action by making explicit the relation of more complex expressions concerning permission and
prohibition with the primitive notion P �a�� But the characterization is incomplete� in terms
of modal �action� logic� it leaves room for more than one interpretation� as can be seen from
the following example structures�

a

a

b

c

a

b

c
P(a)P(a)

P(b)

P(c)

P(b)
P(c)

��� free choice ��� imposed choice

Both structures� in their left most state� obey the semantic characterization when applied
to P �a� �b� c��� But from a modal point of view� the structures are not equivalent since they
do not bisimulate� model 	 satis�es P �a� 	 �a��P �b� 	 P �c��� and model � only satis�es the
weaker P �a� 	 �a��P �b� 
 P �c���

If we think of the notion of permission at hand as part of the logic governing an agent�
we can say that model 	 corresponds to the logic of an agent that reasons about a future
course of events where it has full control over the choices between actions� The agent reasons






�if initially I am permitted to perform either ab or ac� then after I have done a� I can choose
either b or c� which implies that after I have performed a� I am permitted both b and c��
This is exactly what is re�ected by the formula P �a� 	 �a��P �b� 	 P �c��� We refer to this
interpretation of permission as the �total� free choice semantics�

Model � corresponds to the logic of an agent that reasons about a future course of events
where it has no �or only partial� control over choices� initially it is permitted to perform either
the trace ab or ac� but after it has performed a� it is only permitted �by its environment� to
perform either b or c� The agent reasons �if initially I am permitted to perform either ab or
ac� but if I am not permitted to choose between b and c after I have done a� then after I have
performed an a� I will either be permitted b or c�� This is exactly what is re�ected by the
formula P �a�	�a��P �b�
P �c��� We refer to this interpretation of permission as the �partially�
imposed choice semantics� This terminology is inspired by the analogous distinction between
internal and external choice for process algebras� The connection between external choice
and �partially� imposed choice is that the lack of choice of an agent that is performing a trace�
can be viewed as choice that is externally forced upon the agent� Internal choice corresponds
to free choice� because all choices can be thought of as internal to� or �under control� of the
agent� Clearly imposed choice permission is a weaker form a permission than free choice
permission�

Imposed choice is in general only partial� An agent might be deprived of �internal� choice
only at certain points in the future course of events� We can easily outline more extensive
structures in which this is the case�� Each of these structures would have a separate modal
formula characterizing it� Now if we want to de�ne the notion P ���� it seems that we will have
to decide which permission semantics we persue� free choice� or one of the many possibilities
for partially imposed choice� But since we have adopted a trace semantics for regular actions�
we implicitly have committed ourselves to a free choice semantics for permission� Allready on
the level of action expressions �� the trace semantics is just not able to distinguish between the
many di�erent possibilities for partially imposed choice�� So� given our choice concerning the
action semantics� we are led naturally to the total free choice interpretation as the semantics
that makes most sense for regular action expressions �� Adopting the total free choice
criterion also corresponds to the semantic choice implicitly made in other systems that de�ne
deontic notions of regular actions in a modal logic setting �	
� 	���

To characterize the total free choice semantics as a condition on traces through a structure�
we will have to look at properties of sets of traces� The total free choice semantics imposes
that in any point s in a trace ���� we are not only permitted to do the next action in the
trace �� but we are also permitted to do an action that is the next action in a trace �����
with the same pre�x as �� In the following� a pre�x prei��� of a trace � with length��� � n
is a trace s�� � a

�
� � � � � � s

�
i��� a

�
i��� s

�
i � with i � n�

De�nition � Semantic characterization of the notions P ��� and F ���� both in words and
in a more formal notation�

P ��� � traversing a structure� in each state all actions are permitted

that extend a pre�x of a trace of � to a pre�x of a trace of �

�Each point in a model where a non�deterministic atomic action appears represents a point where choice
is forced upon the agent from the outside�

�We could de�ne such a semantics� if we would for instance use �tree� automata for our action language�






P ��� � for all s�i on all ���� holds
V

a�fa�
�

i
j prei������� � prei������g

P �a�

F ��� � traversing a structure� there is a state where one of the actions

that extends a pre�x of a trace of � to a pre�x of a trace of �� is

forbidden

F ��� � there is an s�i on a ���� for which
W

a�fa�
�

i
j prei������� � prei������g

F �a�

Note that this characterization is a specialization of the earlier one�

��� Obligation

In this section we are concerned with the characterization of instantaneous obligations� This
notion contrasts with the notion of obligation in the work of Maibaum �		�� Maibaum argues�
�We say that obligations are incurred or discharged� which indicates that they only hold during
execution�� He observes that this contrasts with permissions and prohibitions� which are
thought to last after a permitted execution has terminated� However� nothing is said about
at what point during an execution obligations have to be discharged� Following Maibaum�s
line of thought� the only answer to this question seems �at some unspeci�ed time in the
future�� But we believe that this slightly undermines the meaning of what it is to have an
obligation� A �some time in future� obligation can not really be an obligation as long as the
term �some time� is not made concrete� Indeed if we do not quantify the temporal aspect
of the assertion� the obligation is void� since at any moment in any future course of events
we can postpone the obligation to yet another future point� The notion of obligation we
formalize is concerned with reasoning about instantaneous obligations� obligations that have
to be discharged immediately by performing a sequence of actions� beginning now ��

We start with the rough intuition�

O��� � it is obliged to choose from the traces of � and perform one

But again we have to become more precise� As for permission and prohibition� we give a
precise characterization in words� and in more formal terms� The characterization also reveals
the connection with prohibition�

De�nition � Semantic characterization of the notion O���� both in words and in a more
formal notation�

O��� � traversing a structure� in each state it is forbidden to perform

actions that extend a strict pre�x of traces of � to a trace that is not

a pre�x of a trace of �

O��� � for all s�i on all ����� such that s�i �� s�
�

n for some ����� with

length���� � n� holds
V

a�Anfa�
��

i
j prei�������� � prei������g

F �a�

�The notion of �obligation� concerned by Maibaum can actually be expressed using our notion together
with the temporal logic expresssivity of the ��calculus �see section ���
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Two di�erences with the characterization for permission in section ��	 attract attention�
First� in each state of a trace� there is no reference to the actions that keep us within the
trace set of �� but to the actions that would bring us outside it� these actions are forbidden�
Given both characterizations� it is not too di�cult to see that if O��� holds� for any program
��� other than �� the property F ���� holds� So� also on the program level we obey the deontic
principle that �being obliged� equals �being forbidden not to��� Second� this condition is not
imposed on all states of traces� but only on states that are not the �nal state of a trace of �
�alternatively� �which are on strict pre�xes of traces of ���� The reason is that otherwise the
obligation to perform actions could possibly never be discharged� in some cases �whenever
� is the �nal connective in a regular action�� we would be obliged to go on forever� Take
as an example O�b� a��� The trace set is b� ba� baa� baaa� � � �� Now if in states that are the
�nal state of one of these traces we would be obliged to do an action that keeps us within
this set� we would always be forced to �jump� to longer traces by doing an extra a� This
obligation would hold forever� and we would be caught in an a�loop�� By demanding that
only on pre��nal states we are forbidden to do actions that bring us out of the trace set� we
allow for the possibility to do an �escaping� action in the �nal state� The justifying intuition
is that in that case we have ful�lled our obligation� since we have performed one of the traces
of �� And if we have ful�lled the obligation� we should not any longer be constrained in the
performance of actions�� This semantic choice implies that O�a�� � 
 for any atomic action
a� and O�skip� � 
� since we can comply with these obligations by performing nothing�
which is always possible�

Having characterized permission� prohibition and obligation as conditions on labeled
Kripke structures� in sections 
 and � we look for ��calculus formulas that enforce equiv�
alent conditions on this type of structures� But �rst we introduce the modal ��calculus and
propositional dynamic logic�

� The modal �a�calculus

Informally the modal ��calculus can be described as modal logic �the weakest form� with�
out re�exivity� symmetry or transitivity� extended with a minimal and a maximal �xpoint
operator� The �xpoint operators� in combination with the standard modal logic operators
h i� and � ���� enable the expression of a wide range of temporal and dynamic properties�
The ��calculus is known to subsume� among others� the temporal logics CTL� LTL� CTL��
ACTL� ECTL� �	��� and propositional dynamic logic �PDL� ��� ��� When we talk of �the
��calculus�� we refer to the non�parameterized� temporal calculus� In this section the modal

�Note that we do not speak of �� as the negation of �� This is because �� is just one of the actions unequal
to �� not the action unequal to ��

�It would not be possible to satisfy this principle if we would have chosen a weaker notion of permission�
Consequently the notion of prohibition would have become stronger� too strong to relate the notion of
obligation to it�

�For permission it poses no problem to be permitted to perform an a in�nitely often� If� in case of a
permission� we are in the �nal state of a permitted trace� and it is possible to extend it to another permitted
trace� we actually should be permitted to go on�

�Note that the ful�llment of an obligation does not �cause� an �obligation to stop��
�These operators should not be understood as deontic oparators� Throughout the paper� they will be

parameterized with respect to atomic actions� and should be understood as action operators�

�



�a�calculus ����	�� is introduced� whose modalities are parameterized with respect to actions
a� We also occasionally talk about the modal �m�calculus �	������ which is the calculus whose
modalities are parameterized with respect to sets of actions m�

��� Syntax and Semantics

De�nition 	 Given a set A of action symbols and a � A� a set P of proposition symbols
and p � P� and a set Z of state�set variables	 and Z � Z� a well formed formula � of the
language L is de�ned through the following BNF�

� ��� p j Z j 
 j � j �� j � 
 	 j hai� j �Z� �

The following syntactic abbreviations are applied� ���� 
 �	� to � 	 	� �hai�� to �a���
��
	 to �� 	� ��� 	�	�	 � �� to �� 	� A state�set variable Z � Z is a syntactical aid
for constructing formulas that are interpreted through �xed points� A variable Z is a symbol
that will not be given an independent domain interpretation �like p�� nor will it be given a
logical interpretation �like 	�� State�set variables from Z are introduced as subformulas of
general well formed formulas � to be able to view a formula � as a function ��Z� � �S � �S

on sets of states� which in turn makes it possible to de�ne the semantics of �Z� ��Z� as
a minimal �xpoint �a minimal set of states Z such that ��Z� � Z� of this function� We
apply the usual restriction that the state variable Z only appears within the scope of an
even number of negations in bounded formulas� This might seem a severe restriction on the
syntax� But the restriction is only on negations that are in the scope of �xpoint operators�
and is actually required for having solutions to the �xpoint semantics that is responsible for
the expressive power of the ��calculus� The restriction guarantees monotonicity of functions
��Z� � �S � �S� which in turn guarantees a solution to the �xed point equation ��Z� � Z�
After this short �look ahead� into the semantics of the modal �a�calculus� we now give the
formal description of it� After that� we elaborate on how a �xed point �a�calculus formula
can best be read�

To de�ne the semantics of arbitrary well formed formulas we use the structures of def�
inition 	� where� for the moment� the deontic valuation function � is replaced by a general
valuation function 
 that interprets general proposition symbols P� The semantics is de�ned
by extending the valuation function 
 � P � �S to the interpretation function jj�jj� � L � �S�
which depends on a function � � Z � �S that interprets state�set variables possibly present
in �� From this it follows that we can view an interpretation jj�jj� of a formula � containing
Z as a subformula� as a function from states ��Z� to states jj�jj�� If we want to make this
function explicit we write� �Z� jj�jj��
�

De�nition 
 Given a structure S � �S� 
� RA�� the interpretation jj�jj� of a w� � on a
structure S �relative to an interpretation of state�variables �� not �xed for a structure� is
de�ned by�

	Usually these are called �state variables�� But we feel that �state�set variable� is more appropriate� since
the variables range over sets of states�

�
This is just a more accurate notation for the above used ��Z��

�



jj
jj� � S
jj�jj� � �
jjpjj� � 
�p�
jjZjj� � ��Z�
jj� 
 ��jj� � jj�jj� � jj��jj�
jj��jj� � S n jj�jj�
jjhai�jj� � fs � S j �s� � S such that �s� s�� � Ra and s� � jj�jj�g
jj�Z��jj� � the least �xed point of the function �Z� jj�jj�
jj
Z��jj� � the greatest �xed point of the function �Z� jj�jj�

A superscript S in the interpretation function jj�jj� is omitted� leaving implicit that in�
terpretations of formulas depend on the structure they are evaluated on��� A formula � is
de�ned to be valid on a structure S � �S� 
� RA� if and only if jj�jj� � S � and a formula is
valid if it is valid on all possible structures�

We now try to give an intuitive reading of ��calculus formulas� This reading facilitates the
understanding of ��calculus formulas in general� and in particular the de�nition of deontic
notions for regular actions in section �� We call this reading of ��calculus formulas �repetitive
reading �� As an example� take the formula �Z� � 
 haiZ� Now �repetitive reading� refers to
looking at this formula as if it reads � 
 hai�� 
 hai�� 
 hai�� � ����� So we read the formula
as if at the place where a variable Z appears� the subformula that is bounded by �Z is
repeated� But we have to be more speci�c about the meaning of the three dots� In case of
binding by a �� the dots mean �arbitrary but �nite repetition�� and satisfying a ��formula
means satisfying at least one of the �nitely repeated readings of the formula��� In case of
binding by a 
� the dots mean �in�nite repetition�� and satisfying a 
�formula means satisfying
the complete in�nitely expanded formula��� In general� ��formulas can be used to describe
properties of terminating ��nite� behavior and 
�formulas can be used to describe properties
of nonterminating �in�nite� behavior�

��� The �a�calculus translation of Propositional Dynamic Logic

We now turn to the de�nition of propositional dynamic logic� as a translation to the �a�
calculus� In the next section we need this translation in the compositional �a�calculus char�
acterizations for permission and prohibition�

De�nition � Given a set P of proposition symbols� a well formed formula ��� of PDL� with
� a regular action and p � P is de�ned as follows�

��Due to Tarski ��
� the de�nition of the least �xed point �Z� � of the monotonic function �Z� jj�jj� can
be written as

T
fZ � S j �Z� jj�jj� � Zg� In the de�nition of the semantics we prefer just to write �the least

�xed point of the function �Z� jj�jj��� because the characterization due to Tarski is less intuitive�
��This reading is justi�ed by the ��calculus property� �Z� ��Z� � ���� � ������� � � � �� This property

assumes ��continuity of ��Z�� which is always obeyed on structures where states have a �nite number of
successors�

��This reading is justi�ed by the ��calculus properties� �Z� ��Z� � ���� � ������� � � � � �assuming ��
continuity� and � � ���� � ������� � � � �from the monotonicity of ��Z�� that together imply �Z� ��Z� �
����� � � ���� � � ���� where the dots are thought to represent non��niteness� Monotonicity also implies � �
����� ������� � � �� but this is of no use in the simpli�cation of the reading of �Z� ��

�



� ��� p j 
 j � j �� j � 	 	 j ����

The semantics of ���� is that � holds at the end of all traces that interpret �� The
semantics of the dual h�i� is that there is trace in the interpretation of � that ends in a
state where � holds� This semantics is easily de�ned through a syntactic translation f to the
�a�calculus ��
���

De�nition � The �a�calculus translation of PDL�

f�P � � P f�Z� � Z
f�� 	 ��� � f��� 	 f���� f���� � �f���
f��a��� � �a�f��� f��� � ���� � f������ 	 f������
f������� � 
Z� f��� 	 f����Z� f���� ���� � f���������
f�hskipi�� � f��� f��skip��� � f���

Note that also state�set variables occur in the translation� This is because they may
appear as the result of translating formulas like �a���� With the help of repetitive reading it
is easy to check that the formula ha�i�� which translates the formula �Z� � 
 haiZ refers to
all states in a model where by a �nite number of executions of a� we reach a state where �
holds� and that �a���� which translates to 
Z� � 	 �a�Z means that � has to hold after any
number of executions of a�

� Compositional characterizations in the �a�calculus

From now on we assume that the �a�calculus syntax of de�nition � is extended to include
regular actions �de�nition 	� and formulas P ���� F ��� and O����

��� Permission and Prohibition

We now de�ne �a�calculus�� validities that are sound and complete with respect to the
semantic characterization given in section ��	�

Proposition � The following are validities sound and complete with respect to the semantic
characterization of de�nition 	�

P �skip� � 
 F �skip� � �
P ������ � P ��� 	 ���P ���� F ������ � F ��� 
 h�iF ����
P �� � ��� � P ��� 	 P ���� F �� � ��� � F ��� 
 F ����
P ���� � 
Z� P ��� 	 ���Z F ���� � �Z� F ��� 
 h�iZ

��This semantics can not be captured in CTL ���� because CTL lacks actions� and the possibility to assert
what holds �along the way��

�



Note that �xpoint formulas only appear in the decomposition of P ���� and F ����� In
several decompositions formulas of the form ���� and h�i� appear� which for a further de�
composition rely on the �a�calculus translation of PDL from section 
���
Sketch of a proof

Soundness of P ������ � P ��� 	 ���P ����� we prove that this formula holds given that
for the traces of P ������� P ���� and P ���� the conditions of de�nition 
 hold� The �rst
observation is that the traces of ���� are concatenations of traces from �� to traces of �� Now
recall from section 
 that ���� means that � holds after all traces in �� So as the formula
P ��� on the right hand side imposes the right condition on the �rst part of concatenations�
the formula ���P ���� imposes the right condition on the second part� The only state that
deserves closer attention is the point of concatenation� since in this point we might not satisfy
the condition that actions from other traces with the same pre�x are also permitted� But�
again recalling the semantics of the PDL�expression ���� in terms of traces� ���P ���� states
that traces of ���� that have equal pre�xes in �� all have to obey the same permission
property P ���� after the performance of �� So the validity actually re�ects the total free
choice semantics� It is illustrative to verify this for the example structures for P �a� �b � c��
given above� The validity �decomposes� P �a� �b � c�� into P �a� 	 �a�P �b � c�� The right hand
side states that in both traces ab and ac� after a is performed� the permission property P �b�c�
must hold� This is only the case for the right model� the one that corresponds to the total
free choice semantics�

Soundness of P �� � ��� � P ��� 	 P ����� similar�
Soundness of P ���� � 
Z� P ��� 	 ���Z� similar�
Completeness� to prove completeness we have to go the other way� given the validities

we have to prove that all the right conditions on traces are imposed� The validities� together
with the �a�calculus expressions for PDL of de�nition �� can be used to �break down� any
formula P ��� and F ��� into formulas with only atomic deontic formulas of the form P �a�
and F �a�� Given the soundness of the validities� this can be used to prove that on all states
the conditions as stated in de�nition 
 are imposed�

��� Obligation

It would be nice to have similar compositional �a�calculus characterizations for the notion of
obligation of a regular action� But the following conjecture contradicts this prospect�

Conjecture � For obligation we cannot de�ne the semantics compositionally for �� � and �


First of all� we claim that O�� � ��� is not likely to be expressible in terms of O��� and
O����� This is already seen at the atomic level� The semantic characterization of section ���
de�nes O�a � b� as

V

x�Anfa�bg
F �x�� and O�a� as

V

x�Anfag
F �x�� and O�b� as

V

x�Anfbg
F �x�� From

this� it follows that� O�a� 
 O�b� � O�a � b�� and obviously we also have O�a� 	 O�b� �
O�a� 
 O�b�� It is easily seen that the semantic characterization does not allow that the
implications are reversed� So the expression we look for �a decomposition O�a� b�� must be
even weaker than O�a�
O�b� but yet compositional in O�a� and O�b�� This seems impossible�

	�



To show the non�compositionality of O����� we look at the example� O�a� b��� A �a�
calculus expression�� capturing exactly the semantic characterization of section ��� is 
Z� �a��O�b�	
�b�Z�� This is not likely to be equivalent to a notion that is functional in O�a� b�� which is
identi�ed with O�a�	 �a�O�b�� because 
Z� �a��O�b�	 �b�Z� does not contain any information
equivalent with O�a��

Finally we argue that O������� is not expressible in terms of O���� and ����O����� Again
we only look at the atomic case� O�a�� b� is not expressible in terms of O�a�� and �a��O�b�� �a�
calculus formulas corresponding to the characterization of section ��� are 
Z� O�a� b�	 �a�Z�

 and 
Z� O�b� 	 �a�Z� We cannot express the �rst of these formulas in terms of the
other two because O�a� b� cannot be broken down in O�a� and O�b� as was just shown�
Furthermore� if we could break down O�a� b�� the formulas would still be incomparable�
because obligations concerning the atomic action a are completely absent in the second two
formulas� However� this is only a counterexample that proves the non�compositionality with
respect to the compound operation ����� Indeed� for regular actions in which the � is never
preceded by a �� we can prove that O������ � O��� 	 ���O���� holds�

Summarizing we may say that the non�compositionality with respect to the regular action
syntax has two main causes� The �rst one is simply that obligation of �free� choice is not
compositional� The second one is that obligation of iteration is non�compositional� which is
caused by the fact that we can comply with an obligation concerning an iteration by doing
nothing� This relates to the absence of atomic obligations in the �nal states of traces� as
discussed before�

Note that we do not claim that obligation is not compositional� The composition is just
more complex� and recursive in the structure of deterministic �nite automatons corresponding
to a regular action� In the next section we show how this works� The form of compositionality
involved we call �weak compositionality��

� Weakly compositional �a�calculus characterizations

through DFAs

We now turn to an alternative �a�calculus characterization of deontic notions� that does not
aim at compositionality with respect to regular action connectives� but that constitutes a re�
cursive composition from atomic deontic notions� governed by the structure of deterministic
�nite automatons of a regular action� We show that the notion of obligation as de�ned in
section ��� can be captured in the �a�calculus in this way� But �rst we de�ne weakly compo�
sitional characterizations for permission and prohibition� and show that they are equivalent
to the compositional characterization of section 
�	�

��� Permission and Prohibition

We �rst de�ne the deontic notions for atomic choice actions m� which are sets of atomic
actions� We call an element m � �A a choice action� because we interpret m as a non�
deterministic choice between the atomic actions in m� If m � fa� bg we write for instance
P �m� as P �a� b��

��Here we anticipate on the characterization in section ����

		



De�nition 
 The de�nition of the deontic notions P �m� and F �m� for atomic choice actions
m�

P �m� �
V

a�m
P �a� F �m� � �P �m�

Clearly these de�nitions are compatible with the de�nition of P �� � ��� and F �� � ���
given in ��	� The �rst step in the alternative �a�calculus de�nition of deontic notions of
regular actions is to associate a regular action with a deterministic �nite automaton �DFA�
that describes the same set of traces� The second step is to express the semantics of P ���
and F ��� completely in terms of the semantics of P �m� and F �m� by building a �a�calculus
formula based on the DFA� There is always more than one DFA for a given regular action�
but we prove that �a�calculus translations of di�erent DFAs of the same regular action are
logically equivalent� To get a �rst impression of this approach� two initial examples are given�

Example � The properties� P �a�� b� and P ��a� b���� c�

DFAs of the regular actions a�� b and �a� b���� c�

a

b

a

a

b

c

c

The property P �a�� b� expressed in terms of P �a� b� by means of a �a�calculus formula�

Z� P �a� b�	�a�Z
 In words� �the permission to perform the action a�� b equals the permission
to initially choose between the atomic actions a and b� and if a is chosen to reach this same
deontic state again�


The property P ��a� b���� c� expressed in terms of P �a� b� c� and P �a� c� by means of a �a�
calculus formula� P �a� c� 	 �a��
Z� P �a� b� c� 	 �a�Z 	 �b�Z���
 In words� �the permission to
perform the action P ��a� b���� c� equals the permission to initially choose between the atomic
actions a and c� and if a is chosen to reach a state where one is permitted to choose between
the atomic actions a� b and c� and where if one chooses either an a or a b one reaches the
same deontic state again�


The examples show that the �a�calculus formula expressing the deontic notion is related
directly to the automaton� We now give the precise de�nition of how the formula is built�
First the notions of �well founded loop� and �return state� for DFAs are de�ned�

De�nition �� A well�founded loop of a deterministic �nite automaton DFA � �S�A�N� si� T ��
with S a set of states� A a set of actions� N � S � A� S the transition function� si � S the
initial state and T � S the set of terminal states� is a sequence of edges e�� e�� � � � � en �ei � E
and E � S � A� S� such that�

��Note that in this example the description of the regular action does not contain the choice operator 	 but
that in the �a�calculus translation to permissions concerning atomic actions� many non�deterministic choices
appear� This is the non�determinism that in the action description is part of the semantics of the iteration�
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� e� leaves the initial state

� each ei leaves the state that is entered by ei��

� there is an ei with i � n such that ei and en enter the same state

� there is no other pair of edges ej and ek that enter the same state

A state that is entered by the �nal edge en of a well�founded loop is called a �return state�

In the following� the set of return states of a DFA is denoted by R


Proposition � Given a deterministic �nite automaton� there are �nitely many well�founded
loops� and each well�founded loop is of �nite length


Proof
From negative demonstration� an in�nite number of well�founded loops can only be real�

ized with an in�nite number of edges and thus with an in�nite automaton� and a well�founded
loop of in�nite length can only be realized with an in�nite number of edges in combination
with an in�nite number of states� since in a well�founded loop we cannot visit a state for the
second time �the only exception is the return state at the end of a loop� but there the loop
ends��

In general there are many well�founded loops� and many return states of these loops
coincide� In the procedure de�ned next� the procedure that builds a �a�calculus formula
from a given deterministic �nite state machine� each state that is the return state of one or
more well�founded loops is assigned a separate �a�calculus state variable�

De�nition �� Let � be a regular action� and M� � �S�A�N� si� T � a corresponding deter�
ministic �nite automaton with S a set of states� A a set of actions� N � S � A � S the
transition function� si � S the initial state� and T � S the set of terminal states
 Further�
more� let R � S be the set of return states of the DFA� let Zs be a state variable associated
with a return state s � R� and let out�s� be the outgoing automaton actions of a state s � S

Then a �a�calculus formula representing the semantics of the deontic notion P ��� is built with
the help of a recursive mapping f that associates a �a�calculus formula to each automaton
state�

if s � S nR� f�s� � P �out�s�� 	
V

a�out�s�
�a�f�N�s� a��

if s � R� f�s� � 
Zs� P �out�s�� 	
V

a�out�s�
�a�f�N�s� a��

if s � R� f ��s� � Zs

A return state s � R has two associated formulas� f�s� and f ��s�
 The value f�s� is
used if in a thread of recursive calls of the function� the return state s is visited for the �rst
time� and the value f ��s� is used if in this same thread the state is returned to �visited for
the second time�
 If automaton states have no outgoing actions� their associated formula is


 The semantics of P ��� is de�ned as the formula associated to the initial state of the
automaton� P ��� � f�si�


	




The reader is invited to check that this recursive procedure� applied to the deontic notions
of example 	� returns the correct �a�calculus formulas� For the notion F ��� we can de�ne a
separate recursive mapping with 
 instead of 	� h i instead of � � and � instead of 
� But
this is equivalent to de�ning F ��� as �P ����

Proposition � The recursive mapping f in de�nition 

 always returns a �nite� well�formed
�a�calculus formula


Proof
Each �thread� of recursive calls either follows a well�founded loop through the automaton

or ends in an end�state of the automaton� Since the automaton contains only �nitely many
well�founded loops and since the loops are of �nite length� the recursive calls eventually stop�
The well�formedness is straightforward given the de�nition of the mapping f �

A regular action is equivalent with many di�erent DFAs� The following proposition states
that nevertheless the semantics as de�ned by de�nition 		 is preserving�

Proposition � �a�calculus translations of di�erent DFAs describing the same set of traces
are logically equivalent


Sketch of a proof
We do not prove this formally� but reveal the intuition behind the proof� From automaton

theory it is known that for any DFA �and even FA� there is a unique minimal DFA �MDFA�
that describes the same trace set� and� that DFAs di�er from the MDFA only in the sense
that some MDFA�states have equivalent copies� The recursive function of de�nition 		 is not
able to distinguish between DFAs that only di�er in the sense that certain states have copies�
This is illustrated by a small example �

a

b

b

a a

a

a

b

a

a

b

Both the DFAs of the example represent the trace set faaa� abag� The right DFA is
minimal� The left DFA contains copies of the end and before�end state of the minimal DFA�
This is a very simple example of copies of automaton states� In general also return states
can be copied� which may lead to DFAs that are not easily recognizable as equivalent to
the minimal one� It is not di�cult to see that for both DFAs the mapping f of de�nition
		 returns exactly the same �a�calculus formula� When copies of return states are involved�
�a�calculus formulas may di�er in the names of state�set variables Zs with s � R� But clearly
this does not have any in�uence on the logical content of the formula�

We now turn to the claim that both explored �a�calculus characterizations of the notions
of permission and prohibition� are equivalent� In the following� we denote the initial state si

of a deterministic �nite automaton M� corresponding to a regular action � by si�M���

	




Theorem 	 The notions P ��� and F ��� of proposition 
 and de�nition 

 are equivalent


Sketch of a proof
We prove this by showing that this second translation into the �a�calculus is also sound

and complete with respect to the semantic characterization of de�nition 
� To prove sound�
ness� we have to prove that on structures for which the conditions for P ��� of de�nition 

hold� the formula f�si�M��� is valid� Now traces of � can be seen as arbitrary but �nite
paths from begin to end state inM�� and di�erent traces of � with a common pre�x� initially
follow the same path in M�� because M� is deterministic��� Now the conditions on traces�
as stated in de�nition 
� demand that in each state the next action of a trace and all next
actions of traces with an identical pre�x� are permitted� The subformulas P �out�s�� and the
construction of f�si�M��� exactly guarantee this�

To prove completeness� we have to prove that the formula f�si�M��� imposes the condi�
tions of de�nition 
 on traces� This is seen directly from the construction of f�si�M����

��� Obligations� permissions and prohibitions� contrary to a prohi�

bition

An important feature of deontic logics is their capacity to assert properties that say what
should hold when a norm is actually violated� In this logic these contrary to duty notions can
be dealt with very well� In case of violation of a prohibition� such properties typically have
the form� F ��� 	 ����� In this formula F ��� says that � is forbidden� and ���� says that �
holds if this prohibition is violated� The formula � can of course express a new prohibition�
a permission� an obligation� or any other �a�calculus property�

��� Obligation

First we give the de�nitions of the characterization through automatons� Then we show
that this characterization is equivalent to the semantic characterization of obligation given
in section ����

De�nition �� The de�nition of the deontic notion O�m� for atomic choice actions m�

O�m� �
V

a�Anm
�P �a�

Note that for atomic actions a and b it follows that O�a� 
 O�b� � O�a� b�� This form
of Ross�s anomaly only resides on this atomic level� and can actually be easily avoided by
demanding that O�m� also means that for all actions a in m the property P �a� holds�

De�nition �� Let � be a regular action� and M� � �S�A�N� si� T � a corresponding deter�
ministic �nite automaton with S a set of states� A a set of actions� N � S � A � S the
transition function� si � S the initial state� and T � S the set of terminal states
 Further�
more� let R � S be the set of return states of the DFA� let Zs be a state variable associated

��This shows why we need DFAs for the �a�calculus translation� and not NDFAs�
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with the return state s � R� and let out�s� be the outgoing automaton actions of a state
s � S
 Then a �a�calculus formula representing the semantics of the deontic notion O���
is built with the help of a recursive mapping f that associates a �a�calculus formula to each
automaton state�

if s � S n �R � T �� f�s� � O�out�s�� 	
V

a�out�s�
�a�f�N�s� a��

if s � R n T � f�s� � 
Zs� O�out�s�� 	
V

a�out�s�
�a�f�N�s� a��

if s � T nR� f�s� �
V

a�out�s�
�a�f�N�s� a��

if s � R � T � f�s� � 
Zs�
V

a�out�s�
�a�f�N�s� a��

if s � R� f ��s� � Zs

The distinction between primed and unprimed values equals that in de�nition 


 The
semantics of O��� is de�ned as the formula associated to the initial state of the automaton�
O��� � f�si�


The di�erences with the de�nition of the mapping f for permission follow directly from
the semantic choices discussed in section ���� First� on the level of atomic actions� we have of
course O�out�s�� instead of P �out�s��� Second� the �nal states s � T are treated seperataly�
in de�nitions of f�s� for states s � T nR and s � R�T � The di�erence with the de�nition of
f�s� in the non�terminal states s � S n �R � T � and s � R n T is that the atomic obligations
O�out�s�� are left out� which corresponds to the semantic choice that in the �nal states of
traces �terminal states in the automatons� no atomic obligations should hold�

Theorem 
 The translation O��� � f�si�M���� is sound and complete with respect to the
semantic characterization of de�nition �


Sketch of a proof
The proof of the soundness and completeness is similar to that for P ���� and follows from

the correspondence of the semantic characterization in terms of traces� and the structure of
automatons� seen as canonical structures for O����

We conclude this section with two examples�

Example � The properties� O��a� b��� and O��a � b��� b� a�

DFAs of the regular actions �a� b�� and �a � b��� b� a�

a

a

b

b

a

b

a

b

The �a�calculus expression for O��a� b��� is� 
Z� �a��O�b� 	 �b�Z�
 Note that O��a� b��� ��
O�a�� while for permission� P ��a� b��� � P �a�
 Again this shows the di�erence between
permission and obligation with respect to atomic notions holding in �nal states of traces
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The �a�calculus expression for O��a � b��� b� a� is� 
Z� O�a� b� 	 �a�Z 	 �b��
Y� O�a� b� 	
�b�Y 	 �a���b�Y 	 �a�Z��
 This example shows that it is not always straightforward to recognize
that a regular action and a DFA describe the same set of traces
 Consequently� a �a�calculus
expression is not always easily recognized as describing a certain deontic notion of a regular
action


��� Obligations� permissions and prohibitions� contrary to an obli�

gation

In the logic also the contrary to duty notion with respect to an obligation can be dealt with
very well� These properties typically have the form� O��� 	 ����� In this formula O��� says
that � is obliged� and ���� says that � holds �or� should be done� if this obligation is violated�
But we did not yet de�ne the notion of regular action negation used in this formula� The
semantics of ���� is that � holds after every atomic action that brings us outside the trace
set of �� Again� we can capture this notion in a construction with �nite automatons� We
can simply replace all appearances of O�out�s�� in de�nition 	
 with �out�s���� where the
notation m denotes the complement A nm of a set of actions m� This ensures that in each
automaton� after any of the actions not among the actions leaving that automaton state� �
holds� Allowing expressions like �m��� means that we have to generalize the �a�calculus we
used so far to the �m�calculus as used by Stirling et al �	������

� Discussion

We de�ned a deontic logic for regular actions as a mapping to the modal �a�calculus� Meyer
�	
� earlier studied the deontic notions of non�deterministic choice� sequence and parallel
execution of actions� Meyer�s main idea is to introduce an action algebra containing negation
within the box of modal logic� Since Meyer does not consider iteration� we can only compare
our present logic with his on choice and sequence� We take the example O��a� b� � �c� d���
In our present semantics this property is identi�ed with the intuitively strongly appealing
O�a�c�	�a�O�b�	�c�O�d���� whereas in Meyer�s logic no simple identi�cation is possible� This
is in favor of the argument that our present semantics provides a more intuitive formalization
of the combined deontic notions for sequence and choice�

Van der Meyden �	
� de�nes two notions of permission for regular actions� one that corre�
sponds to free choice permission and one he calls �not forbidden�� His free choice permission

���X� aims at the formalization of the same notion as our permission does� The only
di�erence is that Van der Meyden�s notion of free choice permission for regular actions en�
forces termination of executions by demanding traces to end in states where X holds� But
if we substitute � for X in Van der Meyden�s �complete� axiomatization� we see that our
formalization of permission is equivalent to his�	� the validities of proposition 	 are easily
seen to be the �a�calculus equivalents of Van der Meyden�s axioms for 
������ The reasons
we rede�ned Van der Meyden�s notion of permission here are that we wanted to reveal the
connection with �a�calculus and �nite automatons� that Van der Meyden leaves undiscussed

��For this simple property the strength of the �a�calculus is clearly super�uous�
�	If we perform this substitution in the description of the semantics� the equivalence is less clear�
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the semantic choice between partially imposed and total free choice� that we wanted to show
that the semantics of this notion can be de�ned without labeling actions as forbidden or
permitted� as deemed necessary by Van der Meyden� and that we wanted to show the dif�
ferences with the �a�calculus de�nitions for obligation� Van der Meyden does not deal with
obligation�

The reduction to �a�calculus has many advantages� First of all� the modal �a�calculus
is decidable� Second� a complete axiomatization for the �a�calculus is known �	��� Third�
much research on ��calculus is already undertaken or on its way� including work on clausal
resolution procedures for the modal ��calculus� Fourth� there are several model checkers
available for both the standard ��calculus �	� and for the �a�calculus �	������ Fifth� since
in the ��calculus a wide range of temporal logics is expressible �CTL� LTL� CTL�� ACTL�
ECTL� etc��	��� we get for free a mixture of deontic and temporal notions� We can express
�on all paths it globally holds that some time in the future it is obliged to perform the action
�a� b��� as �using CTL� ���� �G F O��a� b��� and �using the �a�calculus� 
X���Y��
Z�O�a� 	
�a��O�b�	 �b�Z�� 
 �any�Y �	 �any�X� This type of properties is reminiscent of the obligation
properties de�ned by Maibaum �		�� as discussed in section ����

Only in section ��
 we mentioned one of the famous anomalies that have plagued many
deontic systems� Ross�s anomaly� But we allready pointed out how to avoid the anomaly on
the atomic level� And it is not di�cult to see that on the level of regular actions� we allready
avoid Ross�s anomaly� so� O��� �� O�� � ���� It might be clear that we are also not subject
to the free�choice anomaly� since we have formalized a notion of free choice permission�

We hope to explore extensions to concurrent actions� and how the extensions of the
framework allowing such actions fair in the face of paradoxes associated with such actions�
such as the penitent�s anomaly� the gentle murderer anomaly� and one of the readings of the
Chisholm anomaly�
� Furthermore� we want to investigate the addition of extra program
components to the action language� such as test� Finally� we plan to investigate to what
extent the DFAs we associated with deontic notions can be used as canonical structures to
model check properties on� This might provide a partial replacement of theorem proving by
model checking for this logic�
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