
Using Modal Logic Proofs to test
Implementation-Specification Relations

Alan Paxton

Doctor of Philosophy
University of Edinburgh

2000

Abstract

This thesis shows how to make use of the intensional information relating spec-
ifications to implementations. It views the proofs of properties of specifications
as identifying the intensional parts of implementations relevant to the property.
It provides a concrete instance of such proofs by adopting labelled transition
systems, modal-mu calculus and the tableau methods of Stirling and Bradfield
as a framework for generating intensional information.

The intensional information generated from proofs about models of systems
can be used to verify behaviours of implementations of systems. By annotat-
ing implementations of systems with the atomic actions of their models we
can apply oracle techniques to verifying implementation behaviour. The extra
richness of intensional information allows oracles derived from proofs; rather
than just from properties, to be much more discriminating of failures in the
implementation.

The emphasis of oracle-based testing and verification is on practical improve-
ments in the quality of distributed systems. Therefore the intensional idea is
developed into a framework for a practical system. Case study systems are
examined to identify where system developers can be helped by computerised
systems to integrate auditioning into the software development process.

Acknowledgements
I must first thank my supervisor, Stuart Anderson, whose unfailing enthusias-
m and willingness to help despite his permanent condition of overwork were
instrumental in my finishing at all. His ideas were the beginning.

Peter Hancock, Russ Green, Chris Davies and Ian Pattison of Digital pro-
vided me with much help in the case study work, and Russell Robles originally
persuaded the company to take part in the grant. Peter also stands as a great
moral and intellectual example.

Antonella Bertolino of IBI (CNR) was my host and mentor in Pisa; she
contributed greatly to my understanding of testing and oracles, and helped
greatly to facilitate my stay.

Most of all I thank Hazel Christie for her love, support and humanity.
To all the others who helped in some way, my thanks, and my apologies for

the lack of a personal mention.
I was financed by an SERC (CASE) Studentship jointly with Digital Equip-

ment Co. and my sixth months in IEI (CNR) Pisa were paid for by a Young
Researcher grant from the EU OLOS Network.

Declaration
I declare that this thesis was composed by myself and that the work contained
therein is my own, except where explicitly stated otherwise in the text.

(Alan Paxton)

Table of Contents

Chapter 1 Introduction 	 4
1.1 Verifying Distributed Computing Systems4

	

1.2 	Program Auditioning6

	

1.3 	Thesis Outline 8

Chapter 2 	Oracles and Intensionality 11
2.1 Verification and Testing 12

2.1.1 	Formal Specification and Proof 12
2.1.2 	Testing and Oracles 12
2.1.3 	Integration of Proof and Testing 14

2.2 Extensional and Intensional Oracles 14
2.3 Annotating the Implementation 18
2.4 The Abstract Implementation 18
2.5 Putting Things Together 19
2.6 Interpreting the Oracle's Pronouncements 21
2.7 Conclusion 22

Chapter 3 	Example 23
3.1 Compressing Server 23
3.2 A Little Gentle CCS 24
3.3 Logic 26
3.4 Proof 27
3.5 Oracles 29

3.5.1 	Oracle States 30
3.5.2 	Oracle Transitions 32
3.5.3 	Ambiguity 33
3.5.4 	Conjunction 34
3.5.5 	Resolving Things 35
3.5.6 	The Role of Declarations 	 36
3.5.7 	Collapsing Oracle States 37

3.6 Conclusion 38

1

Chapter 4 	Transition Systems and Logic 39
4.1 Labelled Transition Systems 39
4.2 CCS 40
4.3 Specification in CCS 44

4.3.1 	Refinement within CCS 44
4.4 Logic 45

4.4.1 	Modal mu-calculus 46
4.4.2 	Interpretation of jtM Formulae 47
4.4.3 	Approximants 48

4.5 Tableau Proofs 50
4.5.1 	Bradfield Tableaux 	 50
4.5.2 	Tableau Facts 53

4.6 Conclusion 54

Chapter 5 Presenting Proofs 	 56

	

5.1 	Games56

	

5.2 	Formal Games 57
5.2.1 	Model-Checking Games57

5.3 Game Graphs and Fixpoints62

	

5.4 	Verities 65

	

5.5 	Conclusion 66

Chapter 6 	Formalising Oracles 67
6.1 Understanding Verities 68
6.2 Abstract Traces, States and Properties 72
6.3 Interpolating Definitions and Traces 73

6.3.1 	Tracing Always 76
6.4 The Oracle Transition System 78
6.5 Example 79

6.5.1 	The Compressing Server OTS 80
6.6 Hierarchies of Oracle, Model and Language 82

6.6.1 	A Stricter Language of Oracles 85
6.7 Safety 87
6.8 Termination 89

6.8.1 	Signatures in Open Formulae 89
6.8.2 	Termination Example 92
6.8.3 	Using the Right Verity 92

6.9 Conclusion 93

Chapter 7 	Case Studies 94
7.1 	Background 94
7.2 	A Tape Streaming System 95
7.3 	The Model 98

2

7.4 Properties 101
7.4.1 	Ordering 102
7.4.2 	Invariant Sets 102
7.4.3 	Proving Ordering 107
7.4.4 	Never 107
7.4.5 	Exactly Once 108

7.5 Annotating Streams 110
7.6 An Alternative Formalism 111

7.6.1 	The System 111
7.6.2 	Distributed File-Locking 112
7.6.3 	Models Tolerating Failure 118

7.7 Summary 118

Chapter 8 	Mechanisation 1 	 120
8.1 Summary 120
8.2 What to Mechanise 121
8.3 Labelled Transition Systems-..................... 123

8.3.1 	Checker 123
8.4 User Interaction 128

8.4.1 	Details 128
8.4.2 	Implementation 129
8.4.3 	Families, Matching and Generalisation 130

8.5 Summary 131

Chapter 9 	Conclusions and Further Work 133
9.1 Summary 133
9.2 Conclusions of the Thesis 133
9.3 Further Work 134

9.3.1 	Practical Application of Auditioning 134
9.3.2 	OTS Size Problems 134
9.3.3 	Oracle Simplification 135
9.3.4 	Auditioning Based Architectures 137
9.3.5 	Further Theoretical Questions 138

9.4 Conclusion 138

Appendix A Fault-Tolerant Epoch Model 	 139

Appendix B Glossary of Terms and Symbols 	 145

Bibliography 	 148

3

Chapter 1

Introduction

In this chapter I describe the background and motivation for this thesis, intro-
duce the concept of program auditioning which is at its core, and sketch the
structure of the rest of the thesis.

1.1 Verifying Distributed Computing Systems

Large, distributed computer systems are amongst the most complex artifacts
built by human beings. It is natural therefore that we have to ask whether they
behave correctly. The question can take many forms, and answering it has been
a major concern of computing research for many years [MC84].

In order to claim that a system is correct, we must know what constitutes
correctness. Sometimes this is obvious; we have a reasonable idea of what a
simple piece of hardware such as an adder or multiplier must do. So we can at
least define a set of tests for it and say what it is for the tests to be passed. But
even here there are deep questions about what tests are sufficient to support
the claim that the hardware must be correct.

In distributed systems even defining correctness is not so simple. Distributed
systems can most fruitfully be analysed reactively; each component's behaviour
is just a response to the behaviour of the other components of the system.
Ultimately the external behaviour responded to is a model of the outside world.
But viewing a distributed system as a function from input to output gives no
insight into the distribution. Some notion of correct behaviours is required, and
this can broadly be termed a language. More concretely, these languages are
specifications, and relationships are defined between systems and specifications.
Correctness is precisely expressed in terms of which relationships hold between
system and specification. Many different specification languages and correctness
relationships exist, and different instances are suitable to different domains.

The process of model-checking provides an example. A particular distribut-
ed system may be expressible as an initial state of a Labelled Transition System
(LTS). A modal logic such as CTL or CTL* expresses properties of LTSs. For a

4

finite LTS, algorithms exist to search the state space and determine for which
states a property holds. The property holds when and only when the initial
state is in the resultant state set.

Although clever representational techniques such as BDDs [Bry92] have
made it possible to model check quite large pieces of hardware, these still lie at
the smaller end of the size spectrum of computing systems. For many a larger
system the problem of formally modelling the implementation is huge [Bow95,
Phi90]. Proving that it satisfies a specification expressing its behaviour, or an
aspect of its behaviour is therefore still impractical. To write even a specifica-
tion of such a system is an onerous task [Win]. To do it, we must choose a useful
level of abstraction in the system in question at which to work, and we must
make assumptions in the specification about how our system interacts with
surrounding systems. For instance, the filesystem component of an operating
system must interface with a disk driver and a memory manager. So any proof
we make about the specification is contingent on our having made the correct
assumptions about the interacting systems. And if the other components are
not formally verified we cannot know that our assumptions hold.

This size-based criticism applies equally to any fully formal method, not
just model-checking. Fully formal software is more usually developed formally,
by way of stepwise refinement from specification to implementation [KST94].

It is reasonable then to assume that full formality is not yet usable in large
systems. Since I am particularly interested here in large systems, the question
stands as to what can usefully be done with such a system to ensure that it
is acceptably robust. Present industrial practice involves an array of useful
procedures:

Testing encodes the programmer's implicit understanding of the specification as
a prediction of the system's behaviour under particular inputs. It often
reveals problems but, pace Dijkstra [Dij76], it does not guarantee their
absence.

Writing Specifications alone is a useful discipline for programmers. The thinking
involved in expressing a system rigorously in a way other than in the
programming, can often be enough to reveal deep problems. Like testing
it suffers from the fact that it is necessarily not exhaustive.

Peer Review of design and coding has in practice proved to have reliability bene-
fits which can at least partly be ascribed to forcing a programmer to write
argumentatively justifiable code.

While Dijkstra's criticism is formally valid, it can be overemphasised. While
the attempt to develop methods to derive fully correct programs can still be
considered long-term research, there is an important role to be played by other

5

methodologies which tend to improve the reliability of software, at a realistic
cost.

My aim in this thesis is to present a method which spans the large gap
between these useful but mathematically informal methods and any of the
methods which demands formalisation of the implementation. Viewing system
development as moving from small and very abstract expressions of the sys-
tem (specifications derived from requirements) through a series of refinement
steps to large and very concrete expressions (implementations), I show how to
use formal proofs of relationships at the upper levels to test and monitor the
implementation.

1.2 Program Auditioning

The germs of an intermediate approach can be seen in the work of [JLSU87,
Bat95, CD95, CG95]. These authors have experimented with testing mecha-
nisms where the most direct expressions of system behaviour are adopted as
languages with which to define and test system correctness. An architecture
has been defined by [0AR92] which encompasses their approach and the others,
and into which this work also fits. We describe it thus

Definition 1.1 (Oracle-based testing/verification) How to do it:

• Infiltrate software probes into a system implementation which signal im-
portant events in the running system (annotation).

• Decide which are acceptable behaviours of the system in terms of these
events, and which are unacceptable.

• Express these decisions in an oracle system. An oracle is a system logically
independent from the system under observation, which watches the probes
and determines whether the observed behaviour is acceptable.

Where earlier uses of annotated systems have differed is in the definition of the
events in the systems which are considered important. Some systems [JLSU87,
Bat95, CD95, CG95] have an informal notion of specifications, and express
properties directly as sequences of events. Others [DR96] use a modal logic to
define properties and derive the necessary annotations from the properties.

In our variant, which we term auditioning, we seek to derive the checkable
behaviours from proofs about the specification of the system. The motivation
is that proofs encode exactly the relevant information as to how properties are
satisfied, while logical formulae alone ignore this information. If this is the
case, then auditioning will provide a more discerning test of the correctness of
distributed systems.

The elements needed to audition a system are:

Specification of the system or subsystem. This is expressed as a transition system
relating specification states by named actions.

Proof of a property or properties of that system, for which I choose to use
modal-logic and tableaux.

Implementation of the system.

It is the job of the user to mark up the implementation according to where she
understands the actions of the specification are simulated. This involves her
in developing some conceptual relationship between the specification and the
implementation. Clearly such a relationship ought to exist, and the assumption
that it does lies behind all annotation systems. But it is not clear what the
relationship should be: refinement ? some form of simulation ? By choosing
to study a proof-based system we are led to ask, in particular, whether and
how logical properties and their proofs can be used as the expression of ac-
ceptable behaviours, and how clear the relationship between specification and
implementation is when we use this expression. So we might say

Formal annotation consists of

properties combined with proofs to construct oracles

From an oracle we are able to produce two artefacts as a contribution to the
verification process. These are a recorder of implementation actions for post-
hoc analysis and a monitor of implementation actions for immediate analysis.
Monitoring is appropriate where we want to check in real-time the operation of a
safety-critical system and take automatic or operator-initiated remedial action
when it behaves incorrectly. Recording is appropriate where we want, after
the fact, to discover the root cause of a failure in a system under development
(testing, debugging).

What is novel about auditioning is that although it makes use of formal
proof and specification it does not require a major reversal of the way software
is developed. This may allow it to be adopted in industrial software development
more readily than classic fully-formal top-down development [KST94], and even
to be used as a horse to carry specification into Troy. The contrast between
this and the more usual way of using proof reveals the tradeoff between total
rigour and practicality:

• Formal refinement from specification to implementation gives us complete
confidence in the correctness of our final implementation in as much as we
trust the refinement methodology and meta-theory. Auditioning provides
no such guarantees, only the increase in confidence formerly suggested.

• Refinement requires a strictly ordered development process which yields
an implementation as a final artifact. Auditioning can be carried out on an

already implemented system by writing a specification of the appropriate
form and proving appropriate properties.

• Formal annotation can proceed in an incremental manner. Proving and
annotating more properties provides more security for an implemented
system.

It is still the case that many software development efforts are unable or unwill-
ing to make use of fully-formal development. Such development necessitates a
particular style and process of working which can be alien to current practition-
ers in the industry. Thus there is a vital pragmatic advantage in a technique
which can be adopted without a wholesale re-organisation of process.

1.3 Thesis Outline

This thesis is structured in two threads. In the first I examine the place of
auditioning as a tool in the development of computing systems. I describe a
methodology for doing auditioning and the infrastructure necessary for it.

In the second thread I consider modal logic, and proof, more formally. The
application of proof in auditioning provokes reflection on encodings of modal-
logic proofs. Semantic-tableaux as a notation for writing proofs and model-
checking games as a metaphor for understanding modal logics are related in
well-known ways; I recall these and introduce another proof notation, verities,
designed to be used for auditioning. I consider whether verities are of interest
themselves; they emphasise the static content of proofs and avoid the directed-
ness of proving inherent in tableaux.

The two threads come together when I describe the formalities of audition-
ing, using verities. With the formal background in place I present a larger
example and move on to consider how auditioning might be made more usable
through the development of supporting tools.

In Chapter 2 I start the first thread by reviewing the state of research in
test oracles, and analyse the structure of the oracle mechanism. I review the
complementary notions of intensionality and extensionality. Proofs encapsulate
intension, and I motivate the use of proof-based oracles by explaining the way
in which the move from specification to implementation necessarily introduces
the intensional.

Subsequently, in Chapter 3, I work through the mechanics of auditioning
a system, and illustrate the main points of the process by means of a small
example. At this stage I necessarily keep the exposition informal; the intent is
to provide a broad understanding of the process which motivates the questions
dealt with in detail in later chapters. Background, meaning the CCS specifica-
tion language [Mil89] and the mu-calculus formal logic, are sketched here in an
informal way; just enough to allow the reader to follow the example.

In Chapter 4 I describe the previously sketched background in the detail
necessary for formal treatment. Taking the mu-calculus as exemplary among
process logics, I review its labelled-transition-system semantics, with particular
emphasis on the fixpoints and ordinal approximants as these bear most heavily
on the intensionality of auditioning. I recall the Calculus of Communicating
Systems (CCS [Mil89]), and its use as a language of LTS systems. I briefly
point out some alternative logics to the modal mu-calculus, and rehearse the
advantages of a logic-based approach to specification and refinement, especially
noting that it conforms with the asymmetric refinement-based view which the
methodology takes. Finally I look at Bradfleld's [Bra9l] tableau system, which
is a natural way in which to develop proofs of properties. I reprise the formal
definition for and basic results about this system, in preparation for presenting
a translation into verities in Chapter 6.

In Chapter 5 I continue the formal theme by looking at formal representa-
tions of proofs. The chapter concentrates on model-checking games, or more
precisely strategies for winning them. The links between tableaux and strate-
gies for winning games are clear. I present my alternative view of a proof, the
verity, and link it to the other views.

The immediate importance of verities is to serve as the object from which
oracles are generated. In Chapter 6 I describe the details of this process. This
is the formal counterpart of Chapter 3, and I examine the steps involved in
converting verities into the clearly mechanisable form necessary to run an oracle.
I show that the oracle process so generated correctly permits correct behaviours
and detects important classes of incorrect behaviours. I also look at some
possible simplifications which may be applied in the oracle generation process
and which present the user of an auditioning system with choices about trading-
off the power of an oracle against its smallness.

Having described the process of oracle generation in its entirety, in Chapter 7
I present a larger example in more formal detail. This in turn raises questions
of what mechanical support is possible for the methodology, and Chapter 8
presents several ways in which the process can be eased. These include possi-
ble alternative characterisations of CCS which help to treat infinite families of
processes, and mechanical extension of partial-proofs which provide a way of
supporting the human development of proofs.

I conclude by reflecting on where the two threads may lead. For the practical
thread I ask what work is necessary to produce an industrially usable audition-
ing system and whether such a system might prove useful in practice. For the
formal thread I ask whether further work with verities could be a fruitful avenue
for study of the modal mu-calculus.

Figure 1.1 Flow of Chapters

1 	- 2 	3 	4 	5 	- 6 	- 7 	- 8 	- 9

10

Chapter 2

Oracles and Intensionality

Summary

In this chapter I lay the ground for my thesis in more depth. In Section 2.1, I
contrast testing and formal verification, and argue for a pragmatic combination
of the two.

An oracle is a device for automatically validating that a system's behaviour
is as expected. If we can construct a powerful oracle for a distributed system,
we go a long way towards easing the testing/monitoring problem. I describe
how oracles have put testing into a more formal framework, and review the
research that has been done into generating oracles from logical properties.

In Section 2.2 I discuss the concept of extensionality versus intensionality,
constrasting what a property says (extensional) with how a proof shows that
a property holds (intensional). This provides a theoretical framework for the
oracles from proofs method. I show why, using proofs of formal logical prop-
erties, we can expect to construct richer and hence more useful oracles than
can be constructed from logical properties alone. I view system development as
adding an intensional implementation to an extensional specification. In this
view, verification naturally requires selective use of the intensional implemen-
tation information.

In Section 2.3 I examine the practical question of how to relate the behaviour
of a software program to the behaviour of a formal specification; after this I
discuss the forms that the formal specification can take. In the context of the
auditioning framework I use the term abstract implementation to distinguish
between this and a set of one or more logical properties which are sometimes
termed a specification. Finally, Section 2.5 steps back to look at the overall
picture.

11

2.1 Verification and Testing

The complexity of distributed systems means that it is difficult to know when
they are behaving correctly. This makes testing and monitoring especially dif-
ficult.

Testing and proving are often viewed as alternative approaches to software
validation, selected according to a tradeoff between the correctness of the soft-
ware and the cost of development. The more enlightened rightly reject this
view and make intelligent ad-hoc use of both approaches in the same project,
viewing each as a useful, but not universal, tool for constructing software which
satisfies its requirements.

An explicit structure for software development can encompass both of:

Proving properties of specifications

Testing using oracles on traces/output

I will show that the two together can be used to cross some of the gaps in the
hierarchy of abstractions which characterises the refinement from specification
to implementation.

2.1.1 Formal Specification and Proof

The formal methods community has extensively researched methods for de-
veloping software rigorously from first specification of requirements in formal
language, through multiple stages of refinement (preserving properties at each
stage) to the production of an implementation which consequently provably
meets the requirements at the top level [KST94, BH95, Bow95]. However such
development is still too onerous to employ in a large project, and its use remains
more of a research goal than a reality. Restricted use of formal methods, prov-
ing limited properties about interesting fragments of large systems has however
been used succesfully in large software engineering projects [Phi90, B1195].

Another criticism of formal development is to point out that performance
requirements are not captured within the system. Although performance can be
considered separately from correctness, the heavily structured nature of formal
development imposes more work in the redesign of algorithms which is usually
needed to make significant performance improvements.

2.1.2 Testing and Oracles

In contrast to proving, testing is an immediately practical approach to soft-
ware validation. A tester asks herself what behaviour (or output) the system
should perform under given external conditions (or input). She then establish-
es these external conditions and checks that the behaviour is as she predicted.
Intelligently carried out, this is a productive approach, but there are problems

12

• Testing gravitates towards the most readily testable components

• It is difficult to conclude that testing is thorough, that every component
has been properly examined, and that none of the matrix of possible
combinations of components yields strange interactions.

The testing community has studied how to make tests [Bei90] which usefully
cover the behaviours of the system under consideration, more rigorous [BDZ89]
While effort has concentrated on defining a collection of tests which is in some
sense complete for the system under test, verifying that the behaviour of the
system while running the test is as prescribed has been neglected [Wey82]. It
has too often been assumed, without justification, that failing behaviour can be
easily distinguished from correct behaviour. Oracles have been proposed as an
approach to make the acceptance/rejection criteria for test more rigorous.

Several systems have been developed in which the behaviour of systems
under test is made discrete and divided into the acceptable and the known-to-
be-incorrect [CG95, JLSU87, CD95, Bat95] Richardson et. al. [0AR92] have
attempted to put things on a more rigorous basis by defining an architectural
structure in which the language of specifications, implementations and oracles
are related through a series of mappings. They also demonstrate some case
studies using this framework.

With the architecture defined it is possible to think more formally about the
components. Dillon et. al. have defined a general technique for constructing
oracles from a class of logics [DR96], in particular applying it [0RD96] to their
own temporal logic, GIL [DKMMS94], which has an attractive pictorial presen-
tation. Similar approaches have been taken by others; for example [ABG96]
describes a system which automatically checks test outputs against safety re-
quirements specified in the logic ACTL [DV90].

Although these systems have demonstrated practical systems for automatic
checking, some problems remain. One is that the logics used tend not to be
standard. Another problem is that the purely logical expression of acceptable
behaviours can be too weak to discover many faulty systems. Systems which
are incorrect can always fail to produce traces which are conclusive evidence
of incorrectness: empty traces produced by deadlocked systems can always be
viewed as prefixes of other (more obviously acceptable) traces. Deriving an
oracle from a logic immediately restricts the power of testing to mirror the
power of the logic. If the difference between two system behaviours is not
expressible in the logic, then that difference cannot be tested for.

In particular, external behaviour may be correct only relative to the internal
state. To write finer properties just to distinguish between states of an imple-
mentation is to subvert the idea of using a logic in the first place: much better
to be explicit about state where we have to be. So we need to

• Be pragmatic, and work in a standard logic.

13

• Reduce the gap between the system not working and the Oracle declaring
this fact by finding a place for system states in our framework.

2.1.3 Integration of Proof and Testing

Auditioning uses techniques from formal methods and oracle-based testing. A
developer uses a proof system for a formal logic to construct a proof that an
abstract implementation has certain logical properties. She annotates the (con-
crete) implementation to reflect the behaviour of the abstract implementation.
The auditioning system provides her with an oracle which encapsulates the in-
formation in her proof and she uses it to verify the absence of wrong behaviour
in the running implementation.

The oracle obtained contains information about the structure of the system
specification, where it is relevant to the property proved. Relevance of informa-
tion is established just because it appears in the formal proof. As the system
specification changes the proof must be revised, but from this a new and differ-
ent oracle can automatically be derived. The reason that a property-only oracle
does not need to change is precisely that it cannot distinguish between any two
system specifications.

The result is an oracle with finer coverage of the system behaviour, compared
to a property-only oracle, but with a size penalty which is local rather than
global.

2.2 Extensional and Intensional Oracles

It is the incorporation into the oracle of exactly the system-specific information
relevant to the proved properties which distinguishes auditioning from earlier
work on oracles. Thus this approach can be labelled intensional, while others
are extensional. Extensionality is suggested by the word what, and intension-
ality by the word how. Using only a property (such as a logical formula) to
derive an oracle encapsulates no knowledge about the system under investiga-
tion. Knowing how the property is satisfied, in terms of states of the system and
subproperties which they in turn satisfy, results in an oracle which encapsulates
all the knowledge about the system relevant to the property. And a proof of
this property for the system in question contains exactly this knowledge.

I contend that the level of intensional detail provided by a proof may be
useful in closing the abstraction gap between specification and implementa-
tion. If we write proofs about the implementation we take on the work of
fully-formal development, and gain nothing from generating oracles for testing
already-proven properties. Instead I suggest a framework in which the move
from specification to implementation can be seen in two stages:

14

High Level Where properties, often expressed in a modal or temporal logic, but
in any case having an extensional flavour, are refined to the abstract im-
plementation. The specification still has a high level of programming
abstraction, but unlike the properties it involves a model which typically
distinguishes several components and describes how they interact. This
is canonically intensional, and the model is often expressed in a language
such as CCS or CSP.

It has been suggested that software architecture [PW92, SG96] is the
description of how components fit together, rather than how the com-
ponents are constructed. In these terms such a specification is indeed
architectural. But it is probably wrong to set too much store on this as-
sertion, because the phenomenom is manifest at many levels; each higher
level of abstraction wires up the components at the previous level, and
provides a new set of super-components which are just the collection of
components and their interaction.

Low Level Is where the abstract implementation is refined further to produce the
implementation. Although significant programming tasks must be carried
out here, and complex demands such as efficiency and maintainability
must be reconciled, something of the structure or architecture is carried
through from the abstract implementation.

In drawing this conclusion I in no way seek to deprecate the intellectual
tasks performed by the programmer. Her work is surely that of reflect-
ing the abstract system in the messy and complicated world of runnable
software. But it is the key to correctness that this reflection does happen,
and that we therefore have some concept of how to judge correctness.

In the two-level framework we can write proofs at the high level which show
that abstract implementations satisfy certain properties. Auditioning provides
a process by which these high-level proofs are bundled up to generate an oracle
which is perhaps larger than one generated by the GIL-algorithm [0RD96] but
should be more discriminating in its identification of aberrant behaviour. And
there is still a degree of flexibility in deciding at how abstract a level to stop
developing the abstract implementation. More elaboration and hence more
detailed oracles must be traded off against the work required.

The expectation is that the extra level of discrimination in the oracle will
lead to practical improvements in the recognition of failures in the system. Of
course such claims will need to be backed up with experience, but notice for
example that a deadlock can never be detected by a purely extensional oracle.
Figure 2.2 shows the different approaches to development and how they bridge
the abstraction/refinement chasm.

15

Figure 2.1 Legend for subsequent figures

ad-hoc process 	- -

formal process

mechanical process

audit information flow

16

Fiqure 2.2 From abstract to concrete

Abstract 	 '-Concrete

formal development

(e:)\ prot
	 C specification)

	
lementatio

proof 	 proof

oracle testing

ad-hoc design -- -- - - - - - - - - - - - - - - - - -m

Cte st oracle__)

oracle from logic

------------- >.
Clementatio

propeie ,,) 	 _

(J__test oracle__)

oracle from proof

C specification) ------Cmplementation)
prope

proof 	 test oracle__)

17

To summarise, the approach is to split the difference between formal devel-
opment and testing. The developer has to produce specification(s) at various
abstract implementation levels, of the whole, or interesting parts, of the system,
and to annotate the implementation to allow the oracle to make the link with
the proof. The rest of the chapter covers these steps in more detail.

2.3 Annotating the Implementation

In order to provide the information necessary to drive the oracle, the imple-
mentation must be decorated with transition callouts. A transition callout is
a code stub which communicates with a listener (the oracle) and says in effect

Consider an a-action (where a is a parameter of the callout) to have
taken place.

The code is annotated by the insertion of transition callouts. We read them
as declaring certain points in the code to be equivalent to transitions of the
abstract implementation. More generally, extra code can be added to the im-
plementation to compute complicated conditions for these callouts; multiple
points may declare the same action if, for instance, each calls a runtime library
procedure which is considered to implement the transition. Any run of an an-
notated system generates a sequence of transition callouts (a trace) which the
oracle can choose to accept, reject or hold counsel on.

The only constraint introduced at this stage is that the annotation must be
done relative to a specific abstract implementation. Of course the annotation
is a manual process which requires knowledge of both the implementation and
the specification, but the developer should hold this knowledge and with some
thought be able to express it in the required form.

Annotation is done in an ad-hoc fashion because we have no theory of the
structure of such abstractions and the languages of implementations are in any
case too diverse to impose one. The result is that a 'C'-program will be an-
notated by writing a series of extra functions which observe its internal state
and make call-outs to the observer of actions entirely at the discretion of the
implementer. But there is no way round this. If we were willing to pay the
costs to make a formal relationship between the specification and the abstract
implementation we would not need to test the relationship, with oracles or in
any other way.

2.4 The Abstract Implementation

The way that the abstract implementation is written can be flexible. An ora-
cle can be produced from any description of a set of rejectable and acceptable

traces of the abstract implementation. In fact we can do this with any labelled
transition system (LTS), together with a language of traces for the LTS. But
to justify the importance given to proof-derived oracles we must see how to
generate an oracle from a proof about a system. This requires the choice of a
logic and a proof formalism consistent with the labelled transition systems used
to write the specification. Within these constraints we could imagine using any
number of formalisms. In this thesis I use the modal-mu calculus [Koz83] for
logic because it is sufficiently expressive to raise deep questions about repeti-
tion and termination for the oracle generation algorithm we need to develop.
Then semantic-tableaux are the natural proof mechanisms for this logic. Other
logics/mechanisms would fit, the point is entirely that a system exploiting these
ideas could be developed for the notations with which the target user group is
familiar.

The job of the developer using the auditioning framework is first to write
specification(s) of the whole, or interesting parts, of her system, abstracting
away from the irrelevant parts of the system. It is for the writer of specifications
to decide what is relevant, and we don't claim it is trivial to do this.

With the specification (or abstract implementation) and a suitable logic,
important properties can be stated. These are informal properties of the large
system, expressed formally as properties of the specification. The abstractness,
and hence reduced size, of the specification should make the task of proving
properties a reasonably routine one for a human developer familiar with the
design, as the case studies (Chapter 7) suggest. These proofs turn out not to be
deep; they are mostly expressions of implicit knowledge already held by the de-
signer. In fact it is possible to envisage writing many abstract implementations
which further abstract subcomponents of less interest for particular properties,
and thus further simplify the job of writing proofs.

2.5 Putting Things Together

Assuming that a set of proofs can be translated into accept ance/rej ection rules
for an oracle, let's consider the overall structure.

An oracle in our framework examines traces generated by the annotated
implementation for consistency with those generated from proofs about the
specification. Thus the check carried out by the oracle is really a check of the
translation from abstract to concrete implementation. An oracle will always
accept all traces from the abstract implementation from which it is generated,
though it may reject traces from a different abstract implementation satisfying
the same formula(e).

A correct translation from specification to implementation, correctly anno-
tated, will of course result in the oracle accepting any behaviour of the im-
plementation. Less appealingly, an incorrect translation will only necessarily

19

result in an oracle rejecting some behaviour if the oracle is generated from the
proof of a particular property. In any case, we must drive the system so as to
provoke this behaviour. That is, we must still make good test case selections.
Test case selection is a crucial and difficult problem in testing, and we have to
accept that however smart an oracle is, the quality of testing inevitably relies
on a sufficiently powerful set of test cases to drive the system into enough places
where the Oracle can analyse its behaviour.

The verification and testing methodology is summarised in Figure 2.3. It
shows the major steps involved in testing with an intensional oracle. We write
Spec = Property for a property holding of a specification. The annotation
operation is expressed here as the arrows from specification and implementation
to annotated implementation.

Figure 2.3 Overall structure

pec=Property)

- - 	proof

mplementation) 	 more fro ofs

CAnnotated imp 	 C Oracle)

Figure 2.4 shows the dynamic behaviour of a running test, where the oracle
extends partial trace information as it receives state changes from the annotated
implementation, and at each extension checks that the partial trace is part of
some admissible total trace as described by the proof(s) encapsulated within it.

20

Figure 2.4 Running an oracle
test set, or

standard workload

abstract implementation proof of
configurations specification

auditioning 	,state transition
) 	

failure
callouts 	 information __oracle recognised

Ill
termination

without error

2.6 Interpreting the Oracle's Pronouncements

We must understand what the response of the oracle to a particular execution
means. Clearly the lack of false-positives ensured by a correct implementation
of the Oracle generation is necessary. But precisely because of the intensional
nature of the proof, the discovery of a violation by the oracle does not mean•
that the implementation does not satisfy the property. It does mean that the
implementation does not behave in the same way as the specification, with
respect to the property, which is at least as bad an error in a properly engineered
system.

Although we have a strong informal sense of what a statement of the form
I = means, when a property holds in the implementation, making it formal
is only possible through the whole process of formal development, because is
really a property of the abstract implementation. So we use the informal sense
below. We write I >-, S when the implementation I is a correct refinement
of the specification/abstract implementation S with respect to the property in
question. Of course the >.- relation depends on the notional formal refinement
of S to I too. Nevertheless, we can examine how the oracle behaves, given a
perfect test set, in all cases (fl stands for the oracle).

II=4 I>-cSI 	0

yes 	yes 	accepts
no 	no 	rejects
yes 	no 	rejects
no 	yes 	impossible

The third line reflects rejections by the oracle of implementations which do not
match the specification, and detecting such failures cannot be done with an

21

extensional oracle.

2.7 Conclusion

I have suggested a taxonomy of correctness assurance in software development
where oracle based testing lies between formal development and ad-hoc devel-
opment and testing. I have looked at where current ideas break down; deriving
oracles from logical properties results in somewhat weak oracles. My suggested
solution is to generate oracles from proofs, which embody more information
than properties alone. I have outlined a mechanism for doing this; the mecha-
nism involves more work than for property-based oracles, but promises better
results from more discerning oracles.

22

Chapter 3

Example

Summary

Having discussed in general terms the motivation for, and structure of, audi-
tioning, I now make things more concrete by working through an example. The
chapter starts by describing a small example system (Section 3.1). I then in-
troduce the minimum amount of specification language (Section 3.2) to present
a formal specification of the example system. Describing modal logic (Sec-
tion 3.3) allows expression of properties of the system, and the tableau proof
system (Section 3.4) allows the development of proofs of important properties
of the system.

There may appear to be a lot of formal material here, but this chapter con-
tains all the material necessary to proceed to realistic work on large examples,
such as that of Chapter 7, and as little beyond that as possible. Later chapters
in the formal stream are a comprehensive treatment of the formal derivation of
oracles, but are not required for practitioners.

The remainder of the chapter (Section 3.5) is a discussion of how an oracle
for the example system is derived from the proofs, and of some of the issues
raised by the derivation. With the resulting example oracle it becomes possible
to motivate some generally useful transformations and simplifications of oracles.

3.1 Compressing Server

The system is derived loosely from the compressing proxy of [C1W97]. The
essence which we derive from it is an input/output process which presents an
abstract datatype (ADT) to the outside world and a server process which applies
a function to blocks of data input to it. In this case we fix the buffer size of the
server to make the analysis tractable; it can clearly be generalised. Figure 3.1
shows this graphically.

23

Figure 3.1 Compressing Server
put

EElI2Ic3l
The ports in and out are the external communication ports between the JO

system and the outside world. The ports put and get are internal communica-
tion ports to the server part. When a client of the compressing server wants to
pass a block for compression it offers it on in. the system accepts the block on
this port and then both system and outside world continue on their way.

When a client wants to retrieve the next compressed block it accepts it on
out.

3.2 A Little Gentle CCS

We need to introduce the language CCS [Mi189] in order to write a formal spec-
ification of the compressing server. CCS expressions are formed from atomic
actions a, the null process nil which can perform no action, and various corn-
binators (I, +, a. P). Variable names can stand for expressions, which allows
recursion.

Processes are understood by their behaviour. The most basic rule is that
an action-prefixed process can perform the prefix action and yield the suffix
process;

a. P -- P
A sum of processes can choose which to behave like

a.P + b.Q---P but equally a.P +

Parallel composed processes behave as independent processes placed side-by-
side.

a.P I b.Q— a P I b.Q and equally a.P I b.Q— b a.P I Q
but they can interact in the special case where their actions are complements.
In that case the interaction is recorded through the special T (communication)
action.

a.PL.Q -1- PIQ
The P\JL construction restricts the behaviours of P to those in the set £.

(but T can never be restricted) and P[f] renames actions in P so that

P[f]4P'[f] if P–'--P'

24

The compressing server is specified in CCS as (C o I I0)\ {put, get}, where

10 = in.1 1 +get.i.I0
1 1 = put.I0 + get.out.I i

Co = put.C 1
C1 = put.C11 + get.C_ 1 (0 < I < it)
Cn = get.C_i

This, together with the rules of CCS defines a labelled transition system, and we
can instantiate n > 0 to yield an n-place buffer. We'll use it = 4 in the example.
it limits the number of blocks which can be being processed simultaneously.
Even if all n buffers become full and input is held up, we want the system not
to deadlock but to finally clear the backlog and accept new inputs. A correct
design must always ensure this happens.

Notice that in this specification the data to be compressed is not explicitly
modelled. Our specification covers only the interaction of the processing com-
ponents. This choice embodies the implicit assumption that the correctness
of the block compression function is dealt with sufficiently elsewhere; So we
can abstract from it and leave ourselves with the specification above, which is
sufficient to study control interaction yet small enough to easily write proofs
about.

A labelled transition system (LTS) is just a set of states, connected by named
arrows. We view a state of an LTS as representing a state of the running system,
and an arrow of a particular name exists between a pair of states whenever the
system can be transformed from the first state to the second by the action of
that name.

The LTS of this CCS specification has 18 states

C18 = 10 I C4 \ {put, get}

C16 = JO 1 C3 \{put,get}

C14 = 101C2\{put,get}
c 12 = JO I Cl \ {put, get}
c 10 = JO 1 CO \{put,get}
C8 = C3 I out.IO \ {put, get}

C6 =C1 Iif.IO\{put,get}
C4 = C3 I out.ii \ {put, get}

C2 = Cl I out.Ii \ {put, get}

C17 = Ill C4 \ {put,get}

C15 = Ii I C3 \ {put, get}
C13 = Ill C2 \ {put,get}
c11 = Ii I Cl \ {put, get}
C9 = Ill CO \ {put,get}
C7 = C2 I out.I0 \ {put,get}
C5 = COIii.I0 \{put,get}
C3 = C2 I out.Ii \ {put, get}
c 1 = CO I out.ii \ {put,get}

and its transition relation is expressed by the graph of Figure 3.2

25

Figure 3.2 The Compressing Server's transition relation
C10

C5

X
C9

Li\
C12 Cl

C6 cii

C14 C2

C7 C13

:U:t\
C16 C3

C8 C15

Li
C18 C4

C17

3.3 Logic

The task of a logic is to allow for precise expression of properties. Modal and
temporal logics are the logics particular to transition systems. Formulae refer
to states after transitions or series of transitions from a state (this is the modal
part) as well as properties of the state itself (this is the propositional part).
The logic I use is the modal-mu calculus [Koz83] with the slight extension to
action-sets described in [Bra9l].

We refer to modal-mu calculus in future as ppM. j.tM is interpreted on labelled
transition systems, such as those CCS processes describe. X refers to sets of
transition names in the LTS. We write s 4 when the formula c is true for
the state s. The following examples are intended to give a rough, intuitive
understanding of the interpretation of formulae. Consider the collection of 5
transition systems starting at s 1 , 53, s4, s6 and s1 0 of Figure 3.3 as examples:

26

Figure 3.3 Example transition systems
S10

S11 	 S12

S13

The following properties (amongst others, of course) hold:

s 1 J= (a)tt because an a-action can occur in that state, and the subsequent
state s2 	tt. (All states s = tt, trivially, just as none s 1= if).

S3 = [cck for any formula (J, including if. s3 has no successors in the set
of actions {a}, so any statement about all s3 's {a}-successors must hold.

S4 	vX.[qX. We can do a-actions forever, on any path from s 4 . Inter-
preting the formula more directly, s 4 satisfies the fixpoint at X because
all a-actions lead to states (s 5) which satisfy the fixpoint at X because
all a-actions from s 5 lead to states (s 4) which satisfy the fixpoint at X
because...

S6 = p.X.[a]X V (b)tt. It is eventually possible, from s 6 for a b-action to
occur. This is true because s6 satisfies the least-fixpoint at X; it goes
under all a-actions to s 7 which in turn goes to s 8 which directly satisfies
X V (b) tt because a b-action is possible. The i-fixpoint captures the
notion of a property being approachable finitely (though not within a
specific finite number of transitions, in the general case).

s 10 1= (a, b)(c)tt as s11 = (c)tt. This is the case because the a-action takes
us to s 11 , But it is not true that s1 0 [a, (c)tt because A] requires the
successor formula hold of all A-successors, and we don't have s12 1= (C) tt

3.4 Proof

Because we use the proofs of properties such as those just described as formal
objects from which to generate oracles, we need a formal notation for the proofs.
We use the tableau method of [Bra9l, BS92]. This provides for writing proofs
that sets of LTS-states satisfy formulae, through the recursive decomposition of
the formula. We provide the full set of rules for these tableaux in Figure 4.4.
We can outline the tableau for some of the properties in Figure 3.3.

27

{s41F--vX.[X
(Def) {s4 } F- U (Thin) {s4 , s51 	I- U
(Un)

{jS4,S5}F- [a]Uo (H)
{ S5 S41 	F- U

The root node (the top of the tableau tree) presents a state set and a goal.
formula. The fixpoint rule for -v demands that the set at the U 0-leaf, JS5, s4 12 , is
contained in a U0-set above it in the tree, to wit {s 4 , s51 1 . The Thin rule allows
this containment rule to be applied to a bigger set which contains the set of
interest.

{s6}F- iX.[c4XV(b)tt (Def)
s61 F- U0 	

(Thin)
{s6, s 7 , s8 1 F- Uo (sg < s7 < s6) ITT\

	

{s6, s7 , s8 } F- [cU0 V (b)-tt 	k')

{S6, S 7 } F- [U0 	fs8J F- 	
(V)

{S7, S81 F- u0 (H) 	{S9} F- tt

The principle of tableau generation is to break down the formula by construction
and to associate a solution set with each subformula. Propositional constants
(Ui) are introduced at fixpoints, and special conditions (of which more anon.).
are imposed at the fixpoints.

Although the rules are complicated we can determine whether a tableau is
correctly instantiated, and the subsequent manipulation of the representation
into one more suited to use as an automaton is complex, but is just a matter
of coding. For now let us assume we have these proofs in whatever form is
most convenient to us. The information a proof contains can be interpreted as
defining the set of correct behaviours of the specification with respect to the
property. The basic principle is that where S F- ([1k1)4' (R or (X) is decomposed
to S' F- 4' then s E S under s- should evolve to s' e 5'. In particular this
principle sometimes decrees that a specific action must not occur in some set S,
in effect defining certain runs of actions which are not admissible according to
the proof. For instance the proof of S pX. [c (XA) if prohibits all behaviours
of the form

ab, aab, aaab, ctaaab, aciaaab...

For the compressing server, we want to verify that full buffers don't make
the system deadlock. We must express this in tM and write a proof for it. The
formula we choose is

1iY.çhttV (HYA (—)tt)

which expresses our wish by saying that eventually it becomes possible to input
something to the system. We're interested particularly in the states c1 7 and c18

Ell

since these are the only states in which the buffers are full. We might better
have chosen a slightly more involved property,

-vX.HXA (iY.GrttV ([-]YA (—)tt))

and examined it for the initial state (c io), to express that the system should
never reach a state in which an input can't eventually happen. But the property
we use is slightly simpler, to the benefit of the exposition. In either case, a proof
is small enough to be tractable and readily understood. Indeed, the proof of
any comprehensible property should not be monstrous, and we take this as
empirical evidence that our claims of ease of proof-writing are justified.

The proof of p.Y.(rtt V HY A (—)tt is (writing {ct ,,k} to stand for the set of
states {c, C 3 , Ck}):

{c1 7 ,18}H i.YJ0 ttV{-1YA(—)tt
{c 7 , 1 8} F- U 	

(Def)
(Thin)

{c i . . . 4 , 9 , i1 ... 1 8} F- U 	(Un)
{c 1 ... 4 , 9 , 11 .. . 18} F- 44tt V [-]U0 A —)tt (V)

{c 12 , 4 , 16 , 18} F- rtt 	 {c i ... 4 , 9 , 11 , 13 , 15 , 17}(S i) F- H Uo A ott (A)
S F- tt 	 S 1 F- [-lb0 	Si F- (—)tt

{c i ... 4 , 9 , 11 , 16 , 18}(S2) H UO 	s2 H tt

We interpret each node of the tableau as indicating that its subformula
must be true for the set of states indicated at the node. The collection of
(state, subformula)-pairs is the extra information beyond the bare truth of the
root formula which allows us to generate intensional oracles.

3.5 Oracles

Now we are equipped to explain how our oracles are generated, and what they
consist of.

If we choose not to treat least fixpoints, the oracle we generate for a tableau
is simply a non-deterministic finite-state-machine, where states with if on the
right hand side are labelled reject. The oracle has a single state for each node
of the tableau. If any rejecting state is reached, the oracle has discovered an
error.

From this basis, we can make several observations and improvements.

1. We generate the oracle from a particular canonical version of the tableau.
It is easy to translate any tableau to canonical form [Bra9l], and in our
formal treatment we take a further step in notation to help us describe
the manipulations of these proofs more elegantly in the oracle-generation
process.

RPA

In the case of tableaux which involve least fixpoints we must replace each
node by a set of nodes reflecting the closeness to termination of the least
fixpoint. In the worst case this set of nodes can be large or even infinite,
though in practical examples this is unlikely.

To be positive about it, an oracle for the pure logic could never check
a least fixpoint assertion for termination. The well-foundedness (repeats
until termination) information is intensional, i.e. it is dependent on the
structure of the specification, and as such it would not be available at all
to an extensional oracle. Even a very conservative approximation for the
set of nodes, drawn from the specification, would be of benefit. There is
no escaping this complexity in general (it comes from the external well-
foundedness conditions which are necessary to prove least-fixpoints).

Clearly we need to make a running oracle deterministic. If it were not for
the (X modality and the V-disjunction, this would be a simple matter of
accepting only if all final states accept. We can remove non-determinism
by the standard mechanism of increasing the state set to be the powerset
of the original state set.

3.5.1 Oracle States

We can interpret the proof of ii.YJr)tt V [-jY A (—)tt as defining a number of
(S, 4)-pairs ((stateset,subformula)-pairs) where the states in the sets should
satisfy the subformulae. These satisfaction relations are what the oracle must
check.

We can optimise things slightly by not checking every. (S,4)-pair. Where
the tableau nodes are propositional breakdowns of formulae, checking nodes
where the 4' are what we will call the propositional-atomic formulae are suf-
ficient. Those are , (K) as well as the trivial it and if. The truths of the
other nodes can be inferred from the tableau rules and propositional reason-
ing, without reference to the transition relation. For the current formula, the
subformulae of interest can be reduced to

1.4tt, 2.[-]U0, 3.(—)tt

The complete proof for a ii.-formula involves defining a well-order (partial
order with no infinite chains) external to the tableau, on the set of states which
are intended to satisfy the least-fixpoint formula. Thus, for a {s, S, Sk} I- Uo
node, a well-order must be discovered on the set fSi, s, Sk}. We use the well-order
to divide up the states satisfying U0 into subsets, according to their maximum
distance from the top of any chain in the order. Thus, the well-order imposes
a maximum repetition count on a ti-formula. In the case here where iY is used
to say that a property P(r it) eventually holds, the repetition count limits the

ME

number of times that the system state can go through a ioop

sE- HUo,s ---)s',s' F- [-] U0,s —
a s ,s F- HU0

before it reaches a terminating state s

s 1 -S,sH (rtt

In general more than one state will have the same number of repetitions
allowed, because each is the same distance from the bottom of the most distant
chain. These states can be dealt with as a set; the oracle simply has to allow
them the defined number of repetitions to reach a state satisfying the terminal
property P. For our example, the well-order (with maximum repetitions on the
left) is shown in figure 3.4.

Figure 3.4 A well-order for iY.rttV ([-WA (—)tt)

(9) C7

(8)
1

C4

(7)
I

C15

(6) C3

(5)
I

C13

(4) 	 C2

I
(3) 	 cli

/
(2) 	Cl

I
(1) 	C

 I
9

(0) 	c12 	C14 	C16 	C18

Discovering a well-order allows us to define the oracle states for the example
formula and proof. Each state is a pair of formula, plus a count-tuple. The count

31

is empty if the formula does not contain least-fixpoint formulae as subformulae.
Our example has a single i-fixpoint(s) involved in some states; these states have
a count for that fixpoint. The states are:

{ (.rtt, ()), ((-)tt, 0),
(E]Lto, (1)), ([-]U0, (2)), (['Lt0 , (3)), ([-] U0, (4)),

([-]U0, (5)), ([-]U0, (6)), ([-]U0, (7)), (RU0, (8)),

(RU0, (9))

We shall write Is, 4I = 11. when the repetition count for the state s, for the
formula , is u; reading from the well-order of Figure 3.4, we have Ic 17 , E-IU0I =

3.5.2 Oracle Transitions

Now we have the states of the oracle LTS, we obviously need to define a tran-
sition relation. We will develop this in stages. The first step is to ask what
the relation stands for. Since we have decided that states stand for properties
of LTS states it is natural that the transition relation stands for some kind of
necessitation of a second property by a first, under the appropriate transition
of an LTS state. So we have e.g.

e {k1,nI},s' E {lcV,n'l}: s--s'

with
{I, mI} Is : S I- 	a tableau node, and Is, jI = n}

For now we are dealing only with formulae including at most one -fixpoint.
Where there are no fixpoints, 11. will not be relevant. The case where there are
multiple fixpoints is more complicated, and we omit it for now because a single
fixpoint gives the flavour of the approach.

Figure 3.5 shows the oracle for the compressing server for the example for-
mula. The arrows represent the transition relation as we have just explained
it.

32

Figure 3.5 Oracle for compressing server for iY.Grtt V [-]Y A (—)tt

in

T
-

(@tt,U) 	
in

C2,C14, 	T

c16, c8 	in

T

in

C17

The transition-system we have generated can very easily be used as the data
for a checking program. Starting at a known initial state, and observing actions
of the annotated implementation, we can at each stage infer that the system
must be in one of a limited number of the oracular states, and consequently,
should satisfy particular formulae. Since some formulae turn out to be trivial
to annotate, we can go one better and use the annotation to declare the for-
mulae. The oracle can then check that all declared formulae are implied by
the states of the oracle LTS. For example Gi tt is simple to confirm or refute,
because it almost certainly corresponds to an input-processing module in the
implementation.

Ensuring consistency of the oracle LTS and declarations from the annotation
forms the basis of the verification mechanism.

3.5.3 Ambiguity

Figure 3.5 shows that the same transition can lead to different states. For
example

[-]U0 ,(5)--[-]U0 ,(4)
[-]1J0, (5)--4 tt, 0

This poses problems for the oracle. It must be a non-deterministic one, or
practically we must define the oracle configuration as a more complex structure.

33

The problem combines choice, and the paucity of information conveyed by the
transition name alone. Imagine the state s, satisfying

s = [(V4 2)

and having as its derivatives

Si

S

Imagine that part of the tableau we use (and in general it may be the only
correct tableau, so the problem cannot be finessed)

(H)
{si}H1 {s2}H2

Then the oracle has the pair of a-transitions

({Si}, 4'i)

({s}, [ci](i V 2))

({S21, 4'2)

and of course it is impossible to determine which. Control must somehow keep
track of the options; if the LTS state is s1 then the oracle state is ({s1}, 4),

but if the LTS state is s2 then the oracle state is ({s2},4'2). The problem arises
because to an observer, the transition system is non-deterministic. We resolve
the problem in Chapter 6 by having annotation reveal the state to us.

3.5.4 Conjunction

We have cheated a little in the presentation of the oracle transition system, by
omitting the state (-)tt and transitions into it. The full OTS has the state

((-)tt, 0)

and for every ([-I U0 , i)
(HUoJ)--((—)tt, 0)

The multiple T-transitions

{s} F- [a]4'] V 11)2
{si,s2}H4'i V4 2

34

(HU0J- 1)

([-]U0,i) (i-odd)

((—) tt , 0)
are parts of the same combined property. In the abstract

{s}I- {aJ'h A42 U-I)

	

{s'}F-41A4i2 	
(V) {s'} F- 4'1 	{s'} F- 11)2

Clearly, in order to check the property, the Oracle must make the transition to
both states simultaneously, and verify both *1 and 4'2. This can result in a
large blow up of the number of properties simultaneously to be checked, if the
A is regenerated by a -v or p. formula and neither branch dies out quickly (as
for instance (-)tt dies out).

3.5.5 Resolving Things

The combination of ambiguities and conjunctions means that the oracle state
can be very complicated. For example, the proposition that

sF- [ql(41 V 42 A (i1) 3 V4 4)))

the LTS

S 	> S2

\ 53

and the tableau

{s} F- [uJ'1)1 V ('1)2 A M V 4'))
{s 1 ,s2 ,s3}F- 1 V(2 A(3 V 4

{s} F- 	{S2, S31 F- 2 A (ij V4)
(V)

(A)

	

{S2, S31 F- 42 	{s2 , s3} F- 11)3 V 11)4
{S2} F- *3 {S3} F- 11)

means that subsequent to an a-transition on the oracle

1
s2 ,4 2 	 s2 ,i.1)3 	 s3 ,4 2 	s3 ,4 4

35

the subformulae of interest are

S in state s 1 , 1.k1

. in state s2 , 11)2 and lj)3

. in state s 3 , 1.1)2 and 14)4

and the oracle mechanisms must reflect this. The best way to do this seems to
be to represent the Oracle state formally as a set of conditional (s, 4)-pairs, in
this case

{ (s 1 ,4 1), (s2,4 2), (s2 ,t1) 3), (s3 ,42), (s3 ,4 4)1

The general principle must be to maintain the set of conditional (s, i.1)) (read as
if the LTS is in state s, then the formula i4 should hold), irrespective of what the
true LTS state is. The set of formulae necessarily true of a particular LTS state
is not in doubt, only which state the LTS modelling the implementation is really
in. The price we pay is the possible large size of the conditional configuration,
and we must then address how to keep the size manageable.

3.5.6 The Role of Declarations

We have mentioned in passing that in checking the compressing server we use the-
fact that the prop-atomic formula 44 tt can be declared (or equally, refuted), by
the annotated system. In view of the problems of imperfectly determined states
from actions, I find it it necessary to promote such proposition declaration to
an equal prominence with transitions. The way to do it is to take the calculated
set of configurations inferred from the OTS

{(s i ,i.1) i), (s2,42), (s2 ,i.1) 3), (s3,42), (s3,i1) 4)}

and to prune it by any states concerned with refuted formulae. If we know k2,
then s2 and s3 are denied, giving

For example in the compressing server, declaring -' n)tt in

{(C2, [-]U0), (C12, 4Itt)}

denies c 1 2, and we must conclude that the LTS is in state c2. The denial of all
possible states constitutes the discovery of an error, so that

{(c 12 , 44tt)},r\tt declared

represents an implementation of the compressing server which does not conform
to the proof; declaring ' tt means that we have not yet reached the bottom

36

of the fixpoint descent for 110, but we expect to have done so because the oracle
believes we must be in c 12 . The conclusion must be that the bounds on fixpoint
descent have been exceeded.

A proof can be viewed as providing a set of conditional statements, for
example:

. if the state is c 1 , then * 1 should hold

. if the state is c2, then 11)2 and *3 should hold

. if the state is c 3 , then 4)2 and *4 should hold

The effect of regular declarations in the behaviour of an implementation is to
prune the set of conditional statements. This view copes with transitional am-
biguities and conjunctions uniformly. Then declarations reduce the complexity
so produced, also uniformly. The fundamental need for information to produce
a small and useful oracle is attacked along a different information axis.

3.5.7 Collapsing Oracle States

In deriving an oracle from an LTS and a proof we move from a state-based
system to a more abstract one, with oracle states as formulae satisfied by the
original LTS states. This is reasonable because we are not throwing away the
information that allows us to decide that a system is behaving incorrectly, as
we would if we generated oracles purely from logical formulae. But it may be
possible to go further towards making oracles smaller, while still retaining more
information than in purely formula-derived oracles.

Consider what further simplifications might consist of; when we count down
a fixpoint (i.e. ii. is not a trivial () in a state) our only concern is really that
we have some checkable upper bound by which number of ioops any member
state of the set satisfying the fixpoint formula will have exited the fixpoint
loop. In the compressing server, this can be expressed by after any -- action,
resetting a counter of admissible transitions before another -- occurs. The
counter value will be reset to 9, as this is the length of the longest chain in the
well-order discovered for the proof of iY.n)ttV [-]YA (—)tt, in the compressing
server. Figure 3.6 is a sketch of how this version of the oracle looks.

Figure 3.6 Collapsed Compressing Server Oracle
in 	out,T(decrement)

((th)tt,O) 	(HU0 ,(n))

37

Although the system of figure 3.6 is intuitively simpler than that of Fig-
ure 3.5, a version expressed just as a transition system would have just as many
states. In any case, we have not shown a way of automatically deriving such an
oracle. Methods for automatically collapsing oracles, possibly through trans-
lations of well-orders into ones which are as pessimistic but with less chains,
should be investigated. Work in Chapter 8 looks at how counting-based short-
hands can be applied to efficient representation of transition systems, and is
applicable for representing oracles.

3.6 Conclusion

I have described how to take a system to be audited and have

Introduced CCS, and specified the example system.

Introduced riM, and presented a fundamental property of the example to
prove.

Proved the property using a tableau.

Described the process of deriving an oracle from a tableau, discussed the
structure of the resulting oracle, and raised some of the detailed questions
of oracle implementation.

This chapter should convince the reader that the approach is practical for
the small example considered. The subsequent Chapters 4, 5 and 6 reconstruct
the argument of this chapter on a much deeper and more formal level; they are
necessary reading both as theoretical background and for the detailed mechanics
of how to implement automatic oracle generation. The reader more interested
in application of the methodology can jump on to Chapter 7.

Chapter 4

Transition Systems and Logic

Summary

In this chapter I examine in detail the network of formalisms which I use as
the framework for proof-based oracles. This helps to fill in details which have
been elided in Chapter 3 for want of formal support. The chapter can be read
as a review of a particular framework for doing useful proof work in concurrent
systems; this corresponds to the first stage in the process of staged introduction
of. formal methods into a software development process, with auditioning as
the second stage. Just as introducing auditioning in development builds on
initial modelling and proving work, so auditioning itself requires the formal
foundations of a modelling and proving methodology.

The components of a formal system for modelling and proof are

. A model. I recall the standard model for concurrent systems, the LTS.

A specification language, which defines models.

• A logic, which expresses properties of systems, and defines their truth
relative to models.

• A proof system, which connects logic and model and serves as a recipe for
deriving the truth or falsehood of properties in the logic, on the model.

I devote a section to the discussion of each component, covering the formal
definition of the CCS specification language, the modal-mu calculus (logic) and
the tableau proof system.

4.1 Labelled Transition Systems

Definition 4.1 A labelled transition system (LTS) is a triple (S, A, T c S x A x S)

39

S is a set of states
A is a set of action names
T is the transition-relation

and we write s1 --4s2 when (s 1 , a, s2) e T

LTSs are often represented graphically as nodes S, with arcs A connecting
those pairs of nodes related by T. For example, a grandfather clock looks like
Figure 4.1.

Figure 4.1 A sonorous clock
tick

S l

tock

Explicitly, the clock's transition system is

({so , s1}, {tick, tock}, {(so , tick, s i), (si , tock, so)})

System descriptions written in CCS[Mil89], TLA[Lam9l] and Petri Nets[Pet62]
all induce LTSs.

4.2 CCS

CCS [Mil89] is a particularly appealing language for the expression of concurrent
behaviour. Milner uses the term agents to avoid commitment to how CCS
entities are viewed. They can be either descriptive or prescriptive. In his
model for specification a small CCS process prescribes the correct behaviour
of a system, a complex CCS process describes the actual behaviour and an
equivalence relation between the two captures conformance of implementation
(actual behaviour) with specification (required behaviour).

A CCS system is defined from a set of actions A. The silent action 'r plays
a special role, and is distinct from any a e A. The agent 0 (or null) is inert
(s E S, a e A : 0--s). Agents have a simple syntax and their behaviour is
based on their syntactic form. The most fundamental such form is the action-
prefix. The agent a.F prefixes a to E and behaves as the agent that can perform
an a-action to become the agent E.

Definition 4.2 (Agents and Processes) Using oc e A to range over non-'r actions,
and assuming all agent sets contain all inverses (oc e A if E A) and =OC
we let E, F,... range over agents and P, Q,... over named processes

E 	01 oc.0IE+FIEIFIZjEjVLjEtIrecX=E

40

P 	N = E (where N stands for process names)

Definition 4.3 CCS processes behave according to the set of SOS (structured
operational semantics) rules[P1o81, B1M95] defined in Figure 4.2.

41

Figure 4.2 CCS SOS-rules

cx.E 	prefix

I El + F choice 	 El—E I 	 F c1—F
VC I 	 c El+F—El 4 	 E+F—+F

iEIEli (generalised)
jET

Y—iEl

El I F 	parallel 	 E -- E'
ElIF-- E'IF 	EIF -- EIF'

HiEIE (generalised) 	 El--E 	
.

lEIElilhiEI_{j}Eli, E 	
E

interaction 	 El--E' F -- F'
El I F--E' I F'

(generalised) 	 El--El)' Ek--E
fltEI-{ ,k} E) El i , Ek---HEJ_{j,k}Ei, E, El

reci 	recursion* 	 Eljrec IX =
rec IX =

E\L 	restriction
El\LEl'\L 	

L

E[f] 	relabelling

Li 	 LJ

P 4 El definition 	 El --El'
P — c El ,r=

(*)The recursion rule says that the behaviour of any member of a family of si-
multaneous recursion equations is just the behaviour of the member's recursion
expression substituted by all the definitions in the family, i.e. recursion works
by unwinding

42

These are close to Milner's standard definitions, where the rec expressions serve
to separate recursion and definition. Practically, letting all foregoing rules range
over P, Q,.. . the single rule

definition and recursion 	Q --- Q'
P--Q' PQ

has the same effect as definition plus recursion. We can write the clock example
in CCS as

Clock 	tick.tock.Clock

The definition and prefix rules are enough to infer the transition system of
Figure 4.3.

Figure 4.3 Grandfather clock induced by CCS

C Clock 	 (tock.Clock)

The CCS transition rules of Definition 4.3 allow us to infer the presence of
transitions. Given an agent we can sometimes close the set of reachable states
and thus explicitly express an LTS. This is not always the case because we can
express the halting problem in CCS. In general we therefore only have local
knowledge of the system; luckily the proof system we use is inherently local
(see Section 4.4.1).

Mimer equips CCS with two process congruences, - and =. The former
(bisimilarity) equates processes when each can simulate the behaviour of the
other, treating all actions the same.

Definition 4.4 (Strong bisimulation) is the largest relation -, such that P - Q. P
Q if and only if Vu e A

P—'--P' = EQ': Q---Q' and P' - Q'
Q

_cL
	= HP': P—'--P' and P' Q'

And there is a largest such relation [Mi189].

There are many other notions of process equality, but - is sufficiently strong
that there is little reason to distinguish processes equated by it. It is therefore
common practice implicitly to quotient transition systems induced by CCS by
the --- relation.

43

4.3 Specification in CCS

When CCS is used both as specification and as implementation, strong bisim-
ulation distinguishes too many processes, and is thus unsuitable for relating
implementation to specification. The =-relation relaxes the criteria for equal-
ity sufficiently to make it usable. The definition uses a subsidiary equivalence
(which is not a congruence).

Definition 4.5 (Weak bisimulation) is the largest relation i, such that P 	Q.
P Q if and only if Va E A

P=P' = EQ': Q=Q' and P' Q'
Q=Q' = P' P=P' and P' Q'

where

i, P i , P2 ,. .. , P: P T * ai 	T*
P 1 	,

'* a 	'r * P2P'

Definition 4.6 (Weak congruence (equality)) P = Q if, for all a,

P---P'=Q': Q==Q' and P' Q'
Q--Q'=P' P=P' and P' Q'

4.3.1 Refinement within CCS

Where OCS is used to analyse both implementations and specifications, it is
usual to relate them using the =-equivalence. The degree to which = is insen-
sitive to 'r-actions seems to be enough to make this approach practical for some
useful examples [Mi189]. But it is not at all clear that an equivalence is the
right notion for specification. For instance,

I = S 12 = S => Ii = 12

suggesting that where any two implementations satisfy the same specification,
then they are in some sense the same as each other. The standard response is
to define a refinement relationship which is a pre-order. We write I >- S when I
is a refinement/implementation of S. Formal development will produce a series
of refinements

S - R 1 - R2 - R3 - I

but where S -< I and S -< 12, the alternative implementations have no necessary
relationship to each other.

Attempts have been made to provide asymmetric process relationships with-
in CCS [Bru94], but it seems that a canonical one may not exist. Perhaps a
workable refinement relationship needs a more general way of relating action-
s or sequences of actions; or perhaps refinement is simply not universal, but

44

relative to the initial specification. If we take the view that a program imple-
ments a specification whenever it satisfies an appropriate set of properties, then
the implements relationship changes as the set of properties changes and it is
unsurprising that there is no perfect choice of implementation relationship.

In any case, it seems worthwhile to look at other notions of specification,
both for their own sake and in order to see if they reflect light on specification
in CCS. In the rest of this thesis I use CCS at one level only, that of the abstract
implementation of auditioning. I write specifications in modal logic.

4.4 Logic

The logical approach to specification considers the meets relation in terms of
a set of logical properties. Taking S = {cj, 2, - . . , j} we might consider one
system as a refinement of another if it takes more properties from a chosen set,
so:

R 1 -<sR2VLR1

There are many possible approaches to defining refinement in terms of prop-
erties of intermediate systems. Each refinement step will add some implemen-
tation choices which extend the class of properties demanded of subsequent
refinement steps. The choice of which properties are relevant and which acci-
dental must then be clarified.

We are only concerned with proving properties of specifications, not with
designing a refinement calculus. We merely wish to suggest that using separate
logic and specification language is a more flexible approach than using specifi-
cation language at all levels. We begin by recalling a simple logic with a close
link to CCS.

Definition 4.7 (Hennessy-Milner Logic [HM85]) is defined inductively in terms of
formulae

cf 	ttIffI@I[I1A2I41V2

This logic allows the specification of behaviours along finite paths.

Definition 4.8 (Satisfaction) of formulae 4 by processes P

PHtt;
PHif

PH(a)
PH[u]

P=4 1 A 2
P4V2

always
never

0 P=4iandPH2

Ph=ckiorPl=c12

45

A connection between the logical and equational views of agents exists [HM85]

Definition 4.9 An LTS (S, A, T) is image-finite if and only if

Vs e S, 0c E A . 	: s--s'} is finite.

Fact 4.10 (Hennessy-Milner) Where the induced LTS is image-finite, processes are
bisimilar if and only if they satisfy the same formulae

:PandQ1P7'Q

It is easy to see that HML cannot express infinite behaviours. Such properties
as always and eventually are necessary for a practical logic.

4.4.1 Modal mu-calculus

Bradfield in his thesis [Bra91] presents a history of logic-based verification, while
Stirling [Sti92] makes an exhaustive survey of the theory of modal and tempo-
ral logics. Much present day work takes the modal mu-calculus [Koz83] as the
canonical logic for investigating model-checking and verification. It is regular
and highly expressive [Bra9l, Bra96] so that proper subsets are both interest-
ing (in expressibility and complexity terms) and easily distinguished. Other
commonly used logics such as CTL and CTL* can be encoded in M.M [Dam94].
Perhaps the only drawback is the sense in which natural properties are often
not expressible particularly succinctly; this can partly be addressed by a series
of macros which translate common properties into raw ji.M.

We follow [Bra9l] in the definition of p.M. We work with the positive
normal form(PNF).

Definition 4.11 (Modal mu-calculus, positive normal form) Given:

A model M, which is an LTS (S,A,T),
K stands for any subset of A, and —K for A - K,
X, Y,... are variable names,
Z is a set of constant names,
V: Z -p 21 is a valuation function taking names to subsets of S

A formula in the modal-mu calculus is of the form:

We can introduce -j as a derived operator. For any formula contaning -, we
transform it to an equivalent PNF formula by applying the pnf function:

pnf((A 2)) =pnf(-' 1)Vpnf(-- 2)

pnf(—(V 42)) = pnf(- 1) Apnf(-'4i 2)

pnf(-'N4) = (K)pnf(-'4)
pnf(() = Npnf(4)

pnf(-rvX.4)) = .tX.pnf(- 4)
pnf(X4) = vX.pnf(cj)

pnf(-'X) = X, X a fixpoint variable
pnf('Z) = 7(a new variable), (V(Z) = S - V(Z))

pnf(-'if) = it
pnf(tt) = if

These rules illustrate the dualities of the operators of M, about which we will
have more to say in Section 4.4.2.

The most significant way in which iM goes beyond HML is in the fixpoint or
a-formulae -vX4 and pX.4 (we write a to range over -v and in some contexts).
With a-formulae the logic can express very complex repetition and termination
properties in a very regular way.

4.4.2 Interpretation of pM Formulae

Formulae are interpreted over LTS models, and valuation functions which in-
terpret propositional variables as the set of LTS states at which they are taken
to be true. The meaning of any formula is the subset of the states of S for
which the formula is true. Free variables can be free globally (propositional
constants) or free only in subformulae (fixpoint variables), as for example X is
free in HX but bound in X.[-]X. Fixpoint variables serve to define the seman-
tics of a-formulae. We write F[cIllv for the interpretation of in the context of
the valuation V, and more rarely ft4]J in the context of valuation V and model
M when M is not clear from the context. V[S/X] is a valuation function:

(V[S/X])(Y) = V(Y) iffy 54 X.
(V[S/X])(X) = S

47

Definition 4.12 (Interpretation of jiM formulae)

ftXfl y V(X)

ftcIiflvflk2flv
ckiV2flv ti]1vU2flv
J[Kfl v {s:K(s)Cftflv}
ft(i41jy {sHs'eK(s).s'eft4]jv}
ftvX. v (J IS e S : S c f,vx S}

fl {S e S : 	 c S}

where
K(s) 	{s' El a E K . s --- s'} and

AS EkNIVS/X1

We express the -v, ii definitions in terms of f,(, a function on states. This
makes it clear through a series of standard definitions and results that what
are known as fixpoint formulae are technically the least (ji) and greatest (-v)
fixpoints of the function First of all

Fact 4.13 	is monotonic in S [Koz83]

Proof is a routine induction on .

Fact 4.14 By the Knaster-Tarski fixpoint theorem [Tar55]

[jiX, flv is the least fixpoint of

ft-vX, 4v is the greatest fixpoint of

Proof Application of K-T is immediate from monotonicity of 	 0

This result allows us to show the equivalence of positive normal forms and
the negation-based form.

The most important consequence of Knaster-Tarski is the ordinal approxi-
mant view of fixpoints [Koz83], which is a vital device for understanding and
elucidating jiM-formulae [BS92, Bra91]. Approximants motivate and justify
Bradfield's proof system [Bra91].

4.4.3 Approximants

Approximant formulae, indexed by ordinals, are also vital for writing inductive
proofs about p.M. We shall have some call for this method later, so present a
version of approximants [Bra91]. Only a basic understanding of ordinals [Pot90]
is necessary for this. We follow convention in using c, 13,... to range over the
ordinals.

Definition 4.15 (Approximants) We add terms crX. to M and set

ftcrX4] y 	a.
with f standing forf (~v,x we take

f(a. 1) (when cy, is a successor ordinal)

U a 	(when oc is a limit ordinal)

f(a 1) (when oc is a successor ordinal)

fl a 	(when is a limit ordinal)
13<c

In particular, notice that

E[i- ° .4flv ={} for any ,V(= E[]I)
v° .4flv = S for any th,,V(= fttt]1)

ft1X4fly = 1V[i0X4v/X1 = Jft}/X]fl
whereupon we can make the key observation of the approximant view
Fact 4.16

U c = fttX4flv
EOrd

fl a 	= EIvX.flv
aeOrd

Proof is standard [Bra9l, Koz83]. We'll show ; -v has a dual argument. Let g
be the least fixpoint of ck,x (g exists by K-T). By induction on the ordinal 1 3 ,
we show

Vf3eOrd,aCg

• The base case is I[a = {} c g.

• For 13 + 1 (any successor ordinal) we have 	= f(a) c g = f(g) by
monotonicity

aO 	c 	g

mon f

a 1 	c 	g

• For (3 a limit ordinal,

13 = aC g,soc%:i< 13 c g

But U a is a fixpoint of f just because it contains all ordinals; the above
xEOrd

	

argument shows U a0c
= g, the least fixpoint 	 0

cEOrd

49

4.5 Tableau Proofs

Stirling [Sti87] has argued for using semantic tableaux to write M proofs.
Bradfield [Bra9l], building on [5W91] introduced a general tableau system,
usable for writing proofs about infinite systems. Tableau methods are local;
rather than systems for adducing the truth or falsity of a formula in all states,
they are systems for adducing the truth of a formula in a set of states by
exploring subformulae on other states on demand. Tableaux for M cannot be
derived automatically; for a sufficiently powerful model language, correctness
of .iM-formu1ae is undecidable. Bradfield [Bra9l] shows this for Petri Nets by
encoding the halting problem as an instance of the iM decision problem, and
the same thing can be done for CCS; Mimer presents a CCS Turing Machine
in [Mi189].

So tableaux must be constructed manually. This is no more than we should
expect, and turns out to be a reasonable thing to do for someone who under-
stands a system; a designer's knowledge is a very powerful tool for generating
proofs. Then a tableau for us stands as a pleasant encoding of such knowledge,
and more actively the goal-directed generation of a tableau is the easiest way
to go about extracting this knowledge. All that I do later in this thesis can be
seen as attempting to recode the same knowledge to a different purpose. Such
a task of course demands that we ask questions about what the knowledge is
that we encode.

4.5.1 Bradfield Tableaux

Bradfield's tableau system [Bra9l] is a goal-directed (or top-down) system for
validating sequents of the form S F-

S are sets of states of an LTS M = (S,A,T C S x Ax 5)
cf are p.M properties

are lists of variable definitions introduced at fixpoints

Usually we start with a goal S F- 	in order to validate for S in the absence
of enclosing fixpoints.

Definition 4.17 (Tableaux) are constructed according to the rules of Figure 4.4.
These are the precise set of rules by which the tableaux of Section 3.4 are
constructed. The rules are used to extend the tableau-in-progress at any leaf
node until all leaves are of very simple type, having one of the forms

S E-A X 	if X is free in 4 of the root node
aEK SE-(I4 ifseS: —'s ----

{}E-4
S E- A , U where 5' F-a U is an ancestor and S c 5'

50

It is possible to further extend the tableau when nodes are of the form S F -A U,
and the rules for correct tableaux take such extensions into account.

Figure 4.4 Tableau construction rules

	

SF-jAc12 	
A

	

SH1 j i 	SF- 2

SI-A 4i V 2
V

	

S1F-Akl 	S2HAcI2
si US2 = S

S F-Ak

	

CI L 	 [II
..) [

a S I ={s I HaK,seS.s—s}
SHL cj
S'F- 1 cJ

5' = U{f(s)},f : Vs . f(s) c {s': a E K, s-4s'} and f(s) =,4 {}*

sES

S F- 1, crX4
0 = V, M- S F-v U

= A[crX4/UJ, U V Dom(A)

U
SHA [U/X}

z(U)=crX4 (cY=it,L)

Thin T F— A (f)
S C T

(*)The function f which generates S' for (-)-rule is any function which
generates at least one valid successor for each state s. Of course if no such

function exists, the success rules will tell us (Definition 4.18) that the tableau
fails.

Tableaux are successful if and only if all their leaves are successful:

Definition 4.18 (Leaf Criteria) (see Definition 4.17 for leaf forms)

Success
The leaf is type 1 (S 1A X) and S c V(X)
The leaf is type 3 (empty goal set)
The leaf is type 4 (S 1A U)4(U) = -vX.4 and -v-conditions succeed. (Section 4.5.1.1)
The leaf is type 4 (5 HA U)4(U) = tX.4 and ri-conditions succeed. (Section 4.5.1.2)
Failure

The leaf is type 1 and S g V(X)
The leaf is type 2 (S F-A (Kik and s e S
The leaf is type 4 (5 HA U),A(U) = -vX.ik and -v-conditions fail.
The leaf is type 4 (S HA U),z\(U) = p.X.4 and ri-conditions fail.

4.5.1.1 -v-conditions

A leaf node S HA U, where A(U) = -vX4 is successful if it has an ancestor
node 5' U and for that node, S c 5'. The ancestor node expresses the goal
that 5' ç 4'A[s'/x] and the tableau rules render one of the subgoals of that as
S c [X]J,1si,ix, so that the simple criterion for the leaf node demonstrates the
admissibility of the fixpoint formula at the ancestor.

Informally, the leaf node reached through successive application of tableau
rules to the ancestor has resulted in a goal set (5) for the formula U, no larger
than the original goal set (S').

4.5.1.2 	i-conditions

The p-fixpoint condition has extra complications beyond that of v. First an
ancestor node must be identified as for the -v-fixpoint; this corresponds to -v-
fixpoints being subsets of p-fixpoints.

In addition, we must trace the individual LTS states in the ancestor node
(s' e 5') through the tableau to states in the leaf node (s e 5) and back to
ancestor nodes (s e S'orS") and verify the eventual termination of all such
paths through the tableau. The definitions of [Bra9l], which we replicate here,
make this precise; they are not easy, and to justify them we must fall back on the
not quite circular reasoning that least fixpoints capture termination well and
that the tableau system with these rules is sound and complete; see Fact 4.22.

Definition 4.19 (Companion node) For a leaf node,u, of the form S HA U, its com-
panion is its nearest ancestor node, n',of the form 5' H U.

Thus leaf node and companion share a formula, U, which is an introduced
variable standing for the fixpoint formula p.X4.

The additional correctness rule for the leaf node ii. is that there exists a
particular ordering relationship, a well-order, on the elements of S'. A crucial

52

feature of a well-order is that it does not contain cycles. We call the well-order
and we write s s' if s is related to s' in the well-order.. The well-order must

respect the relationship

Definition 4.20 —4 is the transitive closure of the relationship

Definition 4.21 (—) (s,nj - (sq) nj), Tli = Si -A 	it3 = Si H 	if and
only if

either
1 	Si FA j 4i 	is a fragment of the tableau, and

Sj H
2 sp ESi ands q ESj aiid
3 	= ([lJj and s- QE K

si or
(j j is any other formula, and si = s 3

or
1 	Si I_Aj 4 j is a leaf node, and
2 Si F- c is its companion, and
3 Sp S q and
4 it' is an ancestor of S

The relationship between well-order and —4 is

(si,u') —p (s2,m1 => s2 E: S1

Then the correctness condition for a least fixpoint leaf is that such a well-order
on the state set S' of the leaf's companion node exists. Informally, the existence
of a well order related to the possible traces of states in the set 5' shows that
behaviours described by the least-fixpoint formula will terminate, if they were
to repeat then there could not be a well-order.

Where a human is developing a proof in the tableau notation, the complexity
of the least-fixpoint correctness rule unsurprisingly causes the most difficulties
in proving. It takes time to learn how to express even well-understood reasons
for termination in terms of the appropriate well orders. But the tableau least-
fixpoint rules can be viewed as meta-rules to apply to any modelling language,
and as we discuss in Chapter 8, there are possibilities for automatic treatment
of some families of models.

4.5.2 Tableau Facts

A tableau is successful if all of its leaves are successful. The key result is that
the system of tableaux constructed according to the rules of Figure 4.4 and with
all leaves successful according to Definition 4.18 is sound and complete.

53

Fact 4.22 (Bradfield) A successful tableau (all leaves successful, p-conditions met)
exists for S F- () c if S =v 4 (if S c N40

Fact 4.22 is sufficient for a human user of a tableau system to be confi-
dent of developing proofs of interesting properties. But in fact, tableaux of a
particularly restricted form are enough:

Definition 4.23 A tableau is of degree n if no single fixpoint variable U is unfolded
(by applying the U-rule to S -A U) more than n times.

Fact 4.24 (Bradfield) The degree 1 tableau system is complete

Bradfield's completeness proof is actually more particular, and shows that only
one application of the Thin rule is necessary per fixpoint-variable; his canonical
tableau, which exists for each true formula, has such a form. The form of
a canonical tableau is entirely determined by the formula in question. For
example

So I- cJ 	vX.[AJY.(B)XV [YVP

has a canonical tableau formed by instantiating the S i in the following meta-
tableau.

So I- vX. tY.(BXV [QY (Def)

°i ° (Thin)

S 1 H NY.(B)U0V[QY
(Un)

S2 HY.(BU0 VQY
S2 F- U 	

(Def)

H , (
Thin)

S3
53 H)U0 V [QU 1 (Un) (V)

S4 1-(B)UO(/\) S61[QU1
S5 HU0 	S 7 F-U 1

and the problem of proving for a particular S 0 becomes equivalent to finding
a satisfactory instantiation of the S. S, F- c just in the case where there is such
an instantiation. In Chapter 8 we use the instantiation of canonical tableaux
to develop a technique for computer-aided proof construction.

4.6 Conclusion

In this chapter I have described the components of a framework for making
formal proofs about system specifications. This can be considered as just a
technical necessity in order to have concrete systems in which to work.

. CCS to write specifications of concurrent systems

54

. Modal-mu calculus to define behavioural properties of systems

. Tableaux to develop and encode proofs of properties of systems

I have detailed the particular instance of each component which I choose
to work with. None of the choices is meant to be particularly novel by itself.
Rather it is the connected set of components which is of interest. We can view
the proof of a property of a specification as an object, and with this perspective
we can try, for instance, to use it as (or transform it into) a program testing
device.

We may also be able to think of other uses for such a proof object. First,
we look at proofs from another perspective, that of games, both for the sake of
general insight and as an attempt to smooth the path to a nice representation
of proof objects.

55

Chapter 5

Presenting Proofs

Summary

Tableaux are one formal device for representing proofs. They play a crucial
role in proof development. However, other notions may be more natural in
other contexts. Model-checking games [Sti97, Sti95] have been proposed as a
useful way of explaining the meaning of ji.M properties. In particular, playing
strategies can be presented as proofs or refutations of properties.

In this chapter I

• Describe the formal concept of a model-checking game, and the key idea
of a strategy for a player to win a game.

Argue for games as practical tools for explaining why properties hold.

• Take the connection between strategies for games, and proofs of properties,
to motivate a strategy-like encoding of proofs. I call this encoding a verity.

Verities (with some refinement in Chapter 6) are what I use as the data for
defining oracles.

5.1 Games

Games characterise the model-checking of M formulae as playing an adver-
sarial game. Games consider whether a single state satisfies a formula, and are
closely linked to tableaux. Tableaux can be seen as a succinct encoding of why
sets of states satisfy formulae. Then games complement this by providing a
much more explicit analysis of why single states satisfy formulae. The com-
plex least-fixpoint success conditions in tableaux (Section 4.5.1.2) suggest that
explicit analysis of individual states is unavoidable.

The game based characterisation of the truth of jiM formulae, particularly in
the interaction of multiple nested fixpoints, turns out to be more comprehensible
and thus helpful to understanding how fixpoints interact.

56

A game is also an effective weapon for explaining and supporting a tableau
proof. Where the proof is in any way complicated, a doubter may be convinced
by being challenged to take part in a game. A player armed with a correct proof
can win a game whatever strategy is adopted by her opponent (Theorem 5.8).
If the opponent uses her moves to express her doubts about the proof, asking
"What happens if I make this move ?" then the player armed with the proof
can answer "I still win, in this fashion..." and can keep refuting the doubter
until a configuration is reached where the doubter has no questions left to ask.

The requirement for auditioning is to have a proof representation that can
tractably be used as an oracle. Chapter 3 leads us to think that structuring the
proof as a transition system is a good way to go about this, though the informal
analysis there is unable to resolve how best to cope with nodeterministic choice
of successor state which can occur. Games can be considered as operational
encodings of proofs, so they ought to be a good starting point for a concrete
transition-oriented oracle.

5.2 Formal Games

A game is a contest between 2 players over a sequence of game configurations.
In a game there must be

• A clear way to establish which player has the next move. This can be
based on the history of the game (you moved last, so it's my turn), solely
on the current configuration, or some combination of both.

• Rules to determine when a game has finished. These might be when a
particular configuration is reached, or is repeated, or when a player cannot
move.

• Rules to establish who has won. When a game has finished, the configu-
ration and the history is examined to determine a winner. Some games
may be drawn. Frequently a player attempts to force the game into a
particular configuration, whence it is fairly obvious that the player who
succeeds in this is the winner.

5.2.1 Model-Checking Games

We'll now define the model-checking games of [Sti97].

Configuration is a combination of a state and a subformula.

Player to Move depends on the leading connective of the current subformula.
Player 1 attempts to refute the formula, so for instance Player 1 has the
move where the formula is a conjunction; she chooses the subformula

57

with which to challenge the other player. Player 2 attempts to support
the formula, so has the move for instance at a disjunction.

Move is to select a successor state on a transition formula, or the same state
when decomposing propositionally. The formula component of the new
configuration is the selected subformula.

History is important. Repetitions determine whether a game has finished, and
a fine analysis of history is needed to determine the winner.

Finish Atomic formulae or inability to move, plus infinite repetitions of fixpoints.

To describe a model-checking game configuration, we need an LTS (S, A, T),
a formula 4) of M and states s e S. We restrict ourselves to 4) in which
all binding names X of crX.4 are distinct from each other and from the free
names of 4). Any formula can be ct-converted into this form. We also have a
valuation function V : X - 2 which gives valuations for the free names in 4).
Configurations of the game are concerned with sub-formulae of 4).

Definition 5.1 [Sub formula] A formula 4, is a sub-formula of 4) (4, -< 4)) if

(4) =4,)

	

4,4,A4,2 	4,-<4,2A4, (4) =4,A4,2 or4,2 A4,)

	

V4,2 	i4,2 V4, 4 =4,V4,2 or4,2 V4,)

	

IP 	 (4) =N4,)

(4)=-vX.4,)
(c=iX.4,)

or they are related by transitive closure of the above rule:

Because all names are chosen to be distinct, we can distinguish any 4, s.t.
crX.4, - 4) by the binding-name X. We shall refer to the 4, as 4'x. We are now
in a position to describe how to play the game.

Definition 5.2 (Player to Move) A state and sub-formula (together a [game] con-
figuration) are transformed to another configuration according to the following
rules; the indicated player chooses which of the successor configurations will be
selected. A number of moves are completely forced (there is necessarily exact-
ly one successor configuration), and these can arbitrarily be assigned to either

player to fit them into the standard game scheme. We prefer to present them
separately.

Player 1 	 Player 2
(s, 4 j A (1)2) - (s, C=i or 2) 	(s, 4)] V (1)2) - (s, 4t=1 or 2)

aEK , 	 aEK / (s, [KJ4)) - (s',4) s—s e T 	(s, (K)4)) —f (s',4)) s—#s e T

Forced
(s,vX.c1)x) 4 (,(N)

(s, pX.4)x) - (s, (N)

(s,X) - (s,c1)x)

Definition 5.3 (Play) is a sequence of game configurations where the transforma-
tion from the n-th to the n +1-st configuration in the sequence (for all n within
the length of the sequence) constitutes a valid move according to the move rules.

A game finishes when a move transforms a play into a won play. For simple
connectives a play may be won according solely to the final configuration, but
for fixpoints previous configurations must be considered in order to determine
whether a play has in fact yet won, and if so who the winner is; this is like
checking a chess game for previous instances of the same board layout, which
determines a draw by repetition.

Definition 5.4 (Simple Wins)

Configuration
(s, 4)) and ma e K, s' E S .
(s, (l4)) and -'a e K, s' e S . s--s'

(s, tt) (abbreviates -vX.X)
(s, if), (abbreviates 1.tX.X)

(s,X) with X free in 4) and s E V(X)
(s,X) with X free in 4) and s V V(X)

Winner
Player 2
Player 1
Player 2
Player 1
Player 2
Player 1

In order to present fixpoint termination rules we must imagine games which
continue to infinity.

Lemma 5.5 (Stirling [Sti971) Given the partial order defined by -<, there is a great-
est *x which forms the 4)-component of a configuration infinitely often in an
infinite play. We use top to define a dominant formula, and infoft to express
infinite an inifinitely recurring dominant formula.

infoft(X)Vm e Nat, 3n E Nat u > iii. and 	= oX.4)x
top(X)VY : infoft(Y), oY.4)y - (3-X.4)x

59

Theorem 5.6 There is a unique X for which top(X) holds (call it).

Proof There are only finitely many to take part in configurations. So at least
one must occur infinitely often in an infinite play. (X :infoft(X)). Now the set

infoft(X)}

has a top element, because of the tree structure of formulae

aZ. z

and the fact that configuration formulae are calculated by breaking down one
connective at a time:

infoft(X), infoft(Y),X Y and Y Z X => JZ : X -< Z,Y -< Z and infoft(Z)

So we have a

Definition 5.7 (Complicated wins) The winning condition for infinite plays is

Winner
v4 (denotes g.f.p.) 	Player 2
t4 (denotes l.f.p.) 	Player 1

U

Example Game

Consider the formula
iiX.[cY.ftiYV (c)X)

which in English tells us that any a-action leads to a state where a c-action
returning to the beginning is possible immediately or after some number of b-
actions (Clearly, once the formal calculus is understood it is much more precise
and unamiguous than prose).

We interpret the formula on the model:

so1

We prefix the game graph states with symbols to show which player makes
choices at which node. We use the symbols as suffixes to denote winners.

0 Player 1 	0 Player 2 	A A forced move

For example, D(s, tt)O denotes that Player 1 chooses in this state and that it
is a terminating state in which Player 2 wins. Then the game graph is

0(s3, Y)O

iY.{1Y V (c)X) 	0s3 , EY V (c)X)

D(s0, [cY.YV (c)X) 	A(s0 vX.[cY.YV 	(c)X)

1iY.ftYV (c)X) 	-0(s 1 , MYV (c)X)

iY.YV (c)X)

0(s3 , (c)X)

A(so , X)

0(s 1 , (c)X)

D(s1, [IY)

I
•A(s2 ,Y)

I
0(s2 , [liY)

0(s2 , [EYV (c)X)

(s2, (c)X)D

Observe that there are a few terminating entries, where the winner is directly
known. Observe also that the formula is true for s 0 . Let's play along to see this:

61

-At (s0 ,'vX) the move to (so , [a]p.Y) is forced
-At (so , [ujp.Y) Player 1 can choose (s1, p.Y) or (s3 , p.Y)
-These force moves to (si, 1JY V (c)X) and (s3, [IY V (c)X) respectively
We shall ignore (s3, [tYV (c)X) as it's even easier to show than is (s 1 , 11YV (c)X)
-At (s 1 , [EYV (c)X) Player 2 (her choice at V) chooses to move to (s i , (c)X)
-At (s 1 , (c)X) Player 2 (her choice at (-)) chooses to move to (s o , X)
-At (so , X) the move to (s 0 , -vX) is forced

Clearly Player 2 can force the game to return to (s 0 ,vX) as long as she makes the
right responses to Player l's moves. So she can always make be vX4 rather
than .iY4', for some 4. In contrast notice that if we removed the transition

C
Si -- SO

then Player 1 could enforce a play where is pY... and thus win.

Characterisation of Truth as Strategy

The characterisation theorem is now presentable, if we take a strategy to be a
function which tells us (s', 4') whenever Player 2 must move and has a choice
of (s',i') (s,i() -

Theorem 5.8 (Stirling [5ti97])

s = cj 0 Player 2 has a winning strategy for the game (s,)

Proof Sketch This can be proven by showing, using the approximant version of
-flxpoints, that Player 2 can force all -fixpoints above the top v-fixpoint to

be traversed to reach a mode where this top -v-fixpoint is repeated indefinitely
(and Player 2 wins) or Player 1 allows the -v-fixpoint to be traversed, whereupon
Player 2 forces the game down again to the next -v-fixpoint, and inductively to
a trivial win 0

The fact that Player 2 can make sure there is no possible 5Z which de-
notes a i-fixpoint (P2 having a winning strategy) corresponds to a tableau
which satisfies the p-success condition, and is also of course intimately connect-
ed to termination of tracing (Theorem 6.44), where we make a fully-detailed
approximant-based proof.

5.3 Game Graphs and Fixpoints

We can use game graphs to take a different view of the interpretation of formulae
and of the expression of algorithms for checking proofs or calculating denota-
tions. The standard (exponential) algorithm for calculating fixpoints on models

62

with finite statesets has as its basic step a monolithic function on statesets, the
application of

to Si yielding S 1

in the iteration process from {} to calculate the least fixpoint or from S to
calculate the greatest fixpoint. The justification for the algorithm's correctness
is Fact 4.16.

Instead, we consider the game graph of M, j.

Definition 5.9 (Model-checking Game Graph) G = (V, E) is a directed graph with
vertex set

V={(s,4,) :s E S,4,
and edge set

E = {(s,4,), (s',4,') : (s,4,) - (s',4,')}
To use the game graph we need to be able to assign validity at each node, thus

we must understand the meaning of open formulae 4, whenever 4, -< . The
closed formula which allows this is just the root formula 4 of original interest.
We extend ft-fl to open formulae (4, with free names) by interpreting them in
the context of closed formulae : 4, -< cJ. Closed formulae are interpreted in
the context of a model M = (S, A, T) and a valuation function on propositional
names X, V(X) . 2' to give

,.ii
ft4v

M

To interpret open formulae we inductively defined a series of sets which are the
denotations of closed formulae, and which stand to solve each of the it fixpoint
variables X, - in the open version:

Definition 5.10

Si =

S2 = ft07X2 .4,2 fl y[51/x11

s T1. = 	ftoX.4,fl v [s1/x1 ,s 2/x2 11

where
cX.4, 1. - 	and i < j ==> rX.4, 	crX.4,

so that Si definitions are closed applications of ft—fl
Now we make the open definitions using the S i as a base; we build a context p
from the S

p(M,V,S1 ,S2 ,...,S)

The idea is simply to calculate the true values of the valid set for each fixpoint
subformula, and to use these values to define ft—fl for open subformulae.

63

Definition 5.11 (Open ft-f)

	

jZjP 	= V(L)

	

Fixilip 	= Si.
14 A4flp = L[1HIP fl ft42flP
ft4] V4 2]p = ft11pUft42flp

ftJ4flp 	= s:aEKands---s'=s'Eft4'flp}

	

ft(K)4 	= {s :3a e K,s' e S . s---s' and s' e ftiIp}
jvX.iflp 	= Si
4LX.4'1p = Si

We write s = i4 as shorthand for s E ft41Jp. In order to ensure the validity
of the extension to open formulae, we need to see that it coincides with the
original definition of ft-f for closed formulae.

Theorem 5.12 ftijp = 	if ik is closed.

Proof We show by induction on open formulae (iJ,) that

ft]Ip = ft1)5.1.:1•<,j1,.1

i.e. the fully open semantics (with p) coincides with the semantics where 4'
itself is closed, and only its references to containing fixpoints are defined in the
valuation set.

[X1] 	 ftXjp = S
ftXDjS/X : aX . l1,) = S(by S i definition)

[A,V, [-], (—)] trivially

	

[vX1 .4i 1] 	ft-vX.4'jp = S

);]

= 	 ,...,S_1/X1_11

= U{S S ç ft4'iflv[s1/xl ,...,S1_1/X_1][S/X1]}

= S (by S j definition)

	

4i.X1 .4'1] 	exactly as for -v 	 0

In order to use this to check the soundness of the game moves we need a small
lemma for traversing fixpoints

Lemma 5.13 ft-vXi..4'jp = ft4'Jp

64

Proof
ftvX.4'Jp = S (defn)

	

4'JP 	= ft4'1I111 	(Theorem 5.12)

= (AS.1{iI) fl51 ,..,s_1/x_1][s/xj)S
= Si as S i is a fixpoint of the function 0

Defining ft— for open formulae allows us to check the soundness of the game-
playing rules.

Theorem 5.14 (Game-Soundness - Stirling [Sti971)

True Player 2 configurations [4) = V, ()] have a true successor

s 1=4) => (s',4") . (s,4,) -f (s',4,') and s' =4)'
False Player 1 configurations [4, = A,] have a false successor

	

s z4 = 	(s',4') . (s,i4) - (s',4)') and s' b=4,'
Forced configurations [4, = 	XJ have a unique and equivalent successor

s = 4, 0 3! (s',4") . (s,4') - (s',4,') and s' =4, '
We can rephrase this with some dualisation to see how all games connect to one
proof

Corollary 5.15

Player 2 [V, (l, ff 1!
S 	lJ) 0 3 (s',4') . (s,4)) - (s',4)') , s' =4"

Player 1 [A, [11, tt]
s =4, 0 V(s',4,') . (s,4)) - (s',4)'), s' 1=4"

Forced [a,X]

s =4, 0 3! (s',4)') . (s,4)) - (s',4)') , s' =4"

These results motivate the choice of a structure to represent proofs in a way
that is more applicable to the auditioning process.

5.4 Verities

Winning strategies for Player 2 demonstrate the truth of properties (Theo-
rem 5.8). We introduce the concept of a graph which is a sub-graph of the
game graph, constrained to only explore the game space within the bounds to
which Player 2 can restrict it by playing with a particular strategy. So we define
a verity to be a true, closed subgraph.

A verity captures the subformulae on which truth of a formula depend in the
same way as a tableau proof does. It provides an explicit and neutral encoding
of the information in a proof, so that when we are being abstract about proofs
and say proof we can concretely substitute verity.

65

Definition 5.16 (Verity) A verity is a graph (a pair of a vertex set V and an edge
set E) together with a context p (which we often omit), thus (V, E) or (V, E, p),
and subject to the following properties

(s,4')eV => s=iJ,

(s,4),4' a Player 1 formula [,A,ttJ =

(s,4') - (s',4"). (s',4") e V, ((s,4'), (s',4")) e E

(s,4'),4i a Player 2 formula [Q,V, ff 1 =
(s',4'): (s,4') - (s',4"). (s',4") E V, ((s,4'), (s',4")) e E

(s,4'),4 a Forced formula [o,X]

(s,4') - (s',4") . (s',4") e V, ((s,4'), (s',4")) e

A (V, E, p) is a candidate verity until it is shown to have these properties.

Theorem 5.17 (Verity Existence) Every true formula is contained in some verity,
formally:

Vs,,p: s = 4 . V,E: (s,) e V , (V,E,p) is a verity

Proof By Theorem 5.15, ({(s,4') :4' - 	and s 	i.j},{((s,4), (s',4")) : (s,4') -
(s',4')}) is a verity. 0
Theorem 5.15 is also the justification that a verity contains all the necessary
information to encapsulate the proof of a property. We can rephrase it more
directly as

Corollary 5.18

(s,4') e V and
=s=ij

(V(s',4") : ((s,4'), (s',4")) e E . s' =4")

From here we will use (s,4) - (s',4") to denote ((s,4'), (s',4")) e E, as we
shall have little need to refer further to games.

5.5 Conclusion

In this chapter I have introduced verities. Verities are the central formal concept
of the thesis. Verities are the most neutral concept of proof object which I have
been able to define. They are most easily seen as subgraphs of game graphs,
although they can also be considered as translations from tableaux; this is
necessary because we tend to write proofs using tableaux.

The chapter has discussed model checking games in order to show where
verities have developed from; in addition games are a fresh and insightful way
of looking at how M properties relate to systems.

I now proceed to apply verities by making them into oracles.

rTh

Chapter 6

Formalising Oracles

Summary

The verities defined in the last chapter allow us to make formal the oracles
described in Chapter 3. In this chapter I show how to turn verities into oracles.

. I compare verities by defining trace languages for them.

• I give traces the power to declare acceptable sets of states. This forces
annotations to take account of states, but it is an effective if brutal method
of allowing oracles to spot invalid traces.

• I define verity configurations which contain possible model states and
properties which must hold of particular model states. I show how these
configurations track the system by defining their derivatives under trace
actions.

• I modify traces to declare properties rather than states, and use the prop-
erties declared by traces to prune verity configurations, removing compo-
nents of configurations which are contradicted by the declared properties.

• With the notion of verity configurations pruned by declared properties
pinned down, I can define my notion of an oracle, as a combination of
verity, and model LTS. I define the language of oracles analogously to
that of verities, prove that the language of a verity is the same as that of
the translated oracle, and work out a hierarchy of oracles. I present the
oracle for the compressing server example of Chapter 3.

• Finally I prove two properties fundamental to auditioning based oracles.
The first is a safety property such as any oracle, intensional or extensional,
should have; that traces from correct implementations are not rejected.
The second is the formal expression of the extra power of intensional
oracles; that they can reject traces because a condition has failed to occur
after a certain amount of behaviour has gone on.

67

6.1 Understanding Verities

To begin with we take the language of an implementation to be the set of
action traces which it can exhibit whilst behaving correctly. We use an oracle
to monitor the implementation and try to detect traces which expose incorrect
behaviours. We can view a verity as defining a language of the traces which it
accepts; then an oracle derived from the verity should define the same language,
and it must be a superset of the implementation language. The usefulness of an
oracle depends on how close its language comes to the implementation language.

Viewing an oracle as a machine which rejects invalid traces, we consider
its language to be the set of traces which it does not reject. This permits the
inclusion of infinite traces; even if we could never reject an infinite trace there is
no reason why we can't say as much. We will define languages for verities, after
which we can show derived oracles to be correct for the verities. We arrange
the languages defined by verities for a particular formula () into a hierachy,
and demonstrate bounds for these. The first language to define is the one for a
particular verity at a particular state.

In what follows, we restrict all pX4' x fixpoints to be guarded.

Definition 6.1 (Guardedness) Exactly the following formulae are guarded for X

Y 7~ X 	is guarded for X

[liii, 	is guarded for X
(K)4.' 	is guarded for X

1'1 A 4'2 	is guarded for X if *1 and 4'2 are

ki V tk2 	is guarded for X if * 1 and l2 are
crY.4,YX is guarded forX if 4' is
crX.4 	is guarded for X

and a formula is guarded unqualified, if it is guarded for all variable names.

Once we have the shorthand tt and if natural formulae tend to be guarded
in any case, because we are always concerned with observable behaviour. And
any unguarded formula can anyway be converted to a guarded one which has
the same meaning; we lose no expressive power by insisting on guardedness.

We can now state exactly when a trace is a member of the language.

Definition 6.2 (Simple Traces)

tc I a.t,aE Act

Definition 6.3 (Simple Trace Language T) For a trace t from a point (s,4') in a
verity V,

teT(V,(s,4'))

t=€
or (choosing any subformula 4,' in the verity)

(s',4,') e Vv: (s,4') - (s',4,') E E,
4,94,', 4,(K)4,'andteT(V,(s',4,'))

or (following any transition from s in the verity)
(s',4,'): (s,4,) - (s',4,'),

4, = 4, or 4, = (Iç4,', s — s' E MT,t = a.t' and t' e T(V, (s',4,'))

Using guardedness of all 4,, Definition 6.3 is well-founded according to the
measure (ItI, [4,]) which is a combination of the length of the trace and the
maximum number of steps to decompose a formula to one where the leading
connective is modal or the formula is a tautology.

Definition 6.4 The major component of the measure is the length of the trace:

I€I=o
a.tI = Iti + 1

and the minor component of the measure is the number of steps for the de-
composition to the point which demands that another action from the trace be
followed:

[4,1 1 [(14,j,[ff],[tt] = 0
L*1 A4,2] 	= max([4,1],[4,2])+ 1

[4,1 A4,2j 	= max([4,1j,[4,21) + 1
[c3-X.4,xj 	= [4,x] + 1

[X] 	= [oX.4,xj + 1

The simple trace language does not represent the set of traces which should be
accepted by an oracle. Rather it represents the traces which are interesting in
the context of the verity.

Definition 6.5 (Interesting Traces) Simple traces are interesting just in case they
induce paths through the verity from (s, 4,) to some (s', 4,').

Rather clearly then, simple traces are prefix closed. If abcd is an interesting
trace then abc must have been interesting to make it so.

We can relate verities by their simple trace languages. Interesting traces
identify states for the derivatives of which some non-vacuous properties should
hold. The size of the simple trace language varies with the verity. Larger
verities have larger trace languages and can therefore be used to identify more
potentially checkable states.

Wel

Definition 6.6 We make the convention that a verity V, on the formula 4) and
the model M is written V,M. We qualify the vertex and edge sets in the same
way, so

- ,14,M 	,M
V

We make the natural comparison of verities by strict containment of respective
vertices and edges

Definition 6.7 (<, Verities)

V1 <V2 0 V,1 C Vv2 and Ey C E

Theorem 6.8 (Simple Trace Containment) Smaller verities have smaller simple trace
languages

V 1 < V2 = T(Vi) C T(V2)

Proof We prove t E 1(V1) => t e T(V) by induction on the length of member-
ship inference, i.e.

t E T((V1 , (s,i4)) by inference of length it

t E T((V2 , (s,4')) by inference of length it

Case analysis of the inference rules gives

Rule (1) t = eso t c T(V2 , (s,4'))

Rule (2) t e T(V1 , (s,4')) so 3 (s',4") e Vv, (s,4) - (s',4') E E 1
by V1 C V2 , (s',iI,') e V2, (s,4) - (s',4') E

and t E T(V2 , (s',4')) by I.H.

Rule (3) by a similar argument 	. 	 0

So the size of verities matters. And it's clear from the structure of verities that

Theorem 6.9 For any 4), M there is a largest verity

Proof Theorem 5.17 is proven constructively, and the construction contains all
true (s,4')-pairs and all acceptable (s,4) - (s',ij') 	 D

Definition 6.10 Call the verity of Theorem 5.17 V. Let T1= be the trace language
of the verity.

Corollary 6.11

T. is the largest language of a verity for 4), M

70

Proof This is immediate from Theorem 6.8

There is a hierarchy of verities, and by Theorem 6.8 there is also a hierarchy
of trace languages. V. and T. are the respective maxima, but there are no
minima in general. To see this, consider the model:

S2

a 7
s0 	:-S1

N
S3

and the verity (V0)

s0 , [ci](Z 1 V Z2)

I
si, ftZi V kZ2

si,[LZi 	 s 1 ,}Z2

if 	if
s2 ,Z1

in the case where
S2 1= Z 1 and s3 = Z2

The following verities (V 1 and V2 respectively) come from different choices at
V, are incomparable, and neither can be further reduced.

s0, [aJ(Zi V Z)

I
s 1 ,[Z1 V

I
s1, [LZ 1

I
S2, Z

s0 , [ci](1IZi V Z)

if
Si, MZI V MZ2

I
s1, MZ2

I
S3, Z2

The relationships between verities and languages is consequently seen graphi-
cally as:

V0 	 Lo{ab, ac}

V1 	 V2 	L 1 {ab} 	 L2{ac}

71

A trace being in a verity's trace language tells us that the state of the system
after generating a t trace is subject to certain non-trivial properties. The hier-
archy tells us that larger verities generate larger trace languages (Theorem 6.8),
but in order to exploit this we need the traces to give us information about the
implementation state.

6.2 Abstract Traces, States and Properties

The simple trace language can be viewed as completely abstract. Its actions
make no reference to the states of the abstract implementation; it reveals no
more about the state of the abstract implementation than can be inferred from
the transitions. Making the best possible use of a verity requires explicit knowl-
edge of the abstract implementation (Al) state being simulated; this knowledge
can be reflected back at the implementation in reducing the set of transitions
which are admissible. We can place such knowledge on a continuum by defining
a set of possible Al states; then our knowledge is greater as the size of the set
reduces towards a singleton.

Imagine that the implementation knows about the abstract implementation,
and knows which state of the Alit is simulating at any time. Then we can
make checks on implementation behaviour which depend on transitions being
valid in the known current state. Where we only know that the current state is
one of a set of states, we must admit as a valid transition any transition which
is valid in any member state of the set of possible states.

Definition 6.12 (Explicit Traces)

t4:€

t 4 a.S.t',t' an explicit trace,
Sc S (a set of Al states)

Traces from the language which did not declare states can be defined to implic-
itly declare all states

a.t = a.S.t

The concept of having a greater or lesser amount of knowledge about the pos-
sible states can be expressed by a partial-order relationship on these traces

Definition 6.13 (Trace Sharpness) Trace t1 is sharper than trace t2 (t1 < t2) just
in case

t1 = t2 = e, or
t1 = a.S 1 .t,t2 = a.S2 .t,S C S2 and t <t

Consider the example

72

b
Si 	-S2

SO 	

S4

It can generate explicit traces u.s 1 .b.s2 and a.s3.c.s4 . The definition of sharp-
ness gives us

a.s 1 .b.s2 < a.b and a.s3 .c.s4 < u.c

Clearly the sharper traces (and consequently their blunter counterparts) con-
form to the model. But consider the traces u.s 1 .c.s2 and a.s3 .b.s4 . Sharpness
gives us

a.s 1 .c.s2 < a.c and a.s3 .b.s4 < a.b

but the crucial difference here is that the sharper traces do not conform to the
model, whereas their blunter counterparts do conform. So state declaration
allows us to rule out some behaviours as inconsistent with the verity.

To attempt to add some of the information provided using state, without
constraining the implementation, we choose to declare properties in traces,
whence the set of admissible states can be restricted to those consistent with
the properties. The importance of proof is therefore revealed as providing the
connection between the declaration of property and the declaration of state;
the confection of verities is exactly the expression of proofs convenient to the
translation from property to state and back.

6.3 Interpolating Definitions and Traces

We seek to define an oracle which, whilst remaining satisfyingly abstract, allows
as many errant behaviours as possible to be rejected. If we use traces to assert
properties rather than states, then we isolate dependence on the abstract im-
plementation in the oracle; the degree to which traces identify errors becomes
a question of the explicit formulae they express, together with the richness of
the verities which are used to relate states and formulae. As we have shown
with the compressing server, it is possible to decide some non-trivial properties
of the model within the implementation. One example is the decision of 44 it
by the presence of control in the input acceptance module of the compressing
server. On the basis of these ideas we extend traces to make declarations of
(sets of) properties, so they become of the form:

73

Definition 6.14 ((Declarative) Traces)

t = I u'Yt (W a set of formulae)

where a E MACt and V4, e T . I' - (J)

We now refer to declarative traces unqualifiedly as traces, since (to reveal the
plot entirely) we find them a suitable basis for the rest of our work. Recall
that these definitions are always in the context of a model M and a particular
closed formula 4. But in what follows our results are all implicitly universally
quantified over these variables; there is no loss of generality.

When we use traces to select configurations of verities, we want the an-
nouncements of properties to exclude some of these configurations, and so to
reduce the uncertainty about which state the system is in. The easy dualisa-
tion of i.tM-formulae means that each formula in a trace announcement in fact
announces the absence of its dual; where a configuration asserts that a property
must hold of an LTS-state, the contradiction of the property means that the
LTS-state cannot be the state of the system. For example, the trace a i f{i.n]ff}
announces that we are not in the input acceptance module.

Definition 6.15 (Verity Configuration) We call an (s, 4,)-pair in Vv a verity state,
and we call a set of (s, 4)-pairs a verity configuration. It expresses a state of
knowledge about the system as a set of conditions on LTS states.

The next stage is to define the derivative of a configuration under an imple-
mentation action; that is, the successor configuration.

If a configuration of a verity contains (s, 4') and an announcement is made of
'4 i , then the contradiction is very easy to check syntactically. Notice however

that —'4, certainly contradicts 4'1 A 1.1)2, although this is less easy to verify
syntactically. To overcome this, and to reduce the class of terms we must
ultimately deal with to the prop-atomic, we define a kind of normal form,
where an (s, 4,) in which 4' is not necessarily prop-atomic is represented by a set
of successor (s, 4") from the verity in which all 4,' are prop-atomic. Because in
any case a configuration has to be a set of verity states, this does not complicate
the rest of our treatment.

Definition 6.16 (Representative Set) A representative set of verity states is a set of
verity states in which all formulae are prop-atomic, and which taken together
declares the same information as any single verity state (in which the formula
may not be prop-atomic).

LS, 4,i 	{(s, 4,)} if 4, is prop-atomic

LS, 4 J A U(s',j,'):(s,i,)_(s',iJ,')" 4, ' j otherwise

74

This really just distributes the state s through the formula, as we never cross
LTS transitions in L-J For example,

LS, ([aJ4'i) A ((b)i1 2 V k4)3)i = {(s, ([c4'i)), (s, (b)4)2), (s, 04)3)1

We intend that L-J be clearly representative of all the possible formulae which
are interesting for s, so we make a definition which includes all the interme-
diate stages to reaching the (s,4))'s prop-atomic subformulae which retain all
modalities (don't pass state transitions).

Definition 6.17

4: {(s,4))} if 4) is prop-atomic

	

4: {(s,4))} U 	 4)'

and the example above becomes

(s, ([cil4)i) A((b)4)2V]l1)3)),

	

rs,([c]4,i)A((b)4,2V k]lI)3) = 	(s, (b)4)2 V
(s, ([44)), (s, (b)i4 2), (s, 4))

Now we see how one configuration leads to another under first of all normalisa-
tion (the generation of a representative) set, followed by transition (the gener-
.ation of successor verity states for each verity state in the configuration).

Definition 6.18 (Derivative, A) We use F to stand for a configuration, so F =
{(s,4))), (s2,4)2) } and we apply an action to a configuration with the deriva-
tive function A. First we have two supporting functions which interpolate con-
figurations and trace them over transitions:

Ainter (F) 	U(s,)Er'4)
Atrans (ci, F) 	U(S , 14,) E r{(s',4)') : (s,4)) - (s',4")

4)=Nor4)=(K), aEK, s---s'eM-i-}

A for an empty trace should just fill out the configuration by adding prop-
atomic derivatives. For an action it should fill out the configuration, calculate
the successor configuration and fill that out, so we put:

A(e,F) 4: Ainter(F)
A(a, F) 4: Ainter(Atrans(a,Ainter(F)))

Then the configuration becomes data for the oracle to determine whether there
is a failure:

For each (s, 4)) E F, if s is the current LTS state, then no declaration
should contradict 4).

75

Using this interpretation we can remove from F verity states involving a contra-
dicted LTS state. Here it becomes clear why we have used '- to fill out config-
urations at each stage; it gives the most flexibility to the precise form of decla-
ration; the announcement of the contradiction of any 4' where (s, 4') e rS, i4
is enough to exclude s from the possible LTS states.

Definition 6.19 (Restriction to Consistent States) For W = 	, 4',. . .}, we can ex-
cise from F all verity states, the LTS state of which has been ruled out. The
LTS state is ruled out, if it is a component of a verity state with a contradicted
property. This looks a bit strange because we're really removing LTS states
from the configuration, but the configuration is stored as state- and-prop erty
pairs.

F{(s,iJ) eF: (s,i1)) V F}
F 	F 	'1)2...

It is enough to only exclude on direct matching of formulae (=), because '-
is large enough to encompass a breakdown of any non prop-atomic i.1):

(s,i.1) 1 Vi.1) 2) e F ==> (s,i4 1) e F or (s,i1)2) e F

Consequently, declaring —' i1)2 would be enough to exclude s as an LTS state, as

{(s,4i V4 2),(s,i1)2)}J,'-'t1)2 ={}

which is the case where s H 142 is used to prove s H 1.1)1 V 1.1)2. In the case where
s H 'h is used, we don't exclude s:

{(s,4' i Vi.1) 2), (s,4'i)} ,t —*2 = {(s,4'i Vi1)2), (s,4'i)}

In the first case, the verity configuration makes two assertions about a state
of the LTS. One of these assertions has been contradicted, and the question,is
what inference should we draw from the contradiction ? The formal compo-
nents of our framework have made sure that the verity configuration contains
only valid assertions about LTS states. By the assumption of a valid mapping
from specification to implementation, the properties must also be true of the
implementation state analogue of the current LTS state. But some property is
contradicted, so the current LTS state, if the mapping .is indeed correct, cannot
be s. Of course this is fine as long as it can be some state; when it cannot be
any state we have discovered a flaw in the mapping, and auditioning has served
its purpose.

6.3.1 Tracing Always

What we need to declare an outright error in the system under auditioning is
that every LTS state is excluded. Such a conclusion is consistent when every

76

state reachable by the observed trace is represented in F and every verity state
(or assertion) (s, iji) e F is a valid assertion. We already know that verities
contain only true assertions. We need only prove that the extension preserves
this, and that it means that reachable states are always represented.

As it stands, restricting a configuration to be empty is not sufficient guaran-
tee of error. This is because a non-interesting trace may lead to an acceptable
state. We must exclude the possibility of reaching an empty configuration be-
cause the verity does not examine a particular set of states. We need to add
something to the verity to do this. It doesn't hurt to assert everywhere that
tt holds, and then wherever a state and derivative aren't reflected by a verity
transition, we can add the trivial one.

Definition 6.20

VvU{(s,tt):sEMs}
V 	VE U {((s, (K)i.ji) - (s', tt)) : 3CL e MAct , s--s' E MT}

u{((s, tt) - (s', tt)) a e MAct, S-4S ' E MT}

The next theorem ensures that the extension covers all transitions.

Theorem 6.21

(s,4) e V,, s--s' e MT = a4': (s,i.ji) - (s',4Y) e V

Proof is a case-analysis on all possible formulae 1.1,
s—'--s' e MT, 4i = 4' = (s,4') - (s',4') EVE

(K) 	by addition of V transitions

tt 	by addition of V transitions
if 	(s,if)Vy
A,V,cr,X trivially 	 0

Theorem 6.22

s— --)s' E MT = Vi4: (s,i.ji) e Vv,4": (s',tji') E (a, (s,4'))

Proof By Theorem 6.21, first Ls,tj)J {} and second

V(s',.ji') E Ls,1.jiJ . 	(s2 ,i.ji2) : (s',i4i') —p (s 2 ,4'2)

	

and by definition of r_, (s2 ,tji2) E r(sZ, 2) -1, and if it needs saying, 	is
monotonic. 	 o

Thus we have reached the point where with F we have a way of testing
the validity of the auditioned implementation. It is worth reinforcing that the
meaning of an empty F is that no possible state of the model LTS can be

77

consistent with the behaviour observed, and with the information supplied by
the proof; the correct conclusion is that the implementation is faulty. Now we
can extend the notion of 1' to traces of actions and declarations, and look at
how the resultant configurations change given smaller or large verities.

The first step is simply to extend A to deal with the traces which an imple-
mentation, extended to property declarations, can supply.

Definition 6.23

A(aW,F)A(a,l') tW
A(aPt,r) 	A(t,A(a 1Y,F))

And the extension to the language of verities is the set of acceptable traces with
declarations, that is those which never pass through an empty configuration.

Definition 6.24 (Verity Language)

t e L(V, F)

t = €, F =A {}
or t=aWt' , t'eL(V,A(a,F)iI')

6.4 The Oracle Transition System

A verity contains all the information necessary to define the oracle's transition
system, when used in conjunction with the LTS from the model. But it is still
more abstract than we would like it to be.

• Game transitions are atomic in - terms of formula manipulations rather
than model transitions; the two do not always correspond.

• The transitions which do correspond are not labelled in the verity, because
the particular transition has no special relevance to the game, where any-
way the configuration is fully known. In the real world of auditioning the
name of the LTS transition helps us to determine the possible successor
states of the verity.

With these points in mind we develop an LTS for the oracle (and we call it
the OTS) where all transitions reflect model LTS transitions, and are labelled.
We can do this because sets of prop-atomic formulae are sufficient to represent
general formulae. The OTS stands by itself as the object with which to run the
oracle in-situ. -

From a verity V = (Vy, Lv) and a specification/abstract implementation
M = (S, A, T) we create an Oracle transition system

Definition 6.25 (OTS) An OTS 0 is again a graph (V0, E0) (vertex set V0 and
edge set E0). We write V0 and E 0 to distinguish these from the vertex sets
and edge sets of verities. An OTS is derived from a verity as representatives of
verity states and transitions between pairs of representatives:

(s',4') e V0 	0 EI (S,*) e Vi. (s',4') E LS,14)J

(s,iI)----(s',i') E E0 0 (s,i') e V0, (s',iV) E V0,

(si,4'i) E Vv

e E,
(I 	II\ 	 I , 9)) E LS1, 9'1J

Once the work of L-J has been applied to creating the OTS, A of course becomes
simpler:

Definition 6.26 (Derivatives on OTSs)

A(a, 0,1) 	{(s',i') : (s,) e F. (s,)---(s',iV) e E0 }

Now we can apply the same definition as previously applied to verities (Defini-
tion 6.24) to define a language for oracles

Definition 6.27 (Oracle Language with Declarations)

t = c and F {}
t e L(O, F)

or t= &I't',t' E L(O,A(a,O,F)W)

The transformation from verities to oracles leaves languages unchanged; when
we generate an OTS from a verity and model then the respective language
definitions yield the same language.

Theorem 6.28 A trace containing only prop-atomic declarations is a member of
the verity language if it is a member of the oracle language.

t e L(V,I)= t e L(0,LIJ)

Proof is by induction on the lengths of traces t

[t=e} 	I={}LFJ={}
	

(obvious)

[t = a9! t'] A(a, V, F) J. W = LA(a, 0, LII) .1. Wi (from respective A definitions)

6.5 Example

Regarding the property

s H4,4 = [Q,(lj'i A(2V(3Ai4)))

where the interesting part of the model's transition system has the shape of

79

Z. ~ b\'~
Sl 	S2 	S3

and one possible verity, modified with annotated transitions has the shape
shown in Figure 6.1

Figure 6.1 A Verity

s, [a,U(4'i A (4 2 V (*3 A 4))

s,iki A(2 V

s 1 4 1 	s 1 ,4,2 V(4

S,lJ)2 	 S,lj)3/

Sb4)3 	 s,4

b

S2,1.)1 A(4i2 V M A4)) 	 S3,4'1 A(4'2V(ik3 Ai 4))

s2 ,i4i 1 	s2 ,4'2 V(4'3A44) 	s3,4'1 	 s3 ,4 2 V(4 3 A4'4)

s2 ,4 2 	 s2 ,4 3 A4 4 	 s3,42 	 s3 ,4 3 A4 4

s2 ,4 3 	 s2 ,ij 4 	 s3 ,4 3 	 s3 ,4,4

This verity requires more than any minimum set of true sub-propositions;
we could also have a verity where only one choice is tested for at a disjunction;
though there is no reason to do this when the source proof happens to validate
both branches.

6.5.1 The Compressing Server OTS

In Chapter 3 we introduced the compressing-server example in order informally
to demonstrate the oracle transition systems which we have now formally de-

fined. Now we can derive the formal version of the compressing server OTS.
Recall in particular that we proved, for the states when the buffers are full, that
input eventually becomes possible

{ 10 1C4 \ {put, get}, Ii 1C4 \ {put, get} } F- tY4rtt V HY A (—)tt

A fragment of the verity resulting from the tableau is shown in Figure 6.2

Figure 6.2 Compressing Server Verity

si,iY.Gitt V(HYA(—)tt)

I
S1,rtt V([—]YA(—)tt)

s i j-]Y < 	si,HYA(—)tt

I 	 I
s9,Y 	-

__
s9jiY.IittV([-]YA(--)tt) 	s9,tt

I
s9,ttV(HYA(—)tt)

____________________ 	I 	___________________
s 9 ,(—)tt-< 	s9,[-]YA(—)tt 	

__
I 	 I

S12,tt 	s12,p.Y.4ttV(HYA(—)tt)-
_

s2,Y

I
S12, 44 tt V (HYA(—)tt)

I _______________________
si2,@tt 	 > S11,tt

The property contains only the prop-atomic formulae

@tt, [-]Y, (—)tt and tt

so that the OTS induced by the model and verity turns out to be quite small
(see Figure 6.3)

81

Figure 6.3 Compressing Server OTS

s17,tt 	s 17 ,(-)tt 	s17,RY 	s 17 ,(irtt 	s 17 ,tt

/ s4 ,tt 	s4 ,(-)tt 	s4,[-]Y 	s4,

Si8, 	 S 8, 	 s18, 	T"'~S~I8, 	

S4, tt

rtt 	Si8,tt

s 15 ,tt 	s 15 ,(-)tt 	s1 5 ,{-]Y 	s 15,itt 	s 15 ,tt

/S3, s3 ,tt 	s3 ,-tt 	s3

/ 	/
,[-IY 	s3,

5 i6, 	 S16, 	 s 1 6, R Y516,

S16,tt

Si3,tt 	513,(-)tt 	513,[-]Y 	S13,44tt 	S13,tt

S2,tt 	S2,(-)tt 	52,HY 	s2,

G 	IS2,

5 14, 	 Si4, 	 Si4, 	

14,

rtt 	S14,tt

Sii,tt 	Sii,(-)tt 	Sii,RY 	Sii,@tt 	S11,tt

/S1 , Si,(-)tt 	Si,[-IY 	Si@ ,// tt

y
S12,X"~S12 K) 	 S12, 	 S12, tt ,

V
59,tt 	S9,(-)tt 	59,[-]Y 	S9,rtt 	59,tt

6.6 Hierarchies of Oracle, Model and Language

We would like to see some structure to the relationship between languages, and
oracles, for the same J?. For trace languages we have

V1 <V2 = T1 CT2

82

Filling out verities means that the declaration-free language for an OTS includes
all possible traces of the original model. Checking with such traces is useless,
and the motivation for adding declarations is to construct a system where some
traces can be rejected. Ideally, stronger OTSs (larger ones) will have stronger
languages (smaller ones) because the aim of a stronger OTS is to be more
selective about acceptable traces; a larger OTS makes more assertions of the
form

s 	whenever (s,4') e Ov

First let's make the observation that our languages are still prefix closed.

Theorem 6.29

if t T and t a prefix of t' then t' V L

Proof is trivial. Once an oracle configuration is empty, no application of t\ or J
can generate oracle states 0
We would like to be able to show that larger oracles reject more traces (thus
have smaller languages). Unfortunately the hoped for

01 <02 	L(02) c L(0 1)

is not true. The reason is that if we exclude from a configuration all oracle
states involving a particular model state, we remove the potential to exclude
oracle states involving derivatives of the model state, later. Such a state of
affairs should only occur if there are multiple errors in the connection between
model and implementation, but this is by no means unlikely. An example
makes the problem clearer; we'll show a trace t and oracles 01 02 where t is
a counter-example to L(02) c L(0 1). Consider the following LTS:

b 	, Si 	'- S 1

/ N
 it

2 b -S, 2

Assuming that s" holds for the arbitrary formulae 4'i , I'2 and *3 then we can
prove

S 	[ci](4'i V([,2V L4'3))

And testing the trace t = a{}b{ i 3}c{'4 2} on the oracle 01:

S, [ci]

s2,[l]4'i 	 Si,[tft4)2

SlI)2

S ,14)1 	 s ,4 2

F 	A(ct,Oi,{(so,
={(S2, [Iç]1), (Si, [L4'2)}

12= LX(b,O b J'1)

I(S, k4'i), (s, 4'2)} t —[
13= A(c,0 1 ,F2)

= {(S " ,l),.(S " , 2)} 	= {}

=]4i), (s, I42)}

'so that t L(0 1). But testing t for membership of the larger oracle (Ox)

s0jju]...
ja

S2,t]l1'i 	Si,]l1)2

lb
S,4) 1 	sç,k]i4iz 	S,14)3

I C 	IC 	I C
S 41 	S ,*2 	S ,4)3

r 	A(a,02,{(so,[cij...

={(S2,]iJ'i), (Si, 1I]4'2), (Si, 	4'3)}

'2 = A(b,02 ,11)

={($,i),(Sc,2),(S,k3)}—'4'3 ={(s,41)}
13= L(c,O2,F2)

= {(s",4i)} t 	 =

so that t e L(02), contradicting L(02) c L(0 1) 	 0.
The exclusion of the redundant (s1, 4) path from 02 means that s 1 is not
removed from consideration by the first declaration, after which its successor
conflicts with '42 and thus rules out all states.

84

6.6.1 A Stricter Language of Oracles

In order to restore the natural structure whereby larger oracles reject more
traces, we must modify derivates. The remedy which we employ is to have the
derivative notion take account of all possible paths through the oracle, even
those resulting from states which we have decided that the system could not
possibly be in. The only problem with doing this is a philosophical one; ruling
out a state because it must satisfy a contradicted property is reasonable, but
using the possibility that we are in a contradicted state in order to contradict
others seems perverse. To resolve this we appeal once again to a fundamental
assumption on which auditioning is based, that inconsistencies between model
and implementation indicate problems with the implementation. Should the
implementation contradict a state s by declaring ij, when the oracle has (s, 4))
then we conclude that the implementation may be mistaken. With the ap-
propriately strengthened definitions of L (0), we will show first of all that the
function from oracles to languages is inversely monotonic. Then we show that
even this strongest-so-far notion of the Oracle language is nonetheless consistent
with the safety of auditioning.

We will term the states which have been removed by applying L to configu-
rations trace inconsistent. In order to take account of trace inconsistent states
we find it easiest to enrich a configuration to become a pair of a set of pos-
sible LTS states and a set of conditional requirements on states (the previous
notion of verity configuration). We return to verity configurations because the
encapsulation of the LTS in the new configuration remove the need to relate
the (s, 4)) by transitions. It will require further thought to attempt to reconcile
things into a single transition system again, but it is surely worthwhile, as we
would like oracles to only maintain state information local to the truth of the
property, rather than for the entire transition system.

Definition 6.30 (Oracle Configuration) is (SM c M5 , ro c V0) where

• SM is the set of LTS (model) states

• M5 is the model state set

The derivative function now accepts an LTS and OTS:

Definition 6.31 (Strict A) A(a, 0, M, (SM lo))

({s' : Is E 5M . s---)s'}, (s',4)') : (s,4)) e 1.

The restriction to uncontradicted states uses the OTS requirements to reduce
the LTS state set. Monotonicity works because the OTS requirements are not
reduced.

85

Definition 6.32 (Strict J-) (SM, lo) L I' 4

({s e SM : H(s,iI,) e lo. 	E W}, 1)

From this point, the definition of L is routine. Its structure is the same as for
previous versions:

Definition 6.33 (Language of Strict Oracles) t e T(0, M, (SM lo))

[t=€] 	SM{}

[t= aWt'] t'e L(0,M,(a,0,M,(SM,1o)) J'Y)

We can recover a language of a verity configuration by extracting the set of
mentioned LTS states at the start

Definition 6.34 (Strict Verity Language)

L(0, M, lo) 4 L(0, M, ({s : 3 (s,4') e 1}, 1w))

Finally we can state and prove the inverse ordering

Theorem 6.35 (Language Containment)

01 : 02 => L(02 , M, (SM, 102)) c L(0 1 , M, (SM, 1o))

Proof is of a generalisation to independent sets of LTS states, by induction on
traces:

01 02, SM2 C S1 , 10 ç 102, t e L(02 , M, (SM2, 1))
=tE L(01,M,(SM1,['))

By cases
[t = c] trivial
[t = aW t'] as follows

Let
(S 21 12) 4 i(a, 02, (SM2, 102))

(S 1 , 1) 4 (a, 0, (SM1, 10))

then

[S2cS1I

but 5 M2 ç 5Mb SO S C 5M1, hence s' e41

[1 1 C 12] 	(i,j) e 1 	(s,ij) : (s,i)--(s','), (s,t)
but 101 c 102, so (s,) e 102, hence (s ' , i) e 102

Now let
(5 	r

	

1i 	u \ 	(Sk,12 ,1t2) L '-' M2' '02/ -
=(Sk1)11) J-11'

then

[S 2 c SJ sE S 2 =s e S 2 and -H(s,4) C 1:'j eW
butS 2 CS 1 , sosES 1
and1 1 cF 2 , so — (s,4)e 1 1:'iIe'Y
hence s C S 1

so we can apply the inductive hypothesis

ii t' C L(02 , M, M2' 102)) so t' e L(Oi, M, (S 1 , r))

And substituting SM1 = SM2 = SM and I = rOl = 102 gives us what we want 0

6.7 Safety

An oracle is only safe if it never rejects a trace from a correct implementa-
tion. We demand safety at a minimum for showing that the oracle generation
methodology is sound. Because we have designed our oracles to enforce a form
of intensional equality between the implementation and the specification, we
can only show safety for models closely related to the abstract implementation
from which the oracle is derived. We express safety as containment of languages;
an oracle is safe for a model if the oracle language contains the model language.
If this holds then the oracle will never reject a trace generated by the model.
First we must define the output language of the model, in other words, ask
what are the expected behaviours of a model with no associated verity or oracle
7

Definition 6.36 (Languages of Models) For the model M = (5, A, T), the language
of a state of the model is the set of traces which are possible transition sequences
of the model, together with property declarations consistent with properties of
the model.

t C L(M, s) 4=

t=e
or t = aWt' , s' : s--s'

Vs' : s---s' e MT,V4' e il'. s' 	and t'C L(M,s')

Then the question we ask about safety becomes a simple one of language con-
tainment:

Definition 6.37 (Safety) For the oracle 0 derived from a particular proof about a
model M, 0 is safe for a model I just in the case

Vs, 4' . L(I, s) 9 [.(O, M, {(s, ik)})

M.

Taking the model to stand for its implementation, we can prove that any oracle
is safe for the model from which it is drawn.
Theorem 6.38 (Oracles are Safe)

L(M,$) c L(O, M,{(s,4>)})

Proof For any oracle 0 containing (s, 4,) c 0v, we show that

t E L(M, s) => t C L(0, Mj(s,4)})

by induction on the length of t

[t = ci 	direct by definitions
[t = a 'Yt'] a1P t e L(M, s)

s—s--s' thus S ~
Vs' s--3s',V4, 	Y. S ' 	4,

then by verity fundamentals, and A, (Sb, S) J. M' = (Sb, S)
and I.H. gives t i e L(0,M,(S,%))

ergo a1Yt' e L(0j(s,4)}) 	 0

Where s 4, in a different implementation it is no longer necessarily true that
L (I, s) c L (0, M, (s, 4,)). This is the formal consequence of intensionality, and
we can demonstrate it for the simple termination example of Figure 6.4, which
shows two models where the property P becomes true after a different number
of transitions from the initial state.

Figure 6.4 Model and implementation differ

M 	S1 aS 	aS 	s4(s4HP)

1 	US 	aS 	a 	 cl(HP)

Consider in both models that s1 = p.X.[cXV P, but derive an oracle 0 from
M. Using the trace t = a{}a{}a{'P}, for the respective languages we have

t V L(0,{(s 1 , [qlX)}
t V L(M,s 1)
te L(I,si)

We contend that such a result is a positive benefit of our approach. The
oracle in this case can identify, if it observes the trace t, that the implementation
is not terminating as quickly as the original proof must have claimed it did. This
suggests there is a bug in the implementation, or at least a misunderstanding
of how it behaves on the part of its implementor.

6.8 Termination

One of the most important advantages of auditioning over logic-based tracing
is the ability to bound termination through using intensional data. Verities
should therefore allow us to check assertions that properties should eventually
hold (e.g. termination of loops). For example, a correctly constructed n-place
buffer satisfies

vX.itY.(HYV n)tt)A HX

because it cannot forever output records without coming to the point of having
a free slot into which it may input. But we can only know a particular bound
for a particular implementation, and unless we know a bound we cannot know
it has been exceeded.

Tableau proofs of hi-properties show how certain t properties eventually
hold. Bradfield's completeness proof [Bra9l] defines a notion of a signature
of an (s, 4')-pair (when s = 4') which defines how far up the approximant
hierarchy we must search to see s = 4). We use the same idea to analyse how
verities can be used to check correct termination, and come to a very similar
proof for constructing termination-guaranteeing verities. We examine a limited
but important case where something must eventually happen, and show that a
verity can be trusted to detect non-termination in this case. Not all -fixpoints
involve guaranteed termination though. Often they present only the possibility
of termination, and in that case we look at what failures we can still hope to
detect with what oracles.

6.8.1 Signatures in Open Formulae

In order to show termination in a verity, we must have a measure on a verity
state which is well founded and which we can show reduces as the verity state
evolves. This is where we need approximants (Section 4.4.3). The measure of
a verity state (s, 4)) becomes the least vector defining values for approximants
which makes 4) true for s, which we call its signature. A series of extensions
to definitions are necessary to do this. We extend the open formulae of Def-
inition 5.11 to add approximants. With these we can define signatures. The
first step is to make approximant-indexed versions of the S i sets to stand for
the respective aXj .* j as the basis for an open context p. We only approximate
the i-fixpoints because s 4' and we seek to approach ft4' from below.

Definition 6.39 We write 13 to stand for the lexicographically ordered list of or-
dinals (c, oc2,. . . , c) and 13 F. i. to stand for (ct, C2,. . . , 	I < n

Definition 6.40 The basis sets are

c13 	 4. 	. i.flM - ftV 	
S1/X1_11 -

j_,1im) 	
0-

	

- c 1 <1im 'i 	 -

s'c_i,+l)' 	..iii liM
- bv[sh/x, , s 2 /x2 S ± fl ± 1) /xj

an approximant-based context becomes

p 	(M,V S 	S 2 	S''

	

' 1 	' 2 	n /

And ft*flp O follows Definition 5.11, in particular recall that

ftcrX4jp = 	= S

Definition 6.41 (Signature) is the lexicographically least 0 in which k holds in
the state s:

ISM 0:s e MPP -H(3' < (3 . se

and we can consider how this varies as we proceed on paths through verities.
First we need to make precise the notion of following a trace in an oracle. This
is analogous to the notion of a reachable configuration in a game, reading the
verity as some constraints on strategies.

Definition 6.42 (-*)

(s, ,) 	.' (s', 	') 0 3SI)IPI)S2)*2) ... : (s,) 	(s , 	... 	(s', 	')

Then we refine -'-+ to proceeding on a path in which every formula is part of a
subformula.

0 Definition 6.43 ()

* (sI) -'- (s',ik') 0

s1) iJ,1) s2,ij2, ... : 	(s,i.) - (si,i.ki) - ... - (s',i')
and V4' 	 or4 <I'o

and i, = *o or 4' - 4'
and ij' = I'o or -ii)' - 4'0

We can show that for a least-fixpoint formula iX j .4' j. , the number of config-
urations of a verity on a path under can be bounded. Thus the verity
encodes a point at which eventually becomes now. The declaration of prop-
erties in traces allows the oracle to check that the implementation has reached
fixpoint termination by the time it ought to have. For the eventuality property

X.4' V NX, the implementation has to continually declare 4', which is not

KII

a contradiction until the oracle determines that the verity should have termi-
nated the ioop. The output from the implementation is a trace of the form
ci{}b{}c{—'4,}.... If the implementation has still not reached termination
when the oracle knows it should have, declaring —'4, becomes a contradiction,
and an error is detected.

Theorem 6.44 (Terminating Verity) There is a verity which for a property 4' -<
-vXi.* i of a state s, has a bounded path from the verity state (s, 4,) to a verity
state beyond the fixpoint. For s 4, , 4, -< we can construct a verity
where, on all paths

* (s', 	X (s,4,) 	-'..-4') .LX 1 .ij' 1

and there are at most aj configurations on the path

(s 3 , pX.4,) where oci comes from Is, 4,1 = (c, c 2 ,... ,

Proof We construct a verity for (s, 4,), inductively from (s3, 4's) such that

if 4,
then V(s 1 ,4,3+1) (s3 ,4, 3) - (s +1 ,4 +)

if 4, =
then V(s 1 ,4, 1) (s,4,) - (s+i,4'+i)

This proceeds by analysis of 4,

I(s + i .4'j+l)l Li.. < l(s,.4')l L i

(s+i •4'+i)I [i. < l(s.4')I Li.

[i4, =* 1 A4,2] 	sj e ftIpjlpl SO s, E 4,iflp and s 3 E fti.kz]Ip
covering both possible verity paths

14, = 4,1 V 4,1 	5 3 e ft4,Jp for k = 1 or k = 2
choose to build the verity with (Sj,4,k)

[14,, (I4,] 	all necessary paths work for [-]
and we choose which path to build into the verity for (—)

[Xl 	 (S,X) - (S,crX.4, x) and ftXfl = ftoX.4, x
[vX.4,] 	S "' 	is a fixpoint of 4,< for some set of S 1

sol(Sj,4,i)l=(1)OCi, ... ,m, ... ,cp1,oCp2, ...),
and [i. gives (c 1 , . . . , ct)

[p.Xm .4'm ,i> ii I(Sj,4,m)I =
and Ligives

4LX.4,I 	I(s,4,)I = (,. . . , G(- 1,..., p1) p2) ...))
and aj must be a successor ordinal,

° I(,4')I Li.=(c(l ,...,cx1 -1) 	 0

91

So indeed there is a verity for which the appropriate p.-fixpoint's signature
reduces through each transition of the verity. Thus there is a point at which
the verity reaches a termination state for the fixpoint (let this state be (s',4'),
and where the declaration of —'4,' is contradicted; oracles derived from verities
can check termination properties of implementations.

6.8.2 Termination Example

One of the commonest forms of properties of programs is Eventually(4,), in one
form or another. We consider the tM formula

The compressing-server example is of this form, and states that eventually the
system will be able to perform input. But 4,p, and implicitly tt, are the only
subformulae 4, of p.X.4,p V X where X 4,, and Theorem 6.44 shows us that
all traces must reach such an (s, 4,). Finite-branching systems have all closure
ordinals less than w [Bra9l, Lar90] and we can therefore impose a finite limit
in this case. It's therefore direct that we can identify a failing trace:

Theorem 6.45 (Finite Error Detection) For a particular model M

an oracle 0, it E Nat: (a e K{—'4,p}) 	L(O, M, ({s}, (s, pX.4,p V NX)}))

6.8.3 Using the Right Verity

A verity is only as good as the proof from which it is derived. This is positive;
we only dedicate resource to checking for what is important. But it is vital to
be aware that one must start off by defining and proving appropriate properties.

For instance, to check termination one needs a verity derived from a fixpoint
proof. In the LTS:

a

Si 	 S2

S3

s4(I=P)

then clearly s1 1= pXP V (cX and s2 = pX.P V (a)X, but the verity

92

(s 1 , ji.X.P V (c\X) 	(s2 , 1.iX.P V (aX)

is acceptable as a verity in terms of the verity rules. In this case, the declaration
of —'(a)X in the state s4 would leave an empty oracle configuration, so that
subsequent states would not be subject to analysis. However, a verity derived
from a proof of

{s1,s2}I= X.PV(ci)X

would allow such analysis.

6.9 Conclusion

This chapter concludes the formal part of the thesis.

• I have analysed verities as language acceptors, and described traces en-
riched with properties as the language by which annotated implementa-
tions describe their behaviour and oracles check the conformance of that
behaviour.

• I have compared oracles based on the languages they accept, and shown
that under some adaptations to the original definition, larger oracles are
better at rejecting invalid behaviours. This allows an incremental ap-
proach to oracle-based checking; proofs of conjunctions can be built up as
conjunctions of proofs, yielding oracles which check multiple properties
simultaneously.

• Finally I have shown that intensional oracles really are strictly more pow-
erful than extensional ones, by proving that they can be used to detect
the violation of termination properties. This constitutes a strong formal
justification of the premise outlined in Chapter 2.

Having formalised how oracles are constructed, I now want to look at the
practical side of using oracles. I want to show that some real-life systems could
practically be used as subjects for auditioning; and I want to show that tools
can be constructed which make the practical use of auditioning much easier.

I believe though, that the industrial case studies described in the next chap-
ter would have benefited from the use of auditioning; they have interesting
termination properties which I have been able to prove within the framework
of p.M and tableaux.

93

Chapter 7

Case Studies

Summary

In the preceding chapters I have motivated and detailed how to use proofs to
create oracles. One characteristic of auditioning is that the methodology is
particularly suitable for industrial application because it can be incrementally
introduced into existing development processes.

Attempting to apply auditioning in all its stages is outwith the scope of a
single thesis, but I can at least show the work which goes into developing a set
of proofs, which is the area in which the user is most likely to be stretched.
And this will test the assertion that a system can reasonably be annotated.

This chapter describes the specification of two different systems, explaining
the work necessary to prepare them for auditioning. The first example is a tape
streaming system, part of the backup mechanism of a filesystem. For this first
example I examine each stage of the process in detail. I,

. Outline the system

. Present a formal model. This model is in CCS.

. Derive some interesting properties

. Prove some properties

. Describe the annotation process

I then more briefly describe a second example, a file locking protocol, by way of
demonstrating that the methodology can just as well be applied using a different
specification formalism, in this case Leslie' Lamport's TLA [Lam9l].

7.1 Background

Both examples described in this chapter are components of a commercial oper-
ating system, part of a development project by Digital Equipment Co. aimed at

94

updating the VMS Operating System [GBD96, WBW96] with a new filesystem.
The design and software were sufficiently complex that formal methods of

specification and proof were thought useful for the work. As part of this, the
company supported the CASE (Co-Operative Award in Science and Engineer-
ing) Studentship under which I wrote this thesis.

7.2 A Tape Streaming System

A file system uses a raw disk I/O interface to implement the abstraction of
files (persistent named sequences of bytes) in what is normally nowadays a
hierarchical name space. As with most such services, the abstract view of it is
quite simple. But complexities are introduced in many different ways.

Distribution Many computers in a common privilege domain expect to see and
access the same files. If this is to work efficiently, complicated cacheing
and locking mechanisms must be designed.

Reliability An implicit but fundamentally important feature of filesystems is the
persistence of data over computer shutdowns and crashes. This becomes
more of a problem when it must be reconciled with performance demands.

The result is that although an abstract implementation can be simple, and a
concrete implementation can obviously be seen to implement the same thing,
it may be orders of magnitude larger because of concerns which are orthogonal
to how we define the abstract behaviour. From the viewpoint of the chosen
abstraction these implementation details are intensional, but at the implemen-
tor's level they are a tradeoff which respects a number of requirements which
are not even expressible in the same abstract language (how do we assess the
performance of a CCS process ?).

Backup is an important part of the solution of the reliability problem for
filesystems. It entails making copies of the state of all or part of the filesystem
at regular intervals (often nightly) and storing these copies so that in the event
of complete loss of the running system, the latest backup copy can be installed
in its place, and the amount of work lost can be restricted to the time since the
last backup. Earlier designs of operating system called for backups to be done
at quiet times, while user access to the filesystem was prohibited. But a class of
systems called transaction systems has grown up which demand constant user
access to data, so that backups must be created at the same time as normal
work is going on. These systems also typically have huge quantities of data to
be backed up, and so the backup system must be very fast.

The filesystem design, based on that of [R092] 1 uses an abstraction called
a segment. This is a large, fixed-size (perhaps 5Mb) section of disk which
contains parts of many files, plus control information about its contents (what

95

parts of which files it contains). Segments are allocated with ever-increasing
index values, and the complete collection of segments from 1 to infinity allows
access to the state of the filesystem at any time in its history. The now state
of the filesystem is kept quickly accessible by holding on disk the segments
which contain non-obsolete parts of files, and a daemon process copies non-
obsolete parts forward to limit the number of these segments. All segments are
stored on backup media (tape, CD-Recordable,...) by the backup system, and
restoration after the disk is lost is achieved by copying segments from tape back
to disk.

The upshot of all of this is that the core of a high performance backup/restore
system is a collection of segment transfer operations in several directions (disk-
to-disk, disk-to-tape, tape-to-disk and even tape-to-tape) using memory buffers
as a staging post. In normal operation segments are copied to tape immediately
after they are filled on disk, so that recovery to a very recent point in time is
always possible.

Figure 7.1 shows a disk in use with 80 segments filled and the 81st being
used to store new data. Meanwhile, tape streaming has filled 2 recordable CDs
with copies of the earlier segments, and is filling a 3rd with the latest segments
to have been written. As permanent copies of all segments exist on CD, time-
travel access to all data is possible.

Figure 7.1 Continuously backing up a segment-based filesystem

CD3
segs 1 to 30

0

seg.81I
writing 	I

I streaming (segs 31 to 60
eg.80 _____ 	0

CD3
segs 61 to 79

0

The segment streaming backup operation goes on in the background while
normal filesystem updates proceed, but it requires minimal locking of segments
and it uses efficient block-copying mechanisms so that it does not hog resources.
Restoration from backup to disk after disk loss uses the same segment transfer
abstractions but is the only user of the system and exploits the efficiency of
segment transfers to reduce the amount of time it takes to restart the system.

97

Figure 7.2 Restoring the latest snapshot

Z79I

streaming I / Backup CDs
D 	I segment 80 I

The streaming system, which carries out all these transfers, was identified
as a candidate for specification and auditioning.

• It must be reliable, because the correct operation of backup/restore, in
terms of never corrupting data, is absolutely vital

• because this correctness must be achieved while system performance is
still the maximum allowed by the physical (disk, tape, CD) systems.

• because the streaming system is sufficiently small to be specified and ver-
ified by one person in the space of a few months.

7.3 The Model

The discussion of what is important in the design of the streaming system is
the first stage in deciding what abstraction we will use. But our views of other
subsystems with which the streaming interacts colours the choice of abstraction
too.

The major decision is to abstract away from the underlying byte-transfer
mechanisms (wire/network abstractions) and assume that these behave per-
fectly. Then our model need not be aware of the contents of segments. On the
other hand, since the streamer encapsulates our design for fast segment transfer,
we choose to expose the way in which input to and output from the streamer's
buffers is controlled; we model the receipt of transfer completion acknowledge-
ments from the transfer mechanism, and how access to the newly freed buffer
is mediated. We identify two symptoms of correct behaviour, specify and prove
them for our model, and show they can be auditioned.

1. Segment output order reflects input order; backup expects segment num-
ber 11. to be in position ii.. Thus streaming must enforce it, and segments
input in the order [1,2, 3,4,5] must be output in the order [1,2,3,4,5]
rather than [1,3, 2, 5,4]

2. Buffers must be used properly. A segment must be copied in completely
before permission is given to copy it out. This imposes a cyclic ordering on
the handshakes around any particular buffer, and we express the cyclicity
as a logical property.

Design

We parameterise our model as one which streams i- records (we will use this
more neutral term instead of segments) and has c buffers at its disposal. Thus
the model is parameterised by the constants r and c. Note also the shorthand
(i%c) for i. mod c.

Figure 7.3 represents the model. It shows input into buffers from a disk,
and output from these buffers to a tape. The model abstracts the disk as the
In process and the tape or CDR as the Out process. The control of buffers is
represented by a pair of processes, Read and Write, which co-operate to ensure
that buffer data is not trampled on. Theprocesses interact using these actions:
sr(v) represents starting to read a record of value v
cr(v) represents the completion of a read
sw(v) represents the starting of a write
cw(v) represents the completion of a write

Figure 7.3 The streaming model

records

disk

I 	I 	I 	I
memory buffers

tape

061

Input

The input device has the capability to put the next record (v) in whichever
buffer it's asked. It then becomes a process willing to input v + 1 and willing to
acknowledge completion of the input of v. So it enforces record reading in tape
order (v) but allows the completion of outstanding reads to be acknowledged
whenever is convenient to its client process; Once all records have been read,
end-of-file is signalled.

We add a parameter to input which represents the index of the input record
in the input order. This becomes the model's view of the record data (recall
that we have abstracted away from the real data) and this index allows the
simpler expression of ordering properties.

In(v) (v).(Ip(i,v) I In(v + 1)) where v < r
eof.nil 	 where v = r
nil 	 where v > r

Ip(i,v) 	tjv).nil

Output

The output device is simpler, in not having to deal with end-of-file. It is will-
ing to see a write initiated from any buffer. The initiation is followed by the

out commencement of output (--) and it is these actions we hope to see occurring
in strict order.

Out 	LIsw(v).Out'(i.,v)
Out'(i,v) 	Out(v).(Op(i,v) I Out)
Op(i,v) 	cw(v).nil

Reading

The reading process policy is to rotate through all buffers in order, checking
that the write out of the previous record using the buffer (if any) has finished,
then initiating the read-in of the next record which the input has available.

Read(i) 	sr%(v).Read(i+ 1) +Ending(i) 	(where i. < c)

cw%C(w).Read(1) 	 (where i. > c)

Read(i) 	(sr%(v).Read(i. + 1) + Ending(fl)

Completion processing replaces Read processing when the end of input is de-
tected. The problem is to catch exactly the writes which have been initiated,
which involves a little bit of arithmetic.

100

Ending(i) 	eof.End,(i. + 1)
End,(i) 	nil 	 where i> r + c

cw%C (w).EndV,C(i+ 1) where i > cAl < r+c
'r.End,(l + 1) 	otherwise (i.e. i < c A I < r + c)

Writing

Writing mirrors the structure of reading. It waits for the buffer to fill, initiates
its emptying and moves on to the next buffer. Note that Write doesn't have to
do any special case processing at the beginning or the end, since we don't care
about the writer process waiting around after streaming has finished.

Write(i) 	cr%C(v).WriteC (1.,v)
Write(i,v) sw%(v).Write(L+ 1)

Now the initial state of a streaming system with c buffers and a device with r
records is

Init., 	(In,(v) I Outc I Read(0) 1 Write(0))\{sr, cr, sw, cw}

The model will perform a series of internal (T) actions and a series of -Z
actions. If we chose to do a bisimulation proof we would strongly expect

Init 	Outputter(0)

where

Outputter(l) 	if I < r then Out% C (i).Outputter,(i + 1)
else nil

7.4 Properties

The particular properties which we find useful can be classified more generally.
Indeed, it is a question deserving of further research whether a practical and
general classification scheme can be devised for M. We use the following types
of property:

Ordering Ensuring, for instance, that the output of buffer I precedes that of
buffer I + 1. We use the infix << to say "precedes".

Never Is used to prohibit bad things from happening. In particular, under-
standing that the algorithm cycles through buffers means that record v
is transferred through buffer v mod c so we can assert that it is never
possible to output record v through any other buffer.

101

Exactly Once If the same record is transferred twice, something is likely to be
wrong. We thus wish to say, for such actions, that they occur exactly
once.

7.4.1 Ordering

For the actions ---9 and 	we express a << b by

'vX.ff A [-aIX

saying

No -- ever happens until an --- has happened.

The ordering property we demonstrate is

Theorem 7.1 (Output Ordering)

Vi. . out%('L) <<OUt+l% c (1, + 1)

which expresses that record outputs are initiated in tape order. We can devise
a schematic tableau for << properties.

So I- vX.[tiff A [-a]X
(Def)

S F- U0 (Thin)
S 1 F- U0 	

(Un)
S1HffA[- a]Uo

S 1 Hff 	S 1 F[aIUo k'')

S2Hff 	S3 F-U0

and we are left with instantiating the set S 1 such that

So c S (Thin rule)

S2 (---derivatives of S1) = {}

S3 (---derivatives of S 1) c S ('v-terminal rule)

(where S 0 is the state set {Init}) in order to construct a successful tableau and
thus have a proof of the property. The next step is to find solutions for the S.

7.4.2 Invariant Sets

The key to proving ordering is to define a solution set for S 1 . The tableau
will keep us honest about proving that the set is closed under the necessary
transitions. The way in which we have designed the model to behave influences
the set we write down to try to serve for S.

102

Our first step is to define a set called mv which encompasses the complete
set of states reachable from mit. To define mv we break down states of the
model into families with the same relative states of concurrent processes. Thus
for instance we have the states RWO,(i.,j) which represent the reader available
to read, the writer ready to write, the input with input available and the output
ready to accept output. Further, some of the buffers have data in them. Each
of the components of mv we describe represents a different permutation of the
cycles exhibited by each of the four processes.

In order to solve a particular a << b we choose the subset of mv for which
-- has not happened, and fill in the tableau by showing that this set is closed
under transition (S 3 c S i) and is not capable of any —k-> actions (S 2 = {}). By
separating mv into families we can look at each in turn and define the bounds
of indices for which the appropriate a-action is yet to occur, to solve a << b.

Here is our family-based representation of the invariant; in what follows we
omit subscripting by the constants r and c.

A mv =

IFIk=m.ax(i-c,O) Op(k%c, k) 	Out I Write(j)I

U 	fliIp(k%c,k) IIn(fl IRead(i)
(71)

\{sr, cr, sw, cw}: i. < r Aj < i. < j + c
(we'll call particular states RVVO T , C (i, fl)

11t-c+1 Op(k%c,k) I Out I Write(j)

U 	fTI Ip(k%c, k) I In(i.) 	Read'(i)
(7.2)

\{sr,cr,sw,cw}: c < i < TA) < i < j + c
(we'll call particular states R'WO,(i, j))

fTk=max(i—c,O) Op(k%c, k) I Out I Write'(i, j) I
U 	fl'-13+1 Ip(k%c, k) I In(1) I Read(i)

(7.3)
\{sr,cr,sw,cw} : i. < rAj < i. < j + c

(we'll call particular states RW'O,(i, j))

11t-c+1 Op(k%c,k) I Out I Write'(i,j)

U 	flit'+1 Ip(k%c, k) I In(i) I Read'(i)
(74)

\{sr, cr, sw, cw}: c < 1. < TAJ <1. < j + c
(we'll call particular states R'VV'O,(i,j))

lIEk=inax(i-c,O) Op(k%c, k) I Out'(j%c;j) I Write(j + 1) I

U 	fl+1 Ip(k%c, k) I In(i) I Read(i.)
(7.5)

\{sr,cr,sw,cw} : i. < T A j <i < i + c
(we'll call particular states RWO.(i,j))

103

Op(k%c,k) I Out'(j%c,j) I Write(j + 1) 1
U 	fl+1 1p(k%c, k) I In(i) I Read'(i.)

\{sr,cr,sw,cw}: c < i. < r A j <i < j +c
(we'll call particular states R'WO(L i))

fTk=inax(i-c,O) Op(k%c, k) I Out'(j%c, j) I Write'(i, j + 1) I
U 	fli +2 Ip(k%c,k) I In(i) Read(i)

\{sr, Cr*, sw, cw} : i. < r Aj + 1 <1 < j + c
(we'll call particular states RW'O(i, j))

Op(k%c,k) I Out'(j%c,j) I Write'(i,j + 1) 1
U 	flt +2 Ip(k%c,k) I In(i.) I Read'(i)

\{sr,cr,sw,cw}: c < i. < rAj + 1 < i< j + c
(we'll call particular states R'W'O(i, j))

(7.6)

(7.7)

(7.8)

lTIk=max(i—c,O) Op(k%c, k) I Out I Write(j) I
U 11 Ip(k%c, k) I End(i)

(we'll call particular states EWO,(i, j))

lTIk=max(i—c,O) Op(k%c,k) I Out I Write'(i,j) I
U 	fl+1 Ip(k%c, k) I End(i)

(we'll call particular states EW'O 1,(i, j))

I Out'(j%c,j) I Write(j + 1)1

U [L=+1 Ip(k%c, k) I End(i)
\sr, cr,sw, cw} : j + 1 < r <1. < T + c Ai. < j + c

(we'll call particular states EWO C (i, j))

fl_Op(k%c , k) I Out'(j%c,j) I Write'(i,j + 1)1

U [i +2 Ip(k%c,k) I End(i)

(we'll call particular states EW'O.(i,j))

Now we prove that the set mv is closed. In M this is mv I- vX.HX.

Theorem 7.2 mv i- vX.{-]X

Proof

(7.9)

(7.10)

(7.11)

(7.12)

104

mv I- vX.HX (Del) mv I- U0
mv F- Ru0 (Un)

(H) S 1 F-U0

The only obligation here is to show S 1 ({s' : 3s e mv. s - s'}) ç mv. This
requires a tedious but mechanical analysis on mv states under any action. Here
is the complete breakdown of all possible actions from states, plus the precon-
ditions for their being enabled, based on the families defined in mv. We drop
subscripts again, saying RW(i, d) for RW(i, d) and leaving r and c implicit.

We can see that for all destinations s', s' e mv.

action destination 	 condition 	why

-- RWO(i+1,j) 	(i<cAi<j+cAi<T) (sr)
RWO(i,j) R'WO(i,j) (i.> cAl. < j +c) (cw)

EWO(l.+1,j) (i=rAi<c) (eof)
RW'O(i,j) (j < i) (cr)

action destination condition why

RWO(i+1,j) (i<r) 	(sr)
R'WO(l.,j)

R'VV'O(i,j) (j < 1) 	(cr)
FWO(l.+1,j) (i=i-) 	(eof)

action destination condition why

-- R'W'O(l.,j) (I. < j +cAi.> c) (cw)
RW'O(i,j) RW'Q(i--1,j) (i<cAi.<r) (sr)

RWO'(i.,j) (none) (sw)
EW'O(l.+l,j) (IL<cAi=r) (eof)

action destination condition why

R'W'O(i,j)
RW'O(l.+l,j) (i<r) 	(sr)
R'WO'(l.,j) (none) 	(sw)
EW'O(i+l,j) (IL=r) 	(eof)

	

action destination 	 condition 	why
OUtj%c J 	 .
-f RWO(t,j+1) 	 (none)

RWO'(l., i) 	 R'WO'(i) j) 	(1. > cA I. < j + c) 	(cw)
RW'O'(l.,j) (j+1 <i) (cr)
RWO'(i+l,j) (i<cAi<j+cAl.<r) (sr)
EWO'(l.+l,j) (i<cAi<j+cAIL=r) (eof)

105

R'VVO'(, j)

action destination
OU(j)

—4 R'WO(,j+1)
-r

--4 	R'\'V'O'(,j)
RWO'(+1,j)
EWO'(i+ 1,j)

condition why

(none)
(j+1 <i) (cr)

(-i<T) (sr)
(i = r) (eof)

RVV'O'(, j)

action destination 	 condition 	why
OUt%c(j) - 	RWO(t,j+1) 	 (none)

-r - 	RWO(t,j) 	(l>cAi<3+c) 	(sw)
RW'0 1 (+1,j) (i<cAi<j+cAi<T) (sr)
EW'O'(+1,j) (i< cAi<j+cAi=r) (eof)

action destination condition why
ou(j) 	R'N'O(i,j + 1) 	(none) R'VV'O'(,j)

---- RW'O'(i+l,j) 	(1<r) 	(sr)
EW'O'(+1,j) 	(i=r) 	(eof)

action destination condition why
EWO(i,j) -- FWO(+ 1,j) (i < T+cAi < j +c) (cw or T)

E\'V'O(i,j) (j < r) (cr)
Note that here EWO (,- + c, i-) is deadlocked

action destination condition why
EW'O(i,j) -- EW'O(i+ 1,j) (i < r+cAi. < j + c) (cw or 'r)

EWO'(i,j) (none) (sw)

action destination condition why
t% OU 	(3)
-4 EWO(,j+1) (none) EWO'(i,j)
-- EWO'(i+l,j) (i<T+cAi<j+c) (cwor'r)

EVV'O'(,j) (j+1 <r) (cr)

action destination condition why

EW'O'(i,j) 	 EW'O(i) j + 1) 	(none)
4 	EW'O'(i+l,j) (i<r+cAi<j+c) (cw) D

We note for later reference that the only state e mv from which an action is
impossible is EWO(r+ c,r).

106

7.4.3 Proving Ordering

Now guided by the generic tableau presented earlier, we are very easily led to
the set S1 for outk% C (k) <<outk+1% C (k+ 1):

Definition 7.3 (Before Output)

Before(k) 	{S(i,j) emv: j < k}

S standing for any of the 12 components of mv

And returning to our proof obligations for Theorem 7.1:
Proof

So c S. But So = mit just contains the state RWO(O, 0), so So c
Before(k).

S2 (
outk±J (k+l)-derivatives of Before(k)) = {}. From the preceding ex-

haustive recitation of the transitions of mv.

S3 c Before(k) ('v-terminal rule). Again just examine the transitions of
% (k)

mv. Only the action OUtk4
— 	leads from within to without Before(k). S 3

% (k)
is the set of Before(k) derivatives except for OUtk4

	

— 	([—outk%(k)I), so all
those are in Before(k) 	 0.

7.4.4 Never

The modal-mu formula saying --- never happens is 'vX.[ci]if A [-]X, and the
tableau for this is

5o - 'vX.[ci]if A HX (Def)
S F- U0 (Thin)
Si F- U0 	(Un)

S1F-[ci]ffAHU0 	IA\

S1F-[u]ff (H)
S1FHU0k''i

52 1-if 	531-U0 (H)

Our instantiation of never is

Theorem 7.4 Vj,k:kj%c . Never(outk(j))

The tableau generates the obligations

Se-, c S 1

S2 F- if

S3 ç

107

Proof

From discussion of mv

S2 (the outk(j) : k 	j%c derivatives of S i) = {}, by inspection of mv
transitions.

We have already seen that Vs e mv, a e Act : s --- s ' . s ' E mv 	D

7.4.5 Exactly Once

Now we meet our only proof of a -formu1a. In order to prove that an action
will happen, we must prove ji.X.[X A (—)tt, which results in a tableau:

S0 I- p.X. [ci] X A (—) tt (Def)

°i 	(Thin)
(Un) Si F- [u]Uo A (—)tt 	(A)

S 1 I- [aIU0
[-I)

SiI- (—)tt
S2 F-U0 	S3 F-tt

The additional complexity of the proof of a t-formu1a comes in having to provide
a well-founded measure iii on the state set of every node which is the companion
of some p-terminal ([Bra9l]). There is only one such terminal here (S 2 F- U0),
its companion is S I- U0 and we thus need

Vs 1 E S1,s2 e S2 : S1 -- 2 4> ni(s 1) Jm(s2)

In fact we can provide such a measure for the set mv previously introduced,
under all possible actions, so that we could prove that eventually the system
can do no. action:

mv I- p.X.HX

A measure for the entirety of mv under all actions is necessarily also good for
any subset of mv under any subset of the possible actions.

The measure on states in mv is

(r+c —i,r—j,state-class)

where we assign state classes so:

1. EW'O' 2. EWO' 3. EW'O 4. EWO

5. R'W'O' 6. R'WO' 7. R'W'O 8. R'WO

9.RW'O' 10.RWO' 11.RW'O 12.RWO

108

The measure encapsulates a sense of progress towards having transferred all
the records. Its most significant component accounts for the number of records
remaining to be read into the buffers. Next is the number of records which have
not yet been written out. Third is a specific ordering of state families which
is consistent with progress in the other two measures; if writing is nearly done
and outputting is nearly done, the major part of the count is inevitably about
to drop, so that EW'O' has an index of 1 to indicate that it is further down
the measure. RWO has the highest index because a count has just dropped and
other stages must be gone through before the major components of the measure
drop again.

We express the fact that something occurs exactly once by saying that it
occurs eventually, and thereafter never again. Generically, that --- occurs
exactly once is expressed as

jX.[— cjXA (—)ttA [aff'vY.[ajff A HY)

and the consequent generic tableau is:

S0 I- LX.E- XA (—)ttA [cijvY.[o]ff A HY
S F- U

' F- 	
(Thin)

S
S1HU0A(—)ttA[Y.[ffAHY n)

	
A

S 1 H {—ci]U0 A ott 	A 	
S 1 H [cvY.[ci]ff A [-]Y H)

S 1 F- [—a]U0 	S-(--)tt 	S4 I- i'Y.kiJffAHY (Def)

S5 HU 1
S5H{ffAHU1 Un A

S5 H [0fS5 H HU1 H
S6F-ff " " 	SHU1

Theorem 7.5 Exactly Once(outk% C (k))

Proof The generic tableau generates S i sets which we must instantiate. We
decide to instantiate S1 as Before(k), following our recipe based on mv for
defining the set of states preceding an action. The other state sets, except
for S5 which we will discuss, can be instantiated immediately. The rules for a
correct tableau generate the following proof obligations

Closure of S 1 under outk%C (k) actions. Once again Before(k) serves as our S 1
and we have already shown it closed under these actions.

Wellfoundedness S 	S2 from the measure in. for mv, of which Before(k) is a
subset.

Sub tableau S H (—)tt by examination of Before(k), whenever k < r.

109

Never for the sub-tableau at S 1 I- [aJvY.[ci]ff A HY, (a = outk% C (k)). We define a
set which represents all states where the action has happened

After(k) F- Utk% C (k)1ff

S4 is composed only of ----successors of s E S i , so S4 c After (k)). We
set S5 After(k) and we then need only show

1 After(k) F- Utk%C(k)]ff
by examination

2 for all s': 3s e After(k), a E Act . s--4s' then s' E After(k)
by examination

7.5 Annotating Streams

The design of the streaming subsystem model turned out to provide a partic-
ularly clean view of how streaming could be implemented, and resulted in the
original streaming implementation being replaced by one which explicitly used
the model's process and communication structure: the detailed analysis of the
model meant that a system implementing it inspired more confidence than an
ad-hoc implementation. This was a significant endorsement of the benefits of
the modelling and proving components of the framework.

Unfortunately this success posed difficulties for the experiments in annota-
tion which I hoped to carry out with streaming. Because the system implement-
ed the model, it was highly unlikely that there would be any inconsistencies
between model and system, making it impossible to positively demonstrate that
auditioning this system would find inconsistencies. Indeed, the limited number
of traces collected all turned out to be correct (via inspection) with respect
to the model. The question still remains whether auditioning would discover
inconsistencies when they exist.

But I was at least able to demonstrate that a system could be annotated
and then run with annotation in place. In fact, it is common for any large piece
of distributed software to have a test harness built for it. This is a collection
of support software components designed to mimic the environment in which
the system operates, to allow the central system to be easily tested in flexible
ways. For example if a failure is reported in a released version of the software
a programmer typically devises a series of tests to isolate the fault and runs
them in a test harness rather than building a physical test system. I took
advantage of the new filesystem's test harness, replaced a few components with
ones designed to gather auditioning output and was almost immediately able
to drive an annotated version of the streaming system with auditioning traces
recorded. So the process of annotating a system in preparation for auditioning
was successfully demonstrated.

110

7.6 An Alternative Formalism

The other area within the filesystem on which I worked was the distributed file-
locking protocol. This work was less detailed than that for tape streaming, but
I was able to model and verify fundamental properties of this system. And be-
cause the work was in a different formalism it provides support for the assertion
that the methodology can be applied to many formalisms. The motivation for
using TLA rather than CCS was that TLA was already being used by another
engineer in the development group, who could assess the specification.

7.6.1 The System

The filesystem uses a distributed lock manager to mediate access to files on a
server computer. A client acts on behalf of an entity which may be another
process, or indirectly a user. The client must hold a write lock on a file before
submitting the read and write requests that constitute an update. The aim of
the locking mechanism is to ensure that views of the file at all clients are in some
sense consistent. I wrote a model of the system in TLA [Lam9l], formalised
consistency and proved it.

As with streaming, the core of the case study is in the development of the
model. TLA views a state of the system or the collection of values of variables.
An atomic transition under a particular name relates the values of variables at
the initiation of the transition to those at its conclusion. For this example we
take TLA's view of transitions and states, but we use M as the logic, rather
than TLA's own. So for example a TLA system:

Some Variable

VARIABLES
flag : Bool
count : Nat
thing : { "a", "b", 'c" }

has states in Bool x Nat x {"a", "b', "c"}. TLA calls transitions actions, and they
are defined by the logical connection of before (unprimed) variables, v, and
after (primed) variables, v'. TLA presents conjunctions/ disjunctions as lists
bulleted by connectives, so all elements of a conjunction, including the first, are
prefixed by A. For example

Act i

Step(n)
A flag = true A count = n
A flag' = true A count = n+1
A UNCHANGED thing

111

defines the transitions

step(o)
(true, 0, 'u") —4 (true, 1, "a")

step(o)
(true, 0, 'b") - (true, 1, "b')

step(o)
(true, 0, "c') —4 (true, 1, "c')

step(1)
(true, 1, "a") - (true, 2, "a")

step(2)
(true, 2, "a") —4 (true, 3, "a")

step(o)
(true, n, "a") —f (true, u, "a")

and whenever an action does not constrain a variable, it can take any value.
The action specification

s of Act

ACTION
Up(n) 	count = n A count' = n+1

specifies the transitions, amongst others

(false, it, "b") -
Up(n)

 (true, 11. + 1, "a")
up(n)

(true, n, 'b") —f (false, 11. + 1, 'c")

7.6.2 Distributed File-Locking

The model of the so-called epoch system abstracts further from the implemen-
tation than the model of tape-streaming. It can be considered as a particular
view of a large system rather than an independent small system. The very
development of the model was made descending the abstraction hierarchy, and
we discuss several models which can be placed against the implementation to
test for our intensional implements relation. We also show that we can com-
pare different models using this relationship; this yields a third application for
auditioning as a refinement tester for a semi-formal implementation process.

We model only one file, and the value of that is a single number. The model
is based on serialising requests according to a logical file clock. Every node
maintains the age of its most recent write-lock request, which is updated from
the clock on a request for a new write lock. The most abstract version of the
epoch model is the failure-free model. In this, we have a cluster of nodes in
which none of nodes ever crashes.

112

CONSTANTS
Nodes E SUBSET Nodenames

Writes= [node : Nodes, val : Nat, age 	Nat]

VARIABLES
it E [val : Nat, age : Nat]
writelocks E SUBSET Nodes

readlocks E SUBSET Nodes

reads E [Nodes - Nat]

writes E [Writes -f Nat]

ages E [Nodes - Nat]
clock E Nat

PREDICATES

model file stored at the server as number and generation
the nodes holding a write lock
the nodes holding a read lock
n,if there are n reads queued from that node
n,if there are n writes from the node,

of a particular value,made at a particular age
count time by write locks
nowness

mit 	no locks,no requests
A reads = En E Nodes '- 01 A writes = En E Writes '- 01

A readlocks = {} A writelocks = {}

A clock > it.age

The actions of the failure-free model are

ACTIONS
WReq(n,v) =A queue a write on the server for later execution

A n E writelocks

A writes' =
entry indexed by (n,ages[n],v) is incremented
all other entries in writes are unchanged
[writes EXCEPT ! [nodei-n,agei-ages[n] ,vali-v] = 0+11

A UNCHANGED reads,readlocks,writelocks,ages,clock,it

RReq(n) 	queue a read on the server for later return
A n E readlocks V n E writelocks
A reads' = [reads EXCEPT ! [node] = 0+11

A UNCHANGED writes,readlocks,vritelocks,ages,clock,it

WCom (n , v , a) = commit a write previously queued
• writes[nodei-n,age-+a,valF-v] > 0

• writes' = [writes EXCEPT ! [nodei-n,age'-a,vali-v] = 0-11

• it' = [valI-v,age1--3a]
• UNCHANGED reads ,readlocks ,writelocks ,ages ,clock

RCom(n , v , a)= commit a read - generate value and age for return
A reads[n] > 0 A reads' = [reads EXCEPT ! [n] = 0-11

A v = it.val A a = it.age

A UNCHANGED writes, readlocks,writelocks,ages,clock,it

WLock(n) = lock prior to submitting reads and writes to modify

113

A writelocks = {} A writelocks' = {n}
A readlocks = {}
A clock' > clock A ages' = [ages EXCEPT ! [n] = clock]

A UNCHANGED readlocks ,reads, writes ,it

RLock(n) 	lock for reading only
A writelocks = {} A readlocks' = readlocks U {n}
A UNCHANGED writelocks,reads,writes,ages,clock,it

WRe1 (n) 	release a write lock
A n E writelocks A reads[n] = 0
A V w E writes : w.node = n = writes[w] = 0
A writelocks' = writelocks - {n}
A UNCHANGED readlocks,reads,writes,it,ages,clock

RRe1(n)= release a read lock
A n E readlocks A reads[n] = 0
A readlocks' = readlocks - {n}
A UNCHANGED writelocks,reads,writes,it,ages,clock

WReq, RReq Requests for operations should be submitted only while holding ap-
propriate locks. The protocol is non-blocking, the requests will be queued
on the server and an answer returned later.

WCom,RCom Committal of an operation is the point at which the file values are
read and modified, and hence also is the serialisation point.

WLock,WReI,RLock,RReI It is for the client to obey the locking protocol, and
only submit requests under the appropriate locks.

The file clock lets us express the necessary ordering properties of the distributed
filesystem. As shorthand we put D (always)

D4 vX4A[-]X

The properties we are interested in are

A write is never committed if it is older than a previous write

Initi- 0 (WCom(ni,vi,tiul[J[WCom(u2,v2,t2)]ff) fort2 <ti

While a read lock is held by any node, all reads yield the same value. An
immediate corollary is that while a particular node holds a read lock, all
the reads it issues will yield the same value; we express this by saying that
after a request, before the release, it's not possible to read two different

114

values.
0[RLock(n)1vX.[-RRe1(n)IXA

Req(u)fvY. [-RRe1(n)IY A
Com(n, v 1 ThvZ.[—RRe1(n)IZ A Com(n, v2)]if
for v1 0 v2)

These properties are rather obvious for the failure-free model. But they become
non-obvious or false in less abstract models, and with a verity extracted from
the proofs we can hope to test the properties in these more complex models.
To prove (1) we must instantiate the tableau

So I- vX.RX A WCom(n1 , v 1 , t1)]vY.RY A WCom(n 2 ,v2 , t2)]if
S0 F- U0 (Thin)
S 1 F- U0 	 (Un)

Si F- [-]U0 A WCom(ni,vj,tiivY.RYA WCom(u2,v2,t2)lff
S 1 F- RU0 	S 1 F- WCom(n.i,vi,ti)fvY.[-IYA WCom(m2,v2,t2)]if

S2 F- U0 	 S3 F- -vY.[-]Y A WCom(n2,v2, t2if
(Def) S3 F- U 1 (Thin)

S4 I-,
S4 F- RU 1 A WCom(n2,v2,t2if (Un)

(A)
S4 F- RU1 (H) S4 F- WCom(n2,v2,t2)Jif (H) S5 F-U 1 	 S6 F-if

We work in the same way as with the streaming example, looking for a
stateset to form an invariant for the top -v loop.

Invariant

Inv(k) =
A writelocks = {} V 3 n E Nodes : writelocks = {n}

A readlocks = {} V writelocks = {}
A V w E Writes : writes[w] > 0 =
A w.node E writelocks
A clock > w.age > it.age
A w.age = ages[w.node]

A V n E Nodes : reads[n] > 0 = n E readlocks

A V n e writelocks : clock > ages[n] > it.age
A clock > it.age > k

Theorem 7.6 (Write Ordering)

mit F- EJ([WCom(u1 , v1 , t1)JD [WCom(ri-2 , v2 , t2)] if) for t2 < t1

Proof Instantiating Si 	Inv(0) and S4 	Inv(t1), the tableau determines the

115

proof obligations...

[so A mit c S i] (S i our first invariant set)

containment is trivial
[S2 c S i] 	(-.--derivatives of S i)

by case analysis of the actions in Inv(k)
[RReq(n)] for the 11. read, precondition gives n E readlocks
[WReq (n, v, t)] for writes[node i - u,val F- v,age -4 t] >0,

as a result of the request, pre-condition demands

n e writelocks A t = ages [w.node]
[RCom (n, v)] trivial
{WCom(u, v, t)] it.age i- ages[w.node] = w.age so it.age increases.

But as all writes were of the same age, they're still >

[S3 c S4]

(actually just =) to it.age
[RLock(n)] trivial
[WLock(u)] clock' > it.age and clock' > ages[n]
[RReI(n)J trivial
[WReI(n)] trivial
WCom(n 1 ,v 1 ,t 1) -derivatives of S are contained

[S5 c 54]

[S6={}]

in the nominated invariant set
WCom(1 , 1 ,t 1)

	

-f 	- derivs of Inv(0) c Inv(t i)
so it'.age = t 1 and the rest is trivial

(---derivatives of S4)

by closure under -- for any Inv(k)
SATC0rn(n2 ,v2 ,t2)

(-f 	-derivatives of S4)

Any w has age = t 1

any possible w has age > t 1

10

Theorem 7.7 (Read Consistency)

J[RLock(n)] -vX.[---RRel(n)]XA
tReq(m)] -vY. {-RRel(n)]YA
tCom(n, v1)]-vZ.[-RRe1(n)]Z A .Com(n, v2)]ff

(for v1 =A v2)

Proof uses the tableau (with W standing for the D fixpoint):

116

S5 F- Req(n (H) S 6 F- -vY.4 (Del)
S 6 F- U2 (Thin) S 7 F- 112 	(Un) S 7 F- [-RRel(n 	(H) S8 F-

S 10 F- -RRel(u 	(H' S 10 F- R.Com (n.,v2

(A) S 8 F- R.Com (n,v1)]4) (H) S 9 F- VZ.(I) (Def)
S9 F- 113 (Thin)
S 10 F- 113 (Un)

S 10 E- A4

S0 F- -vW.c((Def)
so
 ' ii: (Thin)

S 1 F- A (Un)
(A)

S 1 F- .Lock(ni4) ir
S3F-vX.4 	u-i)

S3 F- U (Def)
S4 F- U (Thin)

(Un)

	

S4 I- {-RRel(u)] (H) 	
(A\ S5 F- Aik

S8 F- 112

S11F-U3 	'Li) 	 S12F-ff
The instantiation is simpler than the size might suggest; the initial set is

given, and the invariant we gave earlier, which is just an. expression of any state
where the locking rules hold, serves here (if it didn't, our locking algorithm
would be broken). The fixpoint sets to solve S 4 and S 7 narrow down the invari-
ant set to those where n holds a read lock, which makes sense, and the final
fixpoint is further narrowed to the states where the value held is that returned
by the first read. Formally, the solution sets are

S 	mit
S 1 	Inv(0)
S4 4 S7 Inv(0) An e readlocks
S 10 4 Inv(0) An e readlocks A it.val =

It is routine if tedious to check this, but the observation, to make is that the state
sets defined as solution sets are obvious, in retrospect. They just encode the
characteristics of all system states which we think should satisfy the property,
and then we check them. In this sense TLA is a very intuitive system to work
with.

S1HH
S2 b U0

(H)

S5 F- U

(A)
(H)

117

7.6.3 Models Tolerating Failure

Distributed file locking is intended to tolerate the failure of nodes. But if we
add the appropriate action simulating failure to the present model:

ashing Node

ACTIONS
Crash(n) 4 and reboot instantly

• readlocks' = readlocks - {n} A writelocks' = readlocks - {n}

• V n2 E Nodes : n =A n2 = UNCHANGED ages[n21
A UNCHANGED reads,writes,it,clock

then Theorem 7.6 no longer holds. Because the requests submitted by a client
are preserved while its locks are lost, other clients can acquire locks to sneak
requests in before the orphaned requests; the upshot is that write commits are
no longer time ordered.

The aim of refinement testing using auditioning should be to detect failures
resulting from such faulty refinement steps as admitting crashes without the
appropriate supporting corrections. Once the mistake is identified the technical
solution is to extend the implementation with an epoch counter. The idea is
that whenever a reconfiguration occurs (a node crashing is a reconfiguration) the
system generates a new, higher value for the epoch. The server rejects requests
which have an out of date view of the epoch. This is enough to reinstate
Theorem 7.6, and it can be proven using the same tableau and with an slightly
modified invariant. The complete epoch model and its invariant are given in
Appendix A.

Theorem 7.8 (Write Ordering)

IlUtfailure_tolerant F- D(WCom(mi , v 1 , t 1)Ji:i WCom(n2, v2 , t2)1 if) for t2 < t1

Proof S 1 4 FTInv(0), S4 4 FTInv(t), and by checking of containments and
calculation of successors 0
A crash proof version of Theorem 7.7 can be approached by using FTInv in the
same way as the original uses mv.

The failure-tolerant specification is significantly bigger than the failure-free
one. This leads us to an interesting test for auditioning. If we audition an
implementation known to fail (by crashing) against the failure-free model, we
should expect an oracle to observe failures when the implementation is made
to crash. In particular, we would expect.to see write-ordering failures.

7.7 Summary

In this chapter I have described two practical examples of the application of au-
ditioning. In both the systems which I specified there was a significant advance

118

in the understanding of the systems, to the extent in one case that the system
was re-implemented based on the structure defined in the model which I wrote.

I have shown that although writing large proofs about non-trivial systems
is not itself easy, it can be done when the developer understands the system
being studied and applies that knowledge to the construction of invariants for
proofs. It seems natural that this knowledge should be central to the checking
process, as our intensional mechanisms make it.

Although I have concentrated on the first (specification and proof) phase
of auditioning, I have made some initial and positive experiments in auditing
systems. In order to make it easier to proceed to this phase, and also to simplify
proof development, I next consider what mechanical help would be useful for
an auditioning system.

119

Chapter 8

Mechanisation

8.1 Summary

Chapter 7 suggests that the hardest part of developing a convincing proof can be
the exhaustive analysis of a complicated term for a set of states. The invention
of the term is unavoidably the work of the designer, and because she knows the
system she can bring domain knowledge to bear. Decideability results showing
that automatic derivation of terms is impossible support this approach.

By contrast, checking involved terms is best left to an automatic system.
Where I defined a large invariant set and verified various containments under
actions, the work would have been much easier with mechanical support.

In this chapter I look at where mechanical support for the auditioning pro-
cess would be helpful, and at how it can be provided.

. I use canonical tableaux with uninstantiated state sets as a structure in
which to look for proofs.

• I place labelled transition systems at the centre of a system for interactive
development and checking of proofs.

• I examine the relationship between the solution sets of states at tableau
nodes, and develop a notation for identifying the state sets which the user
must instantiate, and those which an automatic system can infer.

• I describe a language for denoting families of CCS terms and look at
how the automatic generalizing of these terms gives some help to users in
identifying state sets.

• I describe an implementation of the family language.

• I conclude with some general remarks summarising what I have discovered
about mechanisation.

120

8.2 What to Mechanise

As I have suggested, some parts of the auditioning methodology are more a-
menable to mechanisation than others. We need to consider whether mechanical
support is formally tractable, and also whether it is pragmatically useful. The
areas to consider in auditioning are

• Specification/model writing

• Proof development

• Oracle generation

• Implementation annotation

First of all, generating a checker should be a mechanical process. Given a
proof in tableau form, the transformation to an oracle (Chapter 6) and from an
oracle to a program is a large but routine processing task, loosely analogous to
transforming assembly language into machine code. Further, because ultimately
we need to provide input to an oracle generator in some formal language, we
may as well think about whether we should have machine support to develop
the input in the first place; that will save us some typing.

The first step towards a more explicit, mechanically influenced methodol-
ogy is to analyse the approach we have taken in applying tableau systems in
case. studies. We want to develop a partly mechanised methodology for proof
development by taking on the tasks which were most onerous in the manual
developments such as those illustrated in Chapter 7.

In Chapter 7 we have made much use of canonical tableau where the state
sets have not been instantiated. We will make this formal. Because of the
tree structure, when we generate indices for state sets they must be multi-
dimensional. Each state set variable is termed S, where i = n.in.p.... We
define a little bit of shorthand for deriving unique indices from parent state set
indices.

Definition 8.1 (State set indexes)

11 4n+1
Th.lTt + 1

n..m.p 4 n.m.p + 1

We translate from a .iM formula to an outline canonical tableau. It is an
outline because it has a number of uninstantiated variables which stand for sets
of states.

121

Definition 8.2 (Outline Canonical Tableaux)

T(4)) 4:T(SoI-A 4))
T(SHA tt) 4:

T(SF-A if) 4

T(S F-AZ) 4

T(S i I-A 4, A4)2) 4:

SiF- 1 tt

SiF-A if

SiF-A Z

SiF- (ki A (1)2
T(SF-A 4) 1)T(SIF-A (1)2)

T(51 HA (ki V 4)2) 	S HA (1)i V (1)2 	
Si = Si.o u s, 1 T(SoI-A 4)1 	 (S i. F-A 4)2)

T(StHA 	
j =={s' : s e S,a e K. s a s j

T (Si 1 A 4))
T(S i HA 	4)) • 4 	SHA 	

j =i,Vs e S. aE K, s' E S, ss' T(53 HA 4))
T(S i F-A TX.4))4 	SF-ArX.4) 	

— i,SCS
S 	4)[U/X] -

T(S i I-A U)4 	Si F-A U

The cr rule combines the Thin and Un rules of tableaux, which always occur
together in canonical tableax.

Theorem 8.3 The outline canonical tableau is instantiable for 4) (there are values
for each S i which make the tableau true) just in the case S 1= 4)
Proof By Bradfield's definition of canonical tableaux [Bra91]. The only differ-
ence is that we have restricted thinning to the unfolding points, but monotonic-
ity ensures this is sufficient 	 0

So the simple expression of the outline canonical tableau in effect does noth-
ing except to present the formula differently. In practice, however, its expression
serves to identify the crucial points of real-world proofs, which amounts (our
case studies of Chapter 7 provide copious evidence) to the definition of a fix-
point set. In a sense we go further along the road from computer proof than
Bradfield, and reject not only undecidable or high complexity tableau genera-
tion by machine, but any choice at all as to the shape of the tableau. We view
the tableau as a way of defining the structure and requirements for proving.
By using the tableau system just to define relationships between state sets we
can work in a more modular way. Once we have the canonical structure we can
concentrate on the transition system. The separation is aesthetically pleasing
because it increases modularity and helpful when we come to deal with oracles,
where we have already taken the view that they are separate; the input to the
oracle generation process must provide a transition system along with a tableau
proof which uses that transition system.

122

Consequently, our approach to mechanisation will be to place LTSs at the
core, and branch out by considering LTS interactions with proofs at one end,
and LTS implementations (particularly CCS) at the other.

8.3 Labelled Transition Systems

Contrast the human and mechanical implementation and analysis of an LTS.
The former requires a presentational bias to the representation, and the latter
demands an internally efficient and manipulable bias. A user's job is to play
with an LTS in order to instantiate a proof, while the machine's job is to
calculate functions of statesets to verify correctness or translate to a verity.
This suggests the view of an LTS of Figure 8.1

Figure 8.1 Interfaces to an LTS Implementation

tableau checker 	verity

machine

human

/\
presentation 	 play

What must be the contents of each of these interfaces ? Oracle generation is
the easiest to define, because the translation from proof is fixed and automatic.
Of course the representational question is still open, in that for any large or
infinite LTS a large or infinite oracle will be required. But this can be achieved
by building on the basis of a successful solution to the representation problem
for LTSs, and proofs, and we attack these next.

8.3.1 Checker

A tableau is formed of a series of rules:

S0 HC(4 1 , 2 )
S1H41 S2 Hc2

123

The states So and S mostly bear simple relationships to each other. For in-
stance, in the step

So l- c 1 Ac 2
S1Hc11 S2 H 2

if the goal is S o c E[cki A 42fl then the minimum tableau-valid goal stateset for
S is S, and so is the minimum for S2 . Clearly the minimum goal calculation
functions

f:S0 —S 1 andf:S0 - S2
are monotonic. Conversely, if we have instantiated S 1 and S2 as conclusions
(working bottom up) then there is a maximum value with which we can instan-
tiate S, to wit S1 U S2 . This maximum conclusion function is also monotonic.
For the connective V the goal sets are interdependent, and a smallest cannot
be calculated

S, F- 4 1 V)2
S 1 H 1 	S2 F-4 2 then SO c S1 U S2

In contrast, where S and S2 are known, we can calculate the maximum S, which
may be inferred. We can create a taxonomy of connective based on the ability
to infer best (smallest necessary goal or largest possible conclusion) statesets.
We represent the calculability by way of nodes with arrows, where the presence
of an incoming edge requires a stateset from the appropriate subtree, and the
presence of an outgoing edge represents the fact that a best stateset can be
calculated, given the required best inputs. Thus A gets the graph

(1)

/\

(2) 	 from

0

/\

S0H41A2 A
S 1 H 1 S2 H 2

(1) because given S 1 and S2 conclusions, then the best S o conclusion can be
calculated, and (2) because given an S o goal, the best S 1 and S2 goals can be
calculated (identity!).

To present the taxonomy precisely we need to know what functions we can
calculate. Because .i.M is decidable for a finite-state LTS, all best statesets are
calculable in that context. But if we allow an inifinite-state LTS, and define
only a small number of operations, we can separate tractable and intractable
rules. It's enough to take as our basic operations

-3

K:S — S' 	S'{s'HsES,aeK.s--s'}
U:(S 1 ,S2)—S S=S 1 US2
fl:(S 1 ,S2)—S S=S 1 flS2
id : S - S identity function

124

and optionally to add the backward transition rule

K:S — S' S'{s'HseS,aEK.s'---s}

We mark with * the graphs which depend on the K rule.
The complete set of taxonomic graphs is in Figure 8.2. Each diagram de-

scribes a condition by which some known state sets (represented by incoming
arrows) allow the calculation of other state sets (represented by outging arrows).
Knowledge flows up the way and goals flow down. From the figure we see that
for A, there are two cases:

• Knowledge of S 1 I- 	and S2 F- 42 allows us to calculate a maximum
S(= S 1 n S2) F- 4'i A ik2.

• A goal of S I- * 1 A 4'2 gives minimal subgoals of S F- 4'1 and S H 4'2.

125

Figure 8.2 Paths by which best stateset can be inferred

[A]

[VI

I
0

/N

I
0

/N

I
0

/\

I
0

/\

I
0

I

[(K)] 	*

[ff,tt,Z]

I
0

I

I
0

1

[(rX4, X)]
	

U~l

126

The notation can be used for an algorithm to identify unsolved nodes. By
marking solved nodes (goal or conclusion stateset defined) and propagating
marking according to taxonomic graphs (mark a node if all inputs are marked,
a bit like Petri nets) an interaction between checker and user can be set up. The
user is offered unsolved nodes to solve, and with newly solved nodes the checker
can mark extra nodes until all are marked. Sometimes the checker will need
to perform stateset comparisons to ensure that a solution is valid. A node can
receive statesets both as goals and as conclusions, and clearly the conclusion
must be as big as the goal. This points to the final function needed from the
LTS interface:

ç: (S i , S2) - bool set containment

A process of dialogue between user and checker proceeds through prompting
for statesets for unsolved nodes, and reporting of validity or not of the result.

The fixpoint rule requires some comment. The node aX4 and all nodes X
are identified. They share a single solution stateset which plays 3 roles

. a conclusion for all X nodes

. a conclusion in the tree above iX.4

a goal below oX.

The tableau/graph for -vX. [q] (b) X AZ illustrates the mechanisms. The mark-
ing is • for solved nodes and o for unsolved ones, and edges are defined by
exhaustively applying the rules of Figure 8.2. Whenever any one has its incom-
ing edges defined, we can add the outgoing edges to the graph. We therefore
have a graph which shows how far goals and instantiations can be percolated.
The initial graph for -vX.[u](b)X AZ is:

AZo

0

(b)Xo

\(b)Xo

and after a solution for X is defined:

127

-vX...AZ.

'vX.[a](b)X. 	 z.

/1
f[ci](b)X.

I
b)X. *

xt.
The node (*) has more than 1 incoming arrow, so it receives a goal (from [a] (b)X)
and a conclusion (from X). These must be checked for C.

We can denote a sufficient set of stateset definitions more succinctly by
defining formulae decorated by statesets

ck 	ZIttIffI1 A2I1 V2 	I(}I[vX.ckliiX.cIIS : cf

for example
S 1 : p.X.S2 : (S3 : [a]XV S4 : (b)P)

8.4 User Interaction

We turn our attention to the human interface to the LTS. Our focus is to propose
a system which allows the user to iteratively define and explore a state space.
It is important to support infinite-state systems, so we describe a method of
identifying families of states, and representing them as a single entity. The
system is particular to CCS, and we have made a prototype implementation
which demonstrated that the concept is plausible. The representation can easily
support all the verification functions required by the verification interface to
LTS, except for k, which is problematic for CCS.

8.4.1 Details

We call our system a CCS Explorer. The key is to identify whether particular
generalisations of process expressions are sufficient to capture an infinite set of
processes. For example

P=a.(PIP)behavesasP --- (PIP) ----- (PIPIP)

and can be captured as an infinite family using the product, giving

P = HP,PIP = 1-IP...

128

We reconstruct the CCS language to support the definition of families. Instead
of

Expr= nilla.PIP\LIP[f]IP+QIPIQIX
and

Proc = rec X = F

we write expressions as

Definition 8.4 (Explorer Expressions)

Expr' = nil I a.P I P\L I P[f] I L(P) I [J(pfl) 	X

This identifies some processes syntactically which under CCS are syntactical-
ly not equal (but bisimilar). The syntactic identification makes syntax-based
searches more powerful, and syntactic search is our main tool in the explorer.
Of course no syntactic identification can be complete for CCS, but we con-
sider that redefinition is of practical value in that it captures common cases.
Figure 8.3 shows the CCS rules for the more general terms.

Figure 8.3 Modified Explorer SOS-rules

E 	(generalised) 	 EJ --E)'
iEI E--F'

iEI 	(generalised) 	 E -- E
(i e 1, nj >0)

8.4.2 Implementation

I prototyped an explorer system as a table (a 2-3 tree) of expressions. The
prototype was efficient at matching expressions due to the use of a normalised
representation allowing the ordered storage of previously encountered expres-
sions (the candidates for matching).

Normalisation

• Product (LI) processes are dealt with specially. Sets of processes can be
represented by a single term.

< H(P'' 	tLIPm , Q) represens {(, QU) : a < in. i and b it j}

• redundant LIP 1 are replaced by P.

• flpTl. Q1 ,
T become fJpu+r , Qm

• terms are simplified similarly

129

Ordering

Leading constructor

Recursively on sub-expressions

Fixed elements of expression

• prefix name

• renaming name

• definition name

• process-counts for U

so that all Us are gathered together, and within that processes with the same
structures of subformulae are closest.

In use, a system is explored by defining a set of named processes, and nom-
inating an initial process expression. Processes can be added to the table, and
processes can be traced by a syntactic analysis of their expressions to yield
successors. Multiple tables can be used, with each representing a stateset of
the LTS denoted by the CCS specification. User control of process expansion
conforms to the principle of locality which allows local model-checking; that
is, the system can be analysed on an as-needs basis, with no requirement to
expand process definitions where the processes are not relevant to properties
under consideration.

8.4.3 Families, Matching and Generalisation

In basic CCS, infinite state processes are constructed by the regeneration of
processes alongside others by a combination of I and recursion. A counter is a
standard example:

C = up.(CIC) + down.nil

The translation to the fl-formalism gives an expression more obviously part of
a pattern

t UC 1 P —3UC2 is an example of UC UP —flCt±

The idea for U-formulae is that many infinite regenerations follow this pattern,
and that we can therefore unite them in a finite representation. Note again that
normalisation gives us a version of the expression which is much easier to work
with:

fl(P 1 ,U(Q 2 ,R 1) 1) is normalised to U(P 1 ,Q2 ,R 1)

P, Q and R are always in order under the normalised representation

130

	

Definition 8.5 (Matching) P 	Q if

	

P = Q 	 or

P = H(R, Sr.. .),Q = fl(R, S. .)

Matching is designed to identify candidates for generalisation. Where processes
match they can sometimes be replaced by a single process with a large range of
indices.

Definition 8.6 (Generalisation) We have already seen, discussing normalisation,
the form

fl(P', Q') = {fl(Pm, Qfl) a < in < I. and b <it < j}

to say that all members of the shorthand's set are members of the table's LTS
stateset. The successor function can easily be calculated across such a family,
taking into account that it yields families as successors.

Generalisation may be used in developing a set of states by expansion. As new
processes are evolved they can be matched in the table of existing processes. The
ordering scheme allows us to search precisely, because all H(P', Q'), whatever
the values of a, i, b and j, are stored together and can be found with a range
search on H(P, Q). If such a match is achieved when a stateset is being expanded,
a generalisation of new and old processes can be suggested (by the system to
the user) and verified (by the system if the user suggests it).

Using the prototype families implementation I have been able to show that
normalisations and generalisations are sufficient to allow the automatic iden-
tification of families in some small examples, and thus to provide candidate
invariant sets for solving fixpoints. The next stage would be to apply such a
system to larger examples, and refine it with the feedback from these. There
may be other structures of terms which better reflect invariant sets, or it may
turn out that the present versions of families work well; they have practical sup-
port in that they came out of the sort of terms which I used to define solution
sets in chapter 7.

8.5 Summary

In this chapter I have examined the auditioning methodology and identified
some areas in which mechanical support would be useful. I have described the
mechanisms which I have constructed for mechanical support in these areas.

First of all, I have been careful not to disturb the pattern of work that
anyone using the methodology by hand would adopt. The major target of the
work has been the development of proofs of properties, where I have respected
the separation of tableaux and LTSs by devising a system for using tableaux
to make abstract inferences about state sets independent of language and by

131

devising a system for exploring state sets within the particular CCS language
through the families mechanism.

The families mechanism and the explorer software which I developed for
it are therefore of general use, independent of tableaux systems, and positive
results with initial examples suggest it deserves some further work to test more
practical examples of how good it is at generating solution sets for invariants.

The system for defining goal and result percolation over tableaux is comple-
mentary to the explorer. An implementation could be used with an explorer for
any language to define constraints on a set of statesets being sought/explored.

Of more theoretical or architectural interest is the identification of the LTS
(or in general, the model) as the interface between tableaux (or in general, the
proof system) and CCS (or in general, the language). Isolating components
to mechanise has necessitated my identifying a technique for interfacing these
components; each makes some kind of assertions about the model, and it may be
fruitful to develop a workbench of tools where the model is the backbone; only
the model explorer needs to work in the model rather than to make assertions
of it.

132

Chapter 9

Conclusions and Further Work

9.1 Summary

In this chapter I conclude the thesis by assessing the work in relation to what
I set out to do, and by examining what further work is suggested by it.

My aim in the thesis was to present a development methodology which is
intermediate between informal testing and pure formal refinement. Auditioning
as I have set it out appears to fit this niche, and I deal with some details of how
successful it is in Section 9.2.

I use Section 9.3 to visit a selection of interesting topics which have arisen
from the thesis, and to consider what further work could be done with them

9.2 Conclusions of the Thesis

The major concern of the thesis has been the design and analysis of a framework
for auditioning. In relation to the elements required for auditioning outlined in
Chapter 1, I have shown how to

Specify a system using CCS, or any other language which generates an LTS.

Prove properties of the system using the modal-mu calculus.

I have presented a method for taking a proof (expressed as a verity) and
translating it into an oracle for language acceptance. This makes the final link
in the chain between specification and implementation. More deeply, I have
derived some positive results about the power of oracles which suggests that
they are good for the job; oracles with greater information are stronger (Theo-
rem 6.35) and oracles can check for erroneous non-termination (Theorem 6.45).
The latter result shows my oracles to be strictly more powerful than those gen-
erated from intensional mechanisms; defining acceptable behaviours based on
proofs of properties can practically be stronger than defining behaviours based
on properties alone, as I argued at the outset that it could be.

133

Finally I have shown through case studies that the development of specifi-
cations and proofs for practical systems is viable, though some further work is
necessary to have a system which is likely to be taken up industrially.

9.3 Further Work

9.3.1 Practical Application of Auditioning

The obvious next step for auditioning would be to develop an automatic or-
acle generator. Chapter 6 represents a very precise recipe for taking a verity
(straightforward to construct from a tM-proof) and generating an oracle pro-
gram/process which acts as a trace checker.

A stage beyond this would be to make the oracle generator part of an inte-
grated development environment, feeding the output of a proof-tableau editor
into the oracle generation program.

An integrated environment in which transition systems and proofs can be
iteratively developed using an LTS-Explorer (Chapter 8), attached to an oracle
generator and the oracle analogue of a debugger would constitute an attractive
system for industrial use. This package of work is really a software engineering
task rather than a computer science research task, although from a research
point of view it would clarify whether things like the size of OTSs will really
be a problem. Of course it is typical of research work to describe a theoretical
framework and consider the job done. Developing the theory is the legitimate
task of research work, but writing off the rest as trivial is a mistake which can
generally be relied upon to permanently frustrate the adoption of the ideas.

Again, practice can be of benefit to theory if the use of a more sophisticated
system allows larger case studies to be carried out.

9.3.2 OTS Size Problems

The example proofs I have presented are simple, and the OTSs derived from
them are therefore small. But as auditioning is applied to larger examples the
size of the OTS will become more troublesome. I can suggest that practitioners
are as spare as possible about the properties they really want to check, and the
models they need to check them on, but this will not do in general, and there
will doubtless be much optimisation of oracle implementations to be done.

One practical observation is that a single oracle implementing the conjunc-
tion of interesting properties will probably be more efficient than several sepa-
rate oracles. An environment should automatically guide practitioners to con-
join proofs.

134

9.3.3 Oracle Simplification

A more theoretical attack on OTS size problems is to ask whether there are
languages which are weaker than languages of oracles but still stronger than
intensional languages and still practically useful. It may be that any extensional
system, however weak, makes all the difference that is needed.

One might start thus; first of all, let a simplification of an oracle be a function
generating a second oracle. A simplification is safe if it does not decrease the
language. A simplification must be safe in order not to falsely indicate failure.

Definition 9.1 (Safety) Set 02 = f(0 1) where f is the simplification. f is safe for
O l iff

L(0 1) c L(02)

We can set a very lax bound at the other end of the language spectrum by
defining a maximal language; it is just the set of all traces accepted in any
oracle for the formula in question

Definition 9.2 (Language of Formula)

L(0) Uu01 	(0i) = 4o}

Extensionality tells us that any property-only oracle must accept any trace in
L(0). More pertinently, it points out the range in which useful refinements
exist (Figure 9.1).

Figure 9.1 Containment of Oracle Languages

135

9.3.3.1 Languages of Formulae

The language of a model allows us to explain the weakness of using oracles
based only on formulae. If a trace is in the language of a model which satisfies a
formula then it must be in a notional language of the formula. And any trace in
that language must be accepted by a safe oracle which only deals with formulae.
Thus

{t: 3M, s = 4, . t E L(M, s)} c L(4)

and the example of Figure 6.4 gives us

a{}a{}a{'P} E L(s 1 , [i.X.[ci]X V P)

9.3.3.2 Families in Simplification

We should distinguish, when we consider the size of transition systems (in our
case OTSs), between the number of states and transitions, and the size of the
representation. If we start to use more complex representation techniques, such
as ones based on families (i.e. see Section 8.4.1) or BDDs [Bry92], some large
or infinite systems yield very compact representations. In the following case a
uniform descending chain is a good simplification for a complicated collection
of states satisfying a termination property. The property

iX.[a,1ff V [a,lX

states that chains of (a-s or b-s) eventually expire. The LTS

b
I -/.

can be simplified to

< > b
< > b
< > b

136

and the simplification can be represented as the family {s11 -ZS, i > O} Many
other simplifications yielding large savings in representation size may exist.

9.3.4 Auditioning Based Architectures

The combination of monitors based on oracles, and the development of sys-
tems through a series of more complex instantiations, suggests an alternative
approach to dealing with large systems. The genesis of a complex system can
usually be traced to a simple system into which has been added the logic nec-
essary to handle a multitude of exceptional conditions. Eventually, a large
majority of the lines of code in a large piece of software can be there solely to
cope with something which happens very rarely, or is a logical possibility which
because of the particular environment in which the system runs, will never in
fact happen.

The auditioning based approach to the problem is to implement a correct
system as a simple core system without exception handling, plus an external
monitor to handle exception processing. The core system needs only a small
amount of extra processing to expose a revert to safe state interface to a mon-
itor; now exception processing can be handled by a proof that the exceptional
condition never arises, together with a monitor process to run when the mon-
itor detects failure of the proof. The monitor interprets failure diagnosis by
the oracle as the cue to instigate remedial operations on the running system.
Figure 9.2 illustrates this.

Figure 9.2 Correcting an implementation with auditioning

ure 	 remedial interface

or

I 	failure 	I 	 I
I 	free 	trace 	crashing

model 	 implementation

137

9.3.5 Further Theoretical Questions

The verity concept which we use to represent proofs (Definition 5.16) may
turn out to be of more general theoretical applicability. Verities are closely
related to proofs and to game strategies, and in their favour they are structurally
simpler than the former and more concrete than the latter. It ought to be a
reasonably small task to more precisely relate verities to the other two. Are
they equivalence classes of proofs ? Do they represent answers to exactly the
sets of decisions a player may be asked to make when playing a game according
to a strategy ? Are there succinct representations for verities, perhaps in the
spirit of BDDs, which help with Oracle simplification problems ?

9.3.5.1 Complexity of model-checking

Verities may give an alternative account of why model-checking is in NP fl
co-NP. A standard account of NP problems is in terms of polynomially-verifiable
witnesses [Pap94] for solutions to problem instances. Since a verity is just a
subgraph of a game-graph it can easily stand as a witness, and the problem
becomes merely one of verity-checking; the question then is whether there is a
natural algorithm directly in graph and verity terms.

9.3.5.2 Model and Implementation Languages

It would be interesting to relate our language equivalence to the CCS strong
bisimulation relation. Is bisimilarity of systems strong enough to require equal-
ity of languages, even given the addition of declarations? One might proceed
via Stirling's modal characterisation theorem [Sti97].

9.4 Conclusion

I have presented the concept of auditioning, which attempts to bridge the gap
between proof and testing of systems by testing against the more detailed arte-
facts of proof of property rather than just property. Auditioning has much
practical potential in serious distributed systems development, and its develop-
ment and analysis gives some insights into the structure of software systems as
refinement hierarchies of models at various levels of abstraction.

138

Appendix A

Fault-Tolerant Epoch Model

139

I 	 Epochal Clust

CONSTANTS
Nodes E SUBSET Nodenames

Writes = [node : Nodes, val : Nat, age : Nat, epoch : Nat]

Reads = [node : Nodes, epoch : Nat]

VARIABLES
it E [val : Nat, age : Nat]
writelocks E SUBSET Nodes
readlocks E SUBSET Nodes

reads E [Reads - Nat]
writes E [Writes -p Nat]
ages E [Nodes -f Nat]
clock E Nat
epoch E Nat

myepoch E [Nodes -4 Nat]
srvepoch E Nat

PREDICATES

canonical file stored at the server
currently granted
currently granted
count of requests waiting at the server
count of requests waiting at the server
of its latest write lock
nowness

perfect (lock-manager) value
each node's view
view at the server

Init = no locks,no requests
A reads = [n E Nodes -4 01 A writes = [n e Writes '-4 01
A readlocks = {} A writelocks = {}
A V n E Nodes : myepoch[n] < epoch 	last each heard
A clock > it age value is not back from the future

Figure A.1: State to Model the Service

140

Actions

ACTIONS
RReq(n) =A submit to server for later doing

A n E readlocks V n E writelocks
A reads' = [reads EXCEPT ! [node-ri,epochi-myepoch[n]] = @+1]
A srvepoch' = MAX(srvepoch,myepoch[n])

A UNCHANGED writes,readlocks,writelocks,ages,clock,it,
epoch,myepoch

WReq(n,v) =

A n E writelocks
A writes' = [writes EXCEPT

[nodei-n , age'-9ages [n] ,valf-v ,epochi-myepoch[n]] = @+1]

A srvepoch' = MAX(srvepoch,myepoch[n])

A UNCHANGED reads,readlocks,writelocks,ages,clock,it,
epoch ,myepoch

RCom(n,v,a,e) 	commit a read - generate value and age
A reads[nodeF-'n,epochi--e] > 0

A reads' = [reads EXCEPT ! [nodeF-n,epochI-e] = @-11
A e = srvepoch
A v = it.val A a = it.age
A UNCHANGED writes,readlocks,writelocks,ages,clock,it,

epoch, myepoch, srvepoch

WCom(n,v,a,e) =A commit a write
A 	 > 0
A writes' = [writes EXCEPT

= -1]
A e = srvepoch
A it' = [va1i-v,agei--a]

A UNCHANGED reads, readlocks , writelocks ,ages, clock,
epoch, myepoch, srvepoch

Is it bad if things can just magically see this? It shouldn't be,it's just a complication. Should
also do it for the server,though it rather more clearly has no effect there.

Notice 	see that the epoch has changed
A 3 n E Nodes myepoch' = [myepoch EXCEPT ! [n] = epoch]
A UNCHANGED reads,readlocks,writes,writelocks,ages,clock,

epoch, srvepoch

Figure A.2: Failure-tolerant request/response actions

141

king and Unlocking 	 I

RLock(n) = lock for reading
A writelocks = {} A readlocks' = readlocks U {n}
A myepoch' = [myepoch EXCEPT ![n]i—epoch]
A UNCHANGED writelocks,reads,writes,ages,clock,it,

epoch, srvepoch

WLock(n) 	write lock
A writelocks = {} A writelocks' = {n}

A readlocks = {}
A clock' > clock A ages' = [ages EXCEPT ! En] = clock]

A myepoch' = [myepoch EXCEPT ![n]-4epoch]
A UNCHANGED readlocks,reads,writes,it,epoch,srvepoch

RRe1 (n) =A release is possible whenever not reading
A n E readlocks
A V r E Reads : r.node = n = reads[r] = 0
A readlocks' = readlocks - {n}
A UNCHANGED writelocks,reads,writes,it,ages,clock

WRel(n)
A n E writelocks
A V r E Reads : r.node = n = reads[r] = 0
A V w E Writes : w.node = n = writes[w] = 0
A writelocks' = writelocks - {n}
A UNCHANGED readlocks,reads,writes,it,ages,clock

Figure A.3: Lock-related actions of failure-tolerating system

142

ailure-related Action

ACTIONS
RFail(n,v,a,e) A fail to read

A reads[nodei—n,epochi--e] > 0
A reads' = [reads EXCEPT 1 [nodei—n,epochi—e] = @-11
A e < srvepoch
A UNCHANGED writes,readlocks,writelocks,ages,clock,it,

epoch ,myepoch, srvepoch

WFail(n,v,a,e) =A fail to write
A writes[nodei—n,agei—a,va1i--v,epochi--e] > 0
A writes' = [writes EXCEPT

= @-1]
A e < srvepoch
A UNCHANGED reads,readlocks,writelocks,ages,clock,it,

epoch, myepoch, srvepoch

Crash(n) = and reboot instantly,but who care about that ?
A readlocks' = readlocks - {n} A writelocks' = writelocks
A epoch' > epoch
A V n2 E Nodes : n n2 =
UNCHANGED ages En2] ,myepoch[n2]

A UNCHANGED reads ,writes ,it, clock, srvepoch

Figure A.4: Unusual case actions of failure-tolerating system

143

FTIn

PREDICATES
DkLocks =

A writelocks = {} V 3 n E Nodes : writelocks = {n}
A readlocks = {} V writelocks = {}

OkWrites 	V w E Writes : writes[w] > 0 =
A 1 current locker has epoch to himself

,and those from previous epochs are older
V n E writelocks

V w.epoch = myepoch[n] A w.age = ages[n] A w.node = n
V w.epoch < myepoch[n] A w.age < ages[n]

A 2 no lock means nothing at this epoch
writelocks = {} => w.epoch < epoch

A 3 only one [node, epoch, age] set per epoch
V w' E Writes : writes[w'] > 0 A w' .epoch = w.epoch

w' .node = w.node A w' .age = w.age

A 4 others ordered by epoch
V w' E Writes : writes[w'] > 0 A w'.epoch < w.epoch =

w'.age < w.age
A 5 w.age < clock
A 6 w.epoch < srvepoch < epoch
A 7 w.age > it.age V w.epoch < srvepoch can't doa bad write

NodeView 	V n E Nodes : myepoch[n] < epoch

Clocks(k)
A clock > it.age > k
A V n e writelocks : it.age < ages[n] < clock

FTInv(k) 	Clocks(k) A NodeView A OkWrites A OkLocks

Figure A.5: Failure-tolerant Invariant

144

Appendix B

Glossary of Terms and Symbols

Verity, (V = (Vv, E))

OTS, (0)

Tableau

CCS algebraic connectives

(4.2)

Successively, the CCS (and general) transition system notation for state tran-
sition (4.2) and the OTS transition relationship (6.25).

, (4.3

Weak bisimulation "transition"

V,A, tt, if, [Xi, (), p.X.ijvX.4,(4.4.1)

Logical forms of the modal-mu calculus

lkkM4 . 4 . 2)

Model-based interpretation of modal-mu calculus formulae

H,F-,(4.5.1)

Provability relationship of statsets and formulae via tableaux. L is a set of
definitions which form context for provability.

=,(4.4.2)

Truth relationship for tableaux.

145

Subformula relationship, of modal-mu calculus formulae

Successively the game transition relationship (5.2) and the verity transition
relationship (5.16)

A single open modal-mu calculus formula

Ii

A set of open modal-mu formulae

A single closed modal-mu calculus formula

A set of closed modal-mu formulae

L1,(6.16)

A representative set of prop-atomic formulae for a general modal-mu formula.

I 	I

A formula, its representative set and all intermediates

&(6.18)

The derivative set of a set of formulae.

AV

The derivative of a verity.

we
The derivative of an OTS.

146

t(6.19)

The restriction of a set of verity/OTS configurations to those consistent with a
set of formula declarations.

147

Bibliography

[ABG96] 	Patrizia Asirelli, Antonia Bertolino, and Stefania Gnesi. Auto-
mated testing of safety requirements with the support of a deduc-
tive database. In Sandro Bologna and Giacomo Bucci, editors,
Proceedings 3rd. mt. Conf. on Achieving Quality in Software,
pages 145-157. Chapman and Hall, 1996.

[Bat95] 	P. C. Bates. Debugging heterogeneous distributed systems using
event-based models of behaviour. ACM TOCS, 13(1):1-32, 1995.

[BDZ89] 	G. V. Bochmann, R. Dsoulli, and J. R. Zhao. Trace analysis
for conformance and arbitration testing. IEEE Transactions on
Software Engineering, 15(11): 1347-1355, November 1989.

[Bei90] 	B. Beizer. Software Testing Techniques. Van Nostrand Reinhold,
2 edition, 1990. New York.

[BH95] 	Jonathan Bowen and Mike Hinchey. Ten commandments of formal
methods. IEEE Computer, 28(4):56-63, April 1995.

[B1M95] 	Bard Bloom, Sorin Istrail, and Albert R. Meyer. Bisimulation
can't be traced. Journal of the ACM, 42(1):232-268, January
1995.

[Bow95] 	Jonathan P. Bowen. Towards Verified Systems. Elsevier Real-
Time Safety-Critical Systems series, 1995.

[Bra9l] 	Julian Charles Bradfield. Verifying Temporal Properties of Sys-
tems with Applications to Petri Nets. PhD thesis, University of
Edinburgh, Department of Computer Science, 1991.

[Bra96] 	Julian C. Bradfield. On the expressivity of the modal mu-calculus.
In 13th Annual Symposium on Theoretical Aspects of Comput-
er Science, volume 1046 of Lecture Notes in Computer Science,
pages 479-490, Grenoble, France, 22-24 February 1996. Springer.

[Bru94] 	Glenn Bruns. Applying process refinement to a safety-relevant sys-
tem. Technical Report ECS-LFCS-94-287, Laboratory for Founda-
tions of Computer Science, University of Edinburgh, March 1994.

148

[Bry92] 	Randal E. Bryant. Symbolic Boolean manipulation with ordered
binary-decision diagrams. ACM Computing Surveys, 24(3):293-
318, September 1992.

[BS92] 	Julian Bradfield and Cohn Stirling. Local model checking for
infinite state spaces. Theoretical Computer Science, 96(1):157-
174, 6 April 1992.

[CD95] 	Richard H. Carver and Ronnie Durham. Integrating formal meth-
ods and testing for concurrent programs. In (Proceedings), pages
25-33, NIST, Gaithersburg, Maryland, 1995. 10th Annual Con-
ference on Computer Assurance.

[CG95] 	Marsha Chechik and John Gannon. Automatic analysis of consis-
tency between implementations and requirements: A case study.
In (Proceedings), pages 123-131, NIST, Gaithersburg, Maryland,
1995. 10th Annual Conference on Computer Assurance.

[C1W97] 	Daniele Compare, Paola Inverardi, and Alexander L. Wolf. Un-
covering architectural mismatch in dynamic behaviour. Technical
Report CU-CS-828-97, Dept. of Computer Science, University of
Colorado, Boulder, 1997.

[Dam94] 	Mads Dam. CTL* and ECTL* as fragments of the modal p-
calculus. Theoretical Computer Science, 126(1):77-96, 11 April
1994.

[Dij76] 	E. W. Dijkstra. A Discipline of Programming. Prentice-Hall,
1976.

[DKMMS94] L. K. Dillon, G. Kutty, L. E. Moser, and P. M. Melliar-Smith.
A graphical interval logic for specifying concurrent systems.
ACM Transactions on Software Engineering and Methodol-
ogy, 3(2):131-165, April 1994.

[DR96] 	L. K. Dillon and Y. S. Ramakrishna. Generating oracles from
your favourite temporal logic specifications. In Symposium on
Foundations of Software Engineering, volume 4, pages 106-117.
ACM SIGSOFT, October 1996.

[DV90] 	R. DeNicola and F.W. Vaandrager. Action versus state based
logics for transition systems. In Proceedings Ecole de Printemps
on Semantics of Concurrency, number 469 in LNCS, pages 407-
419, 1990.

149

[GBD96] 	Russell J. Green, Alasdair C. Baird, and J. Christopher Davies.
Designing a fast on-line backup system for a log-structured file
system. Digital Technical Journal, 8(3):33-46, October 1996.

[HM85] 	Matthew Hennessy and Robin Milner. Algebraic laws for nonde-
terminism and concurrency. Journal of the ACM, 32(1):137-161,
January 1985.

[JLSU87] 	J. Joyce, G. Lomow, K. Slind, and B. Unger. Monitoring dis-
tributed systems. tocs, 5(2):121-150, May 1987.

[Koz83} 	Dexter Kozen. Results on the propositional ti-calculus. Theoret-
ical Computer Science, 27(3) :333-354, December 1983.

[KST94] 	Stefan Kahrs, Donald Sannella, and Andrzej Tarlecki. The Def-
inition of Extended ML. Technical Report ECS-LFCS-94-300,
Laboratory for Foundations of Computer Science, University of
Edinburgh, August 1994.

[Lam9l] 	Leslie Lamport. The temporal logic of actions (src report 79).
Technical report, DEC Systems Research Centre, about 1991.

[Lar90] 	K. Larsen. Proof systems for satisfiability in hennessy-milner logic
with recursion. Theoretical Computer Science, 72:265:288, 1990.

[MC84] 	L. Morris and C.B.Jones. An early program proof by alan turing
(checking a large routine, paper for the edsac inaugural conference,
24 june 1949). Ann. Hist. Computing, 6(2):129-143, 1984.

[Mi189] 	Robin Milner. Communication and Concurrency. Prentice-Hall,
1989.

[0AR92] 	T. 0. O'Malley, S. L. Aha, and D. J. Richardson. Specification-
based test oracles for reactive systems. In International Con-
ference on Software Engineering, volume 14, pages 105-118,
Melbourne, Aus, May 1992.

[ORD96] 	T. 0. O'Malley, D. J. Richardson, and L. K. Dillon. Efficient
specification-based oracles for critical systems. In Richard Taylor
Walter Scacchi, editor, California Systems Symposium, pages
50-59, Los Angeles, USA, April 1996.

[Pap94] 	Christos H. Papadimitriou. 	Computational Complexity.
Addison-Wesley, 1994.

[Pet62] 	C. A. Petri. Fundamentals of a theory of asynchronous information
flow. Proc. IFIP Congress, N-H, 1962.

150

[Phi90] 	M. Phillips. Cics/esa 3.1 experiences. In J.E. Nicholls, editor, Z
User Workshop, Oxford, 1989, Workshops in Computing, pages
179-185. Springer-Verlag, 1990.

[P1081] 	Gordon D. Plotkin. A structural approach to operational seman-
tics. Technical Report 19, Aarhus University, 1981.

[Pot90] 	Michael D. Potter. Sets: An Introduction. Oxford University
Press, 1990.

[PW92] 	D.E. Perry and A.L. Wolf. Foundations for the study of software
architecture. SIGSOFT Software Engineering Notes, 17(4):40-
52, October 1992.

[R092] 	Mendel Rosenblum and John K. Ousterhout. The design and im-
plementation of a log-structured file system. ACM Transactions
on Computer Systems, 10(1):26-52, February 1992.

[SG96] 	M. Shaw and D. Garlan. Software Architecture: Perspectives
on an Emerging Discipline. Prentice Hall, 1996.

[Sti87] 	Cohn Stirling. Modal logics for communicating systems. Theo-
retical Computer Science, 49(2-3):311-347, July 1987.

[Sti92] 	Stirling. Modal and temporal logics. In Handbook of Logic in
Computer Science, Volumes 1 (Background: Mathematical
Structures) and 2 (Background: Computational Structures),
Abramsky & Gabbay & Maibaum (Eds.), volume 2. Clarendon,
1992.

[Sti95] 	C. Stirling. Local model checking games. In Insup Lee and S-
cott A. Smolka, editors, Proceedings of the 6th International
Conference on Concurrency Theory (CONCUR '95), volume
962 of LNCS, pages 1-11, Berlin, GER, 1995. Springer.

[Sti97] 	Cohn Stirling. Bisimulation, model checking and other games.
Notes for Mathfit Workshop Meeting on Games and Computation,
June 1997. University of Edinburgh.

[SW91] 	Cohn Stirling and David Walker. Local model checking in the
modal mu-calculus. Theoretical Computer Science, 89(1):161-
177, 21 October 1991.

[Tar55] 	A. Tarski. A lattice-theoretical fixpoint theorem and its applica-
tions. Pacific Journal of Mathematics, 5:285-309, 1955.

151

[WBW96] Christopher Whitaker, J. Stuart Bayley, and Rod D. W. Wid-
dowson. Design of the server for the spiralog filesystem. Digital
Technical Journal, 8(3):15-31, October 1996.

[Wey82] 	E.J. Weyuker. On testing non-testable programs. The Computer
Journal, 25(4):460-465, 1982.

[Win] 	Geoff Winn. A filesystem specification. DEC Internal Document.

152

