108 research outputs found

    On the expressive power of CNF formulas of bounded tree- and clique-width

    Get PDF
    AbstractWe study representations of polynomials over a field K from the point of view of their expressive power. Three important examples for the paper are polynomials arising as permanents of bounded tree-width matrices, polynomials given via arithmetic formulas, and families of so called CNF polynomials. The latter arise in a canonical way from families of Boolean formulas in conjunctive normal form. To each such CNF formula there is a canonically attached incidence graph. Of particular interest to us are CNF polynomials arising from formulas with an incidence graph of bounded tree- or clique-width.We show that the class of polynomials arising from families of polynomial size CNF formulas of bounded tree-width is the same as those represented by polynomial size arithmetic formulas, or permanents of bounded tree-width matrices of polynomial size. Then, applying arguments from communication complexity we show that general permanent polynomials cannot be expressed by CNF polynomials of bounded tree-width. We give a similar result in the case where the clique-width of the incidence graph is bounded, but for this we need to rely on the widely believed complexity theoretic assumption #P⊈FP/poly

    On space efficiency of algorithms working on structural decompositions of graphs

    Get PDF
    Dynamic programming on path and tree decompositions of graphs is a technique that is ubiquitous in the field of parameterized and exponential-time algorithms. However, one of its drawbacks is that the space usage is exponential in the decomposition's width. Following the work of Allender et al. [Theory of Computing, '14], we investigate whether this space complexity explosion is unavoidable. Using the idea of reparameterization of Cai and Juedes [J. Comput. Syst. Sci., '03], we prove that the question is closely related to a conjecture that the Longest Common Subsequence problem parameterized by the number of input strings does not admit an algorithm that simultaneously uses XP time and FPT space. Moreover, we complete the complexity landscape sketched for pathwidth and treewidth by Allender et al. by considering the parameter tree-depth. We prove that computations on tree-depth decompositions correspond to a model of non-deterministic machines that work in polynomial time and logarithmic space, with access to an auxiliary stack of maximum height equal to the decomposition's depth. Together with the results of Allender et al., this describes a hierarchy of complexity classes for polynomial-time non-deterministic machines with different restrictions on the access to working space, which mirrors the classic relations between treewidth, pathwidth, and tree-depth.Comment: An extended abstract appeared in the proceedings of STACS'16. The new version is augmented with a space-efficient algorithm for Dominating Set using the Chinese remainder theore

    Lower Bounds on the Complexity of MSO1 Model-Checking

    Full text link
    One of the most important algorithmic meta-theorems is a famous result by Courcelle, which states that any graph problem definable in monadic second-order logic with edge-set quantifications (i.e., MSO2 model-checking) is decidable in linear time on any class of graphs of bounded tree-width. Recently, Kreutzer and Tazari proved a corresponding complexity lower-bound - that MSO2 model-checking is not even in XP wrt. the formula size as parameter for graph classes that are subgraph-closed and whose tree-width is poly-logarithmically unbounded. Of course, this is not an unconditional result but holds modulo a certain complexity-theoretic assumption, namely, the Exponential Time Hypothesis (ETH). In this paper we present a closely related result. We show that even MSO1 model-checking with a fixed set of vertex labels, but without edge-set quantifications, is not in XP wrt. the formula size as parameter for graph classes which are subgraph-closed and whose tree-width is poly-logarithmically unbounded unless the non-uniform ETH fails. In comparison to Kreutzer and Tazari; (1)(1) we use a stronger prerequisite, namely non-uniform instead of uniform ETH, to avoid the effectiveness assumption and the construction of certain obstructions used in their proofs; and (2)(2) we assume a different set of problems to be efficiently decidable, namely MSO1-definable properties on vertex labeled graphs instead of MSO2-definable properties on unlabeled graphs. Our result has an interesting consequence in the realm of digraph width measures: Strengthening the recent result, we show that no subdigraph-monotone measure can be "algorithmically useful", unless it is within a poly-logarithmic factor of undirected tree-width

    Weighted Tiling Systems for Graphs: Evaluation Complexity

    Get PDF
    We consider weighted tiling systems to represent functions from graphs to a commutative semiring such as the Natural semiring or the Tropical semiring. The system labels the nodes of a graph by its states, and checks if the neighbourhood of every node belongs to a set of permissible tiles, and assigns a weight accordingly. The weight of a labeling is the semiring-product of the weights assigned to the nodes, and the weight of the graph is the semiring-sum of the weights of labelings. We show that we can model interesting algorithmic questions using this formalism - like computing the clique number of a graph or computing the permanent of a matrix. The evaluation problem is, given a weighted tiling system and a graph, to compute the weight of the graph. We study the complexity of the evaluation problem and give tight upper and lower bounds for several commutative semirings. Further we provide an efficient evaluation algorithm if the input graph is of bounded tree-width

    Linear Datalog and Bounded Path Duality of Relational Structures

    Full text link
    In this paper we systematically investigate the connections between logics with a finite number of variables, structures of bounded pathwidth, and linear Datalog Programs. We prove that, in the context of Constraint Satisfaction Problems, all these concepts correspond to different mathematical embodiments of a unique robust notion that we call bounded path duality. We also study the computational complexity implications of the notion of bounded path duality. We show that every constraint satisfaction problem \csp(\best) with bounded path duality is solvable in NL and that this notion explains in a uniform way all families of CSPs known to be in NL. Finally, we use the results developed in the paper to identify new problems in NL

    On the Power and Limitations of Branch and Cut

    Get PDF
    The Stabbing Planes proof system [Paul Beame et al., 2018] was introduced to model the reasoning carried out in practical mixed integer programming solvers. As a proof system, it is powerful enough to simulate Cutting Planes and to refute the Tseitin formulas - certain unsatisfiable systems of linear equations od 2 - which are canonical hard examples for many algebraic proof systems. In a recent (and surprising) result, Dadush and Tiwari [Daniel Dadush and Samarth Tiwari, 2020] showed that these short refutations of the Tseitin formulas could be translated into quasi-polynomial size and depth Cutting Planes proofs, refuting a long-standing conjecture. This translation raises several interesting questions. First, whether all Stabbing Planes proofs can be efficiently simulated by Cutting Planes. This would allow for the substantial analysis done on the Cutting Planes system to be lifted to practical mixed integer programming solvers. Second, whether the quasi-polynomial depth of these proofs is inherent to Cutting Planes. In this paper we make progress towards answering both of these questions. First, we show that any Stabbing Planes proof with bounded coefficients (SP*) can be translated into Cutting Planes. As a consequence of the known lower bounds for Cutting Planes, this establishes the first exponential lower bounds on SP*. Using this translation, we extend the result of Dadush and Tiwari to show that Cutting Planes has short refutations of any unsatisfiable system of linear equations over a finite field. Like the Cutting Planes proofs of Dadush and Tiwari, our refutations also incur a quasi-polynomial blow-up in depth, and we conjecture that this is inherent. As a step towards this conjecture, we develop a new geometric technique for proving lower bounds on the depth of Cutting Planes proofs. This allows us to establish the first lower bounds on the depth of Semantic Cutting Planes proofs of the Tseitin formulas

    Enumeration Complexity of Logical Query Problems with Second-order Variables

    Get PDF
    We consider query problems defined by first order formulas of the form F(x,T) with free first order and second order variables and study the data complexity of enumerating results of such queries. By considering the number of alternations in the quantifier prefixes of formulas, we show that such query problems either admit a constant delay or a polynomial delay enumeration algorithm or are hard to enumerate. We also exhibit syntactically defined fragments inside the hard cases that still admit good enumeration algorithms and discuss the case of some restricted classes of database structures as inputs

    Courcelle's Theorem - A Game-Theoretic Approach

    Get PDF
    Courcelle's Theorem states that every problem definable in Monadic Second-Order logic can be solved in linear time on structures of bounded treewidth, for example, by constructing a tree automaton that recognizes or rejects a tree decomposition of the structure. Existing, optimized software like the MONA tool can be used to build the corresponding tree automata, which for bounded treewidth are of constant size. Unfortunately, the constants involved can become extremely large - every quantifier alternation requires a power set construction for the automaton. Here, the required space can become a problem in practical applications. In this paper, we present a novel, direct approach based on model checking games, which avoids the expensive power set construction. Experiments with an implementation are promising, and we can solve problems on graphs where the automata-theoretic approach fails in practice.Comment: submitte
    • …
    corecore