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Abstract
We consider weighted tiling systems to represent functions from graphs to a commutative semiring
such as the Natural semiring or the Tropical semiring. The system labels the nodes of a graph by
its states, and checks if the neighbourhood of every node belongs to a set of permissible tiles, and
assigns a weight accordingly. The weight of a labeling is the semiring-product of the weights assigned
to the nodes, and the weight of the graph is the semiring-sum of the weights of labelings. We show
that we can model interesting algorithmic questions using this formalism - like computing the clique
number of a graph or computing the permanent of a matrix. The evaluation problem is, given a
weighted tiling system and a graph, to compute the weight of the graph. We study the complexity
of the evaluation problem and give tight upper and lower bounds for several commutative semirings.
Further we provide an efficient evaluation algorithm if the input graph is of bounded tree-width.
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1 Introduction

Weighted automata have been classically studied over words, as they naturally extend
automata from representing languages to representing functions from words to a semiring.

We are interested in finite state formalisms for representing functions from graphs to a
semiring. Many natural algorithmic questions on graphs are about computing a function,
such as the clique number, weight of the shortest path etc. It is interesting to see if one
can design weighted automata to model such problems. Further can one design efficient
algorithms for problems modeled by such weighted automata?

We study weighted tiling systems (WTS), a variant of the weighted graph automata of
Droste and Dück [10], motivated by the graph acceptors of Thomas [24]. This subsumes
many quantitative models that have been studied on words, trees [13, 14], nested words [22],
pictures [17], Mazurkiewicz traces [11, 23, 5], etc. The reader is referred to the handbook [12]
for more details and references. Many of these works are mainly interested in expressivity
questions, and show that the model has good expressive power. The model is also easy to
understand as it is formulated in terms of tiling/colouring respecting local constraints. We
reiterate the expressivity by modeling computational problems on graphs using this model.
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34:2 Weighted Tiling Systems for Graphs: Evaluation Complexity

Our focus is on the computational complexity of the evaluation problem. It is closer in spirit
to [18] which provides an efficient evaluation algorithm for weighted pebble automata on
words.

We show that many algorithmic questions, like computing the clique number, computing
the permanent of a matrix, or counting-variants of SAT, can be naturally modeled using
this formalism. We investigate the computational complexity of the evaluation problem and
obtain tight upper- and lower-bounds for various semirings.

To give more details, a WTS has a finite number of states and a run labels the vertices
of a graph with states. The tiles (analogous to transitions) observe the neighbourhood of
a vertex under the labeling, and assign a weight accordingly. The weight of the run is the
semiring-product of the weights thus assigned, and the weight assigned to a graph is the
semiring-sum of the weights of the runs. We only consider commutative semirings and hence
the order in which the product is taken does not matter.

The evaluation problem is to compute the weight of an input graph in an input WTS.
We study the computational complexity of this problem for various semirings. Over
Natural semiring and non-negative rationals, the problem is shown to be #P-complete.
Over integers and rationals the problem is GapP-complete. Over tropical semirings –
(N,max,+), (Z,max,+), (N,min,+), (Z,min,+) – the problem is FPNP[log] complete.

We further consider the evaluation problem for graphs of bounded tree-width and show
that they are computable in time polynomial in the WTS and linear in the graph. Bounded
tree-width captures a variety of formal models of concurrent and infinite state systems such as
Mazurkiewicz traces, nested words, and decidable under-approximations of message passing
automata or multi-pushdown automata [21, 1, 2, 9, 4].

Even though our focus is evaluation, and not expressiveness of the model, we get a deep
insight into the modeling power of this formalism through the upper and lower complexity
bounds. For instance, we cannot polynomially encode the traveling salesman problem (lower
bound FPNP) in our formalism over tropical semiring (upper bound FPNP[log]) unless the
polynomial hierarchy collapses [19].

2 Model

First we will fix the notations for semirings, graphs and then introduce the WTS formally.

Preliminaries. Let N denote the set of natural numbers including 0, Z the integers, and Q
the rationals.

Let A = {a1, . . . an} and B be two sets. We sometimes write a function f ∶A→ B explicitly
by listing the image of each element: f = [a1 ↦ f(a1), . . . , an ↦ f(an)]. The set of all
functions from A to B is denoted BA. If A is ∅ then the only relation (and hence function)
from A to B is ∅. We denote this trivial empty function by f∅.

Let M be a non-deterministic Turing machine. The number of accepting runs of M on an
input x is denoted #M(x), and the number of rejecting runs of M on x is denoted #M(x).

A semiring is an algebraic structure S = (S,⊕,⊗,0S,1S) where S is a set, ⊕ and ⊗ are
two binary operations on S, (S,⊕,0S) is a commutative monoid, (S,⊗,1S) is a monoid, ⊗
distributes over ⊕, 0S is an annihilator for ⊗. A semiring is commutative if ⊗ is commutative.

Examples are Boolean = ({0,1},∨,∧,0,1), Natural = (N,+,×,0,1), Integer = (Z,+,×,0,1),
Rational = (Q,+,×,0,1) and Rational+ = (Q≥0,+,×,0,1). Further examples are tropical
semirings: max-plus-N = (N ∪ {−∞},max,+,−∞,0), max-plus-Z = (Z ∪ {−∞},max,+,−∞,0),
min-plus-N = (N ∪ {+∞},min,+,+∞,0) and min-plus-Z = (Z ∪ {+∞},min,+,+∞,0). We will
consider only these semirings in this paper. Note that all these semirings are commutative.
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Graphs. We consider graphs with different sorts of edges. For example, a grid will have
horizontal successor edges, and vertical successor edges. A binary tree will have left-child
relations and right-child relations. Message sequence charts will have process-successor
relations and message send-receive relations. These graphs have bounded degree, and for
each sort of edge, a vertex will have at most one outgoing/incoming edge of that sort1. Our
definition of graphs below allows to capture such graph classes.

Let Γ be a finite set of edge names, and let Σ be a finite set of node labels. A (Γ,Σ)-graph
G = (V, (Eγ)γ∈Γ, λ) has a finite set of vertices V , an edge relation Eγ ⊆ V ×V for every γ ∈ Γ,
and a mapping λ∶V → Σ assigning a label from Σ to each vertex v ∈ V . The graphs we
consider will have at most one outgoing edge and at most one incoming edge for every edge
name. That is, for each γ ∈ Γ, for all v ∈ V , ∣{u ∣ (v, u) ∈ Eγ}∣ ≤ 1 and ∣{u ∣ (u, v) ∈ Eγ}∣ ≤ 1.

The type of a vertex is determined by the set of names of incoming edges and the set of
names of outgoing edges. For example, the root of a tree has no incoming left-child or right-
child edges and leaves of a tree have no outgoing left- or right-child. A type τ = (Γin,Γout)
indicates that the set of incoming (resp. outgoing) edge names is Γin (resp. Γout). Let
Types = 2Γ × 2Γ be the set of all types. We define type∶V → Types and use type(v) to denote
the type of vertex v.
I Remark 1. Even though we consider only bounded degree graphs, we are able to model
graph functions on arbitrary graphs (even edge weighted) as illustrated in the examples
below. Basically an arbitrary graph is input via its adjacency matrix, which is naturally
a grid, a special case of the graphs that we can handle. We can even model problems on
arbitrary graphs with edge weights.

A weighted Tiling System. is a finite state mechanism for defining functions from a class
of graphs to a weight domain. It has a finite set of states and a set of permissible tiles for
each type of vertices. Formally, a weighted tiling system (WTS) over (Γ,Σ)-graphs and a
semiring S = (S,⊕,⊗,0S,1S) is a tuple T = (Q,∆,wgt) where

Q is the finite set of states,
∆ = ⋃τ∈Types ∆τ – for a type τ = (Γin,Γout) ∈ Types, the set ∆τ ⊆ QΓin ×Q × Σ ×QΓout

gives the set of permissible tiles of type τ ,
wgt∶∆→ S, assigns a weight for each tile.

A run ρ of T on a graph G = (V, (Eγ)γ∈Γ, λ) is a labeling of the vertices by states that
conforms to ∆. Given a labeling ρ∶V → Q, for a vertex v ∈ V with type(v) = (Γin,Γout) we
define the tile of v wrt. ρ to be tileρ(v) = (fin, ρ(v), λ(v), fout) where fin∶Γin → Q is given
by γ ↦ ρ(u) if (u, v) ∈ Eγ and fout∶Γout → Q is given by γ ↦ ρ(u) if (v, u) ∈ Eγ . A labeling
ρ∶V → Q is a run if for each v ∈ V , tileρ(v) ∈ ∆type(v).

The weight of a run ρ, denoted wgt(ρ), is the product of the weights of the tiles in ρ.
With commutative semirings, we do not need to specify an order for this product. The value
[[T ]](G) computed by T for a graph G is the sum of the weights of the runs. That is,

[[T ]](G) = ⊕
ρ∣ρ is a run of T on G

wgt(ρ) wgt(ρ) = ⊗
v∈V

wgt(tileρ(v)).

I Remark 2. The WTS is a variant of the weighted graph automata (WGA) of [10]. There
are two main differences. First, WGA admits tiles of bigger radius and the tile size is a

1 This choice is mainly for notational convenience, and is not really a restriction, provided we consider
only bounded degree graphs. Another option would be to enumerate the neighbours in some order and
address a neighbour as the ith incoming/outgoing neighbour.
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34:4 Weighted Tiling Systems for Graphs: Evaluation Complexity

parameter. This is not more powerful, as it can be realized with immediate neighborhood
tiles like in WTS. Second, WGA allows occurrence constraints. We discuss this in more
detail in Section 5.

We give some examples of WTS below, which will also serve as reductions proving
complexity lower-bounds in Section 3.

I Example 3 (A WTS to compute the clique number of a graph). The clique number of a
graph is the size of the largest clique in the graph.

The graphs on which we want to compute the clique number have unbounded degrees
indeed. In our setting we consider only bounded degree graphs. Hence we need to encode any
arbitrary graph as a bounded degree graph. One way to do that is to consider the adjacency
matrix and represent this matrix using a grid graph.

For the particular case of clique number, our input is an undirected graph, so we will
consider a lower-right triangular matrix in a lower-right triangular grid graph. For this we
let Γ = {→, ↓} and Σ = {0, 1}. The labels of all diagonal vertices are 1. A graph is depicted in
Figure 1 and its lower-right triangular adjacency matrix is depicted in Figure 2.
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Figure 2 The lower-right tri-
angular adjacency matrix of the
graph of Figure 1 as a grid graph
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Figure 3 A run. Three tiles B,
C and E gets weights 1, and hence
the weight of this run is 3.

We will now construct a WTS over the tropical semiring max-plus-N that computes the
clique number on a lower triangular grid graph. The run of the WTS will guess a subset
of vertices of the original graph (corresponds to labeling some diagonal elements with state
�) and checks that there is an edge between every pair of these (corresponds to checking
the label is 1, if the row and column start in a �-labeled vertex). The weight of such a run
will be the size of the subset, and the max over all the runs gives us the clique number as
required.

Let Q = {�, �,�,�}. A run will label a subset of diagonal vertices with �. A vertex is
labeled with � (resp. �, �) if its column (resp. row, both) starts in a vertex labeled �. In
addition a vertex may get state � only if its label is 1. All other vertices get state �. A run
on the graph in Figure 2 is depicted in Figure 3.

Tiles for diagonal vertices are given by ∆(∅,Γout) = {(f∅,�,1, fout), (f∅,�,1, fout)} . For
an inside vertex we have (fout being arbitrary in all tuples):

∆({→,↓},Γout) = {(fin,�, b, fout) ∣ b ∈ {0,1}, fin(→) ∈ { �,�}, fin(↓) ∈ {�,�}}
∪ {(fin,�,1, fout) ∣ fin(→) ∈ {�,�}, fin(↓) ∈ {�, �}}
∪ {(fin,�, b, fout) ∣ b ∈ {0,1}, fin(→) ∈ {�,�}, fin(↓) ∈ {�,�}}
∪ {(fin, �, b, fout) ∣ b ∈ {0,1}, fin(→) ∈ { �,�}, fin(↓) ∈ {�, �}} .
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The weight of a tile of the form (f∅,�, 1, fout) is 1. Notice that only the diagonal vertices
labeled � will get such a tile. The weight of all other tiles is 0. Thus the weight of a run
is the number of diagonal vertices labeled � - which corresponds to a subset of vertices
inducing a clique. The maximum weight across different runs will compute the clique number
as required. J

I Example 4 (A WTS to compute the permanent of a (0,1)-matrix). We will model (0,1)-
matrices as (0,1)-labelled grids. As in Example 3, we let Γ = {→, ↓} and Σ = {0,1}. A 5 × 5
(0,1)-matrix as a grid graph is illustrated in Figure 4.

We will define a WTS T on such graphs over Natural such that [[T ]](G) is the permanent
of the 0,1 matrix A represented by G. In each run exactly one vertex in each row and each
column will be circled – representing one permutation σ of {1, . . . , n} if G is an n×n grid. The
weight of the tile on the circled vertex will be the vertex label (0 or 1) interpreted as an integer.
Every other tile will have weight 1. Thus the weight of a run will be ∏iA(i, σ(i)) where σ
is the permutation represented by the run. Finally the value of a graph G representing an
n × n (0,1)-matrix A will be ∑σ∏iA(i, σ(i)) which is its permanent.

The WTS T has five states: Q = {◯,Í,Ì,Ï,Î}. We will define tiles so as to accept
only the labeling reflecting the following:

a vertex labeled ◯ means it is the circled vertex in its row and column,
a vertex v labeled Í means that the circled vertex in its column is upward of v, and the
circled vertex in its row is to the right of v,
similarly for other states Ì,Ï,Î.

The tiles are given formally below. The weight function wgt assigns weight 0 to any tile
labeling a 0-labeled node with ◯. The weight of all other tiles is 1. A run of this WTS is
illustrated in Figure 5.
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Figure 4 A 5×5 (0,1)-matrix as a grid graph
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Figure 5 A run of the WTS T on the graph in
Fig. 4. It has weight 0 as two tiles have wgt 0.

We now describe the tiles formally. For the top-left vertex we have

∆(∅,{→,↓}) = {(f∅,◯, b, fout) ∣ b ∈ {0,1}, fout(→) =Ï, fout(↓) =Í}
∪ {(f∅,Ì, b, fout) ∣ b ∈ {0,1}, fout(→) ∈ {Ì,◯}, fout(↓) ∈ {Ì,◯}}

The tiles for other corner vertices are analogous. For the left border vertices we have
∆({↓},{→,↓}) =

{(fin,◯, b, fout) ∣ b ∈ {0,1}, fin(↓) =Ì, fout(→) ∈ {Ï,Î}, fout(↓) =Í}
∪ {(fin,Ì, b, fout) ∣ b ∈ {0,1}, fin(↓) =Ì, fout(→) ∈ {Í,Ì,◯}, fout(↓) ∈ {Ì,◯}}
∪ {(fin,Í, b, fout) ∣ b ∈ {0,1}, fin(↓) ∈ {Í,◯}, fout(→) ∈ {Í,Ì,◯}, fout(↓) =Í}
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34:6 Weighted Tiling Systems for Graphs: Evaluation Complexity

The tiles for other border vertices are analogous. For an interior vertex, we have

∆({→,↓},{→,↓}) = {(fin,◯, b, fout) ∣ b ∈ {0,1}, fin(↓) ∈ {Ï,Ì}, fin(→) ∈ {Í,Ì},
fout(→) ∈ {Î,Ï}, fout(↓) ∈ {Î,Í}}

∪ {(fin,Ì, b, fout) ∣ b ∈ {0,1}, fin(↓) ∈ {Ï,Ì}, fin(→) ∈ {Í,Ì},
fout(→) ∈ {Í,◯,Ì}, fout(↓) ∈ {Ï,◯,Ì}}

∪ {(fin,Í, b, fout) ∣ b ∈ {0,1}, fin(↓) ∈ {Î,◯,Í}, fin(→) ∈ {Í,Ì},
fout(→) ∈ {Í,◯,Ì}, fout(↓) ∈ {Î,Í}}

∪ {(fin,Î, b, fout) ∣ b ∈ {0,1}, fin(↓) ∈ {Î,◯,Í}, fin(→) ∈ {Î,◯,Ï},
fout(→) ∈ {Î,Ï}, fout(↓) ∈ {Î,Í}}

∪ {(fin,Ï, b, fout) ∣ b ∈ {0,1}, fin(↓) ∈ {Ï,Ì}, fin(→) ∈ {Î,◯,Ï},
fout(→) ∈ {Î,Ï}, fout(↓) ∈ {Ï,◯,Ì}}

Finally, we describe the weight function wgt. The weight of a tile of the form (fin,◯, 0, fout)
is 0. The weight of all other tiles is 1. J

I Example 5 (Permanent of matrix with entries from N). The purpose of this example is to
illustrate that it is possible to encode natural numbers, which may appear as matrix entries
or edge weights, also as bounded degree graphs with a fixed alphabet Σ.

A length k bit string bk−1⋯b1b0 where bi ∈ {0, 1} for all 0 ≤ i < k, is represented by a path
graph of length k. The vertices of this path graph are labelled with 1 or 0 to indicate the
value of the bit, and the edges are labeled ≺. We describe a WTS on such path graphs whose
computed weight is the binary number ∑i bi2i. The WTS guesses a prefix ending with label
1. All the nodes in the prefix take state q0 and all nodes after the prefix may take the two
states q1 or q2. The weight of all tiles is 1. The number of runs is ∑i∶bi=1 1k−i × 2i = ∑i bi2i.

As before, we will have an n × n grid graph to represent the matrix, but the vertices of
the grid graph take a neutral label, say X. A path graph originates from every vertex of the
grid graph indicating the entry of the matrix at that cell. Now, to compute the permanent,
the path graphs starting from a circled vertex can start the WTS described in the previous
paragraph. All other path graphs vertices can be labeled only by a special state q4. The
weights of all permissible tiles are 1. The weight computed by one permutation will indeed
be the product of the entries. This crucially depends on the distributivity of the semiring.
Thus, this WTS computes the permanent of an arbitrary matrix with entries in N. J

Evaluation problem (Eval). is to compute [[T ]](G), given the following input:

T : a WTS over (Γ,Σ)-graphs and a semiring S, and
G : a (Γ,Σ)-graph.

We study the complexity of this problem in Section 3, for various semirings. We provide an
efficient algorithm for this problem in the case of bounded tree-width graphs in Section 4.

3 Evaluation complexity: Arbitrary graphs

Recall that we only consider the boolean semiring, the counting semirings over N, Z, Q or
Q≥0 and the tropical semirings over N or Z.

Given a WTS T and a graph G, we can compute [[T ]](G) in polynomial space as follows.
Initialise the current aggregate to 0S. Enumerate in lexicographic order through the different
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labelings of the vertices of G with states of T . For each labeling, if it conforms to ∆, compute
its weight and add to the current aggregate. Thus Eval belongs to FPSpace – the set of
functions computable in polynomial space.

I Theorem 6. Problem Eval is in FPSpace.

However, for particular semirings the complexity is different as stated in the following
subsections.

3.1 (+,×)-semirings
I Theorem 7. The evaluation problem is #P-complete over Natural, and non-negative
Rational. It is GapP-complete over Integer and Rational.

The upper bounds hold for arbitrary graphs, and the lower bounds hold for the special
case of grids. The weights can be assumed to be given in binary.

A function f is in #P if there is an NP machine M such that f(x) = #M(x). That is, it
denotes the set of function problems that correspond to counting the number of accepting
paths in a non-deterministic polynomial time turing machine. Computing the permanent
of a (0,1)- matrix is a #P-complete problem [25], and hence the #P-hardness claimed
above follows from Example 4. We give an alternate hardness proof by a reduction from
#-CNF-SAT.

A function f(x) is in GapP if there is a non-deterministic polynomial time turing machine
M such that f(x) = #M(x) −#M(x). GapP is also the closure of #P under subtraction.

Most of this subsection is devoted to the proof of Theorem 7. First we give the non-
deterministic Turing machines realising the upper bounds for Natural and Integer. After that
we give reductions from respective counting versions of SAT to prove the lower bounds. The
case of Rational is finally considered.

The Turing MachineM such that #M(T , G) = [[T ]](G). We describe a non-determins-
tic polynomial time turing machine M that takes as input a WTS T over Natural with
weights given in binary, and a graph G. The number of accepting runs #M(T ,G) = [[T ]](G).
We assume the states, weights etc. are given by some standard encoding.

The turing machineM non-deterministically guesses a labeling of the vertices of G by the
states of T . Then it computes the product w of the weights of the tiles in the guessed tiling
and writes it in binary (MSB on the left) in a different tape. Computing the product can be
done in time polynomial in ∣G∣ and log(k) where k = max{x ∣ x is a weight of some tile of T }.

Afterwards it enters a phase which will have exactly w different accepting branches.
Simply decrementing the value while it is positive, and non-deterministically accepting at
any step will have w accepting branches, but the running time is exponential. We want the
machine to run in polynomial time. Hence we implement this phase similar to Example 5. It
runs in O(∣w∣) steps as we detail below.
M scans w from left to right starting in some state q. While in state q and the current

cell is labeled 0 it moves right. If in state q and the current cell is labelled 1 it moves right
and non determistically stays in state q or enters one of the two special states q0 or q1. When
it is in state q0 or q1 and the current cell is labelled with 0 or 1, it will move right and non
deterministically chose either q0 or q1. Finally, When in state q0 or q1 and the current cell is
blank (i.e., the scan of w is over), thenM accepts. Thus if the ith bit from the right of w
is labeled 1, thenM can have 2i accepting runs if it moved from state q to q0 or q1 when
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34:8 Weighted Tiling Systems for Graphs: Evaluation Complexity

reading this bit. Switching from state q can occur at any 1-labelled cell, and henceM will
have w many accepting runs.

The machine M non deterministically picks a labeling at first, and hence the total
number of accepting runs #M(T ,G) = [[T ]](G). With this we prove the #P upper bound
for Natural.

The Turing Machine M′ such that #M′
(T , G) − #M′

(T , G) = [[T ]](G) This is
similar to the machineM above. There are two differences. The machineM′ still guesses
a labeling of vertices of G with states of T over Integer and computes the weight w. If w
is positive, it proceeds exactly asM does to produce w accepting runs. If the weight w is
negative, the machine M′ proceeds analogously but with states q′, q′0 and q′1 instead. If
the machine is in state q′0 or q′1 with current cell blank then it rejects instead of accepting.
The second difference is for blocked runs (e.g., if the guessed labeling of vertices of G by
states of T is not a valid tiling, or if at the end the machine is still in state q or q′ with
current cell blank). In such a case,M′ will non-deterministically proceed to either accept or
reject. Thus the net difference between accepting runs and rejecting runs is kept intact and
#M′(T ,G) −#M′(T ,G) = [[T ]](G). This proves the GapP upper bound for Integer.

Encoding a CNF formula ϕ in a grid Gϕ. Given a CNF formula ϕ with n variables and
m clauses, we encode it in an n ×m grid with node labels {p,n,⋆}. If the node (i, j) is
labeled by p (resp. n) it means that the ith variable appears in jth clause positively (resp.
negatively). The node (i, j) is labeled ⋆ if the ith variable does not occur in the jth clause.

A WTS T # over Natural for counting #ϕ. Recall that #ϕ is the number of satisfying
assignments for the formula ϕ. We assume input to the WTS T # is given as Gϕ – a
{p,n,⋆}-labeled grid encoding a CNF formula.

A state of T # is a pair from {qtrue, qfalse}× {q′true, q
′
false}. The first part of a state indicates

a truth assignment with qtrue and qfalse. The allowed tiles make sure that in this part the
truth assignment remains the same along a row. The second part of a state indicates with
q′true and q′false the partial evaluation of the formula. A p-labeled node which is assigned qtrue
from the first part, and an n-labeled node which is assigned qfalse from the first part gets the
value q′true in the second part of the state (call this condition A for future reference). Further
all the successor nodes in the column of the q′true labeled node also gets the value q′true, except
for the nodes in the last row. For the nodes in the last row, it gets the value q′true if the left
neighbour is labeled q′true (assume this is satisfied if the left neighbour does not exist), and a)
if it satisfies condition A or b) if the node above is labeled q′true. Otherwise the nodes get the
value q′false. The second part of a state labeling a node (n, j) in the last row indicates the
evaluation of the prefix of the formula until the jth clause.

The tiles capture the description above. The weight of all tiles is 1, except for the tile
labeling the last node (n,m). If it is labeled (−, q′true) then the weight is 1, otherwise it is 0.
The value [[T #]](Gϕ) = #ϕ, the number of satisfying assignments.

This proves the #P lower bound for Natural. As alluded to earlier, the permanent
computation (Example 4) gives an alternate lower bound proof.

A WTS T gap over Integer for counting #ϕ1 −#ϕ2. We will reduce the GapP-complete
problem of computing #ϕ1 −#ϕ2, where ϕ1 and ϕ2 are input CNF formulas on the same set
of n variables withm1 andm2 clauses respectively. We represent the input in an n×(m1+m2)
grid by putting Gϕ1 and Gϕ2 side by side. The node labels contain a special tag i ∈ {1, 2} to
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indicate that it comes from Gϕi . The WTS T gap will ensure that rows are of the form 1∗2∗
and columns are of the form 1∗ or 2∗. In a run it evaluates either ϕ1 or ϕ2 similar to T #. If
it is evaluating ϕi all nodes with the tag 3− i gets a special state qskip. The weight of all tiles
is 1, except for the tile labeling the nodes (n,m1) and (n,m1 +m2). If the node (n,m1) is
labeled (−, q′true) or qskip then the weight is 1, otherwise it is 0. If the node (n,m1 +m2) is
labeled (−, q′true) (resp. qskip) then the weight is −1 (resp. 1), otherwise it is 0.

Rational. We will use counting reduction from Rational (resp. non-negative Rational) to the
evaluation problem over Integer (resp. Natural) in order to prove the upper bounds. First we
will transform an input (T ,G) of the evaluation problem over Rational (resp. non-negative
Rational) to an input (T ′,G, ) over Integer (resp. Natural). In T ′ we will multiply the weight
of a tile by ` - the lcm of the denominators appearing in the weights of any tile of T . The
multiplication can be performed in time polynomial. Now T ′ is a WTS over Integer (resp.
Natural), and following the GapP procedure (resp. #P procedure) we compute [[T ′]](G).
Now, we transform the output back to the required output over Rational (resp. non-negative
Rational) by dividing with `∣VG∣. That is, Eval(G,A) = Eval(G,A′)

`∣VG ∣ .
Notice that we allow the weights to be given in binary. The lcm ` and `∣VG∣ can be

computed in polynomial time. The counting reduction is hence polynomial. This proves the
upper bounds.

The GapP-hardness (resp. #P-hardness) follows because Integer (resp. Natural) is a special
case of Rational (resp. non-negative Rational).

3.2 Boolean semiring
Note that the evaluation problem Eval over Boolean is in fact the classical Membership
problem (denoted Membership) and is indeed a decision problem. We can check in NP
whether the value is 1 (witnessed by the NP machine M, if the input is assumed to be
over Boolean then × serve as ∧). It is also NP-hard by a simple reduction from CNF SAT
(witnessed by T # interpreted over Boolean).

I Theorem 8. Membership is NP-complete.

3.3 Tropical semirings
I Theorem 9. We assume the weights are given in unary. The evaluation problem over any
tropical semiring is FPNP[log]-complete.

FPNP[log] is the class of functions computable by a polynomial time turing machine with
logarithmically many queries to NP.

Proof. We will prove the upper bound for max-plus-Z. The case of max-plus-N is subsumed.
The cases of min-plus-N and min-plus-Z are analogous.

Let k be the maximal constant and ` be the minimal constant (other than +/ − ∞)
appearing in the WTS A. The maximum possible weight of a run is n × k and the minimum
is n × ` where n is the number of vertices in the input graph. We will do a binary search
in the set W = {n × `, . . . ,−1,0,1, . . . , n × k} checking if [[A]](G) ≥ s to find the value of
[[A]](G). In each iteration of the binary search, we make an oracle call to the NP machine
for [[A]](G) ≥ s. The number of NP oracle queries is O(log(n×k)) which is only logarithmic
in the input size. Recall that the weights are encoded in unary.

Finding the clique number is an FPNP[log]-complete problem [19]. From Example 3, the
lower bound follows. J
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4 Efficient evaluation for bounded tree-width graphs

In this section, we show that the problem Eval can be solved efficiently when restricted to
graphs of bounded tree-width (the bound is not part of the input). By efficient, we mean
time polynomial wrt. the WTS T and linear wrt. the graph G (see Theorems 11 and 13
below). Bounded tree-width covers many graphs used to model behaviours of concurrent or
infinite-state systems. For example, it is well-known that words and trees have tree-width 1,
nested words used for pushdown systems have tree-width 2, Mazurkiewicz traces describing
behaviours of concurrent asynchronous systems with rendez-vous, and most decidable under-
approximations of Turing complete models such as multi-pushdown automata, message
passing automata with unbounded FIFO channels, etc. [21, 9, 4]. We start by explaining our
results for bounded path-width since this is technically simpler. Then we explain how this is
extended to bounded tree-width.

4.1 Bounded path-width evaluation
A path decomposition. of a (Γ,Σ)-graph G = (V, (Eγ)γ∈Γ, λ), is a sequence V1, . . . , Vn of
nonempty subsets of vertices satisfying:
1. for all v ∈ V , we have v ∈ Vi for some 1 ≤ i ≤ n,
2. for all (u, v) ∈ ⋃γ∈ΓEγ , we have u, v ∈ Vi for some 1 ≤ i ≤ n,
3. for all 1 ≤ i ≤ j ≤ k ≤ n, we have Vi ∩ Vk ⊆ Vj .
The width of the path decomposition is max{∣Vi∣ − 1 ∣ 1 ≤ i ≤ n}. The path-width of a graph
G is the least k such that G admits a path decomposition of width k.

Words have path-width 1, but trees, nested words, grids have unbounded path-width.
We present below an equivalent definition of path-width which will be convenient to solve

the evaluation problem on graphs with bounded path-width. Let [k] = {0,1, . . . , k}. Graphs
over (Γ,Σ) of path-width at most k can be described with words over the alphabet

Ωk = {(i, a) ∣ i ∈ [k], a ∈ Σ} ∪ {Forgeti ∣ i ∈ [k]} ∪ {Addγi,j ∣ i, j ∈ [k], γ ∈ Γ}

The semantics of a word τ ∈ Ω∗
k is a colored graph {∣τ ∣} = (Gτ , χτ) where Gτ is a (Γ,Σ)-labeled

graph and χτ ∶ [k] → V is a partial injective function coloring some vertices of Gτ . We say
that a color i ∈ [k] is active in τ if it is in the domain of χτ . The semantics is defined by
induction on the length of τ . The semantics of the empty word τ = ε is the empty graph.
Assuming that {∣τ ∣} = (V, (Eγ)γ∈Γ, λ, χ), we define the effect of appending a new letter to τ :
(i, a) adds a new a-labeled vertex with color i, provided i is not active in τ , Forgeti removes
color i from the domain of the color map, and Addαi,j adds an α-labeled edge between the
vertices colored i and j (if such vertices exist, i.e., if i, j are active in τ).

We say that a word τ over Ωk is well-formed if the following conditions are satisfied:
1. if τ ′ ⋅ (i, a) is a prefix of τ then i is not active in τ ′,
2. if τ ′ ⋅ Forgeti is a prefix of τ then i is active in τ ′,
3. if τ ′ ⋅Addγi,j is a prefix of τ then i, j are active in τ ′ and the edge labeled γ was not already

added in τ ′ between χτ ′(i) and χτ ′(j).
In the following, a well-formed word over Ωk is called a k-word. The set Wk ⊆ Ω∗

k of k-words
is clearly regular.

I Lemma 10. 1. Given a path decomposition V1, . . . , VN of width at most k of a (Γ,Σ)-graph
G, we can construct in linear time wrt. ∣G∣ a k-word τ such that {∣τ ∣} = (G,∅).

2. Given a k−word τ , we can construct a path decomposition of width at most k of the graph
Gτ defined by τ : {∣τ ∣} = (Gτ , χτ).
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Proof. 1. We construct by induction a sequence of k-words τ` for 0 ≤ ` ≤ N such that
{∣τ`∣} = (G`, χ`) where G` is the subgraph of G = (V, (Eγ)γ∈Γ, λ) induced by the vertices
V1 ∪⋯ ∪ V`, and χ`([k]) = V` ∩ V`+1 (with V0 = VN+1 = ∅). We let τ0 = ε.

Let now 0 ≤ ` < N and assume that τ` has been constructed. Let C` = dom(χ`) ⊆ [k] be the
active colors in τ`. By induction, we know that ∣C`∣ = ∣V`+1 ∩V`∣. Let V`+1 ∖V` = {u1, . . . , um}.
Since the decomposition is of width at most k, we have ∣V`+1∣ ≤ 1 + k and we find i1 < ⋯ < im
available colors in [k]∖C`. We define τ ′`+1 = τ` ⋅(i1, λ(u1))⋯(im, λ(um)). Let D = {i1, . . . , im}
and let {∣τ ′`+1∣} = (G′, χ′). We have dom(χ′) = C`∪D, χ′(C`) = V`+1∩V` and χ′(D) = V`+1∖V`.
For each γ ∈ Γ, i ∈ C` ∪D and j ∈D such that (χ′(i), χ′(j)) ∈ Eγ (resp. (χ′(j), χ′(i)) ∈ Eγ),
we append Addγi,j (resp. Addγj,i) to the word τ ′`+1. We obtain a k-word τ ′′`+1 which defines the
subgraph G`+1 of G induced by V1 ∪ ⋯ ∪ V`+1. Notice that, from the third condition of a
path decomposition, we have V`+1 ∖ V` = V`+1 ∖ (V1 ∪ ⋯ ∪ V`) and the edges in G`+1 which
were not already in G` are between some vertex in V`+1 ∖V` and some vertex in V`+1. Finally,
for each i ∈ C` ∪D such that χ′(i) ∉ V`+2, we append Forgeti to the word τ ′′`+1. We obtain
the k-word τ`+1 satisfying our invariant.

Finally, from the invariant we deduce that {∣τN ∣} = (G,∅), which concludes the first part
of the proof.

2. Let τ be a k-word and n = ∣τ ∣ be its length. For 0 ≤ ` ≤ n, let τ` be the prefix of τ of
length `. Let {∣τ`∣} = (G`, χ`) and V` = χ`([k]) be the subset of vertices which are colored in
{∣τ`∣}. We show that V1, . . . , Vn is a path decomposition of G = Gn = (V, (Eγ)γ∈Γ, λ).

Let u ∈ V be a vertex of G. For some 1 ≤ ` ≤ n, we have τ` = τ`−1 ⋅(i, a) with χ`(i) = u ∈ V`.
This proves that the first condition of a path decomposition is satisfied.

Let (u, v) ∈ Eγ for some γ ∈ Γ. For some 1 < ` < n, we have τ`+1 = τ` ⋅Addγi,j with χ`(i) = u
and χ`(j) = v. We deduce that u, v ∈ V`, which proves that the second condition of a path
decomposition is satisfied.

For the third condition, let 1 ≤ i ≤ j ≤m ≤ n and u ∈ Vi ∩ Vm. We deduce that for some
` ∈ [k], we have u = χi(`) = χm(`) and that color ` was not forgotten between τi and τm.
Therefore, u = χj(`) ∈ Vj as desired. J

The problem k-PW-FVal is to compute [[T ]](G), given a WTS T and a (Γ,Σ)-graph G
of path-width at most k.

I Theorem 11. The problem k-PW-FVal can be solved in linear time wrt. the input graph G
and polynomial time wrt. the input WTS T .

Proof. The evaluation algorithm for bounded path-width graphs proceeds in three steps:
1. From the input graph G, which is assumed to be of path-width at most k, we compute

in linear time a path decomposition V1, . . . , Vn using Bodlaender’s algorithm [3]. Then,
using Lemma 10, we compute in linear time a k-word τ such that {∣τ ∣} = (G,∅).

2. By Lemma 12 below, we construct in time polynomial in T a weighted word automaton
Bk which is equivalent to T on graphs of path-width at most k.

3. We compute [[Bk]](τ). It is well-known that the value of a weighted word automaton B
on a given word w can be computed in time O(∣B∣ ⋅ ∣w∣) assuming that sum and product
in the semiring take constant time. J

A weighted word automaton over alphabet Σ is usually given as a tuple B = (Q,T, I,F,wgt)
where I,F ⊆ Q are the subsets of initial and final states, T ⊆ Q×Σ×Q defines the transitions
and wgt∶T → S gives weights to transitions. This is an equivalent representation of a WTS
over ({→},Σ).
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Table 1 Transitions of the weighted word automaton Bk.

δ
(i,a)
ÐÐ→ δ′ if i ∉ dom(δ). Then, dom(δ′) = dom(δ) ∪ {i}, δ′(j) = δ(j) for all j ∈ dom(δ), and

δ′(i) = (f∅, q, a, f∅) for some q ∈ Q.
The weight of this transition is 1S.

δ
Forgeti
ÐÐÐ→ δ′ if i ∈ dom(δ). Then δ′ is the restriction of δ to dom(δ′) = dom(δ) ∖ {i}.

The weight of this transition is wgt(δ(i)).

δ
Addγ

i,j
ÐÐÐ→ δ′ if i, j ∈ dom(δ), i ≠ j, γ ∉ dom(fout(i)) and γ ∉ dom(fin(j)).

Then, dom(δ′) = dom(δ), δ′(`) = δ(`) for all ` ∈ dom(δ) ∖ {i, j},
δ′(i) = (fin(i), q(i), a(i), fout(i) ∪ [γ ↦ q(j)]),
δ′(j) = (fin(j) ∪ [γ ↦ q(i)], q(j), a(j), fout(j)).
The weight of this transition is 1S.

I Lemma 12. Given a WTS T over (Γ,Σ)-graphs and k > 0, we can compute in polynomial
time wrt. T , a weighted word automaton Bk which is equivalent to T over graphs of path
width at most k. That is, for all k-words τ with {∣τ ∣} = (G,∅), we have [[T ]](G) = [[Bk]](τ).

Proof. Let T = (Q,∆,wgt) be a WTS over (Γ,Σ)-graphs. By adding tiles with weight 0S,
we may assume wlog that ∆ contains all possible tiles. Fix k ≥ 1.

A state of Bk is a partial map δ∶ [k] →∆. When reading a k-word τ with {∣τ ∣} = (G,χ),
the automaton will guess a labelling ρ∶V → Q of vertices of G with states of T and will reach
a state δ satisfying the following two conditions:
1. dom(δ) = dom(χ) ⊆ [k] is the set of active colors,
2. for each active color i ∈ dom(χ), δ(i) = (fin(i), q(i), a(i), fout(i)) = tileρ(χ(i)) is the

current ρ-tile at vertex χ(i) in G.
The only initial state is the empty map δ∅ with dom(δ∅) = ∅. This is also the only final
state, which is reached on a k-word τ if all colors have been forgotten: {∣τ ∣} = (G,χ∅).

Transitions of the word automaton Bk are given in Table 1. As above, we write δ(i) =
(fin(i), q(i), a(i), fout(i)) and δ′(i) = (f ′in(i), q′(i), a′(i), f ′out(i)).

The number of partial maps from A to B is (1 + ∣B∣)∣A∣. Hence, the number of states of
Bk is (1+ ∣∆∣)1+k. In a tile (fin, q, a, fout) ∈ ∆, both fin and fout can be seen as partial maps
from Γ to Q. Hence, ∣∆∣ = (1 + ∣Q∣)2∣Γ∣ ⋅ ∣Q∣ ⋅ ∣Σ∣. Also, ∣Ωk ∣ = (1 + k)(∣Σ∣ + 1) + (1 + k)2∣Γ∣. We
deduce that, if Σ,Γ, k are fixed, the automaton Bk can be constructed in polynomial time
wrt. the given WTS T . J

4.2 Bounded tree-width evaluation
We extend the efficient evaluation of WTS for graphs of bounded path-width to graphs of
bounded tree-width, which is a larger class of graphs. For instance, nested words may have
unbounded path-width but their tree-width is at most 2. As for path-width, tree-width can
be defined via tree decompositions: instead of a sequence of subsets of vertices, we use a
tree of subsets of vertices. Since we will use weighted tree automata to achieve the efficient
evaluation over graphs of bounded tree-width, we define directly tree terms. These are similar
to k-words, with an additional binary union ⊕.

Tree terms (TTs). form an algebra to define labeled graphs. With a ∈ Σ, γ ∈ Γ and
i, j ∈ [k] = {0,1, . . . , k}, the syntax of k-TTs over (Γ,Σ) is given by

τ ∶∶= (i, a) ∣ Addγi,j τ ∣ Forgeti τ ∣ τ ⊕ τ
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Each k-TT represents a colored graph {∣τ ∣} = (Gτ , χτ) where Gτ is a (Γ,Σ)-labeled graph
and χτ ∶ [k]→ V is a partial injective function coloring some vertices of Gτ . Colors in domχτ
are said to be active in τ . The semantics is defined as for k−words: a leaf (i, a) creates a
graph with a single a-labeled vertex with color i, Forgeti removes color i from the domain of
the color map, and Addαi,j adds an α-labeled edge between the vertices colored i and j (if
such vertices exist). Formally, if {∣τ ∣} = (V, (Eγ)γ∈Γ, λ, χ) then

{∣Addαi,j τ ∣} = (V, (E′
γ)γ∈Γ, λ, χ) with E′

γ = Eγ if γ ≠ α and

E′
α =

⎧⎪⎪⎨⎪⎪⎩

Eα if {i, j} /⊆ dom(χ)
Eα ∪ {(χ(i), χ(j))} otherwise.

{∣Forgeti τ ∣} = (V, (Eγ)γ∈Γ, λ, χ′) with dom(χ′) = dom(χ) ∖ {i} and χ′(j) = χ(j) for all
j ∈ dom(χ′).

The main difference with k-words is ⊕ which takes the union of the two graphs, merging
vertices with the same colors, if any.

Formally, consider τ ′ ⊕ τ ′′ with {∣τ ′∣} = (G′, χ′) = (V ′, (E′
γ)γ∈Γ, λ′, χ′) and {∣τ ′′∣} =

(G′′, χ′′) = (V ′′, (E′′
γ )γ∈Γ, λ′′, χ′′). Let I = dom(χ′) ∩ dom(χ′′) be the set of colors that

are defined in both graphs. Wlog, we may assume that V ′ ∩ V ′′ = χ′(I) = χ′′(I) and
χ′(i) = χ′′(i) for all i ∈ I, i.e., we may rename the vertices so that the shared colors define
the shared vertices. The union τ ′ ⊕ τ ′′ is well-defined only if the shared vertices have the
same labels: λ′(χ′(i)) = λ′′(χ′′(i)) for all i ∈ I. Then, {∣τ ′ ⊕ τ ′′∣} = (G′ ∪G′′, χ′ ∪ χ′′) =
(V, (Eγ)γ∈Γ, λ, χ) where V = V ′ ∪ V ′′, λ = λ′ ∪ λ′′, and Eγ = E′

γ ∪E′′
γ for all γ ∈ Γ.

The tree-width of a nonempty graph G is the least k ≥ 1 such that G = Gτ for some k-TT τ .
Trees have tree-width 1, and as a special case, words also have tree-width 1. Nested words

have tree-width (at most) 2 [21]. They are words with an additional binary relation from
pushes to matching pops, which are used to represent behaviours of pushdown automata. On
the other end, grids as used for instance in Example 4, have unbounded tree-width. More
precisely, an n × n grid has tree-width n.

We will focus on a regular subset of terms which ensures that the semantics is well-
defined and that the k-TTs do not contain redundant operations such as Addγi,j Addγi,j τ or
Addγi,j τ1 ⊕Addγi,j τ2. A k-TT is well-formed if the following are satisfied:
1. if Forgeti τ ′ is a subterm of τ then i is active in τ ′,
2. if Addγi,j τ ′ is a subterm of τ then i, j are active in τ ′ and the edge γ was not already

added in τ ′ between χτ ′(i) and χτ ′(j).
3. if τ ′ ⊕ τ ′′ is a subterm of τ then for all i, j that are active in both τ ′ and τ ′′, the vertices

χτ ′(i) and χτ ′′(i) have the same label from Σ, and we do not already have a γ-edge both
between (χτ ′(i), χτ ′(j)) and (χτ ′′(i), χτ ′′(j)).

The problem k-TW-FVal is to compute [[T ]](G), given a WTS T and a (Γ,Σ)-graph G
of tree-width at most k.

I Theorem 13. The problem k-TW-FVal can be solved in linear time wrt. the input graph G
and polynomial time wrt. the input WTS T .

Proof. The proof follows the same three steps as for Theorem 11 using tree terms instead of
k-words and weighted tree automata instead of weighted word automata.
1. From the input graph G, which is assumed to be of tree-width at most k, we compute

in linear time a tree decomposition using Bodlaender’s algorithm [3]. Then, similarly to
Lemma 10, we compute in linear time a well-formed k-TT τ such that {∣τ ∣} = (G,∅). In
particular, ∣τ ∣ = O(∣G∣).
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Algorithm 1 Evaluation algorithm for a weighted tree automaton B = (Q,T,F,wgt).

1: function main(τ ∶ term): value from S ▷ Computes [[B]](τ)
2: val← TreeEval(τ); x← 0S
3: for all q ∈ F do x← x + val[q] end for
4: return x

5: end function
6: function TreeEval(τ ∶ term): array indexed by Q of values from S

7: ▷ TreeEval(τ)[q] is the sum of the weights of the runs of B on τ reaching state q.
8: match τ with
9: Leaf a:

10: for all q ∈ Q do val[q]← wgt(�, a, q) end for
11: Unary a(τ1):
12: val1 ← TreeEval(τ1)
13: for all q ∈ Q do val[q]← 0S end for
14: for all (q1, a, q) ∈ T do val[q]← val[q] + val1[q1] ×wgt(q1, a, q) end for
15: Binary a(τ1, τ2):
16: val1 ← TreeEval(τ1); val2 ← TreeEval(τ2)
17: for all q ∈ Q do val[q]← 0S end for
18: for all (q1, q2, a, q) ∈ T do
19: val[q]← val[q] + val1[q1] ×wgt(q1, q2, a, q) × val2[q2]
20: end for
21: end match
22: return val
23: end function

2. Using Lemma 14 below, from the WTS T we construct in polynomial time an equivalent
weighted tree automaton Bk on graphs of tree-width at most k: [[T ]](G) = [[Bk]](τ).

3. We compute [[Bk]](τ) with Algorithm 1. The main complexity comes from the call
TreeEval. Executing the body of this function (without the recursive calls) takes time
O(∣Bk ∣). Hence, the overall time complexity of this evaluation is O(∣τ ∣ ⋅ ∣Bk ∣). J

A weighted (binary) tree automaton over alphabet Σ is usually given as a tuple B =
(Q,T,F,wgt) where F ⊆ Q is the subset of accepting states, T ⊆ ({�} ∪Q ∪Q2) × Σ ×Q
defines the bottom-up transitions and wgt∶T → S gives weights to transitions. This is an
equivalent representation of a WTS over ({↗,↖},Σ).

I Lemma 14. Given a WTS T over (Γ,Σ)-graphs and k > 0, we can compute in polynomial
time wrt. T , a weighted tree automaton Bk which is equivalent to T over graphs of tree-width
at most k. Here, equivalent means that for all well-formed k-TTs τ with {∣τ ∣} = (G,∅), we
have [[T ]](G) = [[Bk]](τ).

5 Discussions and conclusions

Connections with CSP. The quantitative versions of the constraint satisfaction problem
(CSP) are closely related to the evaluation problem for weighted tiling systems and graphs.
Classic (boolean) CSPs ask for the existence of a solution of a set of constraints, as non-
deterministic automata ask for the existence of an accepting run. In the valued-CSP (see
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e.g. [20]), weights (costs) are assigned to each constraint depending on how the constraint is
fulfilled, these weights are summed over all constraints and the aim is to minimize this total
cost. This corresponds to our evaluation problem in the min-plus tropical semiring.

The weighted counting CSP (weighted #CSP) is defined similarly but uses a (+,×)-
semiring such as N, Z, Q, . . . , (see e.g. [7, 8]). The cost of a solution is the product of the
weights over all constraints and the value of the weighted #CSP is the sum over all solutions.
Counting CSP (#CSP) is obtained with semiring Natural when functions in the language
only take values 0 or 1, thus counting the number of solutions of the classic CSP.

One of the main problems in CSP is to determine conditions under which the problems
are tractable (polynomial time). Feder and Vardi conjectured [16] that, depending on the
constraint language Γ, problems in CSP(Γ) are either in P or NP-complete. The dichotomy
conjecture extends to #CSP(Γ), saying that such counting problems are either in FP or
#P-complete, see e.g. [6, 15]. In this paper, we show that for WTS, the evalution problem is
#P-complete (Theorem 7).

Most often the non-uniform complexity is considered, meaning that the language (for
us the WTS) is not part of the input and the complexity only depends on the instance (for
us the input graph). One such structural restriction is when the constraint graph of the
instance has bounded tree-width. This is indeed related to our efficient evaluation described
in Section 4. Our approach is different though since we reduce WTS to weighted word/tree
automata and obtain a complexity linear in the input graph.

As future work, we plan to investigate more closely the relationship between weighted
#CSP and the evaluation problem for WTS. In particular, it would be interesting to see
whether results on approximate computation which are widely studied for quantitative CSP
can be transfered to weighted tiling systems.

On the generality of the model. The model of WGA [10] additionally has occurrence
constraints (boolean combinations of constraints of the form #tile ≥ n, where tile ∈ ∆
and n ∈ N). A run is valid only if the occurrence constraints are satisfied. We could
allow these constraints as well, without compromising the complexity upper bounds. In
fact, we can allow more expressive quantifier-free Presburger constraints on the tiles (e.g.,
#tile1 +#tile2 = #tile3). The NP machine witnessing the upper bounds can compute the
Parikh vector of the tiles used in a guessed run, and check in polynomial time whether the
constraints are satisfied.

Variants. The evaluation problem Eval is a function problem. The decision variants cor-
respond to threshold languages such as, is the computed weight {>,≥,<,≤,=,≠} s, s being a
threshold. There are further variants depending on whether the threshold s is part of the
input or is fixed. The complexity depend on the semiring as well as on the value of the
threshold when it is fixed.

Conclusion. We have given tight complexity bounds for the evaluation problem for various
semirings. Our complexity upper bounds allows weights to be given in binary for problems
over (+,×)-semirings. However for tropical semirings the weights are assumed to be given in
unary. While our upper bounds hold for arbitrary graphs, lower bounds are given uniformly
for pictures (grid graphs). Further if we assume that the input graph does not have unbounded
grid as a minor (bounded tree-width), then we provide efficient evaluation algorithm.
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