1,542 research outputs found

    Access to vectors in multi-module memories

    Get PDF
    The poor bandwidth obtained from memory when conflicts arise in the modules or in the interconnection network degrades the performance of computers. Address transformation schemes, such as interleaving, skewing and linear transformations, have been proposed to achieve conflict-free access for streams with constant stride. However, this is achieved only for some strides. In this paper, we summarize a mechanism to request the elements in an out-of-order way which allows to achieve conflict-free access for a larger number of strides. We study the cases of a single vector processor and of a vector multiprocessor system. For this latter case, we propose a synchronous mode of accessing memory that can be applied in SIMD machines or in MIMD systems with decoupled access and execution.Peer ReviewedPostprint (published version

    Command vector memory systems: high performance at low cost

    Get PDF
    The focus of this paper is on designing both a low cost and high performance, high bandwidth vector memory system that takes advantage of modern commodity SDRAM memory chips. To successfully extract the full bandwidth from SDRAM parts, we propose a new memory system organization based on sending commands to the memory system as opposed to sending individual addresses. A command specifies, in a few bytes, a request for multiple independent memory words. A command is similar to a burst found in DRAM memories, but does not require the memory words to be consecutive. The command is sent to all sections of the memory array simultaneously, thus not requiring a crossbar in the proper sense. Our simulations show that this command based memory system can improve performance over a traditional SDRAM-based memory system by factors that range between 1.15 up to 1.54. Moreover, in many cases, the command memory system outperforms even the best SRAM memory system under consideration. Overall the command based memory system achieves similar or better results than a 10 ns SRAM memory system (a) using fewer banks and (b) using memory devices that are between 15 to 60 times cheaper.Peer ReviewedPostprint (published version

    Vector computer memory bank contention

    Get PDF
    A number of vector supercomputers feature very large memories. Unfortunately the large capacity memory chips that are used in these computers are much slower than the fast central processing unit (CPU) circuitry. As a result, memory bank reservation times (in CPU ticks) are much longer than on previous generations of computers. A consequence of these long reservation times is that memory bank contention is sharply increased, resulting in significantly lowered performance rates. The phenomenon of memory bank contention in vector computers is analyzed using both a Markov chain model and a Monte Carlo simulation program. The results of this analysis indicate that future generations of supercomputers must either employ much faster memory chips or else feature very large numbers of independent memory banks

    Castell: a heterogeneous cmp architecture scalable to hundreds of processors

    Get PDF
    Technology improvements and power constrains have taken multicore architectures to dominate microprocessor designs over uniprocessors. At the same time, accelerator based architectures have shown that heterogeneous multicores are very efficient and can provide high throughput for parallel applications, but with a high-programming effort. We propose Castell a scalable chip multiprocessor architecture that can be programmed as uniprocessors, and provides the high throughput of accelerator-based architectures. Castell relies on task-based programming models that simplify software development. These models use a runtime system that dynamically finds, schedules, and adds hardware-specific features to parallel tasks. One of these features is DMA transfers to overlap computation and data movement, which is known as double buffering. This feature allows applications on Castell to tolerate large memory latencies and lets us design the memory system focusing on memory bandwidth. In addition to provide programmability and the design of the memory system, we have used a hierarchical NoC and added a synchronization module. The NoC design distributes memory traffic efficiently to allow the architecture to scale. The synchronization module is a consequence of the large performance degradation of application for large synchronization latencies. Castell is mainly an architecture framework that enables the definition of domain-specific implementations, fine-tuned to a particular problem or application. So far, Castell has been successfully used to propose heterogeneous multicore architectures for scientific kernels, video decoding (using H.264), and protein sequence alignment (using Smith-Waterman and clustalW). It has also been used to explore a number of architecture optimizations such as enhanced DMA controllers, and architecture support for task-based programming models. ii

    Hardware-only stream prediction + cache prefetching + dynamic access ordering

    Get PDF
    Journal ArticleThe speed gap between processors and memory system is becoming the performance bottleneck for many applications, and computations with strided access patterns are among those that suffer most. The vectors used in such applications lack temporal and often spatial locality, and are usually too large to cache. In spite of their poor cache behavior, these access patterns have the advantage of being, predictable, which can be exploited to improve the efficiency of the memory subsystem. As a promising technique to relieve memory system bottleneck, prefetching has been studied in its various forms, and so is dynamic memory scheduling. This study builds on these results, combining a stride-based reference prediction table, a mechanism that prefetches L2 cache lines, and a memory controller that dynamically schedules accesses to a Direct Rambus memory subsystem. We find that such a system delivers impressive speedups for scientific applications with regular access patterns (reducing execution time by almost a factor of two) without negatively affecting the performance of non-streaming programs

    Performance and power optimizations in chip multiprocessors for throughput-aware computation

    Get PDF
    The so-called "power (or power density) wall" has caused core frequency (and single-thread performance) to slow down, giving rise to the era of multi-core/multi-thread processors. For example, the IBM POWER4 processor, released in 2001, incorporated two single-thread cores into the same chip. In 2010, IBM released the POWER7 processor with eight 4-thread cores in the same chip, for a total capacity of 32 execution contexts. The ever increasing number of cores and threads gives rise to new opportunities and challenges for software and hardware architects. At software level, applications can benefit from the abundant number of execution contexts to boost throughput. But this challenges programmers to create highly-parallel applications and operating systems capable of scheduling them correctly. At hardware level, the increasing core and thread count puts pressure on the memory interface, because memory bandwidth grows at a slower pace ---phenomenon known as the "bandwidth (or memory) wall". In addition to memory bandwidth issues, chip power consumption rises due to manufacturers' difficulty to lower operating voltages sufficiently every processor generation. This thesis presents innovations to improve bandwidth and power consumption in chip multiprocessors (CMPs) for throughput-aware computation: a bandwidth-optimized last-level cache (LLC), a bandwidth-optimized vector register file, and a power/performance-aware thread placement heuristic. In contrast to state-of-the-art LLC designs, our organization avoids data replication and, hence, does not require keeping data coherent. Instead, the address space is statically distributed all over the LLC (in a fine-grained interleaving fashion). The absence of data replication increases the cache effective capacity, which results in better hit rates and higher bandwidth compared to a coherent LLC. We use double buffering to hide the extra access latency due to the lack of data replication. The proposed vector register file is composed of thousands of registers and organized as an aggregation of banks. We leverage such organization to attach small special-function "local computation elements" (LCEs) to each bank. This approach ---referred to as the "processor-in-regfile" (PIR) strategy--- overcomes the limited number of register file ports. Because each LCE is a SIMD computation element and all of them can proceed concurrently, the PIR strategy constitutes a highly-parallel super-wide-SIMD device (ideal for throughput-aware computation). Finally, we present a heuristic to reduce chip power consumption by dynamically placing software (application) threads across hardware (physical) threads. The heuristic gathers chip-level power and performance information at runtime to infer characteristics of the applications being executed. For example, if an application's threads share data, the heuristic may decide to place them in fewer cores to favor inter-thread data sharing and communication. In such case, the number of active cores decreases, which is a good opportunity to switch off the unused cores to save power. It is increasingly harder to find bulletproof (micro-)architectural solutions for the bandwidth and power scalability limitations in CMPs. Consequently, we think that architects should attack those problems from different flanks simultaneously, with complementary innovations. This thesis contributes with a battery of solutions to alleviate those problems in the context of throughput-aware computation: 1) proposing a bandwidth-optimized LLC; 2) proposing a bandwidth-optimized register file organization; and 3) proposing a simple technique to improve power-performance efficiency.El excesivo consumo de potencia de los procesadores actuales ha desacelerado el incremento en la frecuencia operativa de los mismos para dar lugar a la era de los procesadores con múltiples núcleos y múltiples hilos de ejecución. Por ejemplo, el procesador POWER7 de IBM, lanzado al mercado en 2010, incorpora ocho núcleos en el mismo chip, con cuatro hilos de ejecución por núcleo. Esto da lugar a nuevas oportunidades y desafíos para los arquitectos de software y hardware. A nivel de software, las aplicaciones pueden beneficiarse del abundante número de núcleos e hilos de ejecución para aumentar el rendimiento. Pero esto obliga a los programadores a crear aplicaciones altamente paralelas y sistemas operativos capaces de planificar correctamente la ejecución de las mismas. A nivel de hardware, el creciente número de núcleos e hilos de ejecución ejerce presión sobre la interfaz de memoria, ya que el ancho de banda de memoria crece a un ritmo más lento. Además de los problemas de ancho de banda de memoria, el consumo de energía del chip se eleva debido a la dificultad de los fabricantes para reducir suficientemente los voltajes de operación entre generaciones de procesadores. Esta tesis presenta innovaciones para mejorar el ancho de banda y consumo de energía en procesadores multinúcleo en el ámbito de la computación orientada a rendimiento ("throughput-aware computation"): una memoria caché de último nivel ("last-level cache" o LLC) optimizada para ancho de banda, un banco de registros vectorial optimizado para ancho de banda, y una heurística para planificar la ejecución de aplicaciones paralelas orientada a mejorar la eficiencia del consumo de potencia y desempeño. En contraste con los diseños de LLC de última generación, nuestra organización evita la duplicación de datos y, por tanto, no requiere de técnicas de coherencia. El espacio de direcciones de memoria se distribuye estáticamente en la LLC con un entrelazado de grano fino. La ausencia de replicación de datos aumenta la capacidad efectiva de la memoria caché, lo que se traduce en mejores tasas de acierto y mayor ancho de banda en comparación con una LLC coherente. Utilizamos la técnica de "doble buffering" para ocultar la latencia adicional necesaria para acceder a datos remotos. El banco de registros vectorial propuesto se compone de miles de registros y se organiza como una agregación de bancos. Incorporamos a cada banco una pequeña unidad de cómputo de propósito especial ("local computation element" o LCE). Este enfoque ---que llamamos "computación en banco de registros"--- permite superar el número limitado de puertos en el banco de registros. Debido a que cada LCE es una unidad de cómputo con soporte SIMD ("single instruction, multiple data") y todas ellas pueden proceder de forma concurrente, la estrategia de "computación en banco de registros" constituye un dispositivo SIMD altamente paralelo. Por último, presentamos una heurística para planificar la ejecución de aplicaciones paralelas orientada a reducir el consumo de energía del chip, colocando dinámicamente los hilos de ejecución a nivel de software entre los hilos de ejecución a nivel de hardware. La heurística obtiene, en tiempo de ejecución, información de consumo de potencia y desempeño del chip para inferir las características de las aplicaciones. Por ejemplo, si los hilos de ejecución a nivel de software comparten datos significativamente, la heurística puede decidir colocarlos en un menor número de núcleos para favorecer el intercambio de datos entre ellos. En tal caso, los núcleos no utilizados se pueden apagar para ahorrar energía. Cada vez es más difícil encontrar soluciones de arquitectura "a prueba de balas" para resolver las limitaciones de escalabilidad de los procesadores actuales. En consecuencia, creemos que los arquitectos deben atacar dichos problemas desde diferentes flancos simultáneamente, con innovaciones complementarias

    Method and device for maximizing memory system bandwidth by accessing data in a dynamically determined order

    Get PDF
    A data processing system is disclosed which comprises a data processor and memory control device for controlling the access of information from the memory. The memory control device includes temporary storage and decision ability for determining what order to execute the memory accesses. The compiler detects the requirements of the data processor and selects the data to stream to the memory control device which determines a memory access order. The order in which to access said information is selected based on the location of information stored in the memory. The information is repeatedly accessed from memory and stored in the temporary storage until all streamed information is accessed. The information is stored until required by the data processor. The selection of the order in which to access information maximizes bandwidth and decreases the retrieval time
    • …
    corecore