
Command Vector Memory Systems: High Performance at Low Cost’

Jesus Corbal Roger Espasa Mateo Valero*

Departament d’Arquitectura  de Computadors,
Universitat Politecnica de Catalunya-Barcelona, Spain

e-mail: {jcorbal,roger,mateo]Oac.upc.es

Abstract

The focus of thus paper as on desagnang both a low
cost and high performance, high bandwidth vector mem-
ory system that takes advantage of modern commodaty
SDRAM memory chips. To successfully extract the full
bandwidth from SDRAM parts, we propose a new m e m -
ory system organazatzon based on sendang commands to
the memory system as opposed to sending andrvadual ad-
dresses. A command specifies, an a few bytes, a request
for multiple independent memory words. A command is
samalar to a burst found an DRAM memories, but does
not require the memory words to be consecutive. The
command is sent to all sectzons of the memory array si-
multaneously, thus not requirang a crossbar in the proper
sense. Our samulataons show that this command based
memory system can improve performance over a t ra -
ditional SDRAM-based memory system by factors that
range between 1.15 up to 1.54. Moreover, in many cases,
the command memory system outperforms even the best
SRAM memory system under considerataon.  Overall the
command based memory system achieves similar or bet-
ter results than a 1Ons  SRAM memory system (a) usang
fewer banks and (b) uszng memory devaces  that are be-
tween 15 to 60 times cheaper.

Figure 1: Typical multiport memory system of a multi-
processor vector machine.

each individual memory bank as measured in processor
cycles (denoted L in the figure).

These types of memory systems have a very high cost.
This is due to the combination of several factors. First,
SRAM chips, used to achieve low latency, are very ex-
pensive and offer a modest capacity. Therefore, a large
number of chips is needed to build a large memory sys-
tem, typical of supercomputers. Second, the interleaving
required to provide high bandwidth requires many in-
dependent sections and large crossbars, which consume
large numbers of chips and board interconnects.

1 Introduction

The memory system architecture is a critical factor
that determines overall performance of supercomputers.
This is specially true in the case of parallel vector pro-
cessors, since vector CPU‘S typically demand very high
bandwidths at relatively low latency from the memory
system.

Designing less expensive high-performance memory
systems will become a primary objective in the next
generation of vector machines. We believe that central
to that goal will be the use of alternative memory de-
vices with better performance/cost ratios. In particular,
the use of commodity DRAM parts instead of expensive
SRAM ones will probably be mandatory.

Traditional vector supercomputers use multiple sec-
tions and multiple banks per section to achieve these
very high bandwidths. Moreover, to achieve low laten-
ties, high performance SRAM memory banks are typi-
cally used. Figure 1 shows the block diagram of a typical
multi-ported parallel vector processor. The entire sys-
tem is composed of P vector processors with T memory
ports each. In order to guarantee the required band-
width two conditions must be met. First, the mem-
ory array needs S sections (or memory busses) where
5’ 2 P x T. Second, the number of banks per section (h;
in the figure), has to be at least equal to the latency of

Except for large problems that benefit more from fit-
ting in memory than from using fast memories. conven-
tional DRAM is still not a good alternative for vector
memory systems. This is due to two main reasons. First.
DRAM memories offer lower bandwidth than SRAM.
About 4 to 8 times more banks are required in a DRAM-
based system to match the peak bandwidth of a SRAM-
based system. Therefore, the benefits from the lower
cost per bit of DRAM memories might be offset by the
higher interconnection costs and additional control logic.
Lastly, DRAM memories have a much longer latency
than SRAM memories. Even though vector machines
are known for their ability to tolerate long memory laten-
ties, it has been shown in [3] that typical vector codes are
actually very sensitive to increases in memory latency.

*This work was supported by the Ministry of Education of The new advances in DRAM architectures may
Spain under contract CICYT TIC-0129/95  and by the CEPBA. change this situation. We believe that modern SDRAhI

O-8186-8591-3/98 $10.00 0 1998 IEEE
66



Figure 2: The command memory system design

memories are a suit,ahle alternative for a cost-effective
high performance vector memory systenl. They deliver
higher bandwidth per bank than SRAM memories and.
therefore. a memory system based on SDRASI chips can
be built using fewer overall banks. Fewer banks implies
a lower cost in interconnections and less additional glue
logic. Not only that. each SDRAM chip is, by itself,
much cheaper than the equivalent SRAhl one. The c o n -
bination of bot.h factors can yield a vector memory sys-
tem that is several orders of magnitude cheaper than
traditional vector memory syst,ems.

The focus of this paper 1s  on designing both a 10~
cost and high performance. high bandwidth vector menl-
ory system that takes advantage of modern commodit>
SDRAM memory chips.

To  success fu l ly  estract the full  bandwidth from
SDRAM parts ,  Lye propose a new memory system or-
ganization based 011  sending commands to the Inernori.
system as opposed to sending individual addresses. A
command specifies in a few bytes a request for multi-
ple independent memory words (similar t,o a burst found
in DRAM memories. but does not require the memory
words to be consecutive). The command is sent to all
sections of the memory array simultaneously (thus not
requiring a crossbar in the proper sense). At the head
of each section, a section controller examines the com-
mand and analytically determines which memorv words
of the command it can service. Then. the sectibn con-
troller generates the appropriate sequence of addresses
and sends them to the individual banks. The individ-
ual banks perform the final memory access and send the
requested word to a data crossbar that routes it t.o the
corresponding processor.

Figure 2 illust.rates the proposed design. As it can be
seen, in contrast with the traditional architecture. there
are no memory ports. Instead, we find a single command
port where all vector requests are sent, sequentially. Ha\;-
ing only one command bus does not imp,ly a loss of ad-
dress bandwidth. since a command describes a large set
of addresses using 2 words.

The commands from different processors compete for
a common bus. In sharp cont,rast,  with a traditional de-
sign, there is no address crossbar, just a multiplexed bus.
Once a command seizes the common bus. it is broad-
casted to all section controllers simultaneousl>-. T h e
commands are queued and serviced when possible by the
section controller. Note that each section cont,roller pro-
cesses commands in parallel and. thus. is able to generatr
vector addresses independently from other sections.

This paper will show that there are several advan-

tages to using a command memory system over a tra-
ditional design. First, and most important. using com-
mands instead of individual (and independent ) memory
addresses matches verv well the access schemes of rnod-
ern SDRAV parts (which favor multiple accesses to the
sanle row). Second, a command is effectively compress-
ing multiple address requests into a small packet. There-
fore. multiple commands can be potentially sent to the
memory system in much less time than it was previously
required for a single vector stream. The net effect is that
commands reach the section controllers many cycles in
advance. thus providing a latency tolerance mechanism
Third. having multiple commands queued at a section
controller can be used to improve overall throughput by
int,elligently multiplexing the execution of two or more
commands.

2 Background on memory devices

D R A M  a n d  SRAM are  t he  t,wo b a s i c  memor>
archetypes. DRAM memories are typically bigger and
cheaper than SRAM ones. whereas SRA11  memories arc’
faster and have more bandwidth due to thclr inherentI>
faster cycle time.

Accessing a SRAY device is relatively straightfor-
ward. The memory controller presents a full address
to the SRAM and after a fixed amount of time the data
appears at the output pins. By contrast,. t,he DRAhl ac-
cess scheme is substantially more complex. In order to
reduce pin count. DR_4M memories decouple the dat,a el-
ement access in two different stages: row access. where
a row of dat,a (2551024  elements typically) is loaded
from the DRAM core and hold in a row of sense am-
plifiers. and a column access. where the selected data
is accessed from the row of sense amplifiers. This two
stages are usually referred as RAS (Row Address Strobe)
access. and CAS (Column Access Strobe) access. Fur-
thermore. before accessing a new row, the active row
must, be regenerated into the DRAN core (due to the
destructive read-out nature of dynamic accesses) hy ini-
tiating a precharge operation. Due t,o all these limita-
tions, plus the high capacitance of DR_iM cells. DRAM
memories suffer from the lack of enough speed and band-
width.

This  situat,ion has been changing recently. DRAhI
vendors have designed new memory archit,ectures which
offer dramatic improvements in performance. Examples
of such architectures are Cached DRAM (CDRAM) [4].
Rambvs DRAM (RDRAM) [5] and Synchronous DRAM
(SDRAM) [6].

SDRAM operation

A SDRAM resembles a conventional DRAM. It is dy-
namic. and must, be periodically refreshed. However.
SDRARl uses pipelining to improve throughput. Fur-
thermore. t,he data from the selected row is held on the
sense amplifiers while multiple column addresses are sr-
lected from it. Therefore. if we access a data element
located in the current active row (what we will call row
hit) we no longer need t,o repeat the row access. reduc-
ing dramatically the access delay time. The SDRAM

69



Figure 3: The Out-of-Order vector architrcture studied
in this paper.

synchronous interface is optimized so that, we are able to
make a column access every cycle.

When an access is initiated on a SDRARI memor\
bank. we have to execute the following sequence of op-
erat ions:

1. Control whether a row hit has been produced or not

‘2. If we have a row hit. we can  initiate the column access to get
the desired data.

3. If we have a row miss. we have to initiate a prerharge  opera-
tion (in order to regenerate the active row) and then, a new
row access is required. Once we have loaded the new row. we
can initiate the column access.

3 Experimental setup

In this section we present the tools and benchmarks
used to (1) evaluate our proposed command-based mem-
ory system. and (2)  compare it to more traditional vector
memory designs.

3.1 The Vector Processor

We use as our vect,or  cpu an out-of-order version of
a Convex C3400  [T]. Th’1s out-of-order design was in-
troduced in [3] and uses register renaming in a similar
fashion as a RlOOOO  processor [8] to achieve out-of-order
execution of all types of vector and scalar instructions
(see figure 3).

Instructions flow in-order through the Fetch and De-
code/Rename stages and then go to one of the four
queues present in the architecture based on instruction
t,ype. At the rename stage. a mapping table translates
each virtual register int,o a physical register. There are 4
independent mapping tables. one for each type of regis-
ter: address (integer). scalnr (floating point). zjeclor and
m.usl; registers. When instructions are accept,ed into the
decode stage, a slot in the reorder buffer is also allocated.

The A. S and V queues monitor the ready status of
all instructions held in the queue and as soon as one
instruction is ready. it is sent to the appropriate func-
tional unit for execution. All instruction queues can hold
up to 16 instructions. Both scalar register files (integer

and floating point) have 64 physicals registers each. The
mask register file has S physical registers. T h e  fet,ch
stage, the decode stage and all four queues only process
a maximum of 1 instruction per cycle while commit,ting
of instructions proceeds at a rate of up to 4 instructions
ppr cycle.

The vector unit has two funct,ional units connect.ed to
eight logical vector registers (backed up by 16 physical
vector registers). The former unit is a general purpose
arithmetic unit capable of executing all vect,or  instruc-
tions. The latter unit is a restricted functional unit t,hat
executes all vector instructions except multiplication, di-
vision and square root. Both functional units are full>-
pipelined and each vect,or  register holds 128 eight-byte
register.

3.2 Why an Out-of-Order architecture ?

As WP have already seen, SDRAM memory  ch ips
have longer latencies than the typical high-perforniance
SRAM memory chips used in vector memory systems.
Typicall>-. access time latency increases a factor of 3 t,o
6.

Traditionall\> vector CPU‘S have been considered verb
good for tolerating long memory latencies. However. the
results presented in [3] hs ow that for very long lat,encies
(between 50 and 100 cycles) this might no longer he true.
In [3] simulations of a traditional in-order vector ma-
chine and an out-of-order vector architecture were car-
ried 2ut under varying memory latency conditions. From
the results of this work, we can easily conclude that the
out-of-order vector architecture has a good latency toler-
ance whereas the conventional architecture suffers severe
degradations in performance when increasing memory la-
tency.

These results lead us to believe that wve require thr
benefits of an out-of-order vector architecture to be ablr
to explore the design tradeoffs involved in command
memory systems.

3 . 3  M e m o r y  s u b s y s t e m  a s s u m p t i o n s

Although we believe command memory syst,ems will
be a very good match for vector multiprocessors. this is
the first study on the design and characteristics of the
command-based paradigm. Therefore. to better under-
stand the tradeoffs involved in command memory sys-
terns and to reduce the design space to be explored. we
have chosen to study only a single processor with a single
memory port.

Since we want to evaluate memory- systems as close
to reality as possible. we will use real specificat,ions for
both SDRAM and SRAM parts. \Ye have select,ed two
different SRAhI chips for our simulations: a higll-end
BiCMOS  SRAhl with a cycle t ime  o f  10  n s .  and  a
middle/high-end CMOS SRAM with a cycle time of 20
ns [9]. For our SDRASI simulations we have designed
a detailed model of a real SDRA>I chip. the Fu.jitsu
MB81117822A  [lo]. The  Fu j i t su  MB8 is a 2hl x Xbits,
125 Mhz SDRAN. with two interleaved banks. Each
bank has its own DRAM core and its own ro\v of sense
amplifiers, but they share the same common data and
address bus.

70



3.4 Simulation Tools and Benchmarks

To gather the performance results on the architecture
described we have t,aken a trace-driven simulat,ion ap-
proach. Using a pixie-like tool called Dixie [ll] we have
extracted instruct,ion and memory traces from Convex
C3400 binaries. Dixie is able to produce a trace of basic
blocks executed as well as a t.race of the values cant ained
in the vector lengfh (VI) register and vector sfrldc (vs)
register. This allows us to accurately simulate on a cycle-
by-cycle basis the behaviour of the two architectures Just
described. See [3] for det.ails of the simulation procedure.

We have vect,orized all programs from the Perfect Club
and SPECfpS,” suites and we have processed them using
Dixie. Of all these programs, we have selected for our
experiments the ten most vectorizable ones.

4 Performance of Conventional Memory
Systems

We start by analyzing the performance of conveII-
tional memory systems for our benchmarks on the out-
of-order vector architecture. We have considered the four
following memory systems.

An ideal memory system with no collisions and 1 cycle of
fixed latency
.4 lOns-SRAM l-section conventional memory system.
A 20x-SRAM  I-sectioI1 conventional memory system.
A 125Mhz-SDRAI\I  l-section conventional memory system,
with TOW hit/miss control logic.

The ideal memory system modeled is an optimal
memory system which delivers a maximum bandwidth
of one 64-bit word per processor cycle. A vector access
to memory of VI elements is served in .Y + 1:1 cycles,
where X is always fixed to a single cycle.

The two SRAM memory systems are modeled follow
ing figure 4(a). The processor sends individual addresses
to the memory system at a rate of one address per pro-
cessor cycle. Although we only model a single section.
we force addresses to spend a few cycles (I; = 5) crossing
the upward interconnection network before reaching the
section. Once an address arrives at the section it will be
sent to the appropriate bank. If the bank is busy. the
address will be queued at a FIFO in front of the bank.
Each bank FIFO can hold an unlimited number of ad-
dresses. Each cycle. an arbiter selects one single bank to
initiate the access within all those banks which have an
available address in the head of its FIFO. The selection
is prioritized based on the “age” of each address item;
that is, address items corresponding to vector requests
issued .earlier by the processor will be given higher prior-
ity. The bank access. after either 1011s or 2011s  depending
on the SRAM chosen. will produce a data item that will
be returned, after D = 5 cycles of downward latency. to
the processor. Since we have fixed latencv and we as-
sume that only one single access per cycle i‘s allowed, we
will never have collisions at the downward network.

The SDRA!vl memory system is modeled very simi-
larly to the SRAM systems (see figure 4(b)). However.
the dynamic nature of the memory devices and their

Figure 4: Model for simulations: a) SRAXI model: t))
SDRAM model

different clock cycle time force a few differences. First,
since the SDRAM chips operate at a different frequent>
than the processor, we need extra logic t,o perform the
frequency conversion. Lye assume a logic which receivc,h
address requests at t,he processor frequency and is ahIt>
to generate RAS and CAS accesses (plus precharge opel’-
ations) at t,lie memory frequen:y. Second. it is assumed
that this logic includes a hit/miss detection logic able to
detect, whether we have the needed row already load(~l.
Additionally, since SDRAM latency may varv depending
of whether we have a row hit or not. and s:nce several
SDRAhI accesses can be initiated everv cycle. wc nred
both output and input FIFO’s, An arliitrr selects frown
all the output FIFO’s heads one data item to be returned
to the processor. Again, the selection is prioritized based
on the “age” of each data item.

4.1 Performance Results

Using the tools seen in section 3.4. we have siniulatc~cl
the four memory systems just described. The result,s are
shown in Figure 5. For each program, we present per-
formance results for different number of banks (X-axis).
Performance is plot,ted relative t,o the ideal memory sy>-
tem (1 cycle memory latency. no collisions). That is. ;I
value of 1.0 is the performance of each program under
the ideal memory system.

The results can be clearly divided in two different
groups of programs:

A first group of programs. swm256, hydro2d. arc2d.
su2cor. tomcatv  and bdna, show a very small differ-
ence between the SRAhl and SDRAM memory systems.
Moreover. all these programs show a performance quite
close to the ideal memory system. This is not surprising.
given what, we saw in [3] These programs happen to bp
highly latency tolerant and, therefore. the extra lat,euc>
of the SDRARI devices does not affect their final perfor-
mance. Moreover, when the number of banks is low (~a)-.
the under-matched cases) the SDRAhsl  system shows a
better performance than the 20ns-SRAN one. This can
be explained because the SRAM syst,em is bandwidth-
limited. whereas the SDRA%I, given a high enough rom
hit ratio. is not.

‘The second group of programs. dyf esm. flo52 and
trfd. are quite far from the ideal memory system per-
formance. These happen to be the less latency tolerant

71



o.9 -*
swm256

1.0
~~~~.._o_.___..........~

P 0.9 &__-._._._._A

z _M1

B
v1 0.8

07M2
bdna

8 16 24 32 8 16 24 32

hydro2d arc2d

0.6
~_._b__._._._.d

0.5
X 16 24 32

t r f d dyf esm

8 16 24 32

p._._._.-.-.A
..9-. conventional-SRAMllOns)
_conventional-SI1AM(2Ons)--*- conventional-Smut4

R lb 24 32

flO52

Figure 5: Performance of conventional memory systems for different numbers of memory banks (X-axis). Performance
is relative to the ideal memory system (1 cycle memory latency. no collisions).

programs and the higher bandwidth of SDRAM cannot
compensate its higher latency. This also occurs even
when the number of banks is low.

4.2 Limitations of conventional access

The results presented in the previous section are
somewhat mixed. On one hand, the SDRAM system
achieves a performance close to the 20ns SRAM system,
sometimes even close to the 1Ons  SRAM one. There-
fore, for a certain class of programs. the SDRAM sys-
tem represents a very good cost-performance tradeoff.
On the other hand, despite its theoretical higher peak
bandwidth, in many cases t,he SDRAM system falls far
behind the SRAM system.

The origin of the problem can be found in the access
scheme of the SDRAM memories we are using. In the
conventional scheme. each address sent to the SDRAM
banks is treated independently from previous and/or fol-
lowing addresses. Therefore. m the most common case.
we have to follow the long sequence of operations de-
scribed in section 2 for each individual memorv address.
This causes the SDRAM access scheme to be “inefficient
since we cannot hide neither the precharge operatzon tame
nor the row access time.

Ideally, one would desire to advance all the expensive
operations of a SDRAM access (row hit/miss detection.
precharge and row access) as much as possible so that
their associated latencies could be effectively hidden.

4.3 Advanced access schemes

In fact, SDRAM vendors recommend another access
scheme to take full advantage from the high bandwidth
of SDRAM chips. All SDRAM vendors integrate two or
more banks in each SDRAM chip to maximize the effec-
tive bandwidt,h. By intelligently int.erleaving accesses to
each bank. it is possible to hide the precharge operation
time and the row access time. The mechanism used is to
request a burst of data items t.o one bank while the other
bank is being precharged and/or is loading a new row. A

4 bank 0 bank 1 b, bank 0 bank 1

Figure  6 :  Compar i son  be tween  a )  a  conven t iona l
SDR.AM  access scheme and b) an efficient SDRAM ac-
cess scheme. Row, Row access; Col, Column Access :
C+P. Column .4ccess with P r e c h a r g e  Operatzon: Pre.
Precharge Operatzon; X. Forced Delay.

conventional access schemes tends to distribute consecu-
tive accesses among as many banks as possible. in order
to reduce the number of memory collisions. By contrast,
the SDRARI access scheme must take advantage of burst
capabilities to extract consecutively as many data items
as possible from the same row’. This is due to the fact
that a single SDRAM chip with two banks inside can
almost, provide one data item per memory cycle. There-
fore. the addition of more banks per section does not
increase substantially the global section data through-
put .

Figure 6 shows an example in order to compare the

72



conventional SDRAhf access scheme and the advanced
access scheme proposed by the vendors. LVith the ad-
vanced access scheme precharge and row access opera-
tions are successfully hidden by accessing burst of data
to the other bank. In other words, w are ant,icipating
the row access several cycles before it is really needed.
Note that the throughput, (i.e. the rate of data accessed
per cycle), is remarkably higher in the advanced scheme.
IVote. however, that is no longer possible to generate ad-
dresses in-order (i.e. following the natural order of the
different elements of a vector).

5 Command Memory Systems

In this section we present our proposed vector memory
system based on the use of commands. In this paper, the
term commandrefers to avector memory access, whether
a load or a store. A command is characterized by a
3-tuple ((-40,  Lyl. 1.~))  that cont,ains the initial  memor>
address, the vector length and the vector stride of the
memory access.

The main goal of the proposal is to exploit the ad-
vanced access scheme of SDRAM memories described in
the previous section. Therefore. our proposal is based
around one central idea: instead of sending individual
addresses to the memory system we will send requests for
multiple data items (commands). These requests are se-
mantically richer than individual addresses because the>
describe mult,iple related memory accesses in a compact
way. Their semantics will allow us to efficiently schedule
memory accesses to the SDRAM banks.

The basis of our command memory system is to trans-
late a vector request (a command) into a set of bursts.
rather than chopping a vector request int,o its individual
addresses. A burst consists of a row address followed
by a certain number of column accesses. The concept
of burst is limited to a single row, but can be easily ex-
tended to deal with an entire bank. leading to what we
will call a subcommand.  Given a cert,ain vector memor)
access, a subcommand describes all the data items spec-
ified in the vector access that are contained in a single
memory bank.

At, the core of our proposal is the question of how
to generate from a certain vector memory access (com-
mand) multiple suhcommands to be sent (m parallel and
simultaneously) to all memory banks. Figure 7 shows
a simplified scheme of the proposed command memory
system. assuming the number of banks per section is 2.

The command memory system is able to translate a
vector request into hl subcommands.  where M is the
number of SDR.iI\I banks in the memory array. In order
to do so. the command issued by the vector cpu is broad-
casted to all sections of the memory system. At each sec-
tion. we have a section controller. The section controller
‘contains a ..command processing unit” per each mem-
ory bank of the section. The original command sent b>-
the cpu is processed simultaneously by all command pro-
cessing units. and is transformed into one subcommand
per bank. Once the subcommands have been generated.
they are queued at a per-bank FIFO, where t.hey await
being serviced.

At each section controller. a “RAS/CAS generator.’
monitors the head of all the bank FIFOs of the section.

Command r
(AO,  VI, Vs) /

. . .
SECTION 0 SECTION (M/2)-1

Figure 7: Command memory system block diagram
(only includes the address generation paths).

The address generator faithfully reproduces the access
scheme shown in figure G(b) deciding at each cycle what
FIFO should be serviced.

Overall. the command memory system has the follon-
ing advantages:

a) Depending of t,he characteristics of the vector
stride, a vector access can be unable to generat,e one
subcommand for every bank. In conventional memor>
systems. this often produces memory collisions. In con-
mand memory systems, this queue gaps can be filled wit,h
subcommands from following vector accesses. That is.
the RAS/CAS generator can effectively mult,iplex several
subcommands in order to take advantage of the whole
available bandwidth.

b)Sending a command takes very few cycles, much
less than a traditional address generation process. This
greatly increases the incoming request, rate to the section
controllers and. in turn, favors the multiplexing capabil-
ities of our system.

c) Out-of-order access to the memory banks avoids
producing int,er-stream collisions. that 1s. we can avoid
producing bank busy conflicts bet,ween  the last accesses
of one vector request and the first accesses of the follow-
ing vector request.

5.1 Subcommand Generation

A command is a 3-tuple containing all the information
of a vector request: the initial memo.ry address (A”). the
vector length (VI) and the vector stride (1:s). Each com-
mand processing unit is responsible of computing which
subset of the data specified in the command is contained
in its bank. This subset of data will be described using
a subcommand and queued into the bank FIFO. Note
that it might happen that the subset is empty. In this
case. no subcommand is generated. A subcommand is a
4tuple that contains:

I. RASo,  initial row address.

? C.4.50,  initial column address

3. Ak. burst stride.

1. DAT.  number of data items contained in the bank

73



We have developed an algorithm that takes as input
a command and a bank index and generates the appro-
priate subcommand. This algorithm develops the ideas
contained in [la] assuming low-order interleaving. A full
description of this algorithm is beyond the scope of this
paper and can be found in [13].

From the point of view of the results presented in
this paper, the most important characteristic of t,he al-
gorithm is its computational cost, which depends on the
vector stride. The computational cost of the algorithm
depends strongly on the vector stride. Vector accesses
with power-of-two strides (90% of the cases, since they
include stride 1) can be easily processed with a compu-
tational cost of only 2 memory cycles. In the other cases,
this computational cost increases to 15 memory cycles.
Despite this extra cycles, the command memory system
archit.ecture has very good latency tolerance properties

5.2 RAS/CAS Generat ion

Each section controller shown in figure 7 contains a
block of logic able to generate the row addresses. column
addresses and other control signals (write enable. auto-
precharge. etc.) needed to control the operation of all
the SDRAM chips in t,hat, part,icular section. This logic.
which we call the “RAS/CAS generator“. has to monitor
the status of all the FIFO queues associated to all the
banks contained in the section.

The RAS/CAS generator contains registers to control
the state of each bank (inactive, row accessing, column
accessing or precharging)  and the state of each subcom-
mand being served (number of data items remaining in
the bank). Also, row miss detection logic is required in
order to detect)  column overflows during a subcommand
service. The RAS/CAS generator follows the following
rules to ensure maximum data throughput in the section:

1. Only one row address or column address can be generated
every cycle.

2. When the column address to be generated refers to the
last data item of a subcommand, then a CAS access plus
precharge operation is generated (instead of a simple CAS
access). An example of the application of this rule can be
seen in figure 6(b), cycle 11.

3. Whenever a bank is in inactive state and a subcommand for
that bank is available, a row access must be initiated. even
if another bank is in column accessing state. This means
that a sequence of CAS addresses being generated will be
momentarily interrupted to allow the RAS address for this
inactive bank to proceed as soon as possible (see figure 6(b),
cycle 16).

5.3 Managing Stores

So far we have only discussed how the processor sends
requests to the section controllers and how each section
controller intelligently responds to these requests bv re-
turning the required data. However. stores pose a differ-
ent problem. A vector store consists of t,wo “information
streams”: a stream of addresses. which can be nicel!
compressed into a command, and a stream of data items
(one data item per address). Unfortunately. the data
items must be sent one by one from the cpu to the mem
ory banks.

Figure 8: Proposed store managing system scheme.

In our command memory system, st,ores  are handled
as follows. First. a command describing all the addresses
of the store operation is sent to the memory system.
Then. the memory port is used t,o send, one by one. each
data it.em that must be stored into memory. Two proh-
lems must,  be solved: first, store data is sent, out of the
cpu in order. while the addresses will be generated out-
of-order at the section cont,rollers (the RAS/(‘AS gen-
erators work m parallel and zndependen2ly). Second. al-
though the cpu sends the store data right away after the
command. it is not possible to guarantee that the st,ore
(sub)commands  will be serviced immediately. Therefore.
some form of buffering for store data must be provided
at the section controllers.

The solution to both problems is based on having
store data buffers at the section controllers and have
the RAS/CAS generators request data from these buffers
to be sent to the SDRAM banks. Figure 8 shows this
scheme. There is one FIFO queue per bank to hold the
corresponding store data. Data flows out of the cpu in-
order and enters each bank FIFO also in order. This
guarantees that the first data element of each FIFO cor-
responds precisely. to the first column access generated
by the correspondmg subcommand (i.e. ordering of data
within a queue is correct).

When a RAS/CAS generator accesses a column in
a store operation. it will force the head element of thr
bank store FIFO to be sent, to the section dat,a bus. In
could happen that. by the time the RAS/CAS genera-
tor is ready to start a write (store) operat,ion. there is
no available dat,a at the corresponding FIFO queue. In
this case. the RAS/CAS generator aborts the access and
at,tempts servicing some other command. At some later
time, the generator will retry the store access.

The only remaining problem is how the cpu routes
each individual data item to its proper FIFO queue (that
is, to is corresponding memory bank). The cpu uses the
initial address and the vector stride to find the bank
FIFO where the store data must be buffered.

5.4 Full architecture

\sVe now describe a full memory system architecture
using the concept of commands. As we already men-
tioned in previous sections. our performance results will
focus on a single processor with a single memory port..
Thus the memory system should be able to provide one
word (64 bits) per processor cycle. Our goal is to achieve
this performance while minimizing overall cost. thus pre-

74



ferring as many pieces of our design working at t,he low-
est possible frequency. In particular, we would like to
clock the whole memory system at the frequency of our
SDRAM’s (125Mhz).

Figure 9 shows the final architecture used in our sim-
ulations. Since the chosen processor working frequency
(500Mhz) exceeds the SDRAM working frequency, one
section with two banks is unable to match the required
bandwidth. To overcome this 4:l frequency ratio, we
need 4 independent sections working in parallel deliver-
ing 4 words per memory cycle to be able t,o sustain a
bandwidth of 1 word per processor cycle.

Stores can become a severe performance problems.
Despite stores represent around a 30% of all memory
operations. our initial simulations indicated that it is
important to send the store data to the bank FIFOs as
fast as possible. Therefore, we decided to have a 128
bit.s output bus from the cpu to the memory system.
This bus allows sending two &byte words of store data
per processor cycle. In those cases where the processor
knows FIFO collisions will occur (two consecutive data
items map to the same FIFO queue), the output rate
goes down to one data item per cycle. Note t,hat this
output bus is not larger than what can be found in a
typical microprocessor. In a conventional design an ad-
dress bus and t,wo data busses (one for loads and one
for stores) are needed. In our design, we have one load
data bus and the 128-bits output bus. Overall, the pin
requirements are very similar. Nevertheless, it can be
seen in [13] that using a more conventional 64-bit wide
bus only causes a small reduction of performance.

Note that the store data paths are decoupled into two
parts. The first part is composed of the index generator
and two multiplexers which route two store data every
processor cycle. The second part, the store FIFOs, are
distributed among all section controllers so that each
section controller has all it’s corresponding bank FIFOs
integrated in it. There is an interesting frequency mis-
match problem at the store buffers. Store data comes out
of the cpu at 500Mhz,  while the section controllers are
assumed to work at 125Mhz. We use a serial-to-parallel
frequency converter. similar to what can be found in the
Rambus  memory chips [4].

6 Performance Results

Using the same tools already seen in section 4.1, we
have modeled the 4-section command memory system
described above. The results are shown in Figure 10
and are compared to the results already obtained for the
conventional memory system designs.

As we did in section 4.1 performance results are rela-
tive to the performance of the ideal memory system and
for different number of memory banks. For the command
memory system we only simulate two cases: 8 banks and
16 banks (that is, one SDRAM chip per section and two
SDRAM chips per section).

Two general trends can be observed. First, in all pro-
grams but one (f 1052) the command memory system im-
proves performance over the conventional SDRAM mem-
ory system. Thus, for a similar cost, command memory
systems show a clear advantage. Second, the command
memory system requires much fewer banks to achieve

similar or even better performance than the conventional
memory systems. In other words, while the convent,ional
memory system shows improvements when we increase
t,he number of banks, the command memory system per-
formance is almost flat for most programs. Third. in five
out, of ten programs the command memory system even
outperforms the fastest and much more expensive SRAM
system (the 1Ons  one).

If we go into a program by program analysis, we see
again that, results are strongly dependent on the latency
tolerance characteristics of each benchmark. The pro-
grams can be broadly classified in three groups: (1)
hydro2d. arc2d,  su2cor,  tomcatv,  and bdna, (2) swm256
and nasa7 and (3) trfd, dyfesm and flo52.

In the first group. the simulations show c o m m a n d
memory sysfems clearly outperform all conventional
memory systems. Even the lOns-SRAM systems with
32 banks is outperformed by a command system which
has only 8 or 16 banks. What is more, in some cases.
the command memory system outjperforms even the ideal
memory system (1 cycle latency, no collisions). Although
intuitively this might seem impossible, the reason is that
the command memory system sends stores to the mem-
ory system twice as fast as the ideal system due to the
128bits  bus. Sending stores faster reduces the memory
port reservation time and frees physical registers sooner.
Having more physical available registers helps increasing
the processing rate and freeing the memory port SOOIIU

allows sending more commands in advance. Bot,h effects
combine to reduce the critical path of the program with
respect to the ideal memory system case.

Program nasa7 shows a very large improvement. out-
performing 20nsSRAM memory system. Surprisingly,
the conventional SDRAM did not perform very well.
This is explained by the multiplexing capabilities of the
command memory system. Program nasai’ has very
large strides, thus having a lot of memory collisions. since
data does not distribute evenly among all banks. OUI
RAS/CAS generators, are able to multiplex several in-
dependent commands with large st,rides and maximize
the usage of the section bandwidth.

In the last group. say. those benchmarks with pool
properties of latency tolerance, only moderate results are
achieved. Only conventional SDRAM memory systems
are slightly outperformed by our command memory sys-
tem. What is worse. in one of the benchmarks (flo52).
our proposed memory system is unable to improve over
the conventional SDRAM scheme. Several reasons ex-
plain these results. First, the low rate of incoming com-
mand arrivals has the negative effect of exposing all the
command processing latency. Combined with this. the
short vector lengths of these programs imply that each
bank contains very few data items. Therefore. the costs
of the row access and precharge operation times can not
be amortized and cause the SDRAM output, througli-
put to fall down to only a 30%-50% of the theoretical
maximum throughput.

7 Related Work

There have been several studies dealing with a posse-
ble migration t,owards DRAM technology in vector mem-
ory systems [l, 21. These studies have considered differ-

75



ent alternatives to overcome the two problems of dy-
namic memories mentioned in the introduction.

Kontothanassis  et,. al. in [2] focus on the bandwidth
problem as the main reason for the loss of performance in
DRAM vector memory systems. Therefore, they looked
at the performance impact of caches in a vector proces-
sors with DRAM memory system, showing that SRAM
memory systems provided the best overall performance
given a small amount of ba.nks.  Even with cache sizes of
1 Mbyte. DRAM vector memory systems suffered losses
of performance of more than 50% when compared to the
SRAM memory system (at equal number of banks).

Hsu,  Smith et .  al .  in [l] used CDRAMs in  bo th
conventional mono-processor and multi-processor vector
systems. Their work was primary targeted at achieving a
memory system able to deliver cost-effective bandwidth
in vector supercomputers. rather than at achieving high
performance. A CDRAM (Cached DRAM) can be seen
as a SDRAM wit,h multiple lines instead of one. working
as an integrated cache on-chip. Additionally, they sim-
ulated several interleaving strategies in order to find the
optimal distribution of the data across the memory array
(trading-off data locality and ‘hot bank’ elimination).

These proposals essentially try to overcome the lower
bandwidth of DRAM chips by using some form of
caching (either with a proper cache in [2] or with a dis-
tributed cache as in [I]). In our proposal, there is also
some form of caching, since we may consider the SDRAM
active line as part of a distributed cache. Therefore, our
8-bank experiments could be seen as using a 256 Kbytes
cache. However, our proposal differs from these previ-
ous ones in one fundamental aspect: we introduce a new
access scheme which forces accessing first all vector data
contained in a row (cache line) before starting to service
a new vector access. Since there is no interleaving of ac-
cesses within heterogeneous vector streams, we avoid un-
necessary row misses, improving overall efficiency. Our
proposal also includes a second important feature: we
are able to multiplex vector accesses with unbalanced
strides so that bandwidth is always maximized.

Figure 9: Proposed final architecture.

8 S u m m a r y

This paper has looked at the problem of designing a
low-cost high-performance vector memory system. To
achieve low cost, solutions based on SRAM chips must,
be ruled out and. instead, dynamic memory must be con-
sidered. However, current DRAM variants cannot match
the good bandwidth and latency parameters offered by
SRAM packages. Therefore, achieving both good per-
formance and low cost might seem unlikely.

Our simulations of conventional memory system de-
signs based on both SRAM and newer SDRAM chips
have shown that the performance of an SDRAM mem-
ory system can be up to a 30% worse than the SRAM
one. An analysis of the SDRAM memory system shows
that this degradation in performance is mostly due to
the inadequate memory access pattern generated by a
typical vector CPU. Instead of using bursts of addresses
to the same memory bank a vector cpu using low-order
interleaving tends to scatter addresses across many dif-
ferent banks.

We have presented a new memory system design
based around one central idea: we send full vector re-
quests (commands) to the memory system as opposed
to sending individual addresses. A command specifies in
a few bytes a request for multiple independent memory
words. By using intelligent memory controllers, we can
efficiently schedule all the individual requests specified
in a command so that bandwidth is maximized and all
the expensive SDRAM operations (row open, precharge,
etc.) are successfully hidden. The advantages of such
scheme are many-fold:

First. sending a command to the memory system
takes very few cycles, much less than a traditional ad-
dress generation process. Second. the commands are
broadcasted to all memory sections using a simple bus
structure. That is, there is no address crossbar in our de-
sign. At each section, the controller computes which part
of the command can be serviced from the banks in that
particular section. Third, multiple commands with very

76



swm256

x 16 24 32

dyf esm

“.* -2
hydro2d

o.m-32

tomcatv

~______~______.._.....~

8 16 24 32 8 16 24 32

arc2d
1.07

::Y
8 16 24 32

bdna

0.8 --9-- conventional-SRAM(lOns)
-conventional-SRnM(2Ons)
--b- conventional-SDRAM

0.7 -*- comrLand-SDRAM

o.4 -2

trfd

Figure 10: Command system performance results over a 500Mhz ooo-vector machine.

different strides can be simultaneously queued at the sec-
tion controllers. The section controllers are intelligent
enough to multiplex the several subcommands from in-
dependent vector requests. effect,ively  pre-advancing row
accesses.

Our simulations show that this command based mem-
ory system can improve performance over a traditional
SDRAM-based memory system by factors that range be-
tween 1.15 up to 1.54. Moreover. in many cases. the
command memory system outperforms even the best
SRAM memory system under consideration. although
by a small margin. Overall the command based menl-
ory system achieves similar or better results than a 1Ons
SRAM memory system (a) using fewer banks and (b)
using memory devices that are between 15 to GO times
cheaper.

This paper has focused on the uniprocessor case. We
believe that the command paradigm would yield even
better results in a multiprocessing environment, since it
can drastically reduce conflicts between competing pro-
cessor requests.

References

PI

PI

W. C. Hsu and J. E. Smith. Performance of cached dram or-
ganizations in vector supercomputers. Computer Architecture
News, 21(2):327-336,  1993.

L . I .  Kontothanassis,  R. A. Sugumar.  G. J. Faanes,  J. E.
Smith. and hl. L. Scott. Cache performance in vector super-
computers. In Proceedzngs  of Supercomputiag’94,  Washington
D.C., November 1994. IEEE Computer Society Press.

131

[41

PI

[61

I71

[81

PI

[lOI

1111

[I21

[I31

Roger Espasa. Mateo Valero, and James E. Smith. Out-of-
order Vector Architectures. In AillCRO-SO, pages 160-170.
IEEE Press, December 1997.

Charles A. Hart. CDRAM in a Unified Memory Architecture.
In COMPCO.&-‘94.  1994.

Richard Crisp. Direct rambus technology: T h e  new
main memory standard. IEEE Micro , 7:18-28.  Novem-
ber/December 1997.

Betty Prince. High Performance Mtmories. Wiley & Sons.
Ltd.. 1996.

Convex Press. Richardson. T~exas. U.S.A. C’ONk%4  ./lrchzter-
lure Reference Manual (C Serzes).  sixth edition, April 1992.

Ken&h  C. Yager.  The hlips RlOOOO  Superscalar Micropro-
cessor. IEEE Micm, pages 28-4U.  April 1996.

IVEC RAM Se/ecfzon Guzde. NEC Electronics, 1996.

Fujztsu 64  Mbi t  Synchronous  DRAlkI: target specificatzons.
FUJITSU Microelectronics, http://www.fujitsumicro.com.
1996.

R .  E s p a s a ,  M. Va l e ro ,  D .  Padua.  M. Jim&z. a n d
E. Ayguadk. Quantitative analysis of vector code. In Eurom?-
cm Workshop on Parallel and Distributed Pmctssing.  IEEE
Computer Society Press, January 1995.

Montse P&on.  Mateo Valero, Eduard AygaudC.  and Tom&
Lang. Vector multiprocessors with arbitrated memory access.
In ISCA-22,  pages 243-252. Santa Margherita Ligure,  Italy,
June 22-24. 1995.

Roger Espasa Jesus Corbal and Mateo Valero. Command
vector memory systems: High performance at low cost. Tech-
nical Report UPC-DAC-1998-8. Universitat  Politkcnica de
Catalunya,  1998.

77


