
Access to Vectors in Multi-Module Memories

Mateo Valero, Montse Peiron and Eduard AyguadC

Department d'kquitectura de Computadors, Universitat Politkcnica de Catalunya
Gran Capita h u m . Mhdul D6,08071 - Barcelona (Spain).

Abstract
The poor bandwidth obtained from memory when

conflicts arise in the modules or in the interconnection
network degrades the performance of computers.

Address transformation schemes, such as interleaving,
skewing and linear transformations, have been proposed to
achieve conflict-free access for streams with constant
stride. However, this is achieved only for some strides. In
this paper, we summarize a mechanism to request the
elements in an out-of-order way which allows to achieve
conflict-free access for a larger number of strides.

We study the cases of a single vector processor and of a
vector multiprocessor system. For this latter case, we
propose a synchronous mode of accessing memory that can
be applied in SIMD machines or in MIMD systems with
decoupled access and execution.

1: Introduction

One of the factors that limits the performance of high
performance computers is the latency of the memory
system. In order to reduce the cost of the memory and to
exploit locality in programs, the memory is organized in
several levels in a hierarchical way (registers, cache
memory, main memory and secondary memory).

The organization and management of the memory is
strongly related with the kind of system and processor
used. For instance, in a vector uniprocessor system it is not
usual to have the cache memory level for vector accesses.
On the other hand, in the DEC microprocessor-based
workstations there are two levels of cache memory, with
the lowest one integrated within the Alpha processor chip.

In this work we are concerned about the organization and
access management of the main memory in vector
uniprocessor and multiprocessor systems, although the
techniques developed here can be used in a wider range of
systems. In both cases, we assume that the cache level does
not exist and we focus on the efficient access to vectors or
streams. In these systems, a stream is identified by the
address of its first element Ao, the length or number of

elements L, and the stride or distance between each pair of
consecutive elements, S .

With the goal of increasing the bandwidth between the
processor and the main memory, the memory is organized
in M modules (usually a power of two, 2"'). If the access
latency to a memory module is T = 2' processor cycles, the
memory can provide a maximum bandwidth of M/T
accesses per cycle. Therefore, in a system with P
processors and one port per processor a minimum of P.T
modules are required to achieve one access per cycle per
processor. The memory system is named matched when
M = FT and unmatched when M > P.T.

The organization of the main memory in modules
requires a mechanism that assigns to each address
A = an-lan.2..a2al% generated by the processor a pair
<d, m>, where m is the memory module where the address
is mapped and d is the displacement inside this module.
The different one-to-one transformations are known as
storage schemes, and they must be fast and easy to
implement.

1.1: Single processor

In what follows we explain the features of the different
storage schemes that have been proposed in the literature
and their behaviour when accessing streams in
uniprocessor systems. We assume that the processor is
connected to the memory system through a single bus with
a bandwidth of one request per processor cycle, so the
bandwidth required from memory is one element per cycle.
This bandwidth is achieved if there are no conflicts in the
memory modules. A conflict occurs in the memory
whenever a request is sent to a busy memory module
because of a previous request, that is, whenever the
separation between two consecutive requests to the same
memory module is less than T cycles.

The interleaved storage scheme has been widely used
because of its simplicity. In this scheme, the m least
significant bits of each address indicate the memory
module where the address is mapped, and the remaining
bits indicate the displacement within the memory module.

228
0-8186-5370-1/94 $3.00 0 1994 IEEE

Figure 1 shows an example of' a storage scheme for a
system with M=8 memory modules. The calculation of the
mapping does not require any additional hardware. For this
reason this scheme has been used in pipelined vector
computers and for the organization of main memory in less
powerful computers to minimize the miss penalty and
replacement in cache-based systems.

n- 1 m m-1 0 .. -

...
v

memory module number

S

t
n- 1 4 0 .. .

4
memory module number

module 0 1 2 3 4 5 6 7

module 0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31

Figure 1: Interleaving storage scheme with M = 8.

The bandwidth that an interleawed memory can provide
when accessing streams depends on the stride of the
stream, S, on the number of memory modules, M = 2m, and
on the latency of the memory modules, T = 2t. If the system
in Figure 1 is matched (T = M = 8), only the streams with
odd strides can be accessed without conflicts. This scheme
classifies the strides into families such that for two streams
with strides belonging to the same family, the behaviour of
the memory in terms of bandwidth is the same. Each family
x contains the strides S = 0-2*, vvhere 0 is an odd number
[71.

Increasing the number of memory modules increases the
number of families of strides that can be accessed without
conflicts, so that in general there are m-t+l families of
conflict-free strides (x = 0,1, .., m-t). On the other hand, the
use of buffers in the memory modules or in the processor
does not minimize the access time for a stream with a non
conflict-free stride.

Another kind of storage schemes are skewing or block-
row rotations [2]. They were initially proposed and used for
array processors, but have also been proposed for pipelined
vector processors. An example for M = 8 is shown in
Figure 2.

Given an address A, the module where it is mapped is
obtained by adding modulo M two fields of m bits. The
location of the upper field defiines the behaviour of the
storage scheme. The displacemlent inside the module is
indicated by the most significant n-m bits of the address.

0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15

23 16 17 18 19 20 21 22
31 24 25 26 27 28 29 30
38 39 32 33 34 35 36 37

Figure 2: Skewing storage scheme with M = 8 and s = 4.

When accessing streams, skewing-based storage schemes
allow conflict-free access to the same number of families
than with in.terleaved schemes, but now the families can be
different. For instance, observe in Figure 2 that any stream
with a stride of the family x = s = 4 is accessed in a conflict-
free way. In general, if the lowest bit of the second field is
located in bit s, the families x = s, s+l, .., s+m-t can be
accessed in a conflict-free manner. Streams with strides of
the families x > s have their elements located in a number
of memory modules that is not sufficient to avoid conflicts,
so the use of buffers gives no additional benefits. However,
this is not the case when the stride belongs to families with
x < s. In this case, the access latency depends on the values
of Ao, L and S, and it can be reduced by the use of buffers

In the storage schemes based on linear transformations,
or XOR-schemes, the m bits that indicate the memory
module (b,-l..bo) are obtained by applying an exclusive-
OR function to some bits of the address. As a consequence,
there exist a lot of different linear transformations. Figure
3 shows an example with M = 8 and with the linear
transformation bi = $8 q,, (0 I i e t and s = 4). Observe
that any stream with a stride of the family x = s = 4 is
conflict-free.

The XOR-schemes have been proposed with different
goals for array processors [5], multiprocessors [81, vector
processors [6] and VLIW [12], and have been used in
machines such RP3 [ll] and Cydra [12].

The number of families Ehat produce conflict-free strides
is the same than the obtained with skewed schemes.
However, the hardware that implements the XOR
transformation is cheaper and faster than the one needed in
skewing-based transformations.

[71.

229

S

0
4

n-1 4

M I

t
memory module number

module 0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15
17 16 19 18 21 20 23 22
25 24 27 26 29 28 31 30
34 35 32 33 38 39 36 37
42 43 40 41 46 47 44 45
51 50 49 48 55 54 53 52
59 58 57 56 63 62 61 60
68 69 70 71 64 65 66 67

Figure 3: XOR scheme with M = 8 and s = 4.

In summary, the three types of storage schemes allow
conflict-free access to the same number of families, m-t+l.
The difference between them is the hardware required as
well as the behaviour when accessing streams with strides
belonging to families that are not conflict-free.

1.2: Vector multiprocessors
When several processors or ports are considered, the

organization of the memory system is significantly more
complicated than the one for a single processor with a
single port. Typically, the memory is composed of M = 2m
memory modules grouped into 2' sections; the 2m-s
modules in each section are connected by2 single bus and
the processor ports are connected to the sections through an
interconnection network, as shown in Figure 4. This

organization allows the initiation each processor cycle of
one access per section, as long as the requested module is
not busy with a previous request.

port 2s-1

Figure 4: Structure of the system.

With this organization, the address mapping obtains,
from the address A, the tuple (section, supermodule)
instead of memory module number. The term supermodule
refers to the module number within a section. Interleaving
has been widely used in current systems. Figure 5 shows an
interleaved storage scheme for a memory system with
M=16 memory modules and 4 sections (~ 2) . In this
scheme, the lowest 2 bits of the address are used to map the
address into a section and the next 2 bits to map it into a
supermodule.

Since each port performs asynchronous access to
memory, it is seldom possible to obtain a conflict-free
access to the memory system. Even when the distribution
of the elements of individual streams allow a conflict-free
access, the collisions in the network and the conflicts in the
memory modules, caused by the other requests, introduce
additional latencies in the access and, therefore, a loss of
efficiency in the overall system. The corresponding
evaluation is very complicated and has been approached by
several methods [l , 3 ,4 ,9 , 141.

Recent researchers have provided attention to the
synchronous access to several vectors. For instance, in [13]
vectors are assumed to belong to a single stream and the
processors perform accesses in a synchronized manner.
These assumptions are reasonable in SIMD vector
multiprocessors or in MIMD systems with decoupled
access, in which the data can be accessed in this regular and

ri n n- 1 U

+ section
supermodule

, , 8 section I 0 , 1 8 2 3
supermodule 1 0 1 2 3 i 0 1 2 3 i 0 1 2 3 j O 1 2 3

1 0 4 8 12ll 5 9 13!2 6 10 1413 7 11 15
16 20 24 28 17 21 25 .29 i 18 22 26 30 i 19 23 27 31

/ / : 4 * $,
112 ii6 120 i24jii3 117 121 125iii4 118 122 i26iii5 119 123 127

U

Figure 5: Interleaving storage scheme for a system with m=4 and s=2.

230

synchronized manner, but then used differently. In this
paper we also describe an alternative solution to this
problem.

Up to now we have assumed that the stream elements are
requested in order. In this paper we describe an out-of-
order mechanism to request the elements of the stream that
increases the number of families of strides for which
conflict-free access is obtained. In Section 2 we describe
the conditions that have to be fulfilled by the streams to
obtain conflict-free access when ithe elements are requested
out-of-order. Section 3 describes the application of this
technique to the case of a uniprocessor system with both
matched and unmatched mernory systems. We also
describe the hardware needed to implement the out-of-
order mechanism and show that it is of similar complexity
to the one required with ordered access.

Section 4 of this paper is devoted to the case of a
multiprocessor system with several requesting ports. A
storage scheme and a synchronized access method to
vectors belonging to a single stream is described. Finally,
we conclude the paper and present some future work.

2: Balanced streams
Assume the architecture model shown in Figure 6 of a

uniprocessor system connected to M memory modules
with latency T = 2t through a single bus. The processor
requests the elements of a stream defined by the address of
the first element, A,, the length of the stream or number of

elements, L = 2' = k.T, and the stride S = 0.2'.
Assuming that the processor sends a new address each

cycle, conflict-free access means that the memory finishes
the service to the L elements in L+T-1 cycles. To achieve
this it is sufficient that two coinsecutive requests to any
memory module are separated b y at least T cycles; we say
that a sequence of addresses is conflict free if it satisfies this
condition. If the condition is not satisfied, a request is sent
to a busy memory module, and the corresponding delay is
added to the memory access latency.

A stream is balanced if each memory module has a
number of elements less or equal than L/T. So, if the
memory system is matched a stream is balanced if each
memory module contains exactly LIM stream elements.

For a conflict-free access it is necessary that the stream is
balanced. This is a necessary but not sufficient condition. If
a stream is balanced it is always possible to obtain an
access ordering that leads to a minimum access time for the
whole stream.

Since 0 is odd, the addresses of the L = 2' stream
elements have different values in the h bits x+h-l..x. The
bits x-1..0 have the same value for all the elements, and the

values of the bits n-l..x+h depend on A, and S. The stream
is balanced if the bits between x+h-l..x decide at least t bits
of the memory module number.

For instance, in the scheme in Figure 1 just the streams
with strides of the family x = 0 (odd strides) are balanced.
For x > 0, the elements are located in rW2'1 memory
modules and as a consequence the stream is not balanced.

For the skewing and XOR-transformation storage
schemes shown in Figures 2 and 3, the maximum number
of balanced families is s+l if h > s+t-1 and h-t+l if
h S s+t-1. So, at most h-t+l families of strides are balanced
with these two schemes. The same situation occurs with the
block-interleaved storage scheme, in which the bits
indicating the module number are any t consecutive bits
s+t-l..s instead of the t least significant bits.

In the next section we describe an access ordering method
that allows conflict-free access to streams with a stride
belonging to the balanced families of strides.

. . . .

Jr
to processor

Figure 6: Architecture model.

3: Single processor
3.1: Matched-memory case

Assume the XOR storage scheme shown in Figure 7, with
M = T = 8 and the access to a stream with L = 2' = 64. From
the previous section we conclude that the families x = 0, 1,
2 and 3 result in balanced streams. On the one hand we
know that the family x = 3 allows the stream to be accessed
in order without conflicts. For instance, if A, is 32 and the

stride is S = 40 = 5-23, the first 8 elements are located in the

231

memory modules (4,1,6,3,0,5,2,7). And this succession of
modules is repeated for every group of 8 elements.

On the other hand, families x = 2, 1 and 0 do not allow an
access in order without conflicts. For instance, with the
same value of A, and S = 20 = 5.22, the first 16 elements
are located in the memory modules (4,7,1,4,6,1,3,6,0,3,5,
0,2,5,7,2), and the first conflict occurs between the 1st and
4th elements, both located in memory module 4. However,
observe that the period for the even elements is
(4,1,6,3,0,5,2,7) and the period for the odd elements is
(7,4,1,6,3,0,5,2), and that each one is conflict free if
considered alone. To obtain that, we have requested the
elements of the stream with a stride which is conflict free,
and made a set of sequences to request all the elements of
the stream.

S

.c
n- 1 3 0

4
memory module number

module 0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
9 8 11 10 13 12 15 14

18 19 16 17 22 23 20 21
27 26 25 24 31 30 29 28
36 37 38 39 32 33 34 35
45 44 47 46 41 40 43 42
54 55 52 53 50 51 48 49
63 62 61 60 59 58 57 56
64 65 66 67 68 69 70 71

Figure 7: XOR scheme with M = 8 and s = 3.

In general (see [15] for a detailed discussion), for a
stream with L=2' elements, any starting address and stride
0.2' (x<s), it is possible to construct L/T sequences of T
elements each so that all the elements in each sequence are
mapped into different memory modules. If the initial
element of a sequence is denoted with i, the elements of the
sequence are i + k.2'-' with k=l, 2, .., T-1. Different
sequences are identified by i = jl.2'+' + j, with

jo = 0, 1 ,. ., 2'-'- 1 and j 1 = 0, 1 ,.., 2'-('+'-')- 1.

For the previous example, if the starting address of the
stream is 32 and the stride is S = 20 = 5.22, the memory
modules referenced by the resulting sequences are

(4,1,6,3,0,5,2,7), (7,4,1,6,3,0,5,2) and this is repeated three
more times (if they are requested in lexicographical order).
Observe that the first element of sequence 1 (accessing
memory module 7) collides with the last element of
sequence 0. Therefore, with the previous out of order
access we obtain sequences that access memory modules in
a conflict-free way, but there might be conflicts between
two successive sequences.

address

i sequence1 I I other sequences

; processor

memory modules +J +l

I I I

to pmtessor

Figure 8: Architecture model for out-of-order access

To avoid intersequence conflicts, it is necessary to
incorporate a second reordering so that the order in which
modules are visited by all sequences is the same. The
module order of the first sequence is used as reference to
access the elements in the other sequences. For the
previous example, the module order of the first sequence is
(4,1,6,3,0,5,2,7) so that the order of access of the second
sequence has to be (4,1,6,3,0,5,2,7). However, this poses a
problem with the calculation of the addresses inside the
sequences, since to have a simple incremental calculation
(adding 0.2') it is necessary to do this in the order described
in the previous section. The solution is to decouple the
calculation of the addresses from the actual requests. This
is achieved by calculating the addresses of sequence i+l
while accessing sequence i. In this way, when the access to
sequence i+l is started, the addresses of all its elements
have been calculated and can be sent to memory in the
appropriate order. If no cycles have to be lost, during the
first 2' cycles, it is necessary to calculate the addresses of
the first sequence (which are used immediately for memory

232

access) and of the second sequence (which are stored in a
set of latches for access as the next sequence). Moreover, it
is necessary to store the module order of the first sequence,
which is used to control the order of the requests of the
following sequences. After that, for each sequence, the
addresses for access are obtained from the latches and a
new addresses are calculated to store. Consequently, as
shown in Figure 8, two address generators are needed,
although one of them is only used in the first 2t cycles. In
addition to the latches in the processor, neither buffers are
needed in the memory modules nor an arbiter in the return
bus to the processor.

3.2: Unmatched-memory case

One way to increase the number of families of strides that
produce conflict-free access, is to increase the number of
memory modules (m > t). The particular case of m=24 is
presented in this section. For the general case of m=k.t+k’
the reader is referred to [1.51.

The address mapping we use is the following

a.s+i@ai O < i l t - l , s > t
b , = {

trgi12t- l , y > s + t a y + i - t

where a XOR linear transformation is applied to two fields
o f t bits in the address and the irest of bits to compute the
memory module are taken from a field of m-t bits in the
address. An example for t = 2, m = 4, s = 3 and y = 7 is
given in Figure 9.

This address mapping corresponds to a division of the
memory modules into T sections of T modules each and of
the address space into blocks of 2Y locations; each block is
mapped into one section, using the mapping defined by the
lower t bits of b.

With this mapping, and using a similar out-of-order
access method as in the matched case, the maximum
number of conflict-free families, is obtained when s = A-t
and y=2-(3L-t)+l. This results in conflict-free access for
0 I x I 2&t)+l. If the access is performed in order, just
families x=y and x=s are conflict-free. To achieve conflict-
free access for the balanced families, we divide the stream
into sequences and perform the access in an out-of-order
way. Now depending on the value of x (xls or s<xly), the
elements within a sequence are requested with a stride 0.2’
or 0.2y, respectively, so all the elements in a sequence are
mapped into a different memory module.

To avoid intersequence conflicts, a slightly modified
strategy than the one proposed in Section 3.1 for the
matched memory case is used [15].

8 7 6 5 4 3 2 1 0

@

module

Figure 9 XOR-based transformation and mapping when
m=4, t=2, s=3 and y=7.

For instance, in a system with M=16 and T s l (e.g.
Cray-1) we obtain conflict-free access to families x=0..9. If
an interleaved storage scheme and access in order are used
it is possible to access families x=0..2 without conflicts.

4: Vector multiprocessor

In this section we study the behaviour of memory
accesses in a multiprocessor system with the structure
shown in Figure 4. We assume that the memory system is
matched, that is, that the latency of the memory modules is
T=2‘ and the number of memory modules is 2m=2s+t. The
maximum achievable throughput is then P=2’ accesses per
processor cycle after the initial transient state.

233

With the sake of clarity, we assume that the
interconnection network is a crossbar, although the method
applies also for the case of having an Omega
interconnection network (see [lo]).

The ports are controlled by vector loadstore instructions
and interface with the processors through vector registers
of length L = 2'. As shown in Figure 10, port i accesses
vector Vi composed of L consecutive elements of the
stream. The stride of the stream is S and the initial address
is Ao.

We now determine necessary conditions to allow
conflict-free access for the whole stream. In the
multiprocessor architecture model described in Section 1.2,
two types of conflicts prevent conflict-free access: memory
module conflicts (which occur when a request arrives to a
module while it is busy) and section conflicts (which occur
when two simultaneous requests are for the same section).

As in the single processor case, a necessary condition to
avoid memory module conflicts is that each memory
module does not contain more than L/T elements of the
stream, because a conflict-free access has to last for L+T-1
memory cycles, and this is not possible if a module has
more than L/T elements. Similarly, to avoid section
conflicts, each section has to contain the same number of
stream elements. When these two conditions are satisfied,
we say that stream is balanced.

element 0; address = A. el. i.2'; address = + i.2l.S

... ...
I I I I

Figure 10: Vectors in a stream.

We use the storage scheme shown in Figure 11 (known as
block-interleaved), where the S-field of s bits specifies the
section, the M-field o f t bits specifies the supermodule and
the rest of the bits of the address specify the displacement
inside the module.

h

4 - 4

S - - t *
Figure 11: Storage scheme used in this paper.

This location of the M-field and the S-field produces the
largest set of balanced families including odd strides: x=O,
1, .., co (see [lo] for the proof).

Once a set of balanced families is obtained, a conflict-free
access ordering has to be proposed. TWO conditions have to
be satisfied:

C1: The P simultaneous requests must not have

C2: Consecutive accesses to a memory module have

One stream may have many conflict-free access
orderings; the access ordering that we propose satisfies the
following properties:

P1: Simultaneous accesses go to different sections

P2: Simultaneous accesses go to the same

P3: T consecutive accesses go to different

P2 and P3 are a particular way of satisfying condition C2
and result in a simple hardware for address calculation.

We now determine an out-of-order accessing scheme that
satisfies these conditions for the balanced families of the
address mapping of Figure 11. To achieve this we divide
each vector into L/T sequences of T elements each, in a
similar way we proposed for the single processor case. The
elements of the stream are identified by the triple: vector
number i (0 I i 5 P-l), sequence number j (0 5 j 5 L/T-l),
and element number k (0 5 k I T-l)*

Consider the address mapping shown in Figure 12.a.
Figure 12.b shows one period of the address mapping and
Figure 12.c shows how the addresses of the elements of a
stream with Ao=4 and S=4 ((T =1 and x=2) are mapped and
their grouping into vectors. Observe that, for instance, the
elements k and (k+l) with k odd of each vector are in the
same memory module, so they cannot be requested in
successive cycles: moreover, the simultaneous requests are
to the same section, so conflicts arise in the interconnection
network too.

Now suppose that the elements are accessed by
sequences as shown in Figure 12.d; it can be seen that
properties P1, P2 and P3 are fulfilled for the simultaneously
requested sequences, so the access is conflict-free.

Although each sequence is accessed without conflicts, the
access of consecutive sequences might lead to conflicts in
the memory modules. In Figure 12.d, for instance,
supermodules are visited in the order <0,1,2,3> by the first
sequences and in the order <1,2,3,0> by the second ones;
all the requests made in the fifth cycle collide with those
made in the second cycle.

To solve these intersequence conflicts, we use two
address generators, as in the single processor case. During
the first T cycles, the addresses of the first sequence are
calculated and used for memory access; in addition, its
supermodule order is stored in a circular shift register.
Meanwhile, the addresses of the second sequence are
calculated and stored in a set of buffers. After that, for each

section conflicts.

to be separated by T cycles.

(this is necessary, and equivalent to Cl).

supermodule.

supermodules.

234

A (4
, I section 0 I 1 2 :3

supermodule 0 1 2 3 1 0 1 2 3 1 0 1 2 3 / 0 1 2 3
0 8 16 24 132 40 48 561 64 72 80 88; 96 104 112 120

t $
I \

. I t I
I : I
U

i is 23 31 [39 47 55 63 i 71 79 87 95ii03 111 119 127
128 136 144 1521 160 168 176 284; 192 200 208 2163 224 232 240 248

! . , I
. I

(b)

section
supermodule

VO

v2

v3

0 f
0 1 2 I 3 I ,

0 1 2 3 1 0 1 2 3 i o 1 2 3 1 0 1 2 3

12s/i36 144 152 j160 168 176 184 j192 200 208 216 i224 232 240 248
132 140 148 156 j164 172 180 188 !I96 204 212 220 j228 236 244 252
9 2 6 4 272 280i288 296 304 312i320 328 336 344i352 360 368 376
260 268 276 284 j292 300 308 316 /324 332 340 348 j356 364 372 380
384692 400 408 i416 424 432 440 i448 456 464 472 j480 488 496 504
388 396 404 412 1420 428 436 444 i452 460 468 476 j484 492 500 508

I I I 512 (4

1-1 : first sequences r---J : second sequences

Figure 12: (a) Storaige scheme, (b) Address mapping, (c) Mapping of the elements of a stream
with A. = 4 and S = 4, and (d) Sequences in the stream.

(-) : third sequences

(4

sequence, the addresses for access are obtained from the
buffers under the control of the shift register, and new
addresses are calculated to store! (so, the second address
generator works only during the first T cycles).

5: Conclusions

access of streams of fixed length, equal to the length of a
vector register. The access patterns correspond to constant

and the stream can begin in any address. The basic
idea we propose is an out-of-order access of the elements
of the stream to achieve conflict-free access for all strides
that produce balanced streams. we consider matched and
unmatched memory systems as well as single and multiple
vector processors.

ln this paper we have an out-of-order
mechanism to obtain conflict-free access to more families
of strides than the access in order. We have considered the

235

In the single processor case, we obtain a window of h-t+l
families of strides that are conflict free if the memory is
matched, whereas previous schemes that perform the
access in order result in a single conflict-free family (for
vectors of any length). For an unmatched memory systems
with M=T2, the size of the conflict-free window is doubled;
this compares favourably to the t+l conflict-free families
obtained with ordered access. The method can be applied to
memory systems with any degree of unmatchness
(m=k.t+k’) obtaining conflict-free access to k.(h-t+l)+k’
families. As shown in [15], more conflict-free families can
be obtained at a cost of complicating somewhat the
sequence generation for the additional families.

In the case of a vector multiprocessor, the number of
conflict-free families is h-t+l if the memory system is
matched and the different processors synchronously access
vectors of a common stream. With an unmatched memory
system [lo] it is possible to add one conflict-free family
each time we double the number of modules, up to t
additional conflict-free families.

Acknowledgments
This work has been supported by the ESPRIT 111 Basic

Research Action 6634 (APPARC), the Ministry of
Education of Spain under contract TIC-880/92, and by the
CEPBA (European Centre for Parallelism of Barcelona).

References
1. D.H. Bailey, “Vector Computer Memory Bank Contention”,

IEEE Trans. on Computers, vol. 36, no. 3, pp. 293-298,
1987.
P. Budnik and D. J. Kuck, “The Organization and Use of
Parallel Memories”, IEEE Trans. on Computers, vol. 20, no.

2.

12, pp. 1566-1569, 1971.

3. D.A. Calahan, “Some Results in Memory Conflict
Analysis”, Proc. of Supercomputing’89, pp. 775-778, 1989.

4. T. Cheung and J.E. Smith, “A Simulation Study of the Cray
X-MP Memory System”, IEEE Trans. on Computers, vol.
35, no. 7, pp. 613-622, 1986.
J. Frailong, W. Jalby and J. Lenfant, “XOR-schemes: A
Flexible Data Organization in Parallel Memories”, Int’l
Conference on Parallel Processing, pp. 276-283, 1985.

6. D.T. Harper 111, “Block, Multistride Vector and
Accesses in Parallel Memory Systems”, IEEE Trans. on
Parallel and Distributed Systems, vol. 2, no. 1, pp. 43-51,
1991.
D.T. Harper I11 and D. A. Linebarger, “Conflict-Free Vector
Access Using a Dynamic Storage Scheme”, IEEE Trans. on
Computers, vol. 40, no. 3, pp. 276-283, 1991.
A. Norton and E. Melton, “A Class of Boolean Linear
Transformations for Conflict-Free Power-of-Two Stride
Access”, Int’l Conference on Parallel Processing, pp. 247-
254,1987.
W. Oed and 0. Lange, “On the Effective Bandwidth of
Interleaved Memories in Vector Processing Systems, IEEE
Trans. on Computers, vol. 34, no. 10, pp. 949-957, 1985.

10. M. Peiron, M. Valero, E. Ayguade and T. Lang, “Conflict-
Free Access to Streams in Multiprocessor Systems”, DAC/
UPC Research Report 93/04, 1993.

11. G.F. Pfister et al., “The IBM Research Parallel Processor
Prototype (RP3): Introduction and Architecture”, Int’l
Conference on Parallel Processing, pp. 764-771, 1985.

12. B. R. Rau, M. S. Schlansker and D. W. L. Yen, “The CydraTM
5 Stride-Insensitive Memory System”, Int’l Conference on
Parallel Processing, pp. 242-246, 1989.

13. A. Seznec and J. Lenfant, “Interleaved Parallel Schemes:
Improving Memory Throughput on Supercomputers”, Int.
Symp. on Computer Architecture, pp. 246-255, 1992.

14. J.E. Smith and W.R. Taylor, “Characterizing Memory
Performance in Vector Multiprocessors”, Int. Conf. on
Supercomputing, pp. 35-44, 1992.

15. M. Valero, T. Lang, M. Peiron and E. Ayguade, “Conflict-
Free Access for Streams in Multi-module Memories“, IEEE
Trans. on Computers, (to appear), 1994.

5 .

7.

8.

9.

236

