823 research outputs found

    Cost modelling and concurrent engineering for testable design

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.As integrated circuits and printed circuit boards increase in complexity, testing becomes a major cost factor of the design and production of the complex devices. Testability has to be considered during the design of complex electronic systems, and automatic test systems have to be used in order to facilitate the test. This fact is now widely accepted in industry. Both design for testability and the usage of automatic test systems aim at reducing the cost of production testing or, sometimes, making it possible at all. Many design for testability methods and test systems are available which can be configured into a production test strategy, in order to achieve high quality of the final product. The designer has to select from the various options for creating a test strategy, by maximising the quality and minimising the total cost for the electronic system. This thesis presents a methodology for test strategy generation which is based on consideration of the economics during the life cycle of the electronic system. This methodology is a concurrent engineering approach which takes into account all effects of a test strategy on the electronic system during its life cycle by evaluating its related cost. This objective methodology is used in an original test strategy planning advisory system, which allows for test strategy planning for VLSI circuits as well as for digital electronic systems. The cost models which are used for evaluating the economics of test strategies are described in detail and the test strategy planning system is presented. A methodology for making decisions which are based on estimated costing data is presented. Results of using the cost models and the test strategy planning system for evaluating the economics of test strategies for selected industrial designs are presented

    The effectiveness of different test sets for PLAs

    Get PDF
    It has been theoretically demonstrated that the single stuck-at fault model for a PLA does not cover as many faults as the single crosspoint model. What has not been demonstrated is the real relative effectiveness of test sets generated using these models. This paper presents the results of a study involving presenting a number of test sets to fabricated PLAs to determine their effectiveness. The test sets included weighted random patterns, of particular interest owing to PLAs being random resistant. Details are given of a method to generate weights, taking into account a PLA's structure

    Random access memory testing : theory and practice : the gains of fault modelling

    Get PDF

    Dopamine and the development of executive dysfunction in autism spectrum disorders.

    Get PDF
    Persons with autism regularly exhibit executive dysfunction (ED), including problems with deliberate goal-directed behavior, planning, and flexible responding in changing environments. Indeed, this array of deficits is sufficiently prominent to have prompted a theory that executive dysfunction is at the heart of these disorders. A more detailed examination of these behaviors reveals, however, that some aspects of executive function remain developmentaly appropriate. In particular, while people with autism often have difficulty with tasks requiring cognitive flexibility, their fundamental cognitive control capabilities, such as those involved in inhibiting an inappropriate but relatively automatic response, show no significant impairment on many tasks. In this article, an existing computational model of the prefrontal cortex and its role in executive control is shown to explain this dichotomous pattern of behavior by positing abnormalities in the dopamine-based modulation of frontal systems in individuals with autism. This model offers excellent qualitative and quantitative fits to performance on standard tests of cognitive control and cognitive flexibility in this clinical population. By simulating the development of the prefrontal cortex, the computational model also offers a potential explanation for an observed lack of executive dysfunction early in life

    A writable programmable logic array

    Get PDF
    This thesis contains the analysis, design, and implementation of a writable programmable logic array integrated circuit. The WPLA is able to be reprogrammed any number of times as needed. A content addressable scheme is proposed to conduct READ, WRITE, and SEARCH operations in the WPLA. The WPLA is programmed by writing binary data into storage cells associated with each node in the AND/OR planes of the array; the binary data then form the personalities of the PLA. The layout of the WPLA will be implemented using Mentor Graphic\u27s CHIPGRAPH layout editor with 2 µm NMOS technology and MOSIS design rules. The event-driven logic level simulator QUICKSIM, and a MOS circuit level simulator MSIMON, are used to verify the functional and timing behavior of the WPLA

    Homeostatic plasticity and external input shape neural network dynamics

    Full text link
    In vitro and in vivo spiking activity clearly differ. Whereas networks in vitro develop strong bursts separated by periods of very little spiking activity, in vivo cortical networks show continuous activity. This is puzzling considering that both networks presumably share similar single-neuron dynamics and plasticity rules. We propose that the defining difference between in vitro and in vivo dynamics is the strength of external input. In vitro, networks are virtually isolated, whereas in vivo every brain area receives continuous input. We analyze a model of spiking neurons in which the input strength, mediated by spike rate homeostasis, determines the characteristics of the dynamical state. In more detail, our analytical and numerical results on various network topologies show consistently that under increasing input, homeostatic plasticity generates distinct dynamic states, from bursting, to close-to-critical, reverberating and irregular states. This implies that the dynamic state of a neural network is not fixed but can readily adapt to the input strengths. Indeed, our results match experimental spike recordings in vitro and in vivo: the in vitro bursting behavior is consistent with a state generated by very low network input (< 0.1%), whereas in vivo activity suggests that on the order of 1% recorded spikes are input-driven, resulting in reverberating dynamics. Importantly, this predicts that one can abolish the ubiquitous bursts of in vitro preparations, and instead impose dynamics comparable to in vivo activity by exposing the system to weak long-term stimulation, thereby opening new paths to establish an in vivo-like assay in vitro for basic as well as neurological studies.Comment: 14 pages, 8 figures, accepted at Phys. Rev.

    Quantum-dot Cellular Automata: Review Paper

    Get PDF
    Quantum-dot Cellular Automata (QCA) is one of the most important discoveries that will be the successful alternative for CMOS technology in the near future. An important feature of this technique, which has attracted the attention of many researchers, is that it is characterized by its low energy consumption, high speed and small size compared with CMOS.&nbsp; Inverter and majority gate are the basic building blocks for QCA circuits where it can design the most logical circuit using these gates with help of QCA wire. Due to the lack of availability of review papers, this paper will be a destination for many people who are interested in the QCA field and to know how it works and why it had taken lots of attention recentl

    Learning to synchronize : how biological agents can couple neural task modules for dealing with the stability-plasticity dilemma

    Get PDF
    We provide a novel computational framework on how biological and artificial agents can learn to flexibly couple and decouple neural task modules for cognitive processing. In this way, they can address the stability-plasticity dilemma. For this purpose, we combine two prominent computational neuroscience principles, namely Binding by Synchrony and Reinforcement Learning. The model learns to synchronize task-relevant modules, while also learning to desynchronize currently task-irrelevant modules. As a result, old (but currently task-irrelevant) information is protected from overwriting (stability) while new information can be learned quickly in currently task-relevant modules (plasticity). We combine learning to synchronize with task modules that learn via one of several classical learning algorithms (Rescorla-Wagner, backpropagation, Boltzmann machines). The resulting combined model is tested on a reversal learning paradigm where it must learn to switch between three different task rules. We demonstrate that our combined model has significant computational advantages over the original network without synchrony, in terms of both stability and plasticity. Importantly, the resulting models' processing dynamics are also consistent with empirical data and provide empirically testable hypotheses for future MEG/EEG studies
    corecore