In vitro and in vivo spiking activity clearly differ. Whereas networks in
vitro develop strong bursts separated by periods of very little spiking
activity, in vivo cortical networks show continuous activity. This is puzzling
considering that both networks presumably share similar single-neuron dynamics
and plasticity rules. We propose that the defining difference between in vitro
and in vivo dynamics is the strength of external input. In vitro, networks are
virtually isolated, whereas in vivo every brain area receives continuous input.
We analyze a model of spiking neurons in which the input strength, mediated by
spike rate homeostasis, determines the characteristics of the dynamical state.
In more detail, our analytical and numerical results on various network
topologies show consistently that under increasing input, homeostatic
plasticity generates distinct dynamic states, from bursting, to
close-to-critical, reverberating and irregular states. This implies that the
dynamic state of a neural network is not fixed but can readily adapt to the
input strengths. Indeed, our results match experimental spike recordings in
vitro and in vivo: the in vitro bursting behavior is consistent with a state
generated by very low network input (< 0.1%), whereas in vivo activity suggests
that on the order of 1% recorded spikes are input-driven, resulting in
reverberating dynamics. Importantly, this predicts that one can abolish the
ubiquitous bursts of in vitro preparations, and instead impose dynamics
comparable to in vivo activity by exposing the system to weak long-term
stimulation, thereby opening new paths to establish an in vivo-like assay in
vitro for basic as well as neurological studies.Comment: 14 pages, 8 figures, accepted at Phys. Rev.