172 research outputs found

    An Upper Bound on the Cutoff Rate of Sequential Decoding

    Get PDF
    An upper bound is given on the cutoff rate of discrete memoryless channels. This upper bound, which coincides with a known lower bound, determines the cutoff rate, and settles a long-standing open problem. © 1988 IEE

    Sequential decoding on intersymbol interference channels with application to magnetic recording

    Get PDF
    Ankara : Department of Electrical and Electronics Engineering and the Institute of Engineering and Sciences of Bilkent University, 1990.Thesis (Master's) -- Bilkent University, 1990.Includes bibliographical references leaves 27-28In this work we treat sequential decoding in the problem of sequence estimation on intersymbol interference ( ISI ) channels. We consider the magnetic recording channel as the particular ISI channel and investigate the coding gains that can be achieved with sequential decoding for different information densities. Since the cutoff rate determines this quantity , we find lower bounds to the cutoff rate. The symmetric cutoff rate is computed as a theoretical lower bound and practical lower bounds are found through simulations. Since the optimum decoding metric is impractical, a sub-optimum metric has been used in the simulations. The results show that this metric can not achieve the cutoff rate in general, but still its performance is not far from that of the optimum metric. We compare the results to those of Immink[9] and see that one can achieve positive coding gains at information densities of practical interest where other practical codes used in magnetic recording show coding loss.Alanyalı, MuratM.S

    Divergence radii and the strong converse exponent of classical-quantum channel coding with constant compositions

    Get PDF
    There are different inequivalent ways to define the R\'enyi capacity of a channel for a fixed input distribution PP. In a 1995 paper Csisz\'ar has shown that for classical discrete memoryless channels there is a distinguished such quantity that has an operational interpretation as a generalized cutoff rate for constant composition channel coding. We show that the analogous notion of R\'enyi capacity, defined in terms of the sandwiched quantum R\'enyi divergences, has the same operational interpretation in the strong converse problem of classical-quantum channel coding. Denoting the constant composition strong converse exponent for a memoryless classical-quantum channel WW with composition PP and rate RR as sc(W,R,P)sc(W,R,P), our main result is that sc(W,R,P)=supα>1α1α[Rχα(W,P)], sc(W,R,P)=\sup_{\alpha>1}\frac{\alpha-1}{\alpha}\left[R-\chi_{\alpha}^*(W,P)\right], where χα(W,P)\chi_{\alpha}^*(W,P) is the PP-weighted sandwiched R\'enyi divergence radius of the image of the channel.Comment: 46 pages. V7: Added the strong converse exponent with cost constrain

    On the Origin of Polar Coding

    Get PDF
    Polar coding was conceived originally as a technique for boosting the cutoff rate of sequential decoding, along the lines of earlier schemes of Pinsker and Massey. The key idea in boosting the cutoff rate is to take a vector channel (either given or artificially built), split it into multiple correlated subchannels, and employ a separate sequential decoder on each subchannel. Polar coding was originally designed to be a low-complexity recursive channel combining and splitting operation of this type, to be used as the inner code in a concatenated scheme with outer convolutional coding and sequential decoding. However, the polar inner code turned out to be so effective that no outer code was actually needed to achieve the original aim of boosting the cutoff rate to channel capacity. This paper explains the cutoff rate considerations that motivated the development of polar coding. © 2015 IEEE

    Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels

    Get PDF
    A method is proposed, called channel polarization, to construct code sequences that achieve the symmetric capacity I(W)I(W) of any given binary-input discrete memoryless channel (B-DMC) WW. The symmetric capacity is the highest rate achievable subject to using the input letters of the channel with equal probability. Channel polarization refers to the fact that it is possible to synthesize, out of NN independent copies of a given B-DMC WW, a second set of NN binary-input channels {WN(i):1iN}\{W_N^{(i)}:1\le i\le N\} such that, as NN becomes large, the fraction of indices ii for which I(WN(i))I(W_N^{(i)}) is near 1 approaches I(W)I(W) and the fraction for which I(WN(i))I(W_N^{(i)}) is near 0 approaches 1I(W)1-I(W). The polarized channels {WN(i)}\{W_N^{(i)}\} are well-conditioned for channel coding: one need only send data at rate 1 through those with capacity near 1 and at rate 0 through the remaining. Codes constructed on the basis of this idea are called polar codes. The paper proves that, given any B-DMC WW with I(W)>0I(W)>0 and any target rate R<I(W)R < I(W), there exists a sequence of polar codes {Cn;n1}\{{\mathscr C}_n;n\ge 1\} such that Cn{\mathscr C}_n has block-length N=2nN=2^n, rate R\ge R, and probability of block error under successive cancellation decoding bounded as P_{e}(N,R) \le \bigoh(N^{-\frac14}) independently of the code rate. This performance is achievable by encoders and decoders with complexity O(NlogN)O(N\log N) for each.Comment: The version which appears in the IEEE Transactions on Information Theory, July 200

    Properties and Construction of Polar Codes

    Full text link
    Recently, Ar{\i}kan introduced the method of channel polarization on which one can construct efficient capacity-achieving codes, called polar codes, for any binary discrete memoryless channel. In the thesis, we show that decoding algorithm of polar codes, called successive cancellation decoding, can be regarded as belief propagation decoding, which has been used for decoding of low-density parity-check codes, on a tree graph. On the basis of the observation, we show an efficient construction method of polar codes using density evolution, which has been used for evaluation of the error probability of belief propagation decoding on a tree graph. We further show that channel polarization phenomenon and polar codes can be generalized to non-binary discrete memoryless channels. Asymptotic performances of non-binary polar codes, which use non-binary matrices called the Reed-Solomon matrices, are better than asymptotic performances of the best explicitly known binary polar code. We also find that the Reed-Solomon matrices are considered to be natural generalization of the original binary channel polarization introduced by Ar{\i}kan.Comment: Master thesis. The supervisor is Toshiyuki Tanaka. 24 pages, 3 figure

    Coded Adaptive Linear Precoded Discrete Multitone Over PLC Channel

    Get PDF
    Discrete multitone modulation (DMT) systems exploit the capabilities of orthogonal subcarriers to cope efficiently with narrowband interference, high frequency attenuations and multipath fadings with the help of simple equalization filters. Adaptive linear precoded discrete multitone (LP-DMT) system is based on classical DMT, combined with a linear precoding component. In this paper, we investigate the bit and energy allocation algorithm of an adaptive LP-DMT system taking into account the channel coding scheme. A coded adaptive LPDMT system is presented in the power line communication (PLC) context with a loading algorithm which accommodates the channel coding gains in bit and energy calculations. The performance of a concatenated channel coding scheme, consisting of an inner Wei's 4-dimensional 16-states trellis code and an outer Reed-Solomon code, in combination with the proposed algorithm is analyzed. Theoretical coding gains are derived and simulation results are presented for a fixed target bit error rate in a multicarrier scenario under power spectral density constraint. Using a multipath model of PLC channel, it is shown that the proposed coded adaptive LP-DMT system performs better than coded DMT and can achieve higher throughput for PLC applications

    Strong Converse Theorems for Classes of Multimessage Multicast Networks: A R\'enyi Divergence Approach

    Full text link
    This paper establishes that the strong converse holds for some classes of discrete memoryless multimessage multicast networks (DM-MMNs) whose corresponding cut-set bounds are tight, i.e., coincide with the set of achievable rate tuples. The strong converse for these classes of DM-MMNs implies that all sequences of codes with rate tuples belonging to the exterior of the cut-set bound have average error probabilities that necessarily tend to one (and are not simply bounded away from zero). Examples in the classes of DM-MMNs include wireless erasure networks, DM-MMNs consisting of independent discrete memoryless channels (DMCs) as well as single-destination DM-MMNs consisting of independent DMCs with destination feedback. Our elementary proof technique leverages properties of the R\'enyi divergence.Comment: Submitted to IEEE Transactions on Information Theory, Jul 18, 2014. Revised on Jul 31, 201
    corecore