IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 34, NO. 2, FEBRUARY 2016 209

On the Origin of Polar Coding

Erdal Arikan, Fellow, IEEE

Abstract—Polar coding was conceived originally as a technique
for boosting the cutoff rate of sequential decoding, along the lines
of earlier schemes of Pinsker and Massey. The key idea in boost-
ing the cutoff rate is to take a vector channel (either given or
artificially built), split it into multiple correlated subchannels,
and employ a separate sequential decoder on each subchannel.
Polar coding was originally designed to be a low-complexity recur-
sive channel combining and splitting operation of this type, to
be used as the inner code in a concatenated scheme with outer
convolutional coding and sequential decoding. However, the polar
inner code turned out to be so effective that no outer code
was actually needed to achieve the original aim of boosting the
cutoff rate to channel capacity. This paper explains the cut-
off rate considerations that motivated the development of polar
coding.

Index Terms—Channel polarization, polar codes, cutoff rate,
sequential decoding.

I. INTRODUCTION

HE most fundamental parameter regarding a communica-

tion channel is unquestionably its capacity C, a concept
introduced by Shannon [1] that marks the highest rate at
which information can be transmitted reliably over the channel.
Unfortunately, Shannon’s methods that established capacity
as an achievable limit were non-constructive in nature, and
the field of coding theory came into being with the agenda
of turning Shannon’s promise into practical reality. Progress
in coding theory was very rapid initially, with the first two
decades producing some of the most innovative ideas in that
field, but no truly practical capacity-achieving coding scheme
emerged in this early period. A satisfactory solution of the
coding problem had to await the invention of turbo codes
[2] in 1990s. Today, there are several classes of capacity-
achieving codes, among them a refined version of Gallager’s
LDPC codes from 1960s [3]. (The fact that LDPC codes could
approach capacity with feasible complexity was not realized
until after their rediscovery in the mid-1990s.) A story of
coding theory from its inception until the attainment of the
major goal of the field can be found in the excellent survey
article [4].

A recent addition to the class of capacity-achieving coding
techniques is polar coding [5]. Polar coding was originally con-
ceived as a method of boosting the channel cutoff rate Ry, a
parameter that appears in two main roles in coding theory. First,
in the context of random coding and maximum likelihood (ML)
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decoding, Ry governs the pairwise error probability 2~V R0,
which leads to the union bound
P, <27 NER=R) (1)

on the probability of ML decoding error P, for a randomly
selected code with 2R codewords. Second, in the context of
sequential decoding, Rp emerges as the “computational cutoff
rate” beyond which sequential decoding—a decoding algorithm
for convolutional codes—becomes computationally infeasible.

While R( has a fundamental character in its role as an error
exponent as in (1), its significance as the cutoff rate of sequen-
tial decoding is a fragile one. It has long been known that the
cutoff rate of sequential decoding can be boosted by design-
ing variants of sequential decoding that rely on various channel
combining and splitting schemes to create correlated subchan-
nels on which multiple sequential decoders are employed to
achieve a sum cutoff rate that goes beyond the sum of the cutoff
rates of the original memoryless channels used in the construc-
tion. An early scheme of this type is due to Pinsker [6], who
used a concatenated coding scheme with an inner block code
and an outer sequential decoder to get arbitrarily high reliability
at constant complexity per bit at any rate R < C; however, this
scheme was not practical. Massey [7] subsequently described
a scheme to boost the cutoff by splitting a nonbinary erasure
channel into correlated binary erasure channels. We will dis-
cuss both of these schemes in detail, developing the insights
that motivated the formulation of polar coding as a practical
scheme for boosting the cutoff rate to its ultimate limit, the
channel capacity C.

The account of polar coding given here is not intended to
be the shortest or the most direct introduction to the subject.
Rather, the goal is to give a historical account, highlighting
the ideas that were essential in the course of developing polar
codes, but have fallen aside as these codes took their final form.
On a personal note, my acquaintance with sequential decod-
ing began in 1980s during my doctoral work [8] which was
about sequential decoding for multiple access channels. Early
on in this period, I became aware of the “anomalous” behavior
of the cutoff rate, as exemplified in the papers by Pinsker and
Massey cited above, and the resolution of the paradox surround-
ing the boosting of the cutoff rate has been a central theme of
my research over the years. Polar coding is the end result of
such efforts.

The rest of this paper is organized as follows. We discuss
the role of Ry in the context of ML decoding of block codes
in Section II and its role in the context of sequential decod-
ing of tree codes in Section III. In Section IV, we discuss
the two methods by Pinsker and Massey mentioned above for
boosting the cutoff rate of sequential decoding. In Section V,
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we examine the successive-cancellation architecture as an alter-
native method for boosting the cutoff rate, and in Section VI
introduce polar coding as a special instance of that architecture.
The paper concludes in Section VII with a summary.

Throughout the paper, we use the notation W : X — Y to
denote a discrete memoryless channel W with input alphabet X,
output alphabet Y, and channel transition probabilities W (y|x)
(the conditional probability that y € Y is received given that
x € X is transmitted). We use the notation a™ to denote a vec-
tor (ay, ...,ayn) and al.’ to denote a subvector (a;, ..., a;). All
logarithms in the paper are to the base two.

II. THE PARAMETER Ry

The goal of this section is to discuss the significance of the
parameter Ry in the context of block coding and ML decoding.
Throughout this section, let W : X — Y be a fixed but arbi-
trary memoryless channel. We will suppress in our notation the
dependence of channel parameters on W with the exception of
some definitions that are referenced later in the paper.

A. Random-Coding Bound

Consider a communication system using block coding at the
transmitter and ML decoding at the receiver. Specifically, sup-
pose that the system employs a (N, R) block code, i.e., a code

of length N and rate R, for transmitting one of M 2 [2VR |
messages by N uses of W. We denote such a code as a list of
codewords € = {xV (1), ..., xN (M)}, where each codeword is
an element of XV. Each use of this system comprises selecting,
at the transmitter, a message m € {1, ..., M} at random from
the uniform distribution, encoding it into the codeword xN (m),
and sending x" (m) over W. At the receiver, a channel output
yV is observed with probability

N
W VN (m)) & [T W il (m))

i=1
and y" is mapped to a decision 7 by the ML rule
N A
m(yN) = argmax,, WY (N |xN (). )

The performance of the system is measured by the probability
of ML decoding error,

M
1
P23~ > wNOMEYm). G

m=1" yNu(yN)sm

Determining P, (C) for a specific code C is a well-known
intractable problem. Shannon’s random-coding method [1] cir-
cumvents this difficulty by considering an ensemble of codes,
in which each individual code € = {xN(1),...,xN (M)} is
regarded as a sample with a probability assignment

M N

Pr(C) = [ [ [] QG (m)), “)

m=1n=1

where Q is a channel input distribution. We will refer to
this ensemble as a “(N, R, Q) ensemble”. We will use the
upper-case notation X" (m) to denote the random codeword
for message m, viewing x™ (m) as a realization of XV (m). The
product-form nature of the probability assignment (4) signifies
that the array of M N symbols {X,(m); ]l <n < N,1 <m <
M}, constituting the code, are sampled in i.i.d. manner.

The probability of error averaged over the (N, R, Q) ensem-
ble is given by

Po(N.R.Q) £ Y Pr(©)P.(C),
(¢4

where the sum is over the set of all (V, R) codes. Classical
results in information theory provide bounds of the form

P.(N,R,Q) < 27 NERO) Q)

where the function E,(R, Q) is a random-coding exponent,
whose exact form depends on the specific bounding method
used. For an early reference on such random-coding bounds, we
refer to Fano [9, Chapter 9], who also gives a historical account
of the subject. Here, we use a version of the random-coding
bound due to Gallager [10], [11, Theorem 5.6.5]), in which the
exponent is given by

Er(R, Q) = max [Eo(p, Q) — PRI, (6)

=p=

1+p
Eo(p, Q) £ —logZ |:Z Q(X)W(y|x)1/<1+p)i| '

yeY LxeX

It is shown in [11, pp. 141-142] that, for any fixed Q,
E.(R, Q) > 0 forall R < C(Q), where C(Q) = C(W, Q) is
the channel capacity with input distribution Q, defined as
W(ylx) )
Y QW (ylx")

cw. Q) = ZQ(x)W(y|x)log<

X,y

This establishes that reliable communication is possible for all
rates R < C(Q), with the probability of ML decoding error
approaching zero exponentially in N. Noting that the channel
capacity is given by

cC=cw)2 max C(W. 0), 7

the channel coding theorem follows as a corollary.
In a converse result [12], Gallager also shows that E, (R, Q)
is the best possible exponent of its type in the sense that

_% log Pe(N, R, Q) = Ex(R, Q)

for any fixed 0 < R < C(Q). This converse shows that
E-(R, Q) is a channel parameter of fundamental significance
in ML decoding of block codes.

For the best random-coding exponent of the type (6) for a
given R, one may maximize E,(R, Q) over Q, and obtain the
optimal exponent as

E.(R) 2 max £, (R, 0). (8)
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Fig. 1. Random-coding exponent E-(R) as a function of R for a BSC.

We conclude this part with an example. Fig. 1 gives a sketch
of E,(R) for a binary symmetric channel (BSC), i.e., a channel
W:X— Y with X=Y={0,1} and W(1|0) = W(0|1) = p
for some fixed 0 < p < % In this example, the Q that achieves
the maximum in (8) happens to be the uniform distribution,
00)=001) = % [11, p. 146], as one might expect due to
Ssymmetry.

The figure shows that £, (R) is a convex function, starting at

a maximum value R E E.(0) at R = 0 and decreasing to 0 at
R = C. The exponent has a straight-line portion for a range of
rates 0 < R < R., where the slope is —1. The parameters R
and R, are called, respectively, the cutoff rate and the critical
rate. The union bound (1) coincides with the random-coding
bound over the straight-line portion of the latter, becomes sub-
optimal in the range R, < R < Rp (shown as a dashed line in
the figure), and useless for R > Ry. These characteristics of
E-(R) and its relation to R are general properties that hold for
all channels. In the rest of this section, we focus on R and dis-
cuss it from various other aspects to gain a better understanding
of this ubiquitous parameter.

B. The Union Bound
In general, the union bound is defined as

Pe(N. R, Q) <27 M(@=HI, ©)

where Ro(Q) = Ro(W, Q) is the channel cutoff rate with input
distribution Q, defined as

2
Ro(W. Q) = —logZ[Z Q(x)\/W(ylx)} . (10)

yeY LxeX

The union bound (9) may be obtained from the random-coding
bound by setting p =1 in (6), instead of maximizing over
0 < p < 1 and noticing that Ry(Q) equals Eo(1, Q). The union
bound and the random-coding bound coincide over a range
of rates 0 < R < R.(Q), where R.(Q) is the critical rate at
input distribution Q. The tightest form of the union bound (9)
is obtained by using an input distribution Q that maximizes
Ro(Q), in which case we obtain the usual form of the union
bound as given by (1) with

Ro = Ro(W) & max Ro(W, Q). (11)

The role of Ry in connection with random-coding bounds
can be understood by looking at the pairwise error probabil-
ities under ML decoding. To discuss this, consider a specific
code C = {xN(l), ey xN(M)} and fix two distinct messages
m#m', 1 <m,m <M. Let P, ,/(C) denote the probabil-
ity of pairwise error, namely, the probability that the erroneous
message m’ appears to an ML decoder at least as likely as the
correct message m; more precisely,

2

yNeE

W N XN m)),
1(C)

P (€) 2 (12)

m,m

where E,, ,,7(€) is a pairwise error event defined as
A
Enar@ 2 [y WN OGN N ') = WY NN )

Although P, v (C) is difficult to compute for specific codes, its
ensemble average,

P (N, Q) £ Y Pr(@) Py (©). (13)
C
is bounded as
P (N, Q) < 27NR@D gy £y (14)

We provide a proof of inequality (14) in the Appendix to show
that this well-known and basic result about the cutoff rate can
be proved easily from first principles.

The union bound (9) now follows from (14) by noting that an
ML error occurs only if some pairwise error occurs:

> Puw(N. Q)
m'#m

< (@R _ 1y2~NRo(Q) _ p=NIR(Q)=R].

— 1
Pe(N.R,Q) = )~

This completes our discussion of the significance of R as an
error exponent in random-coding. In summary, Ry governs the
random-coding exponent at low rates and is fundamental in that
sense.

For future reference, we note here that, when W is a binary-
input channel with XX = {0, 1}, the cutoff rate expression (10)
simplifies to

Ro(W, Q) = —log(l —q +q2) 5)

where ¢ 22 0(0)0(1) and Z is the channel Bhattacharyya
parameter; defined as

Z=zw) = Y JWOEIOWOID.

yeY

C. Guesswork and Ry

Consider a coding system identical to the one described in
the preceding subsection, except now suppose that the decoder
is a guessing decoder. Given the channel output yV, a guess-
ing decoder is allowed to produce a sequence of guesses
m1(yN), ma(yV), ... at the correct message m until a helpful
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“genie” tells the decoder when to stop. More specifically, after
the first guess m1(y") is submitted, the genie tells the decoder
if ml(yN ) = m; if so, decoding is completed; otherwise, the
second guess my(y") is submitted; and, so on. The operation
continues until the decoder produces the correct message. We
assume that the decoder never repeats an earlier guess, so the
task is completed after at most M guesses.

An appropriate “score” for such a guessing decoder is the
guesswork, which we define as the number of incorrect guesses
Go(C) until completion of the decoding task. The guesswork
Go(C) is arandom variable taking values in the range 0 to M —
1. It should be clear that the optimal strategy for minimizing
the average guesswork is to use the ML order: namely, to set
the first guess m 1 (y") equal to a most likely message given yV
(as in (2)), the second guess mz(yN ) equal to a second most
likely message given y, efc. We call a guessing decoder of
this type an ML-type guessing decoder.

Let E[G((C)] denote the average guesswork for an ML-type
guessing decoder for a specific code ©. We observe that an
incorrect message m’ # m precedes the correct message m in
the ML guessing order only if a channel output y» is received
such that WY (YN [xN (m')) > WV (yN|xN (m)); thus, m’ con-
tributes to the guesswork only if a pairwise error event takes
place between the correct message m and the incorrect message
m’. Hence, we have

E[Go(C)] = Z% > Puw(©

m m'#m

(16)

where P, ,/(C) is the pairwise error probability under ML
decoding as defined in (12). We observe that the right side of
(16) is the same as the union bound on the probability of ML
decoding error for code C. As in the union bound, rather than
trying to compute the guesswork for a specific code, we con-
sider the ensemble average over all codes in a (N, R, Q) code
ensemble, and obtain

Go(N.R. Q)2 Y Pr(C)E[Go(©)]
c

= Z% > Puw (N, Q)

m m’#m
which in turn simplifies by (14) to
Go(N, R, Q) < 2NIR=Fol@l,

The bound on the guesswork is minimized if we use an ensem-

ble (N, R, Q*) for which Q* achieves the maximum of Ry(Q)

over all Q; in that case, the bound becomes
Go(N, R, Q) < 2NIR=Fol, (17)

In [13], the following converse result was provided for any
code C of rate R and block length N:
E[Go(©)] = max {0, 2VR=Rome) 1} - (13)

where o(N) is a quantity that goes to 0 as N becomes large.
Viewed together, (17) and (18) state that Ry is a rate threshold

that separates two very distinct regimes of operation for an ML-
type guessing decoder on channel W: for R > Ry, the average
guesswork is exponentially large in N regardless of how the
code is chosen; for R < Ry, it is possible to keep the average
guesswork close to 0 by an appropriate choice of the code. In
this sense, Ry acts as a computational cutoff rate, beyond which
guessing decoders become computationally infeasible.

Although a guessing decoder with a genie is an artificial con-
struct, it provides a valid computational model for studying
the computational complexity of the sequential decoding algo-
rithm, as we will see in Sect. III. The interpretation of Ry as a
computational cutoff rate in guessing will carry over directly to
sequential decoding.

III. SEQUENTIAL DECODING

The random-coding results show that a code picked at ran-
dom is likely to be a very good code with an ML decoder
error probability exponentially small in code block length.
Unfortunately, randomly-chosen codes do not solve the coding
problem, because such codes lack structure, which makes them
hard to encode and decode. For a practically acceptable bal-
ance between performance and complexity, there are two broad
classes of techniques. One is the algebraic-coding approach that
eliminates random elements from code construction entirely;
this approach has produced many codes with low-complexity
encoding and decoding algorithms, but so far none that is
capacity-achieving with a practical decoding algorithm. The
second is the probabilistic-coding approach that retains a cer-
tain amount of randomness while imposing a significant degree
of structure on the code so that low-complexity encoding and
decoding are possible. A tree code with sequential decoding is
an example of this second approach.

A. Tree Codes

A tree code is a code in which the codewords conform to
a tree structure. A convolutional code is a tree code in which
the codewords are closed under vector addition. These codes
were introduced by Elias [14] with the motivation to reduce the
complexity of ML decoding by imposing a tree structure on
block codes. In the discussion below, we will be considering
tree codes with infinite length and infinite memory in order to
avoid distracting details; although, in practice, one would use a
finite-length finite-memory convolutional code.

The encoding operation for tree codes can be described with
the aid of Fig. 2, which shows the first four levels of a tree code
with rate R = 1/2. Initially, the encoder is situated at the root
of the tree and the codeword string is empty. During each unit
of time, one new data bit enters the encoder and causes it to
move one level deeper into the tree, taking the upper branch
if the input bit is 0, the lower one otherwise. As the encoder
moves from one level to the next, it puts out the two-bit label
on the traversed branch as the current segment of the code-
word. An example of such encoding is shown in the figure,
where in response to the input string 0101 the encoder produces
00111000.
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Fig. 2. A tree code.

The decoding task for a tree code may be regarded as a search
for the correct (transmitted) path through the code tree, given a
noisy observation of that path. Elias [14] gave a random-coding
argument showing that tree codes are capacity-achieving. (In
fact, he proved this result also for time-varying convolutional
codes.) Thus, having a tree structure in a code comes with no
penalty in terms of capacity, but makes it possible to implement
ML decoding at reduced complexity thanks to various search
heuristics that exploit this structure.

B. Sequential Decoding

Consider implementing ML decoding in an infinite tree code.
Clearly, one cannot wait until the end of transmissions, decod-
ing has to start with a partial (and noisy) observation of the
transmitted path. Accordingly, it is reasonable to look for a
decoder that has, at each time instant, a working hypothesis
with respect to the transmitted path but is permitted to go back
and change that hypothesis as new observations arrive from
the channel. There is no final decision in this framework; all
hypotheses are tentative.

An algorithm of this type, called sequential decoding, was
introduced by Wozencraft [15], [16], and remained an impor-
tant research area for more than a decade. A version of
sequential decoding due to Fano [17] was used in the Pioneer 9
deep-space mission in the late 1960s [18]. Following this brief
period of popularity, sequential decoding was eclipsed by other
methods and never recovered. (For a perspective on the rise and
fall of sequential decoding, we refer to [19].)

The main drawback of sequential decoding, which partly
explains its decline, is the variability of computation.

213

code tree

N

correct path

an incorrect path

level N

Fig. 3. Searching for the correct node at level N.

Sequential decoding is an ML algorithm, capable of produc-
ing error-free output given enough time, but this performance
comes at the expense of using a backtracking search. The time
lost in backtracking increases with the severity of noise in the
channel and the rate of the code. From the very beginning, it
was recognized [15], [20] that the computational complexity
of sequential decoding is characterized by the existence of a
computational cutoff rate, denoted Reytoff (OF Reomp), that sep-
arates two radically different regimes of operation in terms of
complexity: at rates R < Rcyoff the average number of decod-
ing operations per bit remains bounded by a constant, while for
R > Rcuoff, the decoding latency grows arbitrarily large. Later
work on sequential decoding established that Ryfr coincides
with the channel parameter Ry. For a proof of the achievabil-
ity part, Rcuwoff > Ro, and bibliographic references, we refer
to[Theorem 6.9.2]; for the converse, Rcuwoff < Ro, we refer to
[21], [22].

An argument that explains why “Rcyioff = Ro” can be given
by a simplified complexity model introduced by Jacobs and
Berlekamp [21] that abstracts out the essential features of
sequential decoding while leaving out irrelevant details. In this
simplified model one fixes an arbitrary level N in the code tree,
as in Fig. 3, and watches decoder actions only at this level.
The decoder visits level N a number of times over the span
of decoding, paying various numbers of visits to various nodes.
A sequential decoder restricted to its operations at level N may
be seen as a type of guessing decoder in the sense of Sect. II-C
operating on the block code of length N obtained by truncat-
ing the tree code at level N. Unlike the guessing decoder for a
block code, a sequential decoder does not need a genie to find
out whether its current guess is correct; an incorrect turn by
the sequential decoder is sooner or later detected with proba-
bility one with the aid of a metric, i.e., a likelihood measure
that tends to decrease as soon as the decoder deviates from
the correct path. To follow the guessing decoder analogy fur-
ther, let Go y be the number of distinct nodes visited at level
N by the sequential decoder before its first visit to the cor-
rect node at that level. In light of the results given earlier for
the guessing decoder, it should not be surprising that E[Go x]
shows two types of behavior depending on the rate: for R > Ry,
E[Go,n] grows exponentially with N; for R < Ry, E[Go,n]
remains bounded by a constant independent of N. Thus, it is
natural that Royioff = Ro.
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Fig. 4. Splitting a QEC into two fully-correlated BECs by input-relabeling.

To summarize, this section has explained why R appears as
a cutoff rate in sequential decoding by linking sequential decod-
ing to guessing. While Ry has a firm meaning in its role as
part of the random-coding exponent, it is a fragile parameter
as the cutoff rate in sequential decoding. By devising variants
of sequential decoding, it is possible to break the R barrier, as
examples in the next section will demonstrate.

IV. BOOSTING THE CUTOFF RATE IN SEQUENTIAL
DECODING

In this section, we discuss two methods for boosting the cut-
off rate in sequential decoding. The first method, due to Pinsker
[6], was introduced in the context of a theoretical analysis of
the tradeoff between complexity and performance in coding.
The second method, due to Massey [7], had more immediate
practical goals and was introduced in the context of the design
of a coding and modulation scheme for an optical channel.
We present these schemes in reverse chronological order since
Massey’s scheme is simpler and contains the prototypical idea
for boosting the cutoff rate.

A. Massey’s Scheme

A paper by Massey [7] revealed a truly interesting aspect of
the cutoff rate by showing that it could be boosted by sim-
ply “splitting” a given channel. The simplest channel where
Massey’s idea can be employed is a quaternary erasure channel
(QEC) with erasure probability €, as shown in Fig. 4(a). The
capacity and cutoff rate of this channel are given by Cqgc(€) =
2(1 — €) and Ro gec(€) = log 5.

Consider relabeling the inputs of the QEC with a pair of bits
as in Fig. 4(b). This turns the QEC into a vector channel with
input (b, b") and output (s, s”) and transition probabilities

v,
e,

. 5) with probability 1 — €,
S, S
with probability €.

Following such relabeling, we can split the QEC into two binary
erasure channels (BECs), as shown in Fig. 4(c). The resulting
BECs are fully correlated in the sense that an erasure occurs in
one if and only if an erasure occurs in the other.

One way to employ coding on the original QEC is to split it
as above into two BECs and employ coding on each BEC inde-
pendently, ignoring the correlation between them. In that case,
the achievable sum capacity is given by 2Cggc(€) = 2(1 —¢€),

2 x BEC cutoff rate

QEC capacity

QEC cutoff rate

capacity and cutoff rate (bits)

0
0 erasure probability () 1

Fig. 5. Capacity and cutoff rates with and without splitting a QEC.

which is the same as the capacity of the original QEC. Even
more surprisingly, the achievable sum cutoff rate after split-
ting is 2Ro Bec(€) = 2log ﬁ, which is strictly larger than
Ro,qEc(€) for any 0 < € < 1. The capacity and cutoff rates for
the two coding alternatives are sketched in Fig. 5, showing that
substantial gains in the cutoff rate are obtained by splitting.

The above example demonstrates in very simple terms that
just by splitting a composite channel into its constituent sub-
channels one may be able obtain a net gain in the cutoff rate
without sacrificing capacity. Unfortunately, it is not clear how
to generalize Massey’s idea to other channels. For example, if
the channel has a binary input alphabet, it cannot be split. Even
if the original channel is amenable to splitting, ignoring the cor-
relations among the subchannels created by splitting may be
costly in terms of capacity. So, Massey’s scheme remains an
interesting isolated instance of cutoff-rate boosting by channel
splitting. Its main value lies in its simplicity and the sugges-
tion that building correlated subchannels may be the key to
achieving cutoff rate gains. In closing, we refer to [23] for an
alternative discussion of Massey’s scheme from the viewpoint
of multi-access channels.

B. Pinsker’s Method

Pinsker was perhaps the first to draw attention to the flaky
nature of the cutoff rate and suggest a general method to turn
that into an advantage in terms of complexity of decoding.
Pinsker’s scheme, shown in Fig. 6, combines sequential decod-
ing with Elias’ product-coding method [24]. The main idea in
Pinsker’s scheme is to have an inner block code clean up the
channels seen by a bank of outer sequential decoders, boosting
the cutoff rate seen by each sequential decoder to near 1 bit. In
turn, the sequential decoders boost the reliability to arbitrarily
high levels at low complexity. Stated roughly, Pinsker showed
that his scheme can operate arbitrarily close to capacity while
providing arbitrarily low probability of error at constant average
complexity per decoded bit. The details are as follows.

Following Pinsker’s exposition, we will assume that the
channel W in the system is a BSC with crossover probability
0 < p < 1, in which case the capacity is given by

A
C(p) =1+ plogp+ (1 — p)log(l — p).

The user data consists of K> independent bit-streams, denoted
dy,d, ..., dg,. Each stream is encoded by a separate convolu-
tional encoder (CE), with all CEs operating at a common rate
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Fig. 6. Pinsker’s scheme for boosting the cutoff rate.
R1. Each block of K3 bits coming out of the CEs is encoded by Channel V'
an inner block code, which operates at rate Ry = K»/N, and is Channel V
assumed to be a linear code. Thus, the overall transmission rate . R N .
is R = R| R,. u f z W y g z
The codewords of the inner block code are sent over W by

N> uses of that channel as shown in the figure. The received
sequence is first passed through an ML decoder for the inner
block code, then each bit obtained at the output of the ML
decoder is fed into a separate sequential decoder (SD), with
the ith SD generating an estimate c?,- of di, 1 <i < Kj. The
SDs operate in parallel and independently (without exchanging
any information). An error is said to occur if ﬁi = d; for some
1 <i<K,;.

The probability of ML decoding error for the inner code,

De 2p @V # u"), is independent of the transmitted codeword
since the code is linear and the channel is a BSC'. Each frame
error in the inner code causes a burst of bit errors that spread
across the K> parallel bit-channels, but do not affect more than
one bit in each channel thanks to interleaving of bits by the
product code. Thus, each bit-channel is a memoryless BSC with
a certain crossover probability, p;, that equals the bit-error rate
P(i1; # u;) on the ith coordinate of the inner block code. So,
the the cutoff rate “seen” by the ith CE-SD pair is

A
Ro(pi) =1 —log(1 + 2y pi(1 = pi)),

1

3 These

which is obtained from (15) with Q(0) = Q(1) =
cutoff rates are uniformly good in the sense that
Ro(pi) = Ro(pe), 1 =<i =<Ky,
since 0 < p; < pe, as in any block code.
It follows that the aggregate cutoff rate of the outer bit-
channels is > K> Ry(p.), which corresponds to a normalized

cutoff rate of better than Ry Ry(p,.) bits per channel use. Now,
consider fixing R» just below capacity C(p) and selecting N>

IThe important point here is that the channel be symmetric in the sense
defined later in Sect. V. Pinsker’s arguments hold for any binary-input channel
that is symmetric.

Fig. 7. Channels derived from W by pre- and post-processing operations.

large enough to ensure that p, ~ 0. Then, the normalized cut-
off rate satisfies Ry Ro(p.) ~ C(p). This is the sense in which
Pinsker’s scheme boosts the cutoff rate to near capacity.

Although Pinsker’s scheme shows that arbitrarily reliable
communication at any rate below capacity is possible within
constant complexity per bit, the “constant” entails the ML
decoding complexity of an inner block code operating near
capacity and providing near error-free communications. So,
Pinsker’s idea does not solve the coding problem in any prac-
tical sense. However, it points in the right direction, suggesting
that channel combining and splitting are the key to boosting the
cutoff rate.

C. Discussion

In this part, we discuss the two examples above in a more
abstract way in order to identify the essential features that are
behind the boosting of the cutoff rate.

Consider the system shown in Fig. 7 that presents a frame-
work general enough to accommodate both Pinsker’s method
and Massey’s method as special instances. The system consists
of a mapper f and a demapper g that implement, respectively,
the combining and splitting operations for a given memoryless
channel W : X — Y. The mapper and the demapper can be any
functions of the form f : AKX — XN and g : YV — BX where
the alphabets A and B, as well as the dimensions K and N are
design parameters.

The mapper acts as a pre-processor to create a derived chan-
nel V : AKX — YV from vectors of length K over A to vectors
of length N over Y. The demapper acts as a post-processor to
create from V a second derived channel V' : AX — BK_ The
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Fig. 8. Successive-cancellation architecture for boosting the cutoff rate.

well-known data-processing theorem of information theory [11,
p. 50] states that

C(V)) =C(V) = NC(W),

where C(V’), C(V), and C(W) denote the capacities of V', V,
and W, respectively. There is also a data-processing theorem
that applies to the cutoff rate, stating that

Ro(V') < Ro(V) < NRo(W). (19)

The data-processing result for the cutoff rate follows from a
more general result given in [11, pp. 149-150] in the con-
text of “parallel channels.” In words, inequality (19) states
that it is impossible to boost the cutoff rate of a channel W
if one employs a single sequential decoder on the channels
V or V' derived from W by any kind of pre-processing and
post-processing operations.

On the other hand, there are cases where it is possible to split
the derived channel V' into K memoryless channels V/ : A —
B, 1 <i < K, so that the normalized cutoff rate after splitting
shows a cutoff rate gain in the sense that

1 K
5 2= Ro(V)) = Ro(W). (20)

i=1

Both Pinsker’s scheme and Massey’s scheme are examples
where (20) is satisfied. In Pinsker’s scheme, the alphabets are
A =B =/{0,1}, f is an encoder for a binary block code of
rate K»/Nj, g is an ML decoder for the block code, and the
bit channel Vl/ is the channel between u; and z;, 1 <i < K».
In Massey’s scheme, with the QEC labeled as in Fig. 4-(a), the
length parameters are K = 2 and N = 1, f is the identity map
on A = {0, 1}?, and g is the identity map on B = {0, 1, 7}2.

As we conclude this section, a word of caution is neces-
sary about the application of the above framework for cutoff
rate gains. The coordinate channels {V/} created by the above
scheme are in general not memoryless; they interfere with
each other in complex ways depending on the specific f and
g employed. For a channel V/ with memory, the parame-
ter Ro(Vl.’ ) loses its operational meaning as the cutoff rate of

sequential decoding. Pinsker avoids such technical difficulties
in his construction by using a linear code and restricting the
discussion to a symmetric channel. In designing systems that
target cutoff rate gains as promised by (20), these points should
not be overlooked.

V. SUCCESSIVE-CANCELLATION ARCHITECTURE

In this section, we examine the successive-cancellation
(SC) architecture, shown in Fig. 8, as a general framework for
boosting the cutoff rate. The SC architecture is more flexible
than Pinsker’s architecture in Fig. 7, and may be regarded as
a generalization of it. This greater flexibility provides signifi-
cant advantages in terms of building practical coding schemes,
as we will see in the rest of the paper. As usual, we will
assume that the channel in the system is a binary-input channel
wW:X={0,1}—->Y.

A. Channel Combining and Splitting

As seen in Fig. 8, the transmitter in the SC architecture uses
a 1-1 mapper fy that combines N independent copies of W to
synthesize a channel

Wy u € {0, 1}V — yN eyN

with transition probabilities

N
Wy Ny =[Twoilx), Y = fv@™).
i=1

The SC architecture has room for N CEs but these encoders
do not have to operate at the same rate, which is one differ-
ence between the SC architecture and Pinsker’s scheme. The
intended mode of operation in the SC architecture is to set the
rate of the ith encoder CE; to a value commensurate with the
capability of that channel.

The receiver side in the SC architecture consists of a soft-
decision generator (SDG) and a chain of SDs that carry out SC
decoding. To discuss the details of the receiver operation, let us
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index the blocks in the system by 7. At time ¢, the ¢th code block
x™, denoted x™ (1), is transmitted (over N copies of W) and
yN (t) is delivered to the receiver. Assume that each round of

transmission lasts for 7' time units, with {xN(l), R xN(T)}
being sent and {yN(l), A yN(T)} received. Let us write
{xN (1)} to denote {xV (1), ..., xV(T)} briefly. Let us use sim-

ilar time-indexing for all other signals in the system, for
example, let d; () denote the data at the input of the ith encoder
CE; at time ¢.

Decoding in the SC architecture is done layer-by-layer, in N
layers: first, the data sequence {d{(¢) : 1 <t < T} is decoded,
then {d>(¢)} is decoded, and so on. To decode the first layer
of data {d;(t)}, the SDG computes the soft-decision vari-
ables {£1(r)} as a function of {y"V(r)} and feeds them into
the first sequential decoder SD;. Given {£;(¢)}, SD; calcu-
lates two sequences: the estimates {ﬁl (1)} of {di(t)}, which
it sends out as its final decisions about {d;(¢)}; and, the esti-
mates {i1(r)} of {uy(¢)}, which it feeds back to the SDG.
Having received {ii|(7)}, the SDG proceeds to compute the
soft-decision sequence {¢,(¢)} and feeds them into SD,, which,
in turn, computes the estimates {c?z(t)} and {ii(1)}, sends out
{c?z(t)}, and feeds {#i,(¢)} back into the SDG. In general, at
the ith layer of SC decoding, the SDG computes the sequence
{€¢; (t)} and feeds it to SD;, which in turn computes a data deci-
sion sequence {c?,- (¢)}, which it sends out, and a second decision
sequence {u; (¢)}, which it feeds back to SDG. The operation is
completed when the Nth decoder SDy computes and sends out
the data decisions {ﬁN (nH}.

B. Capacity and Cutoff Rate Analysis

For capacity and cutoff rate analysis of the SC architecture,
we need to first specify a probabilistic model that covers all
parts of the system. As usual, we will use upper-case notation
to denote the random variables and vectors in the system. In
particular, we will write X"V to denote the random vector at the
output of the 1-1 mapper fy; likewise, we will write YV to
denote the random vector at the input of the SDG gy. We will
assume that X% is uniformly distributed,

pyv (V) =172V, forall xV € {0, 1}V,
Since XV and Y" are connected by N independent copies of
W, we will have

N
pynxy OV N =TT Wil
i=1

The ensemble (X", YV), thus specified, will serve as the core
of the probabilistic analysis. Next, we expand the probabilistic
model to cover other signals of interest in the system. We define
UV as the random vector that appears at the output of the CEs
in Fig. 8. Since U" is in 1-1 correspondence with X%, it is
uniformly distributed. We define UV as the random vector that
the SDs feed back to the SDG as the estimate of U . Ordinarily,
any practical system has some non-zero probability that ov #*
UV . However, modeling such decision errors and dealing with
the consequent error propagation effects in the SC chain is a

difficult problem. To avoid such difficulties, we will assume that
the outer code in Fig. 8 is perfect, so that

Pr(ON = Uy =1. 1)

This assumption eliminates the complications arising from
error-propagation; however, the capacity and cutoff rates cal-
culated under this assumption will be optimistic estimates of
what can be achieved by any real system. Still, the analysis will
serve as a roadmap and provide benchmarks for practical sys-
tem design. (In the case of polar codes, we will see that the
estimates obtained under the above ideal system model are in
fact achievable.) Finally, we define the soft-decision random
vector LV at the output of the SDG so that its ith coordinate
is given by

L, 2N, ui-Y, 1<i<N.

(If it were not for the modeling assumption (21), it would be
appropriate to use Ui~ in the definition of L; instead of U~!.)
This completes the specification of the probabilistic model for
all parts of the system.

We first focus on the capacity of the channel Wy created by
combining N copies of W. Since we have specified a uniform
distribution for channel inputs, the applicable notion of capacity
in this analysis is the symmetric capacity, defined as

Coym(W) 2 C(W, Qgym).

where Qgym is the uniform distribution, Qgym(0) = Qgym(1) =
1/2. Likewise, the applicable cutoff rate is now the symmetric
one, defined as

A
RO,sym(W) = Ro(W, stm)~

In general, the symmetric capacity may be strictly less than
the true capacity, so there is a penalty for using a uniform dis-
tribution at channel inputs. However, since we will be dealing
with linear codes, the uniform distribution is the only appropri-
ate distribution here. Fortunately, for many channels of practical
interest, the uniform distribution is actually the optimal one for
achieving the channel capacity and the cutoff rate. These are the
class of symmetric channels. A binary-input channel is called
symmetric if for each output letter y there exists a “paired”
output letter y’ (not necessarily distinct from y) such that
W(y|0) = W(y'|1). Examples of symmetric channels include
the BSC, the BEC, and the additive Gaussian noise channel
with binary inputs. As shown in [11, p. 94], for a symmetric
channel, the symmetric versions of channel capacity and cutoff
rate coincide with the true ones.

We now turn to the analysis of the capacities of the bit-
channels created by the SC architecture. The SC architecture
splits the vector channel Wy into N bit-channels, which we
will denote by W/E,'), 1 <i < N. The ith bit-channel connects
the output U; of CE; to the input L; of SD;,

WU - L =N, Ui,
and has symmetric capacity

Csym(WI(\f)) =IU;; L) = 1(U; YN, Ui=h.
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Here, 1(U;; L;) denotes the mutual information between U;
and L;. In the following analysis, we will be using the mutual
information function and some of its basic properties, such as
the chain rule. We refer to [27, Ch. 2] for definitions and a
discussion of such basic material.

The aggregate symmetric capacity of the bit-channels is
calculated as

N N
Y ComWyh =" 1w YU

i=1 i=1

N
23 rwsyMuTH 2 1w v

i=1

N
3 4
2y @3 IXi Y = NCym(W)  (22)

i=1

where the equality (1) is due to the fact that U; and U'~! are
independent, (2) is by the chain rule, (3) by the 1-1 property of
fn, (4) by the memoryless property of the channel W. Thus,
the aggregate symmetric capacity of the underlying N copies
of W is preserved by the combining and splitting operations.

Our main interest in using the SC architecture is to obtain
a gain in the aggregate cutoff rate. We define the normalized
symmetric cutoff rate under SC decoding as

N
— Al i
R0 sym(Wn) = N E :Rogsym(WI(\;))‘
i=1

(23)

The objective in applying the SC architecture may be stated as
devising schemes for which

EO,sym(WN) > RO,sym(W) (24)

holds by a significant margin. The ultimate goal would be to
have Eo,sym(WN) approach Cgym(W) as N increases.

For specific examples of schemes that follow the SC architec-
ture and achieve cutoff rate gains in the sense of (24), we refer
to [26] and the references therein. We must mention in this con-
nection that the multilevel coding scheme of Imai and Hirakawa
[25] is perhaps the first example of the SC architecture in the lit-
erature, but the focus there was not to boost the cutoff rate. In
the next section, we discuss polar coding as another scheme that
conforms to the SC architecture and provides the type of cutoff
rate gains envisaged by (24).

VI. POLAR CODING

Polar coding is an example of a coding scheme that fits into
the framework of the preceding section and has the property
that

Ro,sym(Wy) = Csym(W) as N — oo. (25)
The name “polar” refers to a phenomenon called “polariza-
tion” that will be described later in this section. We begin by
describing the channel combining and splitting operations in
polar coding.

Wy
uy !_a-_; _: 1 W Y1
l 1
| T |
l 1
U2 I L2 Y2
__ _ 1 w
fo

W,
U 5_551____65_5 $1@ (1
I
U2 ETSQQTECEQE Y2
us 5/4_\83\%(5%3@ Y3
| 1
(7 :____54_]6:____: $4@ Ya

Fig. 10. Size-4 polar code construction.

A. Channel Combining and Splitting for Polar Codes

The channel combining and splitting operations in polar cod-
ing follow the general principles already described in detail in
Sect. V-A. We only need to describe the particular 1-1 transfor-
mation fy that is used for constructing a polar code of size N.
We will begin this description starting with N = 2.

The basic module of the channel combining operation in
polar coding is shown in Fig. 9, in which two independent
copies of W : {0, 1} — Y are combined into a channel W, :
{0, 1} — Y2 using a 1-1 mapping f> defined by

A
Salur, uz) = (uy @ uz, uz) (26)
where @ denotes modulo-2 addition in the binary field Fp =
{0, 1}. We call the basic transform f; the kernel of the construc-
tion. (We defer the discussion of how to find a suitable kernel
until the end of this subsection.)

Polar coding extends the above basic combining operation
recursively to constructions of size N = 2", for any n > 1. For
N = 4, the polar code construction is shown in Fig. 10, where
4 independent copies of W are combined by a 1-1 mapping f
into a channel Wj.

The general form of the recursion in polar code construction
is illustrated in Fig. 11 and can be expressed algebraically as

fon @) = (v @™y @ fy @i, v, @D
where @ denotes the componentwise mod-2 addition of two
vectors of the same length over [F,.
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Fig. 11. Recursive extension of the polar code construction.

TABLE I
BASIC PERMUTATIONS OF (u1, u2)

No. [ 00 [ 01 [ 10 | 11 [ Matrix

1 00 | 01 | 10 | 11

00 | 10 | O1 | 11
00 | 11 | 10 | O1
00 | O1L | 11 | 10
00 | 11 | 01 | 10
00 | 10 | 11 | O1

N[ | | W] N
|| — |
=] (=T [N NN =TS
=T SN N - = =]
PR U FU—Y ro—

The transform xV = fy (") is linear over the vector space

(F2)N, and can be expressed as
N = uNFN,

where u” and xV are row vectors, and Fy is a matrix defined
recursively as

| Fn On . A (10
FQN—I:FN FNi|’ with Fz—l:l 1i|,

or, simply as

Fy = (F2)®", n=IlogN,
where the “®” in the exponent denotes Kronecker power of a
matrix [5].

The recursive nature of the mapping fn makes it possible
to compute fy (u”) in time complexity O (N log N). The polar
transform fy is a “fast” transform over the field IF», akin to the
“fast Fourier transform” of signal processing.

We wish to comment briefly on how to select a suitable kernel
(basic module such as f> above) to get the polar code construc-
tion started. In general, not only the kernel, but its size is also a
design choice in polar coding; however, all else being equal, it is
advantageous to use a small kernel to keep the complexity low.
The specific kernel f> above has been found by exhaustively
studying all 4! alternatives for a kernel of size N = 2, corre-
sponding to all permutations (1-1 mappings) of binary vectors
(uy,uy) € {0, 1}2. Six of the permutations are listed in Table 1.

The title row displays the regular order of elements in {0, 1},
each subsequent row displays a particular permutation of the
same elements. Each permutation listed in the table happens
to be a linear transformation of (u1, us), with a transforma-
tion matrix as shown as the final entry of the related row. The
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remaining 18 permutations that are not listed in the table can be
obtained as affine transformations of the six that are listed. For
example, by adding (mod-2) a non-zero constant offset vector,
such as 10, to each entry in the table, we obtain six additional
permutations.

The first and the second permutations in the table are triv-
ial permutations that provide no channel combining. The third
and the fifth permutations are equivalent from a coding point
of view; their matrices are column permutations of each other,
which corresponds to permuting the elements of the codeword
during transmission—an operation that has no effect on the
capacity or cutoff rate. The fourth and the sixth permutations
are also equivalent to each other in the same sense that the third
and the fifth permutations are. The fourth permutation is not
suitable for our purposes since it does not provide any channel
combining (entanglement) under the decoding order u first, u»
second. For the same reason, the sixth permutation is not suit-
able, either. The third and the fifth permutations (and their affine
versions) remain as the only viable alternatives; and they are
all equivalent from a capacity/cutoff rate viewpoint. Here, we
use the third permutation since it is the simplest one among the
eight viable candidates.

B. Capacity and Cutoff Rate Analysis for Polar Codes

For the analysis in this section, we will use the general set-
ting and notation of Sect. V-B. We begin our analysis with
the case N = 2. The basic transform (26) creates a channel
Wy : (Uy, Uz) — (Y1, Y2) with transition probabilities

Wao(yi, y2lur, uz) = W(yrluy @ u2) W(yzluz).

This channel is split by the SC scheme into two bit-channels
Wz(l) Uy — (Y1, Y2) and W2(2) : Uy — (Y1, Yp, Up) with tran-
sition probabilities

1
WP Givalun) = Y Quym@)W (il ® u) W (y2luz),
ur€{0,1}

WP (y1yaur|ua) = Qsym @)W (yilut @ ua) W (yaluz).

Here, we introduce the alternative notation W~ and W to
denote Wz(l) and Wz(z), respectively. This notation will be par-
ticularly useful in the following discussion. We observe that the
channel W~ treats U, as pure noise; while, W treats U; as
an observed (known) entity. In other words, the transmission
of Uj is hampered by interference from U,; while U; “sees” a
channel of diversity order two, after “canceling” U;. Based on
this interpretation, we may say that the polar transform creates
a “bad” channel W~ and a “good” channel W, This statement
can be justified by looking at the capacities of the two channels.

The symmetric capacities of W~ and W are given by

Coym(W™) =1(Uy; V1Y), Coym(WT) =1(Us; Y1Y,U)).
We observe that
Csym(Wi) + Csym(W+) = 2Csym(W)v (28)

which is a special instance of the general conservation law
(22). The symmetric capacity is conserved, but redistributed
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unevenly. It follows from basic properties of mutual informa-
tion function that
Csym(W_) =

Csym(W) < Coym(WT), (29)

where the inequalities are strict unless Csym,(W) equals O or 1.
For a proof, we refer to [5].

We will call a channel W extreme if Csyy,(W) equals 0
or 1. Extreme channels are those for which there is no need
for coding: if Csym(W) =1, one can send data uncoded; if
Csym(W) = 0, no code will help. Inequality (29) states that,
unless the channel W is extreme, the size-2 polar transform cre-
ates a channel W that is strictly better than W, and a second
channel W~ that is strictly worse than W. By doing so, the
size-2 transform starts the polarization process.

As regards the cutoff rates, we have

RO,sym(W_) + RO,sym(W+) = 2R0,sym(W)’ (30)

where the inequality is strict unless W is extreme. This result,
proved in [5], states that the basic transform always creates a
cutoff rate gain, except when W is extreme.

An equivalent form of (30), which is the one that was
actually proved in [5], is the following inequality about the
Bhattacharyya parameters,

ZWT)+Z(WF) < 2Z(W), 31)
where strict inequality holds unless W is extreme. The equiva-
lence of (30) and (31) is easy to see from the relation

Rosym(W) = 1 —log[1 + Z(W)],

which is a special form of (15) with Q = Qgym.

Given that the size-2 transform improves the cutoff rate of
any given channel W (unless W is already extreme in which
case there is no need to do anything), it is natural to seek
methods of applying the same method recursively so as to
gain further improvements. This is the main intuitive idea
behind polar coding. As the cutoff-rate gains are accumulated
over each step of recursion, the synthetic bit-channels that are
created in the process keep moving towards extremes.

To see how recursion helps improve the cutoff rate as the size
of the polar transform is doubled, let us consider the next step of
the construction, N = 4. The key recursive relationships that tie
the size-4 construction to size-2 construction are the following:

(1) (W(l))f (2) (W(l))+

(W(Z))+

(32

The first claim Wil) = (Wz(l))_ means that Wil) is equivalent
to the bad channel obtained by applying a size-2 transform on
two independent copies of WZ( . The other three claims can be
interpreted similarly.

To prove the validity of (32) and (33), let us refer to
Fig. 10 again. Let (U*, §*, X*, Y#) denote the ensemble of ran-
dom vectors that correspond to the signals (u*, s*, x*, y*) in
the polar transform circuit. In accordance with the modeling

assumptions of Sect. V-B, the random vector X* is uniformly

S1 q_\ T W‘ Y1

S2 @ T T2 W‘ Y2

53 T ( i s
( ¢ w

S4 T4 Ya
' i

Fig. 12. Intermediate stage of splitting for size-4 polar code construction.

u1 /—D S1 (yl,yg)

us T S92

Fig. 13. A size-2 polar code construction embedded in a size-4 construction.

w-

(Y2, y4)

w-

us S3 (yl, Ys, U1)

H—w+
U4 T S4

Fig. 14. A second size-2 polar code construction inside a size-4 construction.

(y2, Ya, U2)

W+

distributed over {0, 1}*. Since both S;‘ and U* are in 1-1 cor-
respondence with X 4, they, too, are uniformly distributed over
{0, 1}4. Furthermore, the elements of X* are i.i.d. uniform over
{0, 1}, and similarly for the elements of S* and of U*.

Let us now focus on Fig. 12 which depicts the relevant part
of Fig. 10 for the present discussion. Consider the two channels
w”:

WS — (Y1, Y3), Sy — (Y2, Yy),

embedded in the diagram. It is clear that

wW=w'= Wz(l) =W".

Furthermore, the two channels W' and W” are independent.
This is seen by noticing that W’ is governed by the set of ran-
dom variables (S1, S3, Y1, ¥3), which is disjoint from the set of
variables (S2, S4, Y2, Y4) that govern W”.

Returning to the size-4 construction of Fig. 10, we now see
that the effective channel seen by the pair of inputs (Uy, U») is
the combination of W’ and W”, or equivalently, of two inde-
pendent copies of Wz(l) = W™, as shown in Fig. 13. The first
pair of claims (32) follows immediately from this figure.

The second pair of claims (33) follows by observing that,
after decoding (Uj, U»), the effective channel seen by the pair
of inputs (U3, Uy) is the combination of two independent copies
of W2(2) = W as shown in Fig. 14.

The following conservation rules are immediate from (28).

Csym(W__) + Csym(W_+) =2 Csym(W_)a
Coym(W ) + Cym(WTH) = 2 Cym(WH).
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Likewise, we have, from (30),

RO,sym(Wii) + RO,sym(WiJr) =
Ro,sym(W ¥ ) + Ro,sym(WF)

2 RO,sym(Wi)v
2 RO,sym(W+)-

\

Here, we extended the notation and used W™~ to denote
(W™)~, and similarly for W™, etc.
If we normalize the aggregate cutoff rates for N =4 and

compare with the normalized cutoff rate for N = 2, we obtain
EO,sym(W4) > EO,sym(WZ) > RO,sym(W)-

These inequalities are strict unless W is extreme.

The recursive argument given above can be applied to the
situtation in Fig. 11 to show that for any N =2", n > 1, and
1 <i < N, the following relations hold

(2i—-1) _

N .
Wiy V=T Wiy = W)

from which it follows that

EO,sym(WZN) > EO,sym(WN)-

These results establish that the sequence of normalized cut-
off rates {Eoysym(WN)} is monotone non-decreasing in N. Since
Eo,sym(WN) < Csym(W) for all N, the sequence must converge
to a limit. It turns out, as might be expected, that this limit
is the symmetric capacity Csym(W). We examine the asymp-
totic behavior of the polar code construction process in the next
subsection.

C. Polarization and Elimination of the Outer Code

As the construction size in the polar transform is increased,
gradually a “polarization” phenomenon takes holds. All chan-
nels {Wz(\;) : 1 <i < N} created by the polar transform, except
for a vanishing fraction, approach extreme limits (becom-
ing near perfect or useless) with increasing N. One form of
expressing polarization more precisely is the following. For
any fixed § > 0, the channels created by the polar transform
satisty

ks Hz : Ro,gym(WI(\f)) >1- 5” = Cym(W)

N (34)

and
% H’  Rosym(Wy) < 5” — 1= Cym(W)  (35)

as N increases. (J]A| denotes the number of elements in set .A.)

A proof of this result using martingale theory can be found in
[5]; for a recent simpler proof that avoids martingales, we refer
to [28].

As an immediate corollary to (34), we obtain (25), estab-
lishing the main goal of this analysis. While this result is very
reassuring, there are many remaining technical details that have
to be taken care of before we can claim to have a practical cod-
ing scheme. First of all, we should not forget that the validity
of (25) rests on the assumption (21) that there are no errors
in the SC decoding chain. We may argue that we can satisfy

assumption (21) to any desired degree of accuracy by using con-
volutional codes of sufficiently long constraint lengths. Luckily,
it turns out using such convolutional codes is unnecessary to
have a practically viable scheme. The polarization phenomenon
creates sufficient number of sufficiently good channels fast
enough that the validity of (25) can be maintained without any
help from an outer convolutional code and sequential decoder.
The details of this last step of polar code construction are as
follows.

Let us reconsider the scheme in Fig. 8. At the outset, the
plan was to operate the ith convolutional encoder CE; at a rate
just below the symmetric cutoff rate Ry, sym(WI(\;) ). However, in
light of the polarization phenomenon, we know that almost all
the cutoff rates RO,sym(W/E/l)) are clustered around O or 1 for N
large. This suggests rounding off the rates of all convolutional
encoders to 0 or 1, effectively eliminating the outer code. Such a
revised scheme is highly attractive due to its simplicity, but dis-
pensing with the outer code exposes the system to unmitigated
error propagation in the SC chain.

To analyze the performance of the scheme that has no pro-
tection by an outer code, let A denote the set of indices i €
{1,..., N} of input variables U; that will carry data at rate
1. We call A the set of “active” variables. Let A¢ denote the
complement of A, and call this set the set of “frozen” vari-
ables. We will denote the active variables collectively by U 4 2
(U; :i € A) and the frozen ones by U 4¢ 2 U; i € A°), each
vector regarded as a subvector of UV . Let K denote the size
of A.

Encoding is done by setting U4 = DX and U 4e
where DX is user data equally likely to take any value in
{0, 1}X and bN=K € {0, 1}¥~K is a fixed pattern. The user
data may change from block to the next, but the frozen pat-
tern remains the same and is known to the decoder. This system
carries K bits of data in each block of N channel uses, for a
transmission rate of R = K/N.

At the receiver, we suppose that there is an SC decoder that
computes its decision oN by calculating the likelihood ratio

Li éPr(U,» =0|YN,Ui_1>/Pr(Ui - 1|YN,0Z'—‘),

— bN—K

and setting

U;, ifieAC,
U;=10, ifiecAandL; > I;
1, ifieAand L; <1,

successively, starting with i = 1. Since the variables U 4 are
fixed to bV =X this decoding rule can be implemented at the
decoder. The probability of frame error for this system is
given by

Pe<fl, bN—K) A P(ﬁﬂ £ Ua|Upe = bN—K).

For a symmetric channel, the error probability P, (A, bV ~K)
does not depend on bN—K [5]. A convenient choice in that case
may be to set N X to the zero vector. For a general channel,
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we consider the average of the error probability over all possible
choices for bV =K namely,

A 1

bN-K {0, 1}N-K

It is shown in [5] that

Po(A) <Y Z(W)),
ieA

(36)

where Z (WIE;)) is the Bhattacharyya parameter of W[(\ﬁ).

The bound (36) suggests that A should be chosen so as to
minimize the upper bound on P,(A). The performance attain-
able by such a design rule can be calculated directly from the
following polarization result from [29].

For any fixed 8 < %, the Bhattacharyya parameters created
by the polar transform satisfy

% H’ ZWy) < TNﬁH — Cym(W). (37

In particular, if we fix 8 = 0.49, the fraction of channels WI(\;)
in the population {W;,') : 1 <i < N} satisfying

_ 049

ZWPy <2 (38)
approaches the symmetric capacity Csym(W) as N becomes
large. So, if we fix the rate R < Csym(W), then for all N suf-
ficiently large, we will be able to select an active set Ay of
size K = N R such that (38) holds for each i € Ay. With Ay
selected in this way, the probability of error is bounded as

PeAy) < > ZWi) < N2V o,

iE.AN

This establishes the feasibility of constructing polar codes that
operate at any rate R < Csym(W) with a probability of error
going to 0 exponentially as ~ 2-VN,

This brings us to the end of our discussion of polar codes.
We will close by mentioning two important facts that relate to
complexity. The SC decoding algorithm for polar codes can be
implemented in complexity O (N log N) [5]. The construction
complexity of polar codes, namely, the selection of an opti-
mal (subject to numerical precision) set A of active channels
(either by computing the Bhattacharyya parameters {Z,(\l,)} or
some related set of quality parameters) can be done in com-
plexity O(N), as shown in the sequence of papers [30], [31],
and [32].

VII. SUMMARY

In this paper we gave an account of polar coding from a his-
torical perspective, tracing the original line of thinking that led
to its development.

The key motivation for polar coding was to boost the cut-
off rate of sequential decoding. The schemes of Pinsker and
Massey suggested a two-step mechanism: first build a vector
channel from independent copies of a given channel; next, split

P(UA £ UA|Upe = bN*K) .

the vector channel into correlated subchannels. With proper
combining and splitting, it is possible to obtain an improvement
in the aggregate cutoff rate. Polar coding is a recursive imple-
mentation of this basic idea. The recursiveness renders polar
codes both analytically tractable, which leads to an explicit
code construction algorithm, and also makes it possible to
encode and decode these codes at low-complexity.

Although polar coding was originally intended to be the inner
code in a concatenated scheme, it turned out (to our pleasant
surprise) that the inner code was so reliable that there was no
need for the outer convolutional code or the sequential decoder.
However, to further improve polar coding, one could still
consider adding an outer coding scheme, as originally planned.

APPENDIX
DERIVATION OF THE PAIRWISE ERROR BOUND

This appendix provides a proof of the pairwise error bound
(14). The proof below is standard textbook material. It is repro-
duced here for completeness and to demonstrate the simplicity
of the basic idea underlying the cutoff rate.

Let € = {xV(1),...,x¥ (M)} be a specific code, let R =
(1/N)log M be the rate of the code. Fix two distinct messages
m#m',1 <m,m’" < M, and define P, ,,(C) as in (12). Then,

Paw@®@= > WYV N ()
yNeE, . (C)

m,m

) WN N|+N /
S e

}'N

=) \/WN(yNIxN(m))WN(yNIxN(m/))

yN

N
211 [Z JW(yn|xn<m))W(yn|xn<m’>)}

Yn

n=1

N
3)
= l_[ Zm,m/ (n),

n=1

where the inequality (1) follows by the simple observation that
\/ WNOGN N ) [1, 9N € Ey(©)
WN (NN @) = |0, YN ¢ Epw(©).
equality (2) follows by the memoryless channel assumption,
and (3) by the definition

Zinaw ) 23 VWL )W Gl (). (39)
>

At this point the analysis becomes dependent on the specific
code structure. To continue, we consider the ensemble average

of the pairwise error probability, P, ,, (N, Q), defined by (13).

N
Prw (N, Q) < [ | Zmw )

N
LT Znw® 2 [ Znwn]"
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where the overbar denotes averaging with respect to the code
ensemble, the equality (1) is due to the independence of the
random variables {Z,, ,,»(n) : 1 <n < N}, and (2) is by the fact
that the same set of random variables are identically-distributed.
Finally, we note that,

Znaw (D) =Y WX )W (Y [X1 ()

y

=Y VWX 1m)) W (yIXi(m)
y

2
=Y 1D 0VWil) | .
y X

In view of the definition (10), this proves that Fm,m/(N ,0) <
2=NRo(Q) for any m # m'.
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