73 research outputs found

    <Bioinformatics Center>Mathematical Bioinformatics

    Get PDF
    This Annual Report covers from 1 January to 31 December 202

    Deep Reinforcement Learning for the Design of Structural Topologies

    Get PDF
    Advances in machine learning algorithms and increased computational efficiencies have given engineers new capabilities and tools for engineering design. The presented work investigates using deep reinforcement learning (DRL), a subset of deep machine learning that teaches an agent to complete a task through accumulating experiences in an interactive environment, to design 2D structural topologies. Three unique structural topology design problems are investigated to validate DRL as a practical design automation tool to produce high-performing designs in structural topology domains. The first design problem attempts to find a gradient-free alternative to solving the compliance minimization topology optimization problem. In the proposed DRL environment, a DRL agent can sequentially remove elements from a starting solid material domain to form a topology that minimizes compliance. After each action, the agent receives feedback on its performance by evaluating how well the current topology satisfies the design objectives. The agent learned a generalized design strategy that produced topology designs with similar or better compliance minimization performance than traditional gradient-based topology optimization methods given various boundary conditions. The second design problem reformulates mechanical metamaterial unit cell design as a DRL task. The local unit cells of mechanical metamaterials are built by sequentially adding material elements according to a cubic Bezier curve methodology. The unit cells are built such that, when tessellated, they exhibit a targeted nonlinear deformation response under uniaxial compressive or tensile loading. Using a variational autoencoder for domain dimension reduction and a surrogate model for rapid deformation response prediction, the DRL environment was built to allow the agent to rapidly build mechanical metamaterials that exhibit a diverse array of deformation responses with variable degrees of nonlinearity. Finally, the third design problem expands on the second to train a DRL agent to design mechanical metamaterials with tailorable deformation and energy manipulation characteristics. The agent’s design performance was validated by creating metamaterials with a thermoplastic polyurethane (TPU) constitutive material that increased or decreased hysteresis while exhibiting the compressive deformation response of expanded thermoplastic polyurethane (E-TPU). These optimized designs were additively manufactured and underwent experimental cyclic compressive testing. The results showed the E-TPU and metamaterial with E-TPU target properties were well aligned, underscoring the feasibility of designing mechanical metamaterials with customizable deformation and energy manipulation responses. Finally, the agent\u27s generalized design capabilities were tested by designing multiple metamaterials with diverse desired loading deformation responses and specific hysteresis objectives. The combined success of these three design problems is critical in proving that a DRL agent can serve as a co-designer working with a human designer to achieve high-performing solutions in the domain of 2D structural topologies and is worthy of incorporation into a wide array of engineering design domains

    Autoencoding with a classifier system

    Get PDF
    Autoencoders are data-specific compression algorithms learned automatically from examples. The predominant approach has been to construct single large global models that cover the domain. However, training and evaluating models of increasing size comes at the price of additional time and computational cost. Conditional computation, sparsity, and model pruning techniques can reduce these costs while maintaining performance. Learning classifier systems (LCS) are a framework for adaptively subdividing input spaces into an ensemble of simpler local approximations that together cover the domain. LCS perform conditional computation through the use of a population of individual gating/guarding components, each associated with a local approximation. This article explores the use of an LCS to adaptively decompose the input domain into a collection of small autoencoders where local solutions of different complexity may emerge. In addition to benefits in convergence time and computational cost, it is shown possible to reduce code size as well as the resulting decoder computational cost when compared with the global model equivalent

    Quantum machine learning: a classical perspective

    Get PDF
    Recently, increased computational power and data availability, as well as algorithmic advances, have led machine learning techniques to impressive results in regression, classification, data-generation and reinforcement learning tasks. Despite these successes, the proximity to the physical limits of chip fabrication alongside the increasing size of datasets are motivating a growing number of researchers to explore the possibility of harnessing the power of quantum computation to speed-up classical machine learning algorithms. Here we review the literature in quantum machine learning and discuss perspectives for a mixed readership of classical machine learning and quantum computation experts. Particular emphasis will be placed on clarifying the limitations of quantum algorithms, how they compare with their best classical counterparts and why quantum resources are expected to provide advantages for learning problems. Learning in the presence of noise and certain computationally hard problems in machine learning are identified as promising directions for the field. Practical questions, like how to upload classical data into quantum form, will also be addressed.Comment: v3 33 pages; typos corrected and references adde

    機械学習モデルからの知識抽出と生命情報学への応用

    Get PDF
    京都大学新制・課程博士博士(情報学)甲第23397号情博第766号新制||情||131(附属図書館)京都大学大学院情報学研究科知能情報学専攻(主査)教授 阿久津 達也, 教授 山本 章博, 教授 鹿島 久嗣学位規則第4条第1項該当Doctor of InformaticsKyoto UniversityDFA

    Advanced Operation and Maintenance in Solar Plants, Wind Farms and Microgrids

    Get PDF
    This reprint presents advances in operation and maintenance in solar plants, wind farms and microgrids. This compendium of scientific articles will help clarify the current advances in this subject, so it is expected that it will please the reader

    Novel Processing and Transmission Techniques Leveraging Edge Computing for Smart Health Systems

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen
    corecore