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ABSTRACT 
 
 

 Advances in machine learning algorithms and increased computational efficiencies have 

given engineers new capabilities and tools for engineering design. The presented work investigates 

using deep reinforcement learning (DRL), a subset of deep machine learning that teaches an agent 

to complete a task through accumulating experiences in an interactive environment, to design 2D 

structural topologies. Three unique structural topology design problems are investigated to validate 

DRL as a practical design automation tool to produce high-performing designs in structural 

topology domains.  

The first design problem attempts to find a gradient-free alternative to solving the 

compliance minimization topology optimization problem. In the proposed DRL environment, a 

DRL agent can sequentially remove elements from a starting solid material domain to form a 

topology that minimizes compliance. After each action, the agent receives feedback on its 

performance by evaluating how well the current topology satisfies the design objectives. The agent 

learned a generalized design strategy that produced topology designs with similar or better 

compliance minimization performance than traditional gradient-based topology optimization 

methods given various boundary conditions. 

The second design problem reformulates mechanical metamaterial unit cell design as a 

DRL task. The local unit cells of mechanical metamaterials are built by sequentially adding material 

elements according to a cubic Bezier curve methodology. The unit cells are built such that, when 

tessellated, they exhibit a targeted nonlinear deformation response under uniaxial compressive or 

tensile loading. Using a variational autoencoder for domain dimension reduction and a surrogate 

model for rapid deformation response prediction, the DRL environment was built to allow the agent 
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to rapidly build mechanical metamaterials that exhibit a diverse array of deformation responses 

with variable degrees of nonlinearity.  

Finally, the third design problem expands on the second to train a DRL agent to design 

mechanical metamaterials with tailorable deformation and energy manipulation characteristics. The 

agent’s design performance was validated by creating metamaterials with a thermoplastic 

polyurethane (TPU) constitutive material that increased or decreased hysteresis while exhibiting 

the compressive deformation response of expanded thermoplastic polyurethane (E-TPU). These 

optimized designs were additively manufactured and underwent experimental cyclic compressive 

testing. The results showed the E-TPU and metamaterial with E-TPU target properties were well 

aligned, underscoring the feasibility of designing mechanical metamaterials with customizable 

deformation and energy manipulation responses. Finally, the agent's generalized design capabilities 

were tested by designing multiple metamaterials with diverse desired loading deformation 

responses and specific hysteresis objectives. The combined success of these three design problems 

is critical in proving that a DRL agent can serve as a co-designer working with a human designer 

to achieve high-performing solutions in the domain of 2D structural topologies and is worthy of 

incorporation into a wide array of engineering design domains. 
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CHAPTER ONE 
 

INTRODUCTION AND MOTIVATION 
 

The engineering design process is primarily guided by a human designer taking a set of 

requirements and using past experiences or analytical equations to iteratively improve the detailed 

representation of the design. Human designers use models of the world and systems to understand 

how different designs will perform in different situations. In general, a model represents a partial 

and simplified view of a system. Therefore, creating multiple models is traditionally necessary to 

capture a more accurate and encompassing understanding of the system of interest [1]. These 

models include governing equations (PDEs) [2]–[4],  state machines [5]–[7], surrogates [8]–[12], 

and many more. The human engineer generates candidate designs and evaluates the designs from 

these models, assesses the quality of the design, identifies where it succeeded or failed, and then 

modifies the design to improve the performance or meet requirements [13]. Essentially, engineering 

design is 1) specifying the objectives and constraints for a system, 2) identifying methods for 

evaluating the objectives and constraints, and 3) creatively designing and iterating on the design to 

better meet the objectives and constraints. A core challenge in the engineering design process is 

that humans have reduced efficiency in comprehending and acting on data produced from the 

system models. Additionally, any proposed actions or conclusions drawn by the engineering 

designer will inherently be biased by human intuition or previous experiences, potentially reducing 

the quality of the proposed design [14]. These limitations have prompted the development of 

automated design tools.   

Design automation improves upon traditional engineering design approaches by 

introducing optimization methods to improve the conceptual designs of the human designer [15]. 

Optimization seeks to find the best solution given a model, a set of parameters, one or more 

objective(s), and constraints. In general, optimization-based design seeks to mimic the human 
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design process by using computational tools to evaluate a design, using the output of the evaluation 

to inform how to update candidate design solutions to better meet the objective(s) and satisfy the 

constraints [16]. Two of the most common computational optimization methods include gradient-

based topology optimization (TO) and size/shape optimization. The details of these optimization 

methods and their uses in applicable engineering design problems will be addressed in the 

Literature Review section of the manuscript. 

Optimizers are not without limitations. Gradient-based optimization tools require an 

analytical relationship between the design parameters and the objective function(s) and 

constraint(s) to calculate the gradient(s) needed to determine the path toward an optimal solution. 

Often, such gradients do not exist for complex systems better described by state machines, flow 

charts, and physical models. Furthermore, if the objective and constraint functions can be 

developed, they must be continuous and smooth to increase the chance of convergence. Non-

convex relationships between the functions and their corresponding parameters can make solving 

gradient optimization challenging. These relationships can cause functions to converge to local 

minima, far from the best design solution [17]. Additionally, nonlinear constraint functions can 

make finding feasible solutions difficult. To overcome these limitations, heuristic optimization 

approaches (e.g., particle swarm, genetic algorithms, ant colony) seek to apply general rules that 

will slowly push the candidate designs toward the global optima. However, these methods generally 

require many model evaluation calls and perform poorly in high-dimensional domains [18]. Due to 

the limitations of traditional optimization methods, deep machine learning techniques are becoming 

more regularly implemented as potential solutions to achieving optimized design solutions in 

various domains [19]. 
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1.1     Machine Learning and Engineering Design 

Integrating deep machine learning (DML) and other artificial intelligence (AI) techniques 

into the design process offers a valuable relationship between human experts and novel design tools 

to revolutionize the efficiency and effectiveness of the engineering design process. In deep learning, 

data is passed through sequential neural network (NN) layers to learn patterns between inputs and 

outputs. The patterns are established by calculating the difference between the NN output and the 

true value, called the loss. The loss informs how to change the weights of the NN to better predict 

the outputs. Within the engineering design domain, a DML model could theoretically approximate 

the complex mapping between a design and its optimal design modifications without formulating 

a gradient-based objective function. While DML methods offer an alternative to traditional 

gradient-based optimizers for engineering design, these methods are traditionally limited to 

supervised or unsupervised learning. These two subsets of DML rely on generating training datasets 

ahead of time so that the model can learn underlying trends or patterns to propose a solution [20]. 

While supervised [19], [21]–[26], and unsupervised learning [27]–[29] models have been 

successfully implemented as design optimization tools, three key challenges may limit the 

effectiveness of their implementation in a broader range of design domains: 1) Data sparsity, 2) 

The creativity gap 3) Usability and feasibility [19]. 

1. Data Sparsity: Implementing supervised and unsupervised learning models into the 

engineering design process can be hindered by the limited availability of large, well-

annotated, public datasets of engineering design-relevant data. Even if data is available, 

it often does not cover the design space evenly. Limited diversity in training data can 

introduce the possibility of overfitting. Overfitting occurs when the DML model 

memorizes the relationship between specific inputs (design parameters) and outputs 

(proposed design solution) rather than learning generalized relationships between the 
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inputs and outputs. An overfit DML model can propose severely suboptimal design 

solutions when introduced to design parameters it has not experienced during training. 

2.  The creativity gap: In most DML applications for engineering design, the proposed 

solutions can closely mimic the training data, which is generally modeled around 

existing designs and products. Emulating existing designs is often undesirable and can 

fail to yield novel, improved solutions. Formatting the DML training sets around 

existing products will introduce an inherent bias from the human designer, potentially 

limiting the creativity and optimization performance of the DML model. The human 

designer will view certain features as critical for successful training based on intuition 

or previous experiences. The bias toward specific datasets may hinder the ability to 

achieve high-performing solutions. 

3. Usability and feasibility: The proposed solutions of a DML model can only be deemed 

viable if they can be physically fabricated. Design solutions that are not feasible have 

limited benefit to the human engineer. Therefore, the dataset must be encoded as a data 

representation that contains enough parametric details to be deemed viable for physical 

fabrication. However, encoding these representations can be challenging and subject 

to inherent bias from the human engineer. 

 

The three limitations may arise when implementing supervised or unsupervised DML methods in 

engineering design. The limitations stem from the models' reliance on generating training datasets 

beforehand. These datasets can be challenging to produce (data sparsity), inherently biased by the 

human designer (the creativity gap), and may yield impractical design solutions (usability and 

feasibility). For these reasons, there is justification for exploring DML for engineering design 

beyond the limitations of supervised and unsupervised models. 
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1.2     Reinforcement Learning and Engineering Design 

 An alternative branch of DML, which does not rely on generating a prefabricated training 

dataset, is deep reinforcement learning (DRL). Within the DRL paradigm, the goal is to train an 

agent to learn to complete a particular task or set of tasks within an interactive environment where 

the agent receives feedback (reward) on its actions based on how well it is performing the tasks 

[30]. The agent is essentially learning how to solve the optimal control problem for a given task. In 

recent years, DRL has shown groundbreaking achievements in the fields of game-play [31], [32], 

protein folding [33], robotic control [34], and nuclear fusion [35], among many others. DRL is also 

currently being used to aid in engineering design and optimization, including CAD model 

optimization [36], topology design [37], microchip floor planning [38], 3D shape modeling [39], 

and composite design [40]. 

 DRL offers a unique advantage over the other DML methods for engineering design 

automation. Instead of configuring an effective training dataset, a designer can utilize DRL to 

collect the training data during the learning process by creating a DRL environment that captures 

the salient information about the design problem and corresponding domain. The DRL agent can 

now learn to satisfy a given design objective by interacting with the environment and receiving 

feedback on these interactions. Within the DRL setup, the designer's influence and biases are still 

present in how the environment is simulated. However, this dependency is significantly reduced. 

In addition, DRL enables improved domain explorations by quickly identifying suboptimal regions 

and directing domain exploration away from those regions.  

A DRL environment is the "world" with which the agent can interact to take actions, 

observe states, and collect rewards. The agent's objective is to interact with the environment to 

learn the best sequence of actions (policy), 𝜋𝜋, which leads to the largest reward accumulation. 

The agent and environment interact through the transition of information, as seen in Figure 1-1. 
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Figure 1-1. Information transfer of generic RL problem 

 
Given a current observation, the agent performs an action in the environment. The environment 

returns a new observation and a reward that acts as feedback for the agent to determine if the action 

was good or bad. The agent will update its policy to maximize positive feedback based on this new 

observation and reward.  

Using DRL, the engineering design problem is flipped from identifying optimal design 

solutions given a set of design inputs to the optimal control problem of finding a sequence of actions 

to adjust a design to optimize the design objective. This difference allows the agent to be creative 

and explore regions of the design domain that would not be obvious to a human designer. In 

addition, the optimal sequence may require passing through several sub-optimal designs, where a 

gradient optimizer might get stuck in a local minimum before reaching the best design. Finally, this 

approach allows for generalized design solutions that can rapidly adjust to changes in objectives or 

constraints.   

 The mathematical framework that helps define the transfer of information between the 

agent and a value-based environment is a Markov Decision Process (MDP) [41]. An MDP is a 

discrete-time stochastic process where state transitions and reward functions are solely dependent 
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on the current state and action and are independent of the previous states and actions. An MDP is 

built upon four elements, state-space (S), action space (A), transition probability function (P), and 

reward function (R). The state-space of an environment represents all the combinations of 

observations an agent can experience while interacting with the environment. Depending on the 

complexity of the environment, the state-space can range drastically, potentially varying from a 

4x4 grid for simple maze-solving applications [42] to the continuously changing urban roads and 

landscapes needed for autonomous driving [43]. The action space defines all the possible actions 

the agent can take at each time step to move from the current observation to the resulting next 

observation. These action spaces can be either discrete, such as moving the agent "left" or "right" 

in a video game, or continuous, such as the angular displacement of a steering wheel [44].  

 Formulating the reward function of an MPD can be difficult due to human subjectivity 

[45], characterization of complex goals [46], sparse rewards [47], and conflicting objectives [37].  

The core challenge is to shape the reward function to encourage the agent to effectively and 

efficiently achieve the desired outcome. The reward function controls the feedback given to an 

agent after taking an action. Therefore, the agent seeks to maximize its reward and should learn 

what action sequences must be taken to accumulate the most reward while avoiding penalties. The 

reward function can be produced using nearly any combination of engineering analysis tools, such 

as PDE solvers, state machines, analytical equations, and even models based on real-world data.  

 The final component of an MDP is the transition probability function, also called the value 

function. The value function acts as the "brain" of the agent by determining the anticipated value, 

𝑄𝑄(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡), of taking an action, 𝑎𝑎𝑡𝑡,  given the observation/state, 𝑠𝑠𝑡𝑡, at the current time step, t. The 

value can be thought of as how valuable it is to perform a given action in a given state. The notion 

of "how valuable" is in terms of expected future rewards. The future rewards are dependent on the 

sequence of future actions the agent will take, and this sequence of actions is known as the policy, 
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𝜋𝜋. The overall objective of DRL is to learn the policy that will lead to the optimal action-value 

function, denoted 𝑄𝑄∗, and defined as  

 𝑄𝑄∗(𝑠𝑠,𝑎𝑎) = max
𝜋𝜋

𝑄𝑄𝜋𝜋(𝑠𝑠,𝑎𝑎) (1) 

for all states, s, within the state-space S and all actions, a, within the action-space A. For all state-

action pairs (𝑠𝑠,𝑎𝑎), Equation 1 gives the expected return for taking action 𝑎𝑎𝑡𝑡 in state 𝑠𝑠𝑡𝑡  and, 

therefore, is dependent on the action reward, 𝑟𝑟𝑡𝑡, and the anticipated value of the future states 

𝑄𝑄∗(𝑠𝑠𝑡𝑡+1), and can be rewritten as:  

 𝑄𝑄∗(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡) = 𝔼𝔼[𝑟𝑟𝑡𝑡 + 𝛾𝛾𝑄𝑄∗(𝑠𝑠𝑡𝑡+1)] (2) 

where 𝛾𝛾 is a future value discount factor between zero and one. Equation 2 offers a generic 

representation of the Bellman optimality value function [41], and several extensions will be 

presented throughout this manuscript. 

 If 𝑄𝑄∗(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡) is known for every state-action pair, the agent can easily execute the sequence 

of actions leading to the largest accumulation of rewards. However, the environments of most DRL 

problems have action and state spaces that are so large and complex that knowing the exact value 

of 𝑄𝑄∗(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡) for each state-action pair is impossible. Therefore, 𝑄𝑄∗(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡) is predicted using a deep 

neural network (DNN). A numerical representation of the agent's current state, 𝑠𝑠𝑡𝑡, is used as the 

input for the DNN, and the output is the predicted 𝑄𝑄∗(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡) for each action, 𝑎𝑎𝑡𝑡 within the action 

space. 

To successfully implement a DRL agent into an engineering design task, these four 

components (S, A, R, P) of an MDP must be appropriately defined. Instead of producing datasets 

to train a supervised or unsupervised model to complete design tasks, the human engineer is now 

tasked with configuring these four elements to capture critical information about the design task. 

Properly defining these four components can create a rich environment for the agent to interact 

with. According to the Reward is Enough hypothesis, the ability of a DRL agent to learn to 
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complete a task can be understood as learning to maximize reward within a rich environment by 

trial and error [48]. This hypothesis can be applied to teaching DRL agents to complete engineering 

designs tasks. The DRL environment must capture critical information about the design problem, 

including a reward function such that maximizing the reward leads to high-performing design 

solutions. The DRL agent would then attempt to learn the sequence of actions that maximize the 

reward within this environment. This sequence of actions would mimic an engineering design 

process that leads to high-performing design solutions. Altering the DRL environment to capture 

information about various design domains would allow the DRL agent to be a powerful design tool 

in arbitrarily complex domains. 

This work attempts to take a step toward validating the concept that a DRL agent can learn 

powerful design strategies when interacting with an environment built to represent a particular 

design domain. While I agree with the hypothesis that DRL models can achieve high-performance 

design solutions in a wide range of scenarios, this work focuses on validating this hypothesis in the 

domain of 2D structural topology design, particularly compliance-minimization topology 

optimization and novel mechanical metamaterial unit cell design with targeted mechanical response 

characteristics. For the remainder of this manuscript, "structural topologies" can be defined as the 

layout of the solid and empty space within a continuous structure or subsystem. With this 

background information provided, the formal objective of this work can be presented as the 

following: 

Demonstrate that a deep reinforcement learning agent can serve as a co-designer working with an 

engineering designer to achieve high-performing design solutions in various structural topology 

design domains.  

The "co-designer" relationship between the DRL agent and human designer is established 

by the human designer defining the design objective(s) and constraint(s) and constructing the DRL 
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environment, while the DRL agent uses this information to attempt to determine the set of actions 

to achieve a high performing design solution that satisfies the objective and constraints.  

1.3     Research Questions and Hypotheses 

 This work's objective can be completed by answering the three research questions below. 

Each question attempts to validate that a DRL agent can successfully produce high-performing 

engineering designs in a series of structural topology-related design problems without the need to 

calculate objective or constraint gradients. The design domains will specifically target compliance-

minimization topology optimization, mechanical metamaterial unit cell design with targeted 

nonlinear deformation response, and mechanical metamaterial design with targeted deformation 

and energy manipulation characteristics. The literature review has included a thorough 

investigation of the current design methods for these domains. The complexity of the design 

problem is expected to increase moving through the list of research questions. Each research 

question has been presented with a corresponding description of the design domain and a general 

hypothesis for how a DRL agent can successfully achieve this design task. While these research 

questions and associated solutions can help demonstrate a DRL agent as an effective co-designer 

within structural topology design problems, this work does not claim that DRL is the only or the 

optimal method for producing these designs.  

 1.3.1    Research Question 1 

How can deep reinforcement learning be used to produce high-performance solutions for the 

2D compliance minimization topology optimization problem?  

The first question proposes a gradient-free alternative to compliance minimization 

topology optimization using DRL. Topology optimization (TO) is a common engineering-based 

design tool and attempts to optimally place material within a domain to minimize an objective while 
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satisfying constraint(s) based on stress and weight [49]. For pseudo-density-based approaches, TO 

works by calling a finite element analysis of a structure, calculating the gradient of the objective 

function with respect to the design variables (the pseudo densities), and updating the design 

variables until convergence, as in the Solid Isotropic Material with Penalization method (SIMP).  

While gradient-based TO methods are well-developed and highly efficient, the sensitivity 

analyses of the objective functions and constraints can be challenging, especially with the 

introduction of nonlinearity. In addition, they can be sensitive to initial conditions, which results in 

the optimizer converging to different designs under changing initial conditions. Genetic algorithms 

have also been used as a gradient-free approach to solving TO problems [50]–[52]. However, these 

methods are limited by significant increases in computational cost with larger domains, inefficient 

domain exploration, and the inability to generalize to new constraints and objectives without 

retraining. Therefore, this work focuses on gradient-free alternatives, specifically using DRL to 

solve the compliance minimization TO problem.  

 Various DML methods, primarily relying on supervised and unsupervised learning 

algorithms, have been developed to address this problem and will be discussed in the literature 

review. However, these methods can be inherently limited by the need for constructing topology 

datasets beforehand to effectively train the ML models. These datasets can be difficult to produce 

or be inherently biased by the human who developed them. Therefore, I hypothesize that deep 

reinforcement learning will be shown as a gradient-free compliance minimization TO solver that 

does not rely on the prefabrication of topology datasets.   

 To investigate the idea of using DRL in this design domain, the four components of the 

previously discussed MDP will need to be defined. The four components of the MDP must capture 

critical information regarding the compliance minimization TO problem to ensure the DRL agent 

can learn the best sequence of actions to achieve the optimal topology designs. The DRL 
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environment can be configured in several ways, and this dissertation does not claim that the selected 

methods offer an optimal approach but instead present one or many potential solutions for applying 

DRL to solve compliance minimization TO. The proposed method will focus on discretized 

topologies where the domain is viewed as a combination of individual elements. Each element can 

be viewed as either material or voided. Therefore, each element is treated as a binary design 

variable, and the complexity of the design problem is dependent on the number of elements used 

to define the topology shape. 

 The compliance minimization TO problem is commonly addressed by eliminating 

minimally load-bearing elements as they offer little structural rigidity to the base topology. These 

minimally load-bearing elements can be found by determining the stress distribution of the 

topology. Therefore, the state space of the DRL environment should capture the topology's stress 

distribution and boundary conditions, commonly used to solve gradient-based compliance 

minimization TO problems. Given the discretized representation of the topologies, the stress and 

boundary conditions should be defined at the elemental level. The action space will be simplified 

as a discrete space allowing the agent to toggle any element variable from "material" to "void." 

Limiting the agent to only voiding a single element per action step may hinder the efficiency of the 

DRL agent, but it can also reduce the complexity of the problem. The reward function should mimic 

the objective of the compliance minimization problem. Therefore, the reward function should 

assign the agent larger rewards for designing topologies with smaller volume fractions and 

compliance. Finally, the transition probability function needs to provide a method for the DRL 

agent to know which element it should remove, given the current observation. The agent's actions 

should depend on both the individual observation values of each component and the relationship 

between these values throughout the topology. Since spatial awareness is expected to be necessary, 
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a convolutional neural network, a class of artificial neural networks commonly applied to analyze 

visual imagery [20], should be used to determine the best action for each observation.  

DRL algorithms that define transition probability functions can be divided into value-based 

or policy-based functions. Value-based functions calculate the predicted value of taking each action 

given the current observation. Alternatively, policy-based functions calculate the probability of 

taking each action given a current observation. Policy-based methods are better suited for DRL 

environments with continuous action spaces and thrive with small policy changes that can result in 

repeated actions given similar observations. On the other hand, value-based functions are better 

suited for large policy changes. The proposed DRL environment has a discrete action space where 

voiding a single element can result in drastic policy changes. For example, the value associated 

with voiding a particular element can significantly decrease as it is altered from a minimally load-

bearing material element to a voided element. I hypothesize that a value-based function can capture 

this change in value and policy functions better than a policy-based method. The value-based 

double deep Q-learning algorithm will be utilized for this reason and its success with similar design 

problems [50]. 

With the components of the MPD and corresponding DRL algorithm produced, it is 

hypothesized that a DRL agent will be able to design high-performance 2D topologies based on the 

compliance minimization TO objective without the need to calculate objective gradients or rely on 

prefabricated topology datasets. 

1.3.2    Research Question 2 

 How can deep reinforcement learning design novel mechanical metamaterial unit cells with 

targeted nonlinear deformation characteristics under uniaxial tension or compression? 

 The second research question targets the more complex design domain of mechanical 

metamaterials. Mechanical metamaterials are artificial materials with unique global properties due 
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to the structural geometry and material composition of their unit cell [53]. These unique properties 

include mechanical metamaterials with negative Poisson's ratio [54] or energy absorption through 

bi-stability [55], thermal metamaterials with extreme thermal expansion [56], and fluidic 

metamaterials exhibiting maximum permeability and prescribed flow symmetries in bulk materials 

[57]. While metamaterials can achieve unique properties, the second research question specifically 

targets designing mechanical metamaterials that exhibit targeted deformation behaviors. This 

research attempts to design mechanical metamaterials with linear elastic constitutive properties that 

mimic the deformation behavior of nonlinear materials such as elastomers or foams. Since 

metamaterials are made up of unit cells, the overall response of the metamaterial is a function of 

the base constitutive material and the geometries of the unit cells. The objective is to achieve bulk 

non-linear behavior in the metamaterial by carefully adding geometric nonlinearities to the unit 

cell. The geometric nonlinearities are associated with the unit cell pattern and result in large overall 

deformation with small linear strains within the constitutive material. The most popular methods 

for designing metamaterials with targeted deformation responses are topology optimization (TO), 

size/shape optimization, and synthesis methods. These three methods will be investigated in the 

literature review.  

 TO for metamaterial design is similar to the compliance minimization TO but the objective 

is changed to determine the material densities that minimize the error between the desired and 

resulting deformation responses. Gradient-based TO methods have achieved impressive results 

when designing mechanical metamaterials, which will be discussed in the literature review. 

However, gradient-based TO methods are not without flaws. The sensitivity analyses of the 

objective functions and constraints can be challenging, especially with the introduction of 

nonlinearity. Additionally, the relationship between design variables and objective/constraint 

functions must be differentiable and mathematically described so that the gradient can be calculated 
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on all design variables before an update of the design variables in the negative gradient direction is 

performed. Due to the challenges of gradient-based TO, researchers have implemented size/shape 

optimization and unit cell synthesis as alternative methods for metamaterial unit cell design.  

  Size/shape optimization alters the geometric dimensions of an initially parameterized 

design to optimize the design objective(s) while satisfying constraint(s). This technique relies on 

analytical tools such as partial differential equation solvers [58], finite element analysis [59], 

analytical equations [60], and models based on real-world data [61] to determine the performance 

of a design, compare that performance to the objective, and change the geometric parameters to 

optimize the objective. The major limitation of size/shape optimization is the reliance on a human 

user designing and parameterizing the initial unit cell. This bias can limit the explorable design 

domain. 

A unit cell synthesis approach is a process of iteratively selecting and placing elemental 

components in a unit cell and then carrying out tessellations of the unit cell into a metamaterial. 

The unit cells are designed at the local level but, when tessellated, result in a metamaterial with 

material properties unattainable by the constitutive material alone. Unfortunately, these methods 

commonly rely on a human designer to propose initial designs which can be optimized using size 

or shape optimization. The reliance on a starting design and corresponding parameters can limit the 

exploration of the design space, leading to sub-optimal solutions. Additionally, the human-

designer-based synthesis method offers limited automation and generalization capabilities. 

Due to the limitations of traditional metamaterial design approaches, I hypothesize that this 

design task can be reformulated as an MDP, allowing a DRL agent to design mechanical 

metamaterial unit cells with targeted nonlinear deformation characteristics. This hypothesis is built 

on the fact that unit cell design approaches are iterative processes that optimize local material 

configuration to deliver a particular material response. DRL agents exhibit this same sequential 
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building process and configure a combination of components by accumulating rewards in an 

interactive environment. The DRL method will also ensure the thorough and efficient exploration 

of the complex metamaterial design environment. 

Similar to RQ1, the four components of the MDP must be selected to capture relevant 

information about this new design domain. Properly defining the four components of the MDP will 

allow a DRL agent to design unit cells that, when tessellated, exhibit targeted nonlinear deformation 

characteristics under uniaxial tension or compression.  

The DRL unit cell design process should sequentially alter the state of elements within the 

topology to achieve these characteristics. Similar to RQ1, the design domain is viewed as discrete 

grids where each element is viewed as either arbitrarily defined as “material” or "void." To improve 

upon the methods of RQ1, the material alteration process was changed to sequentially adding 

materials to a blank starting discrete domain compared to removing/voiding elements from a 

starting solid-block topology.  The material elements were added according to paths defined by 

cubic Bezier curves. These curves introduce novel configurations of material elements that 

individually exhibit geometric nonlinearities. These material element configurations ensure a 

diverse array of metamaterial designs, each with a unique deformation response. I do not claim that 

the cubic Bezier curve approach is the only solution to this design problem or necessarily optimal. 

However, the findings shown in this work validate the effectiveness of this method. 

Due to the anticipated complexity of the proposed unit cell designs, a dimension reduction 

tool, such as a variational autoencoder or principal component analysis, should produce a low-

dimensional representation of the domain. This 1D low-dimensional representation can be used in 

place of the 2D unit cell topology to represent the design configuration in the DRL environment.  

An additional improvement on the methods of RQ1 is introducing a pre-trained surrogate 

model to predict the proposed unit cells' responses. This method is considerably more efficient than 
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relying on individual Abaqus/CAE (Dassault Systemes, Velizy-Vallacoubly, France) FEA calls 

during each step of the DRL training process. I hypothesize that these improvements should allow 

the four components of the MDP to capture critical design domain-relevant information. 

The state space must capture the current unit cell design and the desired non-linear 

deformation response. Therefore, the state-space observations combine the 1D VAE latent space 

representation of the 2D Boolean array of material/void elements in the current unit cell topology 

and a 1D array of user-specified force values defining a force-displacement curve. The action space 

used to design these unit cells defines the coordinates of the starting, ending, and two intermediate 

control points of the cubic Bezier curve and the thickness of the line. This action space is continuous 

to reduce the high dimensionality that may arise if a discrete action space were to be implemented.  

The reward function should evaluate how close the current deformation response of the 

unit cell is to the desired unit cell. The DRL agent will receive more reward for actions leading to 

proposed unit cells that closely match the desired deformation response. Finally, the transition 

probability function needs to give the DRL agent a way to design the high-performing unit cells 

given the desired loading response. Due to the required continuous state and action space, the deep 

deterministic policy gradient (DDPG) algorithm will allow the agent to properly explore this 

complex design environment and learn a generalized design strategy that leads to high-performing 

designs.  

With the components of the MDP and corresponding DRL algorithm produced, it is hypothesized 

that a DRL agent will be able to design 2D metamaterial unit cells that exhibit targeted nonlinear 

deformation characteristics under uniaxial tension or compression.  
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1.3.3    Research Question 3 

 How can deep reinforcement learning design mechanical metamaterial with tailorable 

deformation and energy manipulation characteristics under dynamic compressive loading? 

 Research question three expands on the previous research question by addressing the 

additional objective of energy manipulation via hysteresis control. Mechanical hysteresis, often 

called elastic hysteresis, is the energy loss during mechanical loading and unloading brought on by 

internal material friction. During mechanical testing, the loading and unloading paths of a material 

exhibiting hysteresis will diverge. The area between these curves represents the energy loss. 

 Traditionally, engineers use monolithic viscoelastic materials, like elastomeric rubber, for 

energy absorption applications. However, viscoelastic material performance is dependent on the 

operating environment. Extreme conditions can cause material degradation in these elastomers, 

affecting the material performance [62]. For energy-restoring applications, engineers use linear 

elastic materials (ceramics, metals) or closed foam cells (engineered thermoplastic polyurethanes). 

The high stiffness and rigidity of linear elastic materials can make them impractical for high-

compliance applications such as soft robotics or wearable technologies. Alternatively, the more 

compliant closed foam cells can be costly and challenging to manufacture [63]. 

Mechanical metamaterials offer an alternative for mechanical energy manipulation beyond 

the range of traditional monolithic materials. Through careful design of their unit cell and proper 

selection of a constitutive material, mechanical metamaterials can achieve unprecedented control 

over mechanical energy propagation, transformation, and absorption. The previously mentioned 

TO and size/shape optimizations have been implemented to design metamaterial with unique 

deformation and energy characteristics. However, they suffer from the limitations discussed in 

RQ2, specifically the need for a differentiable relationship between the objective and design 

constraints, reliance on the initial human-proposed design, and lack of generalizability.  
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Therefore, RQ3 expands on the work of RQ2 by training a DRL agent to design mechanical 

metamaterials with tailorable deformation and energy manipulation characteristics. Due to the 

similarities between RQ2 and RQ3, I hypothesize that some of the fundamental components of the 

DRL approach (state-space, action-space, transition probability function) that were used to satisfy 

RQ2 will require slight alterations to yield successful results for RQ3. 

  Compared to the arbitrary design domain of RQ2, RQ3 will focus on a physically validated 

design domain of metamaterials built with the constitutive material of thermoplastic polyurethane 

(TPU). TPU is a thermoplastic elastomer that offers the mechanical performance characteristics of 

rubber (high resilience, compliance, abrasion resistance, and flexibility) but can be processed like 

thermoplastics through additive manufacturing [64]. Like RQ2, the agent can be prompted to 

iteratively build metamaterials exhibiting a desired deformation response. However, an additional 

objective is introduced, prompting the agent to achieve designs that minimize or maximize 

hysteretic energy loss under cyclic compressive loading. Therefore, the reward function from RQ2 

must be altered to account for strategic energy manipulation. 

   To provide real-world applicability, the agent was prompted to design TPU metamaterials that 

maximize or minimize hysteresis while exhibiting the deformation response of the expanded 

thermoplastic polyurethane (E-TPU) material, Infinergy® (BASF, Ludwigshafen, Germany). This 

design task physically validates mechanical metamaterials as a potential material solution in 

various industries, including footwear, wearable technologies, and medical equipment. Proving 

applicability is essential, but a critical advantage of DRL methods is their generalizability. 

Therefore, the agent should be tested on a wide array of desired deformation and energy 

manipulation responses. 

  I believe that successfully answering these three research questions and, in turn, 

establishing three DRL environments for which an agent can produce high-performing design 



 20 

solutions for these unique topology design problems will satisfy the objective of proving DRL to 

be a high-level co-designing tool that can address trade-offs and produce superior solutions in an 

array of structural topology domains.  

1.4     Manuscript Organization  

 The remaining chapters of this manuscript are presented accordingly: Literature Review, 

Framework and Implementation, General Framework for Deep Reinforcement Learning in 

Engineering Design, and Conclusion. In the Literature Review, I begin by discussing how DRL has 

been applied to achieve superior design and optimization results in a series of design domains. Each 

presented study in this manuscript offers a unique advantage for applying DRL to the engineering 

design process. Next, the Literature Review discusses the methods currently implemented to solve 

design and optimization problems in topology optimization and metamaterial design. The 

advantages and limitations of each method are presented to justify the investigation of DRL as an 

engineering design alternative. 

Separate Framework and Implementation chapters are devoted to solving each research 

question. Within these chapters, the individual engineering design problem is introduced, the DRL 

environment is established, and the agent is tested on achieving high-performing solutions. 

Regarding the first research question,  I discuss the method for reformulating the 2D compliance 

minimization TO problem as an MDP. Within this chapter, I break down the details of the four 

components of the MDP and justify my selected DRL algorithm. The DRL agent training and 

testing results are also presented, including a comparison to a gradient-based TO solver. Finally, I 

conclude this chapter with specific shortcomings of the DRL method.  

In the next chapter, I discuss how a DRL environment was built to design mechanical 

metamaterials with customizable nonlinear deformation responses. I discuss the four MPD 

components and provide details on the additional DML tools (VAE and surrogate model) that were 
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used to improve the performance and efficiency of the DRL method. The section thoroughly 

validates the agent’s performance against a diverse array of desired nonlinear deformation 

responses. The chapter concludes with design domain limitations, several of which are addressed 

with RQ3. 

The final Framework and Implementation chapter investigates the DRL method for 

designing mechanical metamaterials with tailorable deformation and energy characteristics. There 

is considerable overlap between RQ2 and RQ3. Therefore, the reader will regularly be directed to 

the RQ2 chapter for detail and justification for how the DRL environment was built. However, due 

to the additional objective of energy manipulation control, critical changes to the DRL environment 

are discussed. Much of the chapter discusses the methods and results of physically manufacturing 

and experimentally testing metamaterial samples. From these results, a discussion is born regarding 

the applicability of additively manufactured metamaterials in domains such as footwear, wearable 

technologies, and medical devices. The chapter ends with an analysis of the generalized design 

strategy of the DRL agent while simultaneously addressing certain limitations in the material design 

domain and DRL algorithm. 

With the three research questions answered, I offer a general framework for how various 

engineering problems can be reformulated as deep reinforcement learning problems. Specifically, 

I offer recommendations for how the design domain, state-space, action-space, reward function, 

and value function should be established depending on the objectives and constraints of the design 

problem. This manuscript will conclude with a summary of the completed work and confirmation 

that all research questions have been answered.  
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CHAPTER TWO 
 

LITERATURE REVIEW 
 

2.1    Reinforcement Learning and Engineering Design  

 The initial section of this literature review will present the work completed to incorporate 

deep reinforcement learning (DRL) into the engineering design process. This review will show the 

unique advantages of DRL for achieving high-performing design solutions in several domains. This 

review will also show the novelty of our research and the evident gap in applying DRL to the design 

of structural topologies.   

 DRL is currently used to aid in design and optimization for various design domains. 

Yonekura and Hattori [65] offered a simple framework for incorporating DRL into the design 

optimization process by determining the optimal airfoil angle of attack, given contour images of 

the flow field around the airfoil. The DRL agent sequentially alters the angle using a discrete action 

space to minimize an objective function. The authors test their methods under various airfoil 

parameters and show that the DRL agent can generalize to unforeseen circumstances.  

Settaluri et al. [66] incorporated DRL to achieve superior design solutions in the highly 

complex domain of analog circuit design. Traditional circuit design approaches can be limited due 

to information gaps, sample inefficiencies, or a lack of generalizability. The authors successfully 

trained a DRL agent to select optimized circuit parameters given target design specifications. The 

DRL agent produces diverse results around the feasible domain, showing a similar intuitive 

understanding as a circuit designer. The results show that the DRL agent could satisfy the target 

specifications for 96.3% of the test designs. The proposed method was approximately 40x faster 

than a genetic algorithm alternative that could achieve similar results. This paper shows that DRL 
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agents can develop effective and efficient design strategies that mimic the human design process 

while significantly reducing time constraints.  

 Lin et al. [39] show another example of DRL agents mimicking human designers by 

sequentially altering the size and orientation of 3D shapes to achieve a given design. The authors 

developed a DRL model that created a mesh model of arbitrary objects in two steps: 1) 

approximating the object's shape using a set of primitives and 2) editing the meshes of the 

primitives to create a detailed geometry. This approach mimics the basic design sequence of a 

human designer. By taking actions and collecting rewards in the interactive environment, the agent 

first learned to parse a target shape into primitives and then edit to satisfy the detailed geometry. 

More reward was assigned as the DRL agent altered the design to mimic the desired shape better. 

The DRL agent was trained using a combination of imitation and reinforcement learning. The DRL 

agent applied the two-step design process to model 3D shapes such as planes, guitars, and 

automobiles. The results show that a DRL agent can exhibit human-like design sequences in a 

controlled environment. 

 Liu et al. [67] offer an investigation into incorporating DRL into the design of 

metamaterials, specifically thermal metamaterials. The authors attempt to achieve thermal 

transparency using metamaterials with periodic lattices. This paper reframes this common inverse 

design problem into a DRL problem. The DRL agent is trained to sequentially alter design 

parameters to realize thermal transparency. The DRL framework relies on FEA simulations of the 

heat fluxes on the metamaterials as the state spaces. When tested, the DRL agent achieved thermal 

transparency better and more efficiently than the author's previously proposed autoencoder-based 

approach. This paper showed that DRL could solve inverse design problems for metamaterials. 

 Rajak et al. [68] showed an example of incorporating DRL into the mechanical 

metamaterial domain through the design of 2D kirigami. The authors trained a model to design 
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kirigami structures based on a desired stress-strain response. Incorporating other ML solutions to 

solve this problem would be difficult because the gradient of the model could not be determined 

due to the discrete nature of the search space. Furthermore, a genetic algorithm would be infeasible 

due to the computational expense and domain diversity. The authors of this paper trained a DRL 

agent to design 2D materials by selecting the length and location of seven cuts to achieve a 

manually specified stress-strain curve under uniaxial tension. During training, the agent 

experienced approximately 1.45% of possible designs in the state space but could generalize to 

various desired responses. The authors show that DRL should be used to design a wide range of 

metamaterials to achieve targeted stress-strain responses when black-box function optimization 

may be infeasible.  

 The presented works show that a DRL environment can be configured to solve various 

design and optimization problems. However, beyond  [68], the presented domains and objectives 

do not align with those presented in the research questions of this proposal. The topology 

optimization and mechanical metamaterial design domains have not been thoroughly explored 

using DRL techniques. This apparent gap in the literature highlights the novelty of this research. 

The remaining sections of the literature review will offer a more in-depth breakdown of the 

topology optimization and metamaterial design problems, the traditional approaches for solving 

them, and novel techniques to solve them more efficiently or effectively. 

2.2    Topology Optimization Design Domain 

2.2.1    Gradient-Based Topology Optimization 

 Topology optimization (TO) is a common engineering optimization-based design tool 

traditionally solved using gradient-based methods. TO attempts to optimally place material within 

a domain to minimize an objective while satisfying constraints [49]. TO has been used extensively 

and has undergone tremendous development since it was first proposed by Bendsøe and Kikuchi 
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[69] in 1988. For pseudo-density-based approaches, TO works by calling an FEA of a structure, 

calculating the gradient of the objective function with respect to the design variables, and updating 

the design variables, as in the previously mentioned SIMP method [70]. This process is repeated 

until convergence. In the level-set approach method of TO, the optimizer uses FEA results to 

implicitly find the gradient of moving the object's material outer boundary with respect to the 

objective function and then updates the boundary according to the new topology. This process is 

also repeated until the topology converges. The reader is directed to [49], [69], [70] for a more in-

depth discussion of traditional TO methods and underlying functions. While gradient-based TO 

methods are well developed, the sensitivity analyses of the objective functions and constraints can 

be challenging, especially with the introduction of nonlinearity. Additionally, the nonconvexity of 

most TO problems can make efficient convergence difficult [26]. Finally, TO is not generalizable, 

meaning that for each new objective or constraint, the time-consuming optimization process must 

be rerun. Therefore, extensive research has been conducted to implement ML methods as an 

alternative solution for designing optimal topologies.  

2.2.2    Incorporating Machine Learning into Topology Design 

Various methods have been proposed for combining topology optimization and ML, 

particularly DML. Researchers have shown that a DML approach could learn the mapping between 

topology optimization inputs, such as boundary conditions, and the optimized topologies. The 

computational burden of generating the data and the training process is non-trivial, but after proper 

training, the model can provide a gradient-free, on-demand topology design tool [26], [71]–[74]. 

Ulu et al. [73] explored the feasibility and performance of a data-driven approach for TO. 

Ulu trained an ML model using a set of optimal topology examples in a lower-dimensional space. 

The model successfully learned a mapping between load conditions and optimal topologies. The 

authors proposed a sequential design approach where the topologies predicted by the ML model 
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could serve as adequate initial conditions for subsequent gradient-based TO methods. The authors 

prove that incorporating ML in a sequential design approach can more efficiently produce 

optimized designs. 

Sosnovik and Oseledets [74] used deep Convolutional Neural Networks (CNNs), an NN 

commonly used to analyze images, to accelerate optimal topology design. The proposed method 

passed the pixel-wise images of partially formed topologies from the SIMP method into the CNN, 

which outputs the pixel-wise optimal proposed topology. The mapping between partially formed 

and optimal topologies allowed the SIMP method to produce partial topologies instead of fully 

converging to the optima of the design domain, significantly decreasing computational cost. These 

results showed that a deep neural network constructed entirely of convolutional filter and pooling 

layers could learn fundamental topology design patterns. 

Lei et al. [23]  used a moving morphable component (MMC)-based explicit framework for 

training dataset generation, leading to a near-instantaneous 2D topology design process. The MMC 

approach uses morphable components as the basic building blocks of a topology, reducing the 

dimensionality of the design domain. Compared to other works, Lei's method can rapidly predict 

the optimal topology once the objective and constraint functions are defined. Additionally, the 

authors hypothesize that this method can be incorporated into the learning process of engineering 

designers to help establish general engineering design intuitions for optimal structures under 

different loading cases.  

The above works show a variety of methods for integrating DML into the engineering 

design process. The proposed methods present alternatives to traditional gradient-based TO solvers 

and do not require a direct link between design parameters and an objective function to design 

optimal topologies. The data sets used to train these models are comprised of pre-optimized 
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topologies created from gradient-based TO solvers. While the results from the ML methods using 

pre-optimized datasets are promising, there are drawbacks.  

Producing a large set of optimized topologies under different loading conditions is time-

consuming and introduces the possibility of model overfitting if the diversity of the training data is 

low. Overfitting occurs when the ML model memorizes the relationship between specific inputs 

and outputs rather than learning a generalized relationship between inputs (the loading conditions) 

and outputs (the optimal topology). An overfit ML model may generate suboptimal outputs when 

a loading case not used for training is introduced. Developing these data sets can also require 

domain expertise from a human designer to extract critical features from the data to serve as inputs 

to help guide the learning process [75]. For these reasons, there is justification for exploring ML-

based topology design beyond the limitations of supervised and unsupervised ML. 

To the best of the authors' knowledge, there has only been one attempt to use a DRL agent 

to sequentially design novel optimal topologies. Hayashi and Ohsaki [51]  incorporated DRL and 

graph embedding for binary truss topology optimization. The binary design of the truss structure 

views each segment as material or void, with only the material segments defining the structure's 

topology. The DRL agent was trained to remove individual truss segments sequentially from a 

starting truss structure until the structure's topology was no longer a single continuous structure. 

The reward function aligns with the objective of compliance minimization TO by rewarding the 

agent for only keeping a minimum number of highly-load bearing segments to define the structure. 

During training, the DRL agent experienced relatively few loading case environments, but during 

testing, the DRL agent generalized the design strategies and found optimal truss topologies for a 

wide range of load cases. These results demonstrate DRL's generalization capabilities when applied 

to truss-based design. However, a significant limitation in these results is the truss-based 

discretization of the design domain. The design complexity of an optimized truss topology is 
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severely limited compared to an elemental discretization of a design domain, where each element 

can serve as an independent design variable. 

The work completed answering RQ1 attempts to bridge this gap by proposing a DRL-based 

topology design method that performs sequential interactions with a 2D discrete grid design 

domain. The design variables of this discretized design domain are viewed as discrete quadrilateral 

elements, each defined by four nodes within the design domain. The elements and their 

corresponding nodes are mapped directly to the elements and nodes found in an FEA solver. While 

there are several ways to discretize a design domain, I believe the simplicity of the 1:1 mapping 

between parameter elements and FEA elements makes it attractive for our environment setup. For 

brevity throughout this manuscript, the term "elements" will describe the design variables that may 

be augmented to best satisfy the design objective. A DRL agent sequentially removes these 

elements under a load condition to satisfy a multi-objective reward function. The reward function 

is built to mimic the objectives of compliance minimization TO problems. The details of this work 

can be found in Chapter 3.  

2.3    Metamaterial Unit Cell Design  

 The next phase of the literature review investigates a small subset of the metamaterial 

design and optimization process. Metamaterials are a class of artificial materials named due to their 

designed purpose of achieving specific global properties different from those of their constitutive 

material. The unique properties arise from strategically designing the base unit cell's structural 

geometry and material composition. Several researchers have used novel methods to design and 

optimize metamaterial unit cells to achieve unique material properties.  

 Steckiewicz and Choroszucho [76] used particle swarm optimization (PSO) to synthesize 

an electric metamaterial cloak. The internal geometry of the porous unit cells was adjusted using 

four sizing parameters to minimize the cloak's conductivity. The conductivity was sequentially 
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calculated using FEA after each parameter alteration, significantly increasing the computational 

cost. The authors show that the metamaterial synthesis method using PSO yields effective electric 

cloak realization. This paper offers a simplified approach to unit cell design, as the design space is 

limited to four bounded geometric parameters. Therefore, the final proposed solutions are 

inherently biased by initial design and parametrization. The author states that future work should 

focus on analyzing different unit cell geometries, but the design space exploration will always be 

limited so long as a parameterization approach is used.  

 Wang et al. [77] increase the available design domain complexity by introducing a genetic 

algorithm (GA). The authors attempt to use this well-known optimization method to develop high-

absorption, wideband, and multi-band absorbers using metamaterials. The fitness function of the 

GA was given according to the relative frequency width, relative average reflectivity magnitude, 

and amplitude of the reflectivity curve. The metamaterial design space was defined by the unit cell 

size, the thickness of the substrate, and the geometry of the material components. The GA approach 

fulfills various structural design requirements, and the test results prove the GA to be a viable tool 

for metamaterial design. The elemental discretization of the design domain improves the 

complexity and diversity of the proposed solutions. Regardless of the improved design space 

exploration, the GA approach is significantly more computationally expensive and still lacks 

generalization capabilities without retraining.  

 Nanda et al. [76] used DML for inverse metamaterial design. The method took an input of 

a parameterized material response and output the unit cell design or parameters needed to exhibit 

the desired response. The model was trained to output a single radius value for the inner ring of a 

split-ring resonator, given an input of the desired permeability. This method produces a robust 

sample of permeability responses, ensuring the DML model can learn the underlying inverse 

relationship between the output radius and material response. The author vocalizes their concerns 
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due to the failure of convergence and the inability to estimate multiple variables. Limiting unit cell 

design to a single variable reduces the practicality of the proposed design space. Although the 

authors did not yield viable results using the DML method, several other studies have investigated 

data-driven and AI approaches for designing metamaterials [78]–[81] 

 The previously discussed studies offered unique approaches to designing metamaterial 

with unique material properties. However, none of the presented works attempted to design 

metamaterials to achieve targeted nonlinear deformation characteristics, as is the objective of RQ2. 

After thoroughly investigating the literature, five studies were found that directly pursue this design 

objective. 

 Wang, Sigmund, and Jensen [82] incorporate TO into the metamaterial design process to 

achieve nonlinear properties under finite deformation. The objective of the TO was to minimize 

the error between the current and desired properties. The metamaterials were designed to mimic 

linear stress-strain curves in the first study, while the second study attempted to achieve specific 

Poisson ratios. Both truss-based and grid-based materials were designed under the various desired 

properties. The results show that the TO method could achieve metamaterials with linear elastic 

constitutive material that exhibit rubber-like responses. The grid-based study, where only the 

desired Poisson ratio was prescribed, yielded satisfactory results under symmetrical and 

asymmetrical design limitations. This study shows that a TO approach can design mechanical 

metamaterial unit cells to achieve desired nonlinear characteristics when the optimization objective 

aims to minimize the error between current and desired material responses. While these results are 

promising, this study was limited to tensile load where the desired stress-strain response had limited 

nonlinearity. 

 Satterfield et al. [83] and Kulkarni et al.[84] evaluated metamaterial design for targeted 

nonlinear compressive deformation characteristics using unit cell synthesis. Both studies used a 
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series of basic functional geometries to design an initial unit cell design and then applied additional 

optimization to achieve the desired response. Satterfield used zeroth, first, and second-order 

connection configurations between oval, fixed, and cantilever beam structures, all having 

predictable nonlinear responses. The nonlinearity of these individual components could be 

combined in a unit cell design to achieve the desired nonlinear response. Satterfield proposed a 

"Cantioval" unit cell design with three adjustable size parameters that underwent size optimization. 

After size optimization, the "Cantioval" design was validated as a viable solution to exhibit the 

single targeted response.  

 Kulkarni expanded on the results of Satterfield by proposing a new "Canti-Duo" design 

with three adjustable parameters that underwent a multi-objective optimization routine. One 

objective minimized the difference between the current and desired stress-strain response, while 

the additional objective aimed to minimize the maximum Von mises stress under compression. 

This additional objective can maintain the proposed design solution within the elastic limit of the 

base material. The authors used a genetic algorithm to thoroughly explore the design space and 

achieved a solution that exhibited a similar response to the desired stress-strain curve while 

ensuring the maximum stress remained below the yield point of the constitutive material.  

While these two studies offer promising methods for designing targeted nonlinear 

deforming metamaterials, there has been no investigation into the generalization of these 

techniques. These two unit-cell synthesis methods aim to design the unit cell for a single response. 

If a new response were desired, a novel starting design and accompanying size optimization would 

be needed. Given the ever-changing nature of material needs, this manual process is not practical.  

Incorporating TO methods, Zeng et al. [85] designed metamaterials with tunable elastic-

plastic responses under large compressive displacements. Finally, Behrou et al. [86] used TO to 

design metamaterials with tunable levels of tensile deformation nonlinearity under various 
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displacement values. These TO methods are limited by the same reliance on the differentiable 

objective and constraint functions and a lack of generalizability, as previously discussed. 

Expanding beyond mechanical metamaterial design for tailorable deformation responses, I 

found no previous literature explicitly attempting to design deformation and energy-manipulating 

metamaterials. That being said, mechanical metamaterials are commonly used for energy 

manipulation. Mechanical metamaterials offer an alternative for mechanical energy manipulation 

beyond the range of traditional monolithic materials. Through careful design of their unit cell and 

proper selection of a constitutive material, mechanical metamaterials can achieve unprecedented 

control over mechanical energy propagation, transformation, and absorption. A common 

implementation of metamaterials for energy manipulation is for the design of structures with 

negative or near-zero effective stiffness (auxetic materials) [53], [87]–[89]. These counterintuitive 

structures have been implemented for energy absorption [90], shock mitigation [91], and vibration 

isolation [92]. Additional implementations include tailored wave propagation characteristics [93]–

[95], frictional unit cells for energy dissipation [96], [97], and tailoring structural compliance while 

limiting energy loss [83], [84].  

The strategic design of the base unit cell plays a pivotal role in attaining these distinctive 

energy manipulation properties. Previous investigations into energy-manipulating mechanical 

metamaterials commonly rely on human intuition paired with size/shape optimization [91], [93]–

[97], or topology optimization [98], [99]. These design methods lack generalizability, reliance on 

an initial human design, and limited domain exploration. 

Therefore, there is a clear gap in the literature for developing a generalized metamaterial 

design solution that can cover detailed and diverse design solutions capable of achieving targeted 

nonlinear deformation and energy manipulation properties. Chapter Four discusses the work done 

to utilize DRL to design mechanical metamaterials with customizable nonlinear deformation 
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responses in tension and compression. Chapter Five will discuss the advancements to ensure the 

DRL agent could design for deformation and energy manipulation characteristics. Combining 

Chapters 3-5 will show that DRL can be a high-performing design tool in complex topology design 

problems.  
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CHAPTER THREE 
 
RESEARCH QUESTION 1: FRAMEWORK AND IMPLEMENTATION 

 

3.1   Methods: Topology Optimization as a Deep Reinforcement Learning 
Problem 

 To answer RQ1, the discretized TO problem needs to be reformulated as a sequential DRL 

task, specifically an MDP. If the TO problem can be expressed in terms of the four components of 

an MDP, state space (S), action space (A), transition probability function (P), and reward function 

(R), then a DRL agent should have the necessary tools to design optimized topologies. Formally, 

the TO problem can be viewed as finding the material distribution that optimizes an objective 

function, F, subject to a volume constraint 𝐺𝐺0 ≤ 0 and possibly M other constraints 𝐺𝐺𝑖𝑖 ≤ 0, 𝑖𝑖 =

1 …𝑀𝑀. The material distribution is described by the density variable 𝜌𝜌 that can take the value 0 

(void) or 1 (solid material) at any point in the design domain Ω. The mathematical form of this 

optimization problem is shown in Equation 3 [49]: 

 min
𝜌𝜌
𝐹𝐹  

𝐹𝐹(𝒖𝒖(𝜌𝜌),𝜌𝜌) = � 𝑓𝑓(𝒖𝒖(𝜌𝜌),𝜌𝜌)𝑑𝑑𝑑𝑑
Ω

Ω
 

(3) 
 

𝑠𝑠. 𝑡𝑡. ∶  𝐺𝐺0(𝜌𝜌) = � 𝜌𝜌𝑑𝑑𝑑𝑑 − 𝑑𝑑0 ≤ 0
Ω

Ω
 

    ∶ 𝐺𝐺𝑖𝑖(𝒖𝒖(𝜌𝜌),𝜌𝜌) ≤ 0, 𝑗𝑗 = 1, … ,𝑀𝑀 

                    ∶ 𝜌𝜌(𝑥𝑥) = 0 𝑜𝑜𝑟𝑟 1,∀ 𝒙𝒙 ∈  Ω 

where the state field 𝒖𝒖 satisfies a linear or nonlinear state equation. For this application, the 

objective function, 𝐹𝐹(𝒖𝒖(𝜌𝜌),𝜌𝜌), is compliance, where minimizing compliance leads to maximizing 

the stiffness of the structure. The objective function is dependent on the density of the material at 

each location, 𝒖𝒖(𝜌𝜌). The objective function is also dependent on predetermined constraints, 

𝐺𝐺𝑖𝑖(𝒖𝒖(𝜌𝜌),𝜌𝜌), which can be subject to change for different applications. Finally, the design space, 
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Ω, indicates the allowable volume, V, within which the design can exist. 

The grid-based environment defining the MDP is represented in Figure 3-1 and consists of 

an N-by-N grid of discrete elements that can be toggled on or off, representing material (light grey) 

or voided (white), respectively. The material elements are assigned an arbitrary modulus of 

elasticity of 1 and Poisson's ratio of 0.33. For convenience and to avoid meshing, the voided 

elements are assigned a modulus of 1-4 rather than removing them from the design. Boundary 

conditions are applied to the nodes of certain bounded elements (black), while loaded elements 

(dark grey) have a force value applied to their nodes.  

 
Figure 3-1. 2D representation of a grid-based (a) starting topology of a 12x12 cantilever 

beam (b) corresponding optimal topology 

 The details of the agent's actions within the environment are in the following sections, but 

a brief overview helps guide the description. The environment starts as a solid material block 

(Figure 3-1a), and the agent must decide which elements to remove to achieve the design objective. 

After removing an element, FEA provides the stress distribution throughout the structure and 

feedback on the current performance of the design. The agent uses this stress information to make 

intelligent decisions about which elements to remove until convergence. 

3.1.1    DRL Environment: State Space  

The state space, S, of an environment represents all combinations of observations an agent 

can experience while interacting with the environment. The agent's current observation depends on 
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the boundary conditions, loading conditions, and current topology. The individual observations that 

comprised the state space were built as NxNx3 arrays, where N represents the number of design 

variables in one dimension, resulting in N2
 total design variables.  

The first channel of the observation array is the normalized inverse Von Mises Stress, 𝜎𝜎𝑑𝑑𝑀𝑀 

of each element and describes the current stress distribution within the topology. The Von Mises 

stress is commonly used in engineering design to describe an object's current stress state [100], 

[101]. The Von Mises stress for each 2D element can be found under any load case using Equation 

4: 

 
𝜎𝜎𝑉𝑉𝑉𝑉 = �𝜎𝜎𝑥𝑥2 + 𝜎𝜎𝑦𝑦2 − 𝜎𝜎𝑥𝑥𝜎𝜎𝑦𝑦 + 3𝜏𝜏𝑥𝑥𝑦𝑦 

(4) 

where 𝜎𝜎𝑥𝑥, 𝜎𝜎𝑦𝑦, and 𝜏𝜏𝑥𝑥𝑦𝑦 are found using a 2D plane stress FEA solver, based off the work of Li [102]. 

Equation 4 is only used for material elements within the topology. Voided elements are assigned a 

value of 0 to isolate the location of the voided elements. The inverse Von Mises stress of each 

element was used to magnify the difference between minimally loaded and voided elements to help 

the agent's DNN decipher between similar elements. This difference should prompt the agent to 

learn that removing minimally load-bearing elements will lead to higher rewards while removing 

voided elements will lead to a penalty. The inverse Von Mises stresses are normalized about the 

maximum value of the first channel to prevent unbounded stress values [103]. Therefore, the final 

representation of the first observation channel can be viewed in Equation 5:  

 
𝑂𝑂1,𝑎𝑎,𝑏𝑏 = �

𝜎𝜎𝑉𝑉𝑉𝑉,𝑎𝑎,𝑏𝑏

𝜎𝜎𝑉𝑉𝑉𝑉,𝑚𝑚𝑎𝑎𝑥𝑥
�
−1

 (5) 

where 𝑂𝑂1,𝑎𝑎,𝑏𝑏 is the first channel observation of the element at row a and column b, given the Von 

Mises stress at the element, 𝜎𝜎𝑉𝑉𝑉𝑉,𝑎𝑎,𝑏𝑏, and 𝜎𝜎𝑉𝑉𝑉𝑉,𝑚𝑚𝑎𝑎𝑥𝑥 is the max stress in the structure.  

The second channel of the observation is the Boolean representation of which elements are 

fixed with boundary conditions such that fixed elements are assigned a value of 1, otherwise 0. 
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Finally, the third channel provides the loaded element equivalent of the second channel, where 

loaded elements are assigned a value of 1 and otherwise 0. Figure 3-2 shows an example of a simple 

6x6x3 observation under a topology with multiple loaded elements. 

 
Figure 3-2. Observation of a starting 6x6 topology (a) Schematic (b) First channel: 

Elemental normalized inverse Von Mises stress (c) Second channel: Boolean representation 
of bounded elements (d) Third  channel: Boolean representation of loaded elements 

3.1.2    DRL Environment: Action Space  

The action space defines all the possible actions the agent can take at each time step. 

Actions define how an agent can interact with an environment, taking the agent from its current 

observation to the next. Within the TO environment, an action corresponds to toggling an element 

from material to void, leading to a new topology. Within an NxN topology environment, the action 

space size is N2. The action of toggling an element from material to void can be represented as 

changing an element's modulus of elasticity from 1 to 1-4.  
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Figure 3-3. Element removal sequence of 6x6 topology 

 
Designing topologies (Figure 3-3) is accomplished by sequentially selecting elements for 

removal from a starting solid block topology until a termination criterion is reached or the agent 

attempts an illegal action. The illegal actions, illustrated in Figure 3-4, include trying to remove a 

bounded, loaded, or previously voided element or an element that would lead to a non-singular 

body. A non-singular body arises when the topology is held together by a hinge point. This single-

node connection at a hinge point does not represent a feasible part of the design solution as it 

artificially inflates the stiffness of the topology while not representing a physical material 

connection. Other discretization of the design domain, beyond single element representation, could 

remove this issue.  
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Figure 3-4. Illegal actions (a) Removing voided, loaded, and bounded elements (b) Action 
results in a non-singular body  

 

3.1.3    DRL Environment: Reward Function 

The DRL agent seeks to maximize its reward and should learn what action sequences must 

be taken to accumulate the most reward while avoiding penalties. In the presented environment, 

the reward function should be built to minimize structural compliance under specific volume or 

stress constraints, thus mimicking the objectives of compliance TO. 

Minimizing compliance is accomplished by minimizing the increase in strain energy of the 

current topology compared to the starting solid block topology. The strain energy of a topology is 

a standard measurement in traditional TO methods to assess the compliance of a topology [100], 

[101]. The strain energy of a topology increases as more elements are removed, so the agent should 

receive more reward if it removes elements that lead to a minimal increase. The quadratic 

mathematical function used to represent this proposed reward function, 𝑟𝑟𝑡𝑡, at time step, t, is shown 

in Equation 6: 

 
𝑟𝑟𝑡𝑡 =  �

𝑐𝑐𝑠𝑠
𝑐𝑐𝑡𝑡
�
2

+ �
𝛼𝛼𝑡𝑡
𝑁𝑁2� (6) 

 
where 𝑐𝑐𝑠𝑠 is the strain energy of the initial solid block topology, 𝑐𝑐𝑡𝑡 is the strain energy of the current 

topology at the time step, t, 𝛼𝛼𝑡𝑡  is the number of voided elements at t, and N2 is the total number of 

elements.  
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Equation 6 shows that the agent is rewarded more if the topology exhibits minimal 

increases in strain energy while reducing volume fraction by voiding more elements. The quadratic 

representation of the function was selected through experimentation to help magnify the optimal 

rewards during the later stages of the design process when the removal of various elements could 

lead to a similar strain energy increase. This addition helped distinguish the optimal action from a 

group of similar yet slightly inferior actions. While other reward function alternatives are possible, 

the effectiveness of the function in Equation 6 is demonstrated in the following sections. A 

graphical representation of Eq. 6 can be found in Figure 3-5. 

 

Figure 3-5. Graphical representation of the multi-objective reward function 

 
The reward function of Equation 6 was only used if the agent took an action deemed "legal." If one 

of the illegal actions of Figure 3-4 is taken, the agent is penalized -1. This penalty teaches the agent 

to avoid taking illegal steps as it diminishes the accumulated reward of a designing episode.   

Combining the positive reward function and negative penalty means the reward between 

two sequential actions could differ significantly. For example, the agent could be nearing the final 

design steps of an optimal topology and accumulating significant reward when suddenly it makes 
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an illegal move and is penalized. This phenomenon where the last action's reward differs 

substantially from the previous rewards is known as reward saltation [42]. Positive reward saltation 

occurs if the current reward is significantly larger than the previous reward, whereas negative 

reward saltation would be the opposite. Reward saltation in an environment can lead to training 

inefficiencies and convergence to a locally optimal policy. Therefore, to address reward saltation 

in the proposed reward function, a magnified saltatory reward (MSR) algorithm, proposed by Hu 

et al. [42], was introduced to augment the reward function.  

The MSR algorithm aims to magnify the reward if positive saltation occurs and reduce the 

current reward if negative saltation occurs. Therefore, the algorithm causes the agent to be more 

cautious when encountering risk, such as nearing an optimal topology, and more decisive when 

encountering high-yield choices, such as the initial stages of topology design. The MSR algorithm 

is applied to every time step to produce an augmented reward value, 𝑟𝑟𝑡𝑡∗, using the following series 

of equations [42]: 

 𝑟𝑟𝑡𝑡∗ = 𝑟𝑟𝑡𝑡 + (𝑓𝑓(𝑥𝑥) − 𝜆𝜆)|𝑟𝑟𝑡𝑡 + 𝜀𝜀| (7) 

 𝑓𝑓(𝑥𝑥) = tan−1 �𝑥𝑥
𝜋𝜋

2𝜂𝜂
� (8) 

 𝑥𝑥 = 𝜌𝜌 + 𝜆𝜆 (9) 

 𝜆𝜆 = 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠(𝑟𝑟𝑡𝑡 − 𝑟𝑟𝑡𝑡−1) (10) 

 
𝜌𝜌 =

(𝑟𝑟𝑡𝑡 − 𝑟𝑟𝑡𝑡−1)
min (|𝑟𝑟𝑡𝑡 + 𝜀𝜀|, |𝑟𝑟𝑡𝑡−1 + 𝜀𝜀|)

 

 
(11) 

where 𝑟𝑟𝑡𝑡and 𝑟𝑟𝑡𝑡−1are the current and previous rewards, respectively, 𝜀𝜀 is a negligible non-zero value 

needed for numeric stability in Equation 11 if both rewards were zero, 𝑓𝑓(𝑥𝑥) is the monotonically 

increasing bounded function used to define the allowable range of reward changes, and 𝜂𝜂 is a 

parameter used to determine if the difference between the current and previous rewards represents 

significant reward saltation and justifies magnifying or reducing the current reward.  
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3.1.4    DRL Environment: Transition Probability Function  

Given the state at the current time step, 𝑠𝑠𝑡𝑡, the agent needs to select the action within the 

action space, 𝑎𝑎𝑡𝑡, that will lead to the largest value, 𝑄𝑄(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡), where 𝑄𝑄(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡), is defined as the total 

expected future reward if the action, 𝑎𝑎𝑡𝑡, is chosen. The transition probability function, also called 

the value function, maps state-action tuples, (𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡), to values for each action. If 𝑄𝑄(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡),  is 

known for all actions when the agent experiences a particular state, then selecting the 𝑎𝑎𝑟𝑟𝑠𝑠𝑎𝑎𝑎𝑎𝑥𝑥(𝑎𝑎𝑡𝑡) 

is the best action. However, even for a simple representation of the TO environment with 6x6 

topologies, the number of possible states for a single load case is large (≈ 6.87 × 1010), which 

makes the value function complex and challenging to model. Therefore, 𝑄𝑄(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡) is approximated 

using a DNN. The value function is found using the Double Q-learning algorithm [104], as seen in 

Equation 12: 

 𝑄𝑄(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡) = 𝑟𝑟(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡) + 𝛾𝛾𝑎𝑎𝑎𝑎𝑥𝑥𝑎𝑎𝑄𝑄′(𝑠𝑠𝑡𝑡+1,𝑎𝑎𝑟𝑟𝑠𝑠𝑎𝑎𝑎𝑎𝑥𝑥𝑄𝑄(𝑠𝑠𝑡𝑡+1,𝑎𝑎𝑡𝑡)) (12) 

where 𝑟𝑟(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡) is the reward for taking the action, 𝑎𝑎𝑡𝑡 , at the current state, 𝑠𝑠𝑡𝑡, and 𝛾𝛾 is the discount 

factor, quantifying the importance of future rewards.  Double Q learning uses two DNN models, a 

main and an auxiliary model. The main model is used for action selection by predicting the action 

with the largest value, 𝑄𝑄(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡) and the auxiliary model predicts the value of the next state if that 

maximum value action was taken, 𝑎𝑎𝑎𝑎𝑥𝑥𝑎𝑎𝑄𝑄′(𝑠𝑠𝑡𝑡+1,𝑎𝑎𝑟𝑟𝑠𝑠𝑎𝑎𝑎𝑎𝑥𝑥𝑄𝑄(𝑠𝑠𝑡𝑡+1,𝑎𝑎𝑡𝑡)). The introduction of the 

auxiliary model helps predict the next state value to address the overestimation of future value, 

commonly seen in the generic Q learning algorithm. This small change in Double Q learning has 

been shown to improve algorithm stability [104].  

The main and auxiliary models consist of four convolutional neural network (CNN) layers, 

each with a varying number of 3x3 convolutional filters. The results for each layer are passed 

through a ReLU activation function before proceeding to the subsequent layer. The purpose of a 
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CNN is to extract relevant features from the state representation matrix and use those features to 

make decisions about the value of each possible action. The CNN architecture, represented in 

Figure 3-6, shows the agent's NxNx3 observation of the current state is the input and is passed 

through four convolutional layers comprised of 16, 8, 4, and 1 convolutional filters, respectively, 

to produce an output of the predicted value of taking each action. The action associated with the 

highest value is selected, and that element is removed, leading to the next observation.  

 

 

Figure 3-6. Deep convolutional neural network architecture  

3.2    Methods: Training The Agent  

Section 3.1 defined the TO problem as an MDP; therefore, the DRL agent should be able 

to learn to satisfy the compliance minimization TO problem. The agent's performance depends on 

its ability to approximate the value function in Equation 12. The agent must undergo episodic 

interactions with the proposed environment to collect experiences and update its DNN weights for 

better value approximations. The DNN weights are updated to minimize the error between the 

agent's prediction of 𝑄𝑄(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡)  and  the actual value, which is realized after the agent has taken the 

corresponding action, 𝑎𝑎𝑡𝑡.  An episode in this environment is defined as a sequence of element 

removal actions starting at the initial solid block topology and continuing until one of the illegal 

moves of Figure 3-4 is made. During training, so long as the agent does not attempt to remove a 
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bounded, loaded, or voided element, the agent can continue to take actions to remove elements 

from the topology until a non-singular body is ultimately produced. This approach increases the 

accumulated experiences to update the DNN weights. This approach contrasts with specifying 

stress-based or volume fraction termination criteria, which will be implemented for testing.  

All training was completed on a 6x6 topology size to limit the computational cost of 

running the FEAs needed to produce the first observation channel at each step. The DRL agent is 

trained to design topologies with randomly generated load cases to ensure thorough state-space 

exploration. The load cases were introduced for each episode by randomly assigning two elements 

on the exterior edge of the topology to act as bounded elements. A bounded element was 

represented by providing a static displacement boundary condition on the two exterior nodes of the 

selected element. If a corner element was selected, the single exterior corner node was assigned the 

boundary condition. 

A single element was randomly selected to serve as the loaded element. The element was 

randomly assigned in the 6x6 topology so long as it wasn't previously selected as a bounded 

element. The direction (horizontal or vertical) and type (tensile or compressive) of the load were 

also randomly selected. If the selected element was exterior, the load was distributed between the 

two exterior elemental nodes. If a corner element was selected, the load was applied to the single 

exterior corner node. Finally, if the element was in the interior, the load was randomly distributed 

between two elemental nodes defining one of the edges.  

  A fundamental dilemma of DRL training is the trade-off between exploration and 

exploitation. The agent explores the environment by taking random actions to compile diverse 

experiences to build a sufficiently accurate mapping between actions and values. However, to 

ensure efficiency, the agent should not strictly rely on random actions and instead exploit the value 

mappings it has already learned. Therefore, to balance proper exploration and exploitation, random 
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behavior should be more frequently used when the value predictions are poor at the beginning of 

training. As training continues and the value predictions improve, random behavior should be 

replaced by exploiting the maximum value action,  𝑎𝑎𝑟𝑟𝑠𝑠𝑎𝑎𝑎𝑎𝑥𝑥(𝑄𝑄(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡)). This method is called the 

𝜀𝜀 -greedy method [44]. The probability of taking a random action depends on a decaying 𝜀𝜀 value. 

At the start of the training process, the 𝜀𝜀 value is 1 and decays for each episode following Equation 

13: 

 𝜀𝜀 = 𝑎𝑎𝑎𝑎𝑥𝑥�1 − 𝐸𝐸 ∙ 𝜀𝜀𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑦𝑦, 𝜀𝜀𝑚𝑚𝑖𝑖𝑚𝑚� (13) 
 

where  𝜀𝜀𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑦𝑦 is the rate at which 𝜀𝜀 decreases per episode (𝜀𝜀𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑦𝑦 = 3.5𝑒𝑒 − 4)  until 𝜀𝜀 reaches its 

minimal allowable value (𝜀𝜀𝑚𝑚𝑖𝑖𝑚𝑚 = 0.01), and 𝐸𝐸 is the current episode number. 𝜀𝜀𝑚𝑚𝑖𝑖𝑚𝑚 is greater than 

zero to ensure exploration continues during the later stages of training. These values were selected 

after experimenting with several combinations of 𝜀𝜀𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑦𝑦 and 𝜀𝜀𝑚𝑚𝑖𝑖𝑚𝑚. I do not claim that the two 

selected values are necessarily optimal. However, I believe a sufficient balance between 

exploration and exploitation is met. 

Whether randomly or strategically taken, the action will remove the corresponding element 

leading to a new topology and corresponding new observation. Based on the results of the 

observation FEA, the agent will receive a reward for taking that action. After each action, the 

previous observation, new observation, action, and reward are recorded in a replay buffer. Using 

topological symmetry, the agent stores the equivalent x and y-axis flipped observations, 

corresponding flipped actions, and reward in the replay buffer. This technique allowed four 

experiences to be captured from a single FEA call for each step and is essentially a simple data 

augmentation method. Once an episode is complete and the buffer size is at least 128, a batch of 

128 past experiences is randomly selected to train the DNN. Randomly selecting a batch from the 

replay buffer ensures the agent is trained on independent and identically distributed (i.i.d) data to 

help promote generalization. The main model weights were updated using the stochastic gradient 
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descent ADAM optimizer with a learning rate of 2.5 ∗ 10−3. The auxiliary model weights are 

replaced with the current main model weights after every 100 episodes. A flowchart of a training 

episode is shown in Figure 3-7.  

 

Figure 3-7. Episodic Training Flowchart 

3.3    Methods: Testing the Agent Using Progressive Refinement  

The trained agent was tested to validate its accuracy and generalizability. The agent is 

trained to design 6x6 topologies to limit the computational cost of running the FEA calculations to 

produce the environmental observations. Designing an optimal topology at the coarse 6x6 level 

does not have sufficient detail to be beneficial because of the limited degrees of freedom. For this 
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reason, testing on a finer mesh size will result in a more meaningful evaluation of the agent's 

abilities. The DRL agent can interact with topologies larger than it is trained on because the value 

function DNNs are built solely on convolutional filters. Convolutional filters are not size-dependent 

and can be passed along any input size. Therefore, without retraining, the agent could interact 

directly with a larger topology size (e.g., 24x24 or beyond). However, the computational cost of 

interacting with a larger topology from starting solid block to optimal topology is significantly 

larger than interacting with a 6x6 topology. Therefore, the authors propose implementing 

progressive refinement to help improve the computational efficiency of the DRL agent. 

Progressive refinement is the process of sequentially increasing the complexity of an object 

from "coarse" to "fine." Regarding topology design, progressive refinement increases the topology 

detail over sequential steps instead of all at once [105]. As a result, the number of elements used to 

define an equivalent topology shape increases through intermediate steps, as seen in Figure 3-8. In 

this work, progressive refinement was carried out from a starting 6x6 topology to an intermediate 

12x12 topology to a final 24x24 topology which was used to define the agent's proposed optimal 

topology for each load case. Figure 3-8 shows that the bounded and loaded elements are transferred 

between the mesh refinements. This transfer alters the proportion of elements that are applying the 

boundary and loading conditions and may alter the stress distribution and should be addressed in 

future work. 
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Figure 3-8. Two-step progressive refinement from 6x6 to 24x24 equivalent topologies  

 
Progressive refinement improves computational efficiency by allowing the agent to start 

taking actions and removing elements in the coarse 6x6 topology until an intermediate volume 

fraction (VF) or stress-based termination criterion is met. The intermediate termination criteria for 

the 6x6 and 12x12 sizes are with respect to a global termination criterion for the 24x24 size, as seen 

in Equations 14 and 15. The agent begins by removing elements from the 6x6 topology until the 

initial intermediate termination criterion is met. Next, the agent interacts with an equivalent 12x12 

topology and continues to remove elements until a second intermediate termination criterion is met. 

Finally, the agent interacts with the equivalent 24x24 topology until the final, user-specified 

termination criterion is satisfied. An example of this sequence is represented in Figure 3-9, where 

the final termination criterion is 𝑑𝑑𝐹𝐹24𝑥𝑥24 = 0.25. It should be noted that Equations 14 and 15 would 

need to be adjusted if the final topology refinement were to extend to 48x48 or 96x96 and could be 

addressed as future work. 

 𝑑𝑑𝐹𝐹6𝑥𝑥6 = 1 − �
1 − 𝑑𝑑𝐹𝐹24𝑥𝑥24

2.5
� (14) 

   
 𝑑𝑑𝐹𝐹12𝑥𝑥12 = 1 − �

1− 𝑑𝑑𝐹𝐹24𝑥𝑥24
1.5

� (15) 
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The sequential decrease in allowable VF follows the work of Kim and Weck [105], who found that 

the optimization method works better by gradually tightening the criteria with increasing 

refinement. 

 

Figure 3-9. Sequential element removal using progressive refinement  

 
Starting progressive refinement with a 6x6 topology significantly improves the 

computational efficiency. This method reduces the actions the agent needs to take because 

removing a single coarse element from the 6x6 topology is equivalent to removing the 4 or 16 

corresponding elements from the 12x12 or 24x24 topologies, respectively. Therefore, the agent 

interacts with the intermediate 6x6 topology to produce a general, non-detailed shape that can be 

formed into an equivalent 12x12 topology. The agent can begin to produce low-level details at the 

12x12 topology but will ultimately achieve its sufficiently detailed final design at the 24x24 

topology size. I hypothesize that progressive refinement could be incorporated for topology sizes 

larger than 24x24, but due to the computational cost of running the FEA, the 24x24 size was 

deemed viable for testing purposes. 

3.4    Results 

3.4.1    Training Results 

The training was run for 5000 episodes with 𝜀𝜀 reaching 𝜀𝜀𝑚𝑚𝑖𝑖𝑚𝑚 shortly after 2800 episodes. 

The training took approximately 1.5 hours using a PC with Intel(R) Core(TM) i7-10510U CPU @ 
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1.80GHz and 16 GB of RAM. The program was implemented within a Python 3.7 environment. 

Figure 3-10 shows a moving average of the training reward over 100 episodes.  At the same time, 

𝜀𝜀 decreases as a function of the episode number until it reaches the minimum 𝜖𝜖𝑉𝑉𝑖𝑖𝑚𝑚. After 𝜖𝜖𝑉𝑉𝑖𝑖𝑚𝑚  is 

reached,  the reward starts to generally converge towards a maximum. The average reward does 

not converge to a single value because the maximum reward the agent could accumulate during an 

episode depends on the load case and the corresponding number of elements removed. The increase 

in reward in Figure 3-10 indicates the agent has learned to take more strategic actions that lead to 

designing topologies that better satisfy the design objectives.  

 

Figure 3-10. Average reward and epsilon-decay during training 

 

3.4.2    Test Case Results 

Several test cases are presented to assess the performance of the algorithm. Each test case 

introduces a unique combination of loaded and bounded elements. These elements are represented 

in the second and third channels of the observation array for 24x24 topology size. However,  to 
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account for progressive refinement, the equivalent elemental regions in the 6x6 and 12x12 topology 

observations were also treated as loaded or bounded elements. 

The test cases were run using a user-specified final volume fraction (VF) or allowable 

stress increase (SI) termination criteria. User-specified termination criteria ensure that the presented 

method can adapt to satisfy various design constraints. A user-specified VF termination criterion 

specifies the final desired VF for the 24x24 Topology, where the intermediate VFs are defined 

using Equations 14 and 15 in Section 3.3. A stress-based termination criterion is reached when the 

ratio of the current p-norm stress divided by the initial p-norm stress exceeds a user-specified value. 

The p-norm stress, 𝜎𝜎𝑃𝑃 can be calculated using Equation 14:  

 

𝜎𝜎𝑃𝑃 = ��𝜎𝜎𝑉𝑉𝑉𝑉,𝑖𝑖
𝑝𝑝

𝑁𝑁2

𝑖𝑖=1

�

1
𝑝𝑝

 
 

(14) 

 

where 𝜎𝜎𝑉𝑉𝑉𝑉.𝑖𝑖
𝑝𝑝  represents the Von-Mises stress at element i raised to the power of the smoothing 

parameter constant, p. The p-norm stress eliminates the local stress concentrations and replaces 

them with a single approximation of the maximum global stress [106]. A larger smoothing 

parameter better represented the global stress value and was set to 10 for this application. A larger 

allowable SI would lead to a topology with a small final VF and a more significant increase in 

strain energy, as seen in Figure 3-11. A test case could implement one or both termination criteria 

to satisfy a designer's constraints.  
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..

 

Figure 3-11. Allowable stress increase termination comparison of final strain energy (cf) [J] 
and volume fraction (VF) 

A series of test cases with common load cases were run, and the results are shown in Table 3-1. 

The final 24x24 topology has been included, along with the intermediate 6x6 and 12x12 topologies. 

The final topology for each load case was determined using a user-specified final VF or SI. The 

final proposed 24x24 topologies from the DRL designer were compared to a more traditional, 

gradient-based TO algorithm produced by Sigmund using the 99-line SIMP TO algorithm with a 

penalty factor of 3 and filter radius of 1.5 to ensure the topology is built using discrete elements 

[107]. 

Table 3- 1. Test case result comparison of final strain energy [J], 𝒄𝒄𝒄𝒄, and final volume 
fraction, 𝑽𝑽𝒄𝒄𝒄𝒄, using volume fraction, VF, or stress increase, SI, termination criteria 

Load Case 
Schematic 6x6 |12x12 | 24x24 Topologies Termination 

Criteria 𝑽𝑽𝒄𝒄𝒄𝒄 𝒄𝒄𝒄𝒄 
Gradient-Based  Equivalent 

Topology 𝒄𝒄𝒄𝒄 𝑽𝑽𝒄𝒄𝒄𝒄 

A) 

 
     

VF=0.25 
 

0.25 
 

864 

 

 
964 

 
0.25 
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B)

 
   

VF=0.25 0.25 
 

193 
 

 

 
211 

 
0.25 

C)

 
   

SI=50% 0.31 
 

768 
 

 

 
806 

 
0.25 

D)

    

VF=0.25 0.25 
 

1853 
 

 

 
929 

 
0.25 

E) 

 
   

VF=0.25 0.25 
 

879 
 

 

 
1000 

 
0.25 

F) 

 
   

SI=30% 0.16 
 

1021 
  

 
 

1245 
 
 

0.2 

Each proposed topology satisfies the specified termination criteria. The diversity of load 

cases is used to show the generalization capabilities of the DRL agent. Under these unique load 

cases, the DRL agent can consistently produce topologies similar to a more traditional gradient-

based TO algorithm. In all load cases except D, the DRL agent produces a topology with lower 

stain energy than the gradient-based solver.  Each proposed topology from the DRL agent 

represents a feasible design solution. The connections between individual elements build a 

manufacturable and viable topology and directly result from the DRL agent terminating an episode 

as soon as an illegal action is taken.  

It should be noted that each design episode conducted by the DRL agent can require up to 

11, 28, and 144 FEA calls for the 6x6, 12x12, and 24x24 topologies, respectively. Therefore, the 
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computational efficiency of the DRL method is not a key advantage but can depend on a user's 

computational resource availability. However, when the computational time of the FEA is not 

considered, the time difference between a traditional gradient-based method and the proposed DRL 

method is trivial. Alternatively, a user could implement a pre-trained surrogate model for near-

instantaneous stress distribution calculations, significantly reducing the computational burden of 

the proposed method. 

3.5     Discussion 

3.5.1    Learning a Generalized Design Strategy  

Table 3-1 shows that the DRL agent has learned a generalized design strategy by satisfying 

the TO-based multi-objective reward function. For the agent to learn a design strategy, it must 

exhibit strategic thinking. Strategic thinking can be defined as using tools to navigate 

comprehensive potential approaches to find the one that best suits an objective [108]. For the DRL 

agent, the set of tools is the action space to void elements within the topology to maximize the 

reward function. As the agent must use the same value function for different load cases, the design 

strategy is general enough to account for various load cases, many of which the agent may not have 

experienced during training. A primary concern within DRL is that the agent will overfit by 

memorizing the best actions from the training experiences but fail to generalize to future, unseen 

experiences. The authors addressed these concerns with the methods used to test the agent. 

The first indication of generalization is that the agent only interacted with 6x6 topologies 

during training, but during testing, the agent removed elements on 6x6, 12x12, and 24x24 

topologies. Thus, the agent applied the same design strategy learned during the 6x6 training to the 

larger environments. The second indication of generalization can be seen in Load Cases D and F, 

as multiple elements have been assigned as loaded elements. During training, only a single element 

was randomly selected to serve as the loaded element. Therefore, the agent could not have 
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experienced these load cases during training and could not be memorizing from past experiences. 

These two load cases indicate that the agent can generalize to pick the best design strategy under 

unique, unseen load cases.  

DRL methods can often be subject to the black box problem, meaning the underlying 

strategy of the agent used to relate the inputs and outputs is left a mystery [44]. Understanding the 

black box strategy of a DRL agent can help human users guide choices in the future. Concerning 

engineering design, an expert designer can understand the DRL agent's strategy by tracking the 

observation-action pairs that lead to the maximum reward. This approach should allow the human 

designer to gain a deeper understanding of the design task and produce superior design solutions 

that may not have been previously apparent.  

The best design strategies of the DRL agent in the TO environment should be built around 

maximizing the multi-objective reward function under varying load cases. Therefore, the agent 

should be targeting the removal of minimally load-bearing elements. Removing a minimally load-

bearing element reduces the volume fraction of the topology and allows a minimal increase in strain 

energy. This strategy is commonly adopted in other sequential-based TO solvers [51], [109], [110]. 

Isolating minimally load-bearing elements can be discovered by viewing the elemental stress 

distribution. Fortunately, the first observation channel is each element's proportional inverse Von-

Mises stress. This representation leads to minimally load-bearing elements having the smallest 

Von-Mises stress and the largest first-channel observation values. Therefore, to infer that the DRL 

agent has adopted design strategies that target the removal of minimally load-bearing elements, the 

elements with the largest first channel observation should not be present in the final topologies.  

Figure 3-12 shows the first channel observations for a sequential 6x6 topology design 

without progressive refinement. The agent routinely selects to remove elements with larger 

proportional inverse Von Mises stresses. While the agent does target larger values, it does not 
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strictly remove the element with the largest value, corresponding to the minimally load-bearing 

element. Instead, the agent adopts a strategy that also accounts for the locational relationship of 

elements in the topology. Examples of this strategy can be seen several times in Figure 3-12, such 

as steps 2, 11, and 20. Step 20 is particularly interesting because if the agent removed any of the 

top three minimally load-bearing elements, the resulting topology would not be a singular body, 

terminating the episode. Instead, the agent selects to remove one of the few elements that will still 

lead to a singular body. This addition is important because if the agent simply removed the 

minimally load-bearing element at each step, the DRL application would be deemed trivial, as this 

strategy could be hard-coded for any topology with any load case. Therefore, the agent has learned 

a design strategy that targets the removal of minimally-load bearing elements while accounting for 

these elements' locational distribution. The same agent is used to design at the 6x6, 12x12, and 

24x24 topology sizes and, therefore, should adopt the same strategy for future generalized topology 

designs at increasing mesh complexity. 
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Figure 3-12. First layer observation of a 6x6 topology design episode 

3.5.2    Deep Reinforcement Learning Shortcomings 

Common to many TO methods [49], [100], [106], [111], the DRL agent’s proposed 

topology appears to be sub-optimal under certain load cases. The proposed DRL topology 

algorithm outputs a poor-performing topology when the agent takes an illegal step early during the 

design process and cannot reach the user-specified termination criteria. The authors determined 

that the DRL algorithm outputs poor-performing topologies when the load case contains several 

bounded and loaded elements randomly distributed around the starting solid block topology or 

when multiple bounded or loaded elements are clumped together, shown in Figure 3-13. These 

examples represent irregular load cases that would only be introduced given a highly particular 

design objective.  
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Figure 3-13. Sub-optimal proposed topologies for (a) dispersed and (b) clumped loading  

 
The hypothesis for the sub-optimal topology in Figure 3-13a is that when the bounded and 

loaded elements are distributed throughout the topology, fewer elements can be legally removed at 

the 6x6 and 12x12 stages. Therefore, the agent is more likely to take an illegal action at the 6x6 or 

12x12 topologies before reaching the corresponding intermediate volume fraction. As a result, the 

agent must successfully take more actions at the 24x24 topology, increasing the opportunity for 

sub-optimal solutions. A proposed solution is to adjust the intermediate volume fractions depending 

on the distances between the bounded and loaded elements. More considerable distances between 

elements would require higher intermediate volume fractions to avoid prematurely eliminating 

necessary clumps of elements. In comparison, closely packed elements would require smaller 
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intermediate volume fractions to ensure the agent takes advantage of removing large groups of 

elements on the 6x6 and 12x12 topologies.  

Figure 3-13b shows a challenging loading case with closely packed groups of bounded and 

loaded elements. Incorporating progressive refinement into the design process relies on producing 

the corresponding topologies and bounded and loaded elements at different topology sizes. The 

initial elements for each load case are selected at the 24x24 topology size but correspond to 

equivalent elements on the smaller topology sizes. A problem arises when the load case elements 

are closely packed together. Independent elements on a 24x24 topology can have the same 

equivalent element on the 6x6 or 12x12 topologies. Therefore, unique elements on the 24x24 

topology can now be lost within the coarse topologies, leading to a difference in load cases between 

the topology sizes in a single design sequence. Load cases with clumped elements do not guarantee 

a severely sub-optimal design but have a higher probability than the more uniformly distributed 

load cases in Table 3-1 of Section 3.4.2. Given the reliance on progressive refinement and the 

equivalent bounded and loaded elements, the DRL topology designer should target more traditional 

load cases with a relatively even distribution of notable elements. 

This research question, published in the following article [37], was limited to the 

engineering design task of 2D grid-based topology design. However, I believe DRL can be 

incorporated into many engineering design applications. I hypothesize that if a DRL environment, 

like the one proposed in this work, can be formulated to represent a specific design domain, then a 

DRL agent can identify high-performance designs regardless of the domain. These design domains 

could include but are not limited to metamaterial design, sequential generation of 3D geometries 

(similar to parametric CAD software), multi-material topology design, and systems engineering. 

The following sections will discuss additional design domains that can incorporate DRL to achieve 

superior design solutions. The following two chapters will discuss the use of DRL for mechanical 
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metamaterial design with customizable deformation and energy manipulation properties. This 

design task is considerably more challenging when compared to the well-established compliance 

minimization problem. Therefore, the forthcoming chapters will further prove DRL as a powerful 

engineering design tool.  
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CHAPTER FOUR 
 

RESEARCH QUESTION 2: FRAMEWORK AND IMPLEMENTATION 
 

 The next phase of this research focuses on the complex design domain of mechanical 

metamaterials. The objective of RQ2 targets the designing of mechanical metamaterials with 

tailorable nonlinear deformation responses through local optimization of the unit cell. The unit cell 

design process is a sequential design problem that requires thorough state-space exploration. The 

investigation of the literature shows a clear gap in providing a generalized method for designing 

metamaterial unit cells that exhibit targeted nonlinear deformation responses. The increased 

complexity of the metamaterial design domain makes it challenging for traditional design and 

optimization methods to efficiently and effectively find high-performing, viable solutions. I 

hypothesize that RQ2 can be answered by reframing the unit cell design process as a DRL task. 

The same DRL components of RQ1 must be addressed but altered to capture the increased 

complexity of the new design domain. Therefore, this chapter will discuss the domain changes and 

new DML tools introduced to the DRL task to successfully design mechanical metamaterials with 

customizable deformation responses. 

4.1 Methods: Representing the Metamaterials 

4.1.1 Discrete Grid Design Domain 

The metamaterial unit cells are represented within a 2D grid design domain. The design 

variables of this discretized domain are viewed as discrete quadrilateral elements, each defined by 

four nodes. The material distribution of the unit cell is defined by the material density of each 

element, which takes the value of 1 (material) or 0 (void). The material elements are linear elastic 

and assigned a reference modulus of elasticity of 1 and Poisson's ratio of 0.33.  
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A 60x20 matrix of discretized elements represents the design domain of the unit cell. The 

material distribution of the unit cell is sequentially altered by adding material elements to the 60x20 

matrix according to cubic Bezier functions and mirroring about the X and Y axes, as seen in Figure 

4-1. 

 

Figure 4-1. A randomly generated unit cell of discrete elements (material in blue, void in 
white) with design domain (Red) mirrored about the y and x axes 

This work only investigates uniaxial compression and tension in the Y-direction. 

Therefore, mirroring the 60x20 design domain about the Y-axis ensures symmetric deformation. 

Additionally, mirroring the domain about the X-axis results in an increased geometric nonlinearity 

that results in more unique nonlinear and orthotropic deformation responses [112].  

Altering the material distribution of the unit cell according to cubic Bezier curves offers a 

repeatable method that can produce a diverse range of geometric nonlinearities. Bezier curves are 

commonly used in computer graphics [113] but have proven to be a robust engineering design tool 

for airfoil profiles [114], design for manufacturing [115], and metamaterial design [116]. A set of 

discrete control points define the smooth, continuous Bezier curve. The formula for the 𝑥𝑥, 𝐵𝐵𝑥𝑥(𝑡𝑡),  

and 𝑦𝑦, 𝐵𝐵𝑦𝑦(𝑡𝑡), coordinates of the Bezier Curve are given by Equation 15: 

 𝐵𝐵𝑥𝑥(𝑡𝑡) = ∑ �𝑚𝑚𝑖𝑖 �
𝑚𝑚
𝑖𝑖=0 𝑃𝑃𝑖𝑖,𝑥𝑥(1− 𝑡𝑡)𝑚𝑚−𝑖𝑖𝑡𝑡𝑖𝑖  

𝑓𝑓𝑜𝑜𝑟𝑟 𝑡𝑡: [0,100] (15)   
𝐵𝐵𝑦𝑦(𝑡𝑡) = ∑ �𝑚𝑚𝑖𝑖 �

𝑚𝑚
𝑖𝑖=0 𝑃𝑃𝑖𝑖,𝑦𝑦(1 − 𝑡𝑡)𝑚𝑚−𝑖𝑖𝑡𝑡𝑖𝑖  
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where 𝑃𝑃𝑖𝑖,𝑥𝑥 and 𝑃𝑃𝑖𝑖,𝑦𝑦 are the 𝑥𝑥 and 𝑦𝑦 coordinates of the i-th discrete control point, and n is one less 

than the number of control points. Cubic Bezier curves (Figure 4- 2) are defined by the coordinates 

of an initial point, 𝑃𝑃0, final point, 𝑃𝑃3, and two intermediate points,  𝑃𝑃1 and 𝑃𝑃2, therefore n=3. 

 
Figure 4- 2. Sample Cubic Bezier curves (blue) defined by four control points within a 

60x20 domain 

The material distribution within the design domain is assigned by defining the four control 

points of the Bezier curve, where each control point corresponds to a specific node in the domain.  

𝑃𝑃0 and 𝑃𝑃3 can only be placed in one of the four corner nodes, precisely nodal coordinates (0,0), 

(60,0), (0,20), or (60,20), to ensure the material distribution results in a fully connected body when 

the domain is mirrored. 𝑃𝑃0 and 𝑃𝑃3 may not share the same nodal location. 𝑃𝑃1 and 𝑃𝑃2 can be placed 

at any nodal coordinates and may share a nodal location. The cubic Bezier curve can be produced 

once the four control points are defined. The design domain elements that intersect with the 

continuous line of the Bezier function are assigned material elements, while all other elements 

remain void. An additional thickness variable, T, has been introduced such that a thickness of 1 

only assigns the directly intersected elements as material elements, while a thickness of 2 also 
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assigns the intersected elements' immediate neighbors as material elements. A randomly generated 

design sequence for a unit cell is shown in Figure 4- 3. 

        

 
Figure 4- 3. Randomly generated metamaterial unit cell according to cubic Bezier curve 

material addition 

The Cubic Bezier curve method is not the only approach for designing unit cells in this 

discretized domain. However, this method describes the unit cell as a series of continuous, seven-

value arrays (starting/ending points, X/Y coordinates of intermediate points, thickness value). 

These array representations can be seamlessly integrated into the DRL environment, allowing the 
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agent to directly control and modify the unit cell design by selecting and manipulating the array. 

Additionally, this method can produce more than 3.9x107 unique Bezier curves, ensuring the agent 

can thoroughly explore the unit cell’s design domain without being limited by traditional geometric 

parametrization.  

4.1.2 Tessellation into Metamaterial 

The geometric nonlinearities of the unit cell define the deformation nonlinearities of a 

mechanical metamaterial. Therefore, once a base unit cell geometry is designed, the metamaterial 

is formed by tessellating the unit cell multiple times in the X and Y directions. The number of 

tessellations can vary depending on a user's application. However, the unit cell must undergo a 

sufficiently large number of tessellations to achieve homogenized behavior and minimize the 

effects of boundary conditions. Unfortunately, many unit cell designs must be tessellated 10-20 

times before homogenization is met [62], [117]. As a result, designing, simulating, and optimizing 

the resulting metamaterials may be infeasible due to extreme computational costs.  

The metamaterials were designed using a limited 3x3 tessellation of the base unit cell to 

reduce computational costs. The metamaterial uses a layer shift of half a unit cell length, allowing 

for a more uniform load distribution and a diverse range of nonlinear deformation responses [83]. 

Finally, the mesh is refined nine-fold to improve FEA accuracy. The tessellation process can be 

seen in Figure 4-4. This tessellation size does not guarantee a homogenized behavior. This 

unhomogenized assumption and the use of an arbitrary linear elastic material property show that 

the DRL agent is tasked with designing within a limited design domain.  
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Figure 4- 4. Unit cell tessellation procedure to produce 3x3 metamaterial 

4.1.3 Metamaterial Evaluation 

The metamaterial's mechanical properties rely on the complex interactions between 

individual unit cells. The metamaterials are designed to achieve a target tensile or compressive 

nonlinear deformation behavior, which will differ from the constitutive material. Therefore, the 

effective deformation of the metamaterial must be determined. An FEA was performed to 

determine the force-displacement behavior of the metamaterials in compression or tension. The 

tensile and compressive force-displacement curves were determined by prescribing a 20% 

metastrain boundary condition on the top surface nodes of the metamaterial. Metastrain can be 

defined as the percentage of bulk deformation of the metamaterial [83], as seen in Equation 16: 

 
𝑀𝑀𝑒𝑒𝑡𝑡𝑎𝑎𝑠𝑠𝑡𝑡𝑟𝑟𝑎𝑎𝑖𝑖𝑠𝑠 =  

𝛿𝛿
𝐻𝐻

(100) (16) 

where 𝛿𝛿 is the top surface nodal displacement, and 𝐻𝐻 is the original height of the metamaterial, as 

seen in Figure 4-5. Additional boundary conditions were applied to Y and X axes nodes to only 

allow vertical and horizontal displacement, respectively. 
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Figure 4- 5. Metamaterial FEA model with a) boundary conditions (orange) and b) tensile 

and compressive loading deformation 

The FEAs were run in Abaqus/CAE as quasi-static evaluations using the reference material 

properties previously described, and internal contacts were not considered. Additionally, the 

potential for plastic deformation due to stress concentrations is not considered. However, the 

permanent distortion of plastic deformation should be considered in future work if the objective is 

to achieve targeted nonlinear deformation responses in cyclic loading. 

The 20% metastrain boundary condition was applied in 11 equidistant steps, and the 

resultant vertical force of the top nodal layer of the metamaterial was recorded at each step. The 

force increases between successive displacement steps result in a nonlinear force-displacement 

curve. Applying the displacement in equidistant steps makes comparing the resultant force for 

different metamaterials at the same displacement value easier.  

4.2 Methods: Metamaterial Unit Cell Design as a Deep Reinforcement 
Learning Problem 

The cubic Bezier curve-based method for designing discrete unit cells needs to be 

reformulated as a sequential DRL task, precisely, a Markov Decision Process (MDP). Therefore, if 
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the Bezier curve design approach can be expressed in terms of state space (S), action space (A), 

transition probability function (P), and reward function (R), the proposed metamaterial design 

method can be an MDP.  

Designing grid-based metamaterial unit cells to achieve a desired nonlinear deformation 

response can be viewed as finding the material distribution that minimizes the objective function, 

F, of Equation 17. The material distribution is described by the density variable, 𝜌𝜌, which can take 

the value 0 (void) or 1 (solid) at any element, 𝑥𝑥, in the design domain, Ω. The mathematical form 

of this optimization problem is shown below: 

 min
𝜌𝜌
𝐹𝐹 

𝐹𝐹(𝜌𝜌) = ��𝑓𝑓𝑖𝑖𝑡𝑡 − 𝑓𝑓 �� 𝑢𝑢�𝜌𝜌(𝑥𝑥)�𝑑𝑑𝑥𝑥
Ω

�
𝑖𝑖
�

11

𝑖𝑖=1

 

 
𝑠𝑠. 𝑡𝑡.𝜌𝜌(𝑥𝑥) = 0 𝑜𝑜𝑟𝑟 1,∀𝑥𝑥 ∈  Ω 

(17) 

where 𝑓𝑓𝑖𝑖𝑡𝑡 is the target resultant force at the i-th deformation step and 𝑓𝑓 �∫ 𝑢𝑢(𝜌𝜌(𝑥𝑥))𝑑𝑑𝑥𝑥Ω �
𝑖𝑖
 is the 

resultant force of the current material distribution in the design domain, ∫ 𝑢𝑢�𝜌𝜌(𝑥𝑥)�𝑑𝑑𝑥𝑥Ω , at the i-th 

deformation step.  

The details of the agent’s interactions with the environment are in the following 

subsections, but a brief overview helps guide the description. First, the agent starts a design 

sequence with a wholly voided domain and receives information about the desired force-

displacement curve. Given the material distribution and the desired force-displacement curve, the 

agent adds material to the design domain according to a cubic Bezier curve. The force-displacement 

response of that tessellated unit cell is determined, and the agent is rewarded or penalized depending 

on the difference between the desired force-displacement curve and the resulting curve of the 

designed unit cell. The agent uses this feedback to make intelligent decisions about designing unit 

cells according to different desired responses.   
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4.2.1 Encoding the Design Domain as a Low-Dimensional Latent Space  

The 60x20 grid design domain is comprised of 1200 discrete variables. These variables 

represent the 1200 unique features needed to describe a unit cell. Unfortunately, DRL algorithms 

can be susceptible to the curse of dimensionality [118]. The curse of dimensionality states that as 

the number of features used to describe an input increases, the difficulty of the problem and the 

amount of data needed for sufficient learning exponentially increase [119]. Therefore, feature 

reduction for DML/DRL problems is a common area of research [120]–[122]. One of those 

methods is latent space representation using variational autoencoders. 

Variational Autoencoders (VAEs) are an unsupervised learning technique that uses an 

encoder neural network architecture, 𝑠𝑠𝜙𝜙, to develop a continuous compressed encoding, 𝑧𝑧, from 

input data, 𝑥𝑥. The encoding is trained by attempting to produce a reconstruction, 𝑥𝑥′, by passing 𝑧𝑧 

through a decoder neural network architecture, 𝑓𝑓𝜃𝜃, with a minimal difference to 𝑥𝑥. The low-

dimensional encoding, traditionally called a latent space, forms a bottleneck in the middle of the 

VAE, forcing the encoder to extract the most critical features of the input and organize them into a 

continuous and meaningful embedding. Therefore, this latent space can be externally used as a 

reduced-order representation of the input state. Traditional autoencoders learn how to compress 

and reconstruct the original inputs by attempting to minimize the loss function, 𝐿𝐿,  in Equation 18 

 
𝐿𝐿(𝜃𝜃,𝜑𝜑) =

1
𝑠𝑠
��𝑥𝑥𝑖𝑖 − 𝑓𝑓𝜃𝜃 �𝑠𝑠𝜙𝜙�𝑥𝑥𝑖𝑖���

2𝑚𝑚

𝑖𝑖=1

 (18) 

where 𝑥𝑥𝑖𝑖 is the i-th variable of the input and 𝑓𝑓𝜃𝜃 �𝑠𝑠𝜙𝜙�𝑥𝑥𝑖𝑖�� is the i-th variable of the decoder's 

reconstruction. However, VAEs vary from traditional autoencoders because they do not directly 

form a latent space. Instead, VAEs output the parameters of a latent space distribution, i.e., the 

mean and standard deviation. This distribution helps regularize the latent space and provides data 



 70 

generation capabilities to the VAE. The VAEs have an additional loss term that encourages the 

latent space to have a target distribution (in this work, a Normal distribution): 

 
𝑟𝑟𝑒𝑒𝑐𝑐𝑜𝑜𝑠𝑠𝑠𝑠𝑡𝑡𝑟𝑟𝑢𝑢𝑐𝑐𝑡𝑡𝑖𝑖𝑜𝑜𝑠𝑠  𝑙𝑙𝑜𝑜𝑠𝑠𝑠𝑠 = 𝐿𝐿(𝜃𝜃,𝜑𝜑) =

1
𝑠𝑠
��𝑥𝑥𝑖𝑖 − 𝑓𝑓𝜃𝜃 �𝑠𝑠𝜙𝜙�𝑥𝑥𝑖𝑖���

2𝑚𝑚

𝑖𝑖=1

 

𝑠𝑠𝑖𝑖𝑎𝑎𝑖𝑖𝑙𝑙𝑎𝑎𝑟𝑟𝑖𝑖𝑡𝑡𝑦𝑦  𝑙𝑙𝑜𝑜𝑠𝑠𝑠𝑠 = 𝐾𝐾𝐿𝐿 𝐷𝐷𝑖𝑖𝐷𝐷𝑒𝑒𝑟𝑟𝑠𝑠𝑒𝑒𝑠𝑠𝑐𝑐𝑒𝑒 = 𝐷𝐷𝐾𝐾𝐾𝐾�𝒩𝒩(𝜇𝜇𝑥𝑥 ,𝜎𝜎𝑥𝑥) ∥  𝒩𝒩(0, 𝑰𝑰)� 

𝑙𝑙𝑜𝑜𝑠𝑠𝑠𝑠 = 𝑟𝑟𝑒𝑒𝑐𝑐𝑜𝑜𝑠𝑠𝑠𝑠𝑡𝑡𝑟𝑟𝑢𝑢𝑐𝑐𝑡𝑡𝑖𝑖𝑜𝑜𝑠𝑠  𝑙𝑙𝑜𝑜𝑠𝑠𝑠𝑠 + 𝑍𝑍 ∗ 𝑠𝑠𝑖𝑖𝑎𝑎𝑖𝑖𝑙𝑙𝑎𝑎𝑟𝑟𝑖𝑖𝑡𝑡𝑦𝑦  𝑙𝑙𝑜𝑜𝑠𝑠𝑠𝑠 

(19) 

where 𝐷𝐷𝐾𝐾𝐾𝐾�𝒩𝒩(𝜇𝜇𝑥𝑥 ,𝜎𝜎𝑥𝑥) ∥  𝒩𝒩(0, 𝑰𝑰)� measures the statistical distance between the current latent 

space distribution, 𝒩𝒩(𝜇𝜇𝑥𝑥 ,𝜎𝜎𝑥𝑥), and a normal distribution, 𝒩𝒩(0, 𝑰𝑰) and 𝑍𝑍 is a constant scaling value 

(𝑍𝑍 = 3𝑥𝑥10−3) to ensure a balanced contribution from the two loss terms.  

 
The VAE was trained to define the 1200 variable design space of the unit cell as a 24-

dimension latent space. This VAE is trained by passing the 60x20 design domain of a unit cell 

through the encoder deep neural network architecture. The outputs of the encoder network are the 

24-dimension mean and standard deviation defining the latent space distribution. This distribution 

is sampled to produce a single 24-dimension latent space. The latent space is then passed through 

the decoder deep neural network layer to recreate the original 60x20 design domain. Using 24 

dimensions to define the latent space achieves a balance between low dimensionality and 

generation quality. Based on an empirical study, a higher dimensionality provides a minuscule 

improvement (~1%) in reconstruction accuracy. The architecture details of both neural networks 

can be found in Figure 4- 6.  
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Figure 4- 6. Variational Autoencoder neural network architecture 

The VAE was trained using a series of 100,000 60x20 design domains with material 

distributions defined by between one to six randomly generated cubic Bezier curve(s). Material 

distributions defined by more than six Bezier curves left few voided regions, which resulted in unit 

cells with undesirably stiff and linear deformation responses. The 100,000 samples underwent an 

80/10/10 training/validation/testing split, and the VAE was trained for 50 epochs using the 

hyperparameters in Table 4-1.   

Table 4- 1. Hyperparameters for Variational Autoencoder Training  

Hyperparameter Value 

Learning Rate 5x10-4 

Batch Size 128 
Training Epochs 50 

4.2.2 Surrogate Model Prediction of Force-Displacement Responses 

DRL algorithms are not sample efficient, and therefore, the agent must design and 

determine the deformation response of a large and diverse array of tessellated unit cells. The 

deformation response of these tessellated unit cells could be determined using  FEA simulations, 

experimental methods, or, more efficiently, a DNN surrogate model. The surrogate model provides 

a rapid tool to predict force-displacement values for any unit cell design.  

Predictive surrogate models are examples of supervised machine learning techniques, 

meaning they must be trained on a dataset of labeled data. For the current application, the input of 
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this labeled data is the VAE’s 24-dimensional latent space for a unit cell. The output is the 11 

resultant force values corresponding to the force-displacement response of the tessellated unit cell.  

The training data was collected by designing randomly generated unit cells, tessellating 

them into 3x3 metamaterials, and conducting an FEA analysis using Abaqus/CAE. The same FEA 

procedure described in Section 4.1.3 was implemented. Separate surrogate models were trained to 

predict tensile and compressive deformation responses. Five thousand random unit cells were 

designed and simulated to produce the training data for the tensile model. Ten-thousand-unit cells 

were designed and simulated for the compression model. The compressive model was trained on 

more unit cells because compressive deformation results in a broader spectrum of nonlinearities 

than tensile deformation [83], [123]. The unit cells were designed and simulated in batches of 100 

using Clemson University's Palmetto Cluster.  

The dataset was filtered to eliminate any unit cell whose FEA result did not converge to 

the 20% meta-strain in 11 steps. This filtering eliminates failed FEA runs and ensures all output 

samples have equivalent sizes. After discarding the failed unit cells, the compression and tension 

surrogate models were left with 6162 and 3321 samples per dataset, respectively.   

Typically, datasets of such sizes would not be large enough to teach the surrogate model 

the underlying relationship between the unit cell and force values. Running more FEA simulations 

is one approach to producing more data points, but it is also computationally costly. An alternative 

is to incorporate data augmentation. Data augmentation is a method of generating novel training 

data for sparse datasets by applying strategic alterations to the current data. This process is typical 

in image recognition problems, as an existing image can be flipped, cropped, or rotated [124]. A 

new image is created, but the same labeled output from the original image is still used, resulting in 

a newly labeled data point. While this method is standard in image recognition problems, it cannot 
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be applied to the unit cells because cropping or rotating the unit cells would alter its corresponding 

force-displacement response. 

Alternatively, new labeled data points were created by sampling the latent space 

distributions produced by the 6162- and 3321-unit cells from the compression and tension datasets, 

respectively. Sampling the latent space distributions produces multiple latent space representations 

corresponding to a single input unit cell.  It is well known that similar latent space representations 

are encoded from similar inputs and decode similar outputs [125]. In turn, these novel latent spaces 

correspond to nearly identical unit cell designs as the original unit cell, as seen in Figure 4- 7. 

Therefore, these latent space distributions could serve as new surrogate model input values with 

corresponding output values of the 11 force values from the original unit cell. 

 

Figure 4- 7. The data augmentation procedure produces new input data to train the 
surrogate model  

This data augmentation procedure was repeated to produce individual training sets of 

100,000 samples for compression and tension separately. Producing the 100,000 samples took a 

few minutes. Alternatively, producing 100,000 samples for compression and tension through FEA 

simulations would be computationally challenging.  

The surrogate model architecture was a multi-layer perceptron, with the 24-dimension 

latent space of each unit cell as the input and 11 force values as the output. Before training, the 

force values were normalized. The architecture and training hyperparameters for the tension and 
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compression surrogate models were the same and can be found in Figure 4-8 and Table 4-2, 

respectively. 

 

Figure 4-8. Surrogate model architecture where the input is the 24-dimensional latent space 
of a unit cell, and the output is the 11 normalized force values  

 
Table 4- 2. Hyperparameters of Surrogate Model Training 

Hyperparameter Value 
Learning Rate Initial Value 5x10-3 

Learning Rate Decay Rate 0.9 
Batch Size 128 

Training Epochs 150 
 

  The models were trained for 150 epochs using an 80/10/10 training/validation/testing split 

and a learning rate scheduler with an initial learning rate of 5𝑥𝑥10−3 and decay rate of 0.9 at each 

epoch. The models were trained using Clemon University’s Palmetto Cluster. Both models were 

trained to minimize a mean squared error loss function, as shown in Equation 20: 
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𝐿𝐿𝑜𝑜𝑠𝑠𝑠𝑠 =

1
11

��𝑌𝑌𝑖𝑖 − 𝑌𝑌𝚤𝚤� �𝑠𝑠𝜙𝜙 �� 𝑢𝑢�𝜌𝜌(𝑥𝑥)�𝑑𝑑𝑥𝑥
Ω

���

211

𝑖𝑖=1

 (20) 

where, 𝑌𝑌𝑖𝑖 is the i-th actual force value and 𝑌𝑌𝚤𝚤�  is the i-th predicted force value according to the latent 

space of the unit cell material distribution, 𝑠𝑠𝜙𝜙 �∫ 𝑢𝑢�𝜌𝜌(𝑥𝑥)�𝑑𝑑𝑥𝑥Ω �. The training and testing results are 

shown in a later section. The successfully trained surrogate model could now be used as a rapid 

inline tool for the DRL agent to determine the performance of its proposed unit cell designs.  

4.2.3 DRL Environment: State Space  

The state space, S, of a DRL environment represents all the combinations of observations 

an agent can experience while interacting with the environment. For the unit cell design problem, 

each observation should capture information about the design objective (desired force-

displacement curves) and the agent's location in the design domain (unit cell). Therefore, the 

observations were encoded as a 35x1 vector constructed from a standardized version of the 11 force 

values corresponding to the desired force-displacement curve and the 24-dimension latent space of 

the current material distribution (Figure 4-9). The 11 desired force values are standardized 

according to the compressive or tensile dataset, following Equation 21. 

 𝑌𝑌𝚤𝚤� =
𝑌𝑌𝑖𝑖 − 𝑢𝑢𝑖𝑖
𝜎𝜎𝑖𝑖

  

(7) 
𝑢𝑢𝑖𝑖−𝐶𝐶 =

∑ 𝑌𝑌𝑖𝑖6162
𝑖𝑖=1

6162
 𝑢𝑢𝑖𝑖−𝑇𝑇 =

∑ 𝑌𝑌𝑖𝑖3321
𝑖𝑖=1

3321
 (21) 

 
𝜎𝜎𝑖𝑖−𝐶𝐶 = �∑ (𝑌𝑌𝑖𝑖 − 𝜇𝜇𝑖𝑖−𝐶𝐶)26162

𝑖𝑖=1
6162

 𝜎𝜎𝑖𝑖−𝑇𝑇 = �∑ (𝑌𝑌𝑖𝑖 − 𝜇𝜇𝑖𝑖−𝑇𝑇)23321
𝑖𝑖=1

3321
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where 𝑌𝑌𝚤𝚤�  is the standardized i-th force value and 𝑌𝑌𝑖𝑖 is the i-th original force value from the 

compression (C) or tension (T) dataset. Throughout a single design episode, the 11 desired force 

values will remain constant, but the 24-dimension latent space values will change as the DRL agent 

sequentially alters the material distribution. 

  

Figure 4- 9. Individual observation within the unit cell designing environment state space 

4.2.4 DRL Environment: Action Space  

  The action space defines how an agent can interact with an environment, taking the agent 

from its current observation to the next. Within the unit cell designing environment, an action 

corresponds to defining the cubic Bezier curve that will add material elements to the design domain. 

A seven-dimension action space was created that allows the agent to select the starting and ending 

control points, the nodal coordinates for the two intermediate control points, and the thickness of 
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the Bezier curve. This approach results in 1.31x107 unique Bezier curve combinations. Producing 

a discrete action space that accounts for all these curves would be infeasible. Therefore, a 

combination of continuous and discrete action elements was used.  

The action space was tailored to assist the agent in creating fully-connected and continuous 

unit cell designs. Therefore, the starting control point, 𝑃𝑃0,  was restricted to either the bottom left 

(0,0) or bottom right (60,0) nodes of the design domain and the final control point, 𝑃𝑃3, was restricted 

to either the top left (0,20) or the top right (60,20) nodes of the design domain. The first entity in 

the action space is a discrete action element where a value of 0 sets the nodal coordinates of 𝑃𝑃0 to 

(0,0), and a value of 1 sets them to (60,0). The second action entity is also a discrete element where 

a value of 0 sets the nodal coordinates of 𝑃𝑃3  to (0,20), and a value of 1 sets them to (60,20). The 

third discrete action element corresponds to the additional curve thickness (as described in Section 

4.1.1).  

The X and Y coordinates for the two intermediate control points, 𝑃𝑃1 and 𝑃𝑃2, are represented 

in the action space using continuous values between [0,1]. The action value between [0,1] 

corresponds to the proportional coordinate value between [0,60] or [0,20] for the X and Y 

coordinate, respectively. The seven elements in the action space allow the agent to alter the material 

distribution within the design domain, as seen in Figure 4-10. 
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Figure 4- 10. Augmenting Design Domain using action from DRL action space 

4.2.5 DRL Environment: Reward Function 

In the presented environment, the reward function should enable the agent to design 

metamaterial unit cells with a resulting force-displacement response like the desired response. A 

negative reward function was formulated that penalizes the agent according to the maximum 

percent error (MPE) between the desired and resulting force values. Depending on a user's 

requirements, the desired force values can be arbitrarily derived. The resulting force values are 

determined using the trained surrogate model. The agent can continue taking actions until the MPE 

is less than 10%, at which time the agent will receive a positive reward of 1 minus the MPE. A 

design episode will also be terminated if the agent has taken more than seven actions in a single 

episode. To avoid exploding gradients, the maximum penalty the agent can receive for a high 

percent error is -1. Therefore, if the MPE between the desired and resulting force values is greater 

than 100%, the agent will only be penalized -1.  

A comparison between resulting and desired force values can only be made if the agent has 

produced a legal unit cell design. A legal design is a 60x20 design domain that is a single material 

body with material elements in the four corner nodes ([0,0], [0,20], [60,0], [60,20]). Legal designs 

ensure a continuous body when the design domain is mirrored into a unit cell. If the DRL agent 

takes an action that results in an illegal design, the agent is penalized -1. This penalty should teach 

the agent to avoid actions leading to illegal designs. The exception to this rule is during the first 

action. The agent cannot produce a legal design with a single Bezier curve, as connecting all four 
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corner nodes is impossible. Therefore, on the first action, the agent is always given a reward of 0. 

The entire reward function, 𝑟𝑟𝑡𝑡, at a given timestep, t,  can be seen in Equation 22. 

𝑟𝑟𝑡𝑡 =

⎩
⎪
⎨

⎪
⎧

0
−1

𝑎𝑎𝑎𝑎𝑥𝑥 �−1,−max
𝑖𝑖
�
𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑖𝑖
𝑓𝑓𝑖𝑖

�  𝑓𝑓𝑜𝑜𝑟𝑟  𝑖𝑖 = 1,2 … 11� 
 

1 −𝑀𝑀𝑃𝑃𝐸𝐸

 

𝑖𝑖𝑓𝑓 𝑡𝑡 = 0 
𝑖𝑖𝑓𝑓 𝑡𝑡 ≠ 0 𝑎𝑎𝑠𝑠𝑑𝑑 𝐼𝐼𝑙𝑙𝑙𝑙𝑒𝑒𝑠𝑠𝑎𝑎𝑙𝑙 𝐷𝐷𝑒𝑒𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠 

𝑖𝑖𝑓𝑓 𝐿𝐿𝑒𝑒𝑠𝑠𝑎𝑎𝑙𝑙 𝐷𝐷𝑒𝑒𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠 𝑎𝑎𝑠𝑠𝑑𝑑 𝑀𝑀𝑃𝑃𝐸𝐸 > 0.1 

𝑖𝑖𝑓𝑓 𝐿𝐿𝑒𝑒𝑠𝑠𝑎𝑎𝑙𝑙 𝐷𝐷𝑒𝑒𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠 𝑎𝑎𝑠𝑠𝑑𝑑 𝑀𝑀𝑃𝑃𝐸𝐸 ≤ 0.1 

(22) 

where 𝑓𝑓𝑖𝑖 and 𝑓𝑓𝑖𝑖 are the current and desired i-th force values, respectively. While this proposed 

reward cannot be proven as optimal or the only viable approach, the effectiveness of this reward 

function is demonstrated by favorable results in the following sections. Alternative methods may 

lead to comparable results, such as a sparse reward function where the agent is only rewarded at 

the end of the design episode or measuring the absolute error instead of the percent error. 

4.2.6 DRL Environment: Transition Probability Function 

I implemented the deep deterministic policy gradient algorithm (DDPG) to account for the 

continuous state and action spaces. DDPG is an actor-critic method with four deep neural networks 

that concurrently learn a Q-function and a policy [126]. The policy network, 𝜇𝜇, behaves as an actor 

to select an action from the action space according to the current state. The value network, 𝑄𝑄, 

behaves as a critic and predicts the value of the actor’s action, and gives feedback for improvement. 

Additional target networks, 𝑄𝑄′ and 𝑢𝑢′ are used to track the original 𝑄𝑄 and 𝜇𝜇 networks to mitigate 

the effect of value overestimations and outdated policies, respectively. 

       The action of the actor, 𝑎𝑎𝑡𝑡, is determined by the current policy and the introduction of 

exploratory noise, given by  

 𝑎𝑎𝑡𝑡 = 𝜇𝜇(𝑠𝑠𝑡𝑡|𝜃𝜃𝜇𝜇) + 𝜖𝜖 (23) 

where 𝑠𝑠𝑡𝑡 is the current state, 𝜃𝜃𝜇𝜇 are the weights and biases of 𝜇𝜇, and 𝜖𝜖 is Gaussian noise. The value 

of a given policy is calculated  according to the Bellman optimality equation below: 
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𝑄𝑄∗(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡) = 𝐸𝐸 �𝑟𝑟(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡) + 𝛾𝛾 argmax

𝑎𝑎𝑡𝑡
�𝑄𝑄∗(𝑠𝑠𝑡𝑡+1,𝑎𝑎𝑡𝑡+1)�� (24) 

where 𝐸𝐸(∙) denotes the expectation operator, 𝑄𝑄∗denotes the optimal value function, r is the reward 

for taking 𝑎𝑎𝑡𝑡 given 𝑠𝑠𝑡𝑡 and 𝛾𝛾 is the discount factor. The value network can be iteratively updated 

using previous experiences stored in a replay buffer by minimizing the following loss function: 

 𝐿𝐿𝑄𝑄(𝑡𝑡|𝜃𝜃𝑄𝑄) = �𝑟𝑟(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡) + 𝛾𝛾𝑄𝑄′�𝑠𝑠𝑡𝑡+1𝑎𝑎𝑡𝑡+1|𝜃𝜃𝑄𝑄′� − 𝑄𝑄(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡|𝜃𝜃𝑄𝑄)�
2
 (25) 

 𝑎𝑎𝑡𝑡+1 = 𝜇𝜇′�𝑠𝑠𝑡𝑡|𝜃𝜃𝜇𝜇′� (26) 

where 𝑄𝑄′�𝑠𝑠𝑡𝑡+1𝑎𝑎𝑡𝑡+1|𝜃𝜃𝑄𝑄′� is the predicted value according to the target value network and 

𝑄𝑄(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡|𝜃𝜃𝑄𝑄) is the actual value according to the value network. Given Equation 25, the gradient-

descent method can be performed to improve the prediction of a policy’s value.  

The actor-network attempts to adjust its policy to select actions with high Q-value feedback 

from the critic network. Therefore, the performance objective of the policy network, 𝜙𝜙, can be 

defined as  

   𝜙𝜙�𝜃𝜃𝜇𝜇� = 𝐸𝐸�−𝑄𝑄�𝑠𝑠𝑡𝑡 ,𝜇𝜇(𝑠𝑠𝑡𝑡)�� (27) 

 The policy network continues updating to minimize Equation 27. Therefore, the updating error can 

be expressed as the gradient of Equation 27, ∇𝜙𝜙�𝜃𝜃𝜇𝜇�. The target networks, 𝑄𝑄′ and 𝜇𝜇′, are updated 

every N steps using the following soft updating strategy. 

 𝜃𝜃𝑄𝑄′ = 𝜏𝜏𝜃𝜃𝑄𝑄 + (1 − 𝜏𝜏)𝜃𝜃𝑄𝑄′ 

𝜃𝜃𝜇𝜇′ = 𝜏𝜏𝜃𝜃𝜇𝜇 + (1 − 𝜏𝜏)𝜃𝜃𝑢𝑢′  
(28) 

where 𝜏𝜏 is the network updating hyperparameter.  

I do not claim that DDPG is this application's only or necessarily optimal algorithm. This 

algorithm was selected due to its prevalence and ability to account for continuous state and action 
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spaces. However, DDPG can suffer from instability during training due to target networks, which 

can lead to slow convergence, commonly to a non-global optimal. Additionally, DDPG requires 

considerable training data and is highly sensitive to the choice of hyperparameters [127]. A 

comparison between various DRL algorithms is beyond the scope of this work but should be 

investigated as future work to further validate DRL as a powerful tool for mechanical metamaterial 

design.     

4.3 Methods: Training the DRL Agent  

The previous sections described the metamaterial design problem as an MDP; therefore, a 

DRL agent should be able to learn to design mechanical metamaterials with targeted nonlinear 

deformation responses. Therefore, the agent needs to undergo episodic interactions with the 

proposed environment to collect experiences and update the weights of its actor and critic networks 

for better action selection and value approximations. An episode in this environment is defined as 

the DRL agent sequentially adding material to the design domain according to cubic Bezier curves 

until the resulting force-displacement response is sufficiently close to the desired force-

displacement response or the agent takes too many steps. 

Separate agents were trained for compressive and tensile loading responses, but both agents 

underwent nearly identical training procedures. The agents were trained to design unit cells given 

a diverse range of desired force-displacement responses. Therefore, at the beginning of each 

training episode, one of the compression or tension force-displacement curves used to train the 

surrogate model was randomly selected as the desired force-displacement curve. The 6162 

compression and 3321 tension curves underwent a 90/10 training/testing split. During training, the 

agents are prompted with one of the 5546 compressive or 2989 tensile desired responses and 

sequentially add material to the design domain to produce unit cells that exhibit similar responses 

as the desired response.  
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As previously stated, a fundamental dilemma of DRL training is the tradeoff between 

exploration and exploitation. The agent explores the environment by adding noise to its continuous 

action space to compile diverse experiences. However, to ensure efficiency, the agent should not 

strictly rely on exploration but instead exploit the value mapping it has already learned from its 

actor and critic networks. Therefore, to balance proper exploration and exploitation, action space 

noise should be more frequently added when the environmental understanding is poor at the 

beginning of training. As training continues and the performance of the actor and critic networks 

improves, the action space noise should be reduced, and heavier reliance should be placed on the 

actions selected by the actor.   

The noise was added to the 7x1 action vector by randomly sampling from a normal 

distribution with a mean, 𝜇𝜇, of 0 and a standard deviation, 𝜎𝜎, that decays according to Equation 29. 

 𝜎𝜎 = 𝑎𝑎𝑎𝑎𝑥𝑥�𝜎𝜎𝑚𝑚𝑎𝑎𝑥𝑥 − 𝑁𝑁 ∙ 𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑦𝑦,𝜎𝜎𝑚𝑚𝑖𝑖𝑚𝑚� (29) 

 where 𝜎𝜎𝑚𝑚𝑎𝑎𝑥𝑥 is the starting action noise (𝜎𝜎𝑚𝑚𝑎𝑎𝑥𝑥 = 0.3),  𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑦𝑦 is the rate at which 𝜎𝜎 decreases per 

action (𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑦𝑦 = 7.5𝑥𝑥10−6) until 𝜎𝜎 reaches its minimal allowed value, 𝜎𝜎𝑚𝑚𝑖𝑖𝑚𝑚 (𝜎𝜎𝑚𝑚𝑖𝑖𝑚𝑚 = 0.005), and 

𝑁𝑁 is the current episode number. Optimizing the tradeoff between exploration and exploitation is 

an active area of DRL research [128] beyond this paper’s scope.  

The action and added noise define the cubic Bezier curve that alters the material 

distribution. The new material distribution is passed to the VAE encoder to produce a new 

observation. Additionally, the surrogate model predicts the new unit cell’s force-displacement 

response, which is compared to the desired response, and a reward is calculated. After each action, 

the previous observation, new observation, action, and reward are recorded in a replay buffer. Once 

an episode is complete and the replay buffer includes at least 3500 experiences, a batch of 256 

experiences is randomly selected to train the DDPG actor and critic networks. The architecture of 
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the actor and critic networks and other training hyperparameters can be found in Figure 4-11 and 

Table 4-3, respectively. 

 

Figure 4- 11. Neural network architectures for Deep Deterministic Policy Gradient Method 
actor and critic networks  

Table 4- 3. Deep reinforcement learning environment training hyperparameters  

Hyperparameter Value 
Learning Rate 2.5x10-4 

Tau  5x10-3 

Batch Size 256 
Max Replay Buffer Size 20,000 

Gamma 0.99 
Training Epochs 20,000 

 
The main actor and critic model weights, 𝜃𝜃𝜇𝜇and 𝜃𝜃𝑄𝑄, are updated using the ADAM 

optimizer with a 2.5x10-5 learning rate. The target actor and critic model weights, 𝜃𝜃𝜇𝜇′and 𝜃𝜃𝑄𝑄′ are 

updated according to Equation 30: 
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 𝜃𝜃𝑡𝑡+1
𝜇𝜇′ = 𝜃𝜃𝑡𝑡

𝜇𝜇′ ∙ (1 − 𝜏𝜏) + 𝜃𝜃𝑡𝑡
𝜇𝜇 ∙ 𝜏𝜏 

𝜃𝜃𝑡𝑡+1
𝑄𝑄′ = 𝜃𝜃𝑡𝑡

𝑄𝑄′ ∙ (1 − 𝜏𝜏) + 𝜃𝜃𝑡𝑡
𝑄𝑄 ∙ 𝜏𝜏 

(30) 

where 𝜃𝜃𝑡𝑡+1
𝜇𝜇′  and 𝜃𝜃𝑡𝑡+1

𝑄𝑄′  are the new target actor and critic model weights, 𝜃𝜃𝑡𝑡
𝜇𝜇′ and 𝜃𝜃𝑡𝑡

𝑄𝑄′ are the current 

target actor and critic model weights, 𝜃𝜃𝑡𝑡
𝜇𝜇 and 𝜃𝜃𝑡𝑡

𝑄𝑄 are the current actor and critic model weights, and 

𝜏𝜏 is a learning rate constant 5x10-3. As previously stated, DDPG is highly sensitive to 

hyperparameter selection. Therefore, the aforementioned hyperparameters (learning rates, replay 

buffer size, noise decay, etc.) underwent a Bayes optimization to determine the hyperparameter 

combinations resulting in high-performing agents.  

4.4 Results 

4.4.1 Variational Autoencoder Results  

The trained VAE was tested using the 10,000 samples from the testing dataset. The VAE 

was not trained on these samples, and therefore, the testing dataset can evaluate the VAE’s ability 

to generalize and reconstruct material distributions it has not previously seen. The output of the 

VAE is not a direct reconstruction of the material distribution. Instead, the VAE outputs the 

probability that each element is a material element. Therefore, probability values greater or equal 

to 0.5 are rounded to 1 (solid), and values less than 0.5 are rounded to 0 (void) to produce an 

elementally discrete material distribution. 

The VAE had a mean absolute reconstruction error of 4.4%, meaning an average of 52 of 

the 1200 design elements are misrepresented. A series of sample reconstructions in Figure 4-12 

show that the original and reconstructed unit cells are visually similar. The reconstruction process 

takes less than a second, with the decoding traditionally taking longer than the encoding. Therefore, 

the 24-dimension latent space finds a proper balance between reconstruction accuracy, efficiency, 
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and low dimensionality and can be implemented as the input for the surrogate model and part of 

the observation of the DRL environment.  

 
Figure 4- 12. Sample VAE reconstructions from the testing dataset 

4.4.2 Results: Surrogate Model Results  

The trained compressive and tensile surrogate models were tested using the 10,000 samples 

from the testing dataset. The surrogate models’ performances were measured by the mean absolute 

percent error (MAPE) between the true and predicted force-displacement curves. The testing set 

for the compressive surrogate model included a diverse range of force-displacement responses, 

including curves that exhibit hardening and softening nonlinearity and other curves with high 

linearity. The tensile testing set had a limited range of nonlinearity. Figure 4-13 shows a scatter 

plot comparing the true and predicted force values for all 10,000 testing samples within the 

compressive and tensile datasets. These predictions were completed 60x faster than if they were 

run in Abaqus.  
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Figure 4- 13. Scatter plot comparison of the true and predicted training set force values a) 

Compression and b) Tension models 

Figures 4-14a,b, and c plot a small sample of the 10,000 responses to show that regardless 

of hardening or softening nonlinearity or a highly linear response, the compressive surrogate model 

can accurately predict the force-displacement response of a tessellated unit cell. Figure 4-14d shows 

the tensile surrogate model equivalent. These figures include the corresponding unit cell that 

exhibits the true force-displacement response. These results validate that the surrogate model can 

act as a rapidly accurate force-displacement prediction tool for the DRL agent. 
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Figure 4- 14. Comparison of the True vs. Predicted force-displacement curves for a) 
Compressive Highly Linear, b) Compressive Hardening Nonlinear, c) Compressive 

Softening Nonlinear, d) Tensile responses  

4.4.3 DRL Training Results  

The tension and compressive DRL agents were trained separately for 20,000 design 

episodes using Clemson University’s Palmetto Cluster. Figure 4-15 shows a moving average of the 

training reward for both the compressive and tensile models. The average reward increased until 

convergence around 0.3 and -0.1 for the tensile and compressive models, respectively. This increase 

in reward coincides with a decrease in the action space noise that decays to its minimum value after 

~6300 episodes. The increase in average reward indicates that the agents are designing unit cells 

that exhibit force-displacement responses similar to the desired responses. Additionally, the 

average rewards converging around 0 suggests the additional positive reward for achieving less 

than 10% MPE is being implemented.  As previously stated, DDPG tends to converge to locally 

optimal solutions. Therefore, the authors cannot claim that the policies of these agents are 

necessarily globally optimal. However, the results in the following section show that the agents 

have learned a sufficiently accurate and generalizable design strategy.  
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Figure 4-15. The average reward for the tensile and compressive models during training 

4.4.4 DRL Testing Results  

The trained DRL agents were tested using the 616 and 333 testing force-displacement 

curves for the compressive and tensile agents, respectively. Each test case introduces a unique 

desired force-displacement curve that the agents had not seen during training. Testing the DRL 

agents on previously unseen experiences examines the agents’ abilities to learn a generalized design 

strategy for designing unit cells and ensures the agents have not overfitted to previously seen 

experiences. In addition, proof of generalization ensures the agents can serve as practical design 

tools capable of accurately designing for a wide array of user-specified deformation responses.  

Figure 4-16 shows an example of design sequences for the compressive and tensile DRL 

agents. The first actions by the agents do not yield a feasible unit cell design, as it is impossible to 

connect all four corners of the design domain using a single cubic Bezier curve. By the second 

action, the agents have successfully designed legal unit cells, but the corresponding responses are 

far from the desired response. Therefore, the agent takes additional steps to satisfy the maximum 

percent error threshold.  
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Figure 4-16. Design sequence for the compressive and tensile DRL models  

The generalized design strategy shown in Figure 4-16 is expected to be applied to design 

unit cells for a wide range of force-displacement responses. Therefore, the compressive and tensile 

agents were tested on all samples from their respective test sets. Similar to testing the surrogate 

model, the test cases for the compressive model included hardening and softening nonlinear and 

highly linear force-displacement curves. The tensile testing set had a more limited range of 

nonlinearity.  

Each test design sequence took between 1-3 seconds. Table 4-4 shows the design accuracy 

of both agents. The table includes both max and mean absolute percent error over the samples. 

While the agents were trained to minimize the maximum percent error, this measure can be 

artificially inflated given a single outlier force value. While achieving high similarity between all 

11 force values is important, mean absolute percent error can better show how closely the unit cell 

behaves compared to the entire desired deformation response. Figure 4-17 shows a sample 



 90 

comparison between the DRL resulting and desired force-displacement curves. These comparisons 

are accompanied by the corresponding unit cell that the DRL agent has designed.   

Table 4- 4. Testing accuracy for compressive and tensile DRL models  

 Compressive DRL Model Tensile DRL Model 
Average Max Percent 

Error 13.1% 8.3% 

Mean Absolute Percent 
Error 8.7% 5.3% 

 

 
Figure 4-17. Comparison of the resulting DRL to Desired force-displacement curves for a) 

Compressive Highly Linear, b) Compressive Hardening Nonlinear, c) Compressive 
Softening Nonlinear, d) Tensile responses  

Table 4-4 and Figure 4-17 show that the compressive and tensile DRL agents have learned 

a generalized strategy for designing mechanical metamaterial unit cells that exhibit force-

displacement responses similar to a diverse range of desired responses.  
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4.5 Discussion 

4.5.1 Measuring Acceptable Levels of Nonlinearity  

To further understand the design capabilities of the agents, I measured the levels of desired 

force-displacement dimensional nonlinearity that the agents could accurately achieve. Dimensional 

nonlinearity is the root mean squared deviation of the response curve from a straight line [129]. 

The straight line defining the force-displacement curve would be a linear line connecting the curve's 

first and last force values. The absolute dimensional nonlinearity was calculated for all desired 

responses in the compressive and tensile testing sets and compared to the MAPE between the 

desired and resulting force-displacement responses, as shown in Figure 4-18. 

 
Figure 4-18. Comparison of the mean absolute percent error and the dimensional 

nonlinearity in the domain  

Figure 4-18 further validates that the nonlinearity of the compressive testing set is more 

significant than the tensile set. Additionally, this figure shows that the tensile testing set has a small 

enough degree of nonlinearity to avoid a significant increase in MAPE. The small error peak in the 

tension results around an absolute dimensional nonlinearity of 0.02 is most likely the result of a 

handful of outlier force-displacement responses that yielded an unexpectedly high MAPE, 

artificially increasing the rolling average. Therefore, the tensile DRL model should be considered 
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sufficiently accurate for force-displacement curves with an absolute dimensional nonlinearity less 

than 0.125. 

The compressive results show a consistent increase in MAPE once the absolute 

dimensional nonlinearity is greater than 0.25. The three small peaks with absolute dimensional 

nonlinearities of less than 0.15 can be attributed to outliers.  Additionally, there are more samples 

from the compressive testing set with dimensional nonlinearities between [0.025,0.15], so poor-

performing outlier examples are expected. Therefore, the compressive DRL model should be 

considered sufficiently accurate for desired force-displacement curves with an absolute 

dimensional nonlinearity less than 0.25.  

4.5.2 Negative Stiffness Designs  

The previous section showed the DRL agents’ ability to successfully design unit cells for 

diverse nonlinearities. Next, the compressive agent was tested on a more challenging set of desired 

force-displacement responses, precisely responses that exhibit negative stiffness. Negative stiffness 

is indicative of mechanical buckling within and between the unit cells. Buckling occurs as an 

instability when a structure can no longer support the current compressive load level. This 

instability can be challenging to capture using a linear elastic, quasi-static FEA solver like the one 

used in this analysis. Therefore, the authors hypothesized that very few simulated metamaterial 

designs would exhibit this behavior in compression. 

Figure 4-19a shows a sample of unit cell designs exhibiting negative stiffness in 

compression. The surrogate model can provide a sufficiently accurate prediction of this negative 

stiffness. However, Figure 4-19b shows that the DRL agent has difficulty producing unit cells that 

exhibit the desired negative stiffness. While the DRL agent cannot capture the negative stiffness, it 

does appear to produce designs that exhibit responses similar to a first-order nonlinear variation of 

the desired curve. The DRL agent’s inability to accurately capture the negative stiffness is 
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accredited to the small number of training force-displacement curves that exhibited such behavior, 

roughly 8%. Therefore, the agent’s policy is not geared toward these responses. As a result, the 

agent still attempts to minimize the maximum percent error by producing simple unit cell designs 

whose responses seem to run through the inflection point of the desired curves. 

 
Figure 4-19.  a) Surrogate Model prediction of unit cells with negative stiffness force-

displacement curves b) DRL Compression model proposed designs  

The simplicity of the resulting DRL designs is accredited to the agent attempting to 

minimize the penalty it accumulates for taking multiple design steps. The original unit cells have a 

complex material distribution that could only be achieved if the DRL agent took several steps, 

continually accumulating negative rewards. This issue is an inherent limitation of the proposed 

negative reward function of the DRL. A positive reward function would not yield the same 

limitation and is worth investigating in future work. Due to these limitations of the agent, the 

authors do not recommend testing the proposed DRL method on desired responses that exhibit 

negative stiffness. 
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4.5.3 Advantages of DRL Design Method  

The work in this chapter takes a step towards demonstrating that DRL can be incorporated 

as a high-level co-designer working with a human designer to achieve high-performing design 

solutions in a wide range of engineering applications. This work validates this claim specifically 

for designing mechanical metamaterials with targeted nonlinear deformation responses. I wanted 

to compare the performance of the DRL method to the more traditional design methods of unit cell 

synthesis and TO. Due to variability between the design domains, a direct comparison between the 

three methods under the same deformation response was deemed infeasible. However, the DRL 

method was compared against the tensile response of the TO method proposed by Behrou et al. 

[86] and the compressive response of Satterfield et al. [83] unit cell synthesis method.  

Figure 4-20 compares the DRL proposed unit cell design to the approximate unit cell 

designs from the two publications and the MAPE between the resulting and desired responses. The 

reader is directed to the respective publications for a more thorough analysis of the resulting designs 

and tessellated patterns. Due to variability between the three methods regarding boundary 

conditions, design domains, aspect ratios, and tessellation sizes, the desired curves for the DRL 

method were approximated to capture the degree of nonlinearity presented in [86] and [83] but with 

an arbitrary magnitude.   
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Figure 4-20. Design result comparison between DRL method to a) topology optimization 
(TO) method proposed for tensile responses by Behrou et al. and b) the unit cell synthesis 

method for compressive responses by Satterfield et al. 

Figure 4-20a shows that the DRL proposed design achieves better agreement with the 

desired response than the TO method. Regarding manufacturability, the TO method produced a 

simpler design with larger material features that would be less susceptible to manufacturing defects. 

Additionally, the TO method uses a 100x100 discrete domain, allowing for improved refinement 

compared to the DRL method’s 60x20 discrete domain. 

A direct computational cost comparison cannot be made. However, due to the DRL agent 

being pretrained, the DRL method is expected to be orders of magnitude faster than the TO method. 

It should be noted that there is significant time and computational investment to train the DRL 

agents and their accompanying VAE and surrogate models. However, once properly trained, the 

agent provides a near-instantaneous unit cell design recommendation for a wide array of desired 

responses. Additionally, the DRL method has improved generalizability. The TO method must 
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rerun the time-consuming optimization process every time a new nonlinear response is required. 

The optimization process must find a new optimal relationship between the design variables and 

new objective. If the desired response were to change, the DRL method could rapidly design a unit 

cell without retraining its policy. 

While not directly exhibited in Figure 4-20, the main advantage of the DRL approach over 

TO is the lack of reliance on differentiable objective and constraint function(s). This limitation of 

TO makes introducing specific rules to the design process challenging. These design rules are often 

geared towards manufacturing constraints, such as maximum overhang, minimal thickness, single-

continuous body, or minimum fillet radii. These design rules can be difficult or impossible to 

describe using a differentiable constraint function needed to calculate the gradient that updates the 

design variables.   

The DRL method does not need differentiable constraint functions to introduce design 

rules. Instead, these design rules can be introduced in the reward function. The agent should receive 

a hefty penalty if it proposes a design that violates any design rules. Over time, the agent will learn 

to produce objective-based designs that satisfy the given design rules [37]. The DRL approach in 

this work implements three design rules: 1. The unit cell must be a single continuous body 2. The 

material must connect the four corners of the design domain 3. The material elements cannot be 

connected by a single hinge node. While these design rules are relatively simple, the DRL agents 

could easily be retrained to design unit cells according to more complicated design rules, such as 

relaxing/changing the four-corner rule, specifying a minimum material thickness value, and 

reducing the allowable material overhang. These design rules can improve the manufacturability 

of the proposed designs. This ability to customize specific design rules according to design 

application is considerably more challenging using gradient-based optimization tools.  
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Figure 4-20b shows that the unit cell synthesis method achieved a design with slightly 

better agreement between the desired and resulting response. Both designs appear to have simple 

shapes that should not pose manufacturing challenges. The most significant advantage of the DRL 

method is considerable improvements in efficiency and generalizability. Unit cell synthesis 

requires size and shape optimization for each new desired force-displacement response. 

Additionally, the desired response may not be achievable given the current geometric 

parameterization. Deriving a new initial starting unit cell to be parameterized is time-intensive and 

is often completed through trial and error [83]. Therefore, unit cell synthesis can be feasible when 

designing for a small number of desired responses but is deemed impractical as a rapid-inline design 

tool.    

The brute-force approach to designing unit cells with targeted nonlinear deformation 

responses would involve designing many random unit cells, tessellating them, and determining 

their force-displacement response using simulation or experimental methods. Then, given a large 

enough sample of unit cells, a user could pick the unit cell with a force-displacement response most 

similar to the desired response. Regarding the proposed work, the claim could be made that since 

a large sample of unit cells was already designed and simulated to train the surrogate models, the 

computational investment has already been made to validate using the brute-force method. While 

this claim is worth consideration, the DRL method offers an advantage over the brute-force method 

through its sequential design of the unit cells. 

Using the DRL method, a human designer can see the step-by-step design of a unit cell and 

track how additions and alterations to crucial physical features can result in changes to the resulting 

force-displacement response. Alternatively, the brute force method will output a single-unit cell 

design with limited information about how different features contribute to the deformation 
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response. Understanding the structural design of a unit cell can allow a human designer to manually 

introduce tweaks to the design and act as a co-designer along with the DRL agent.  

Figure 4-21 shows how the DRL agent offers insight into its design strategy. The DRL 

agent takes three steps to produce a unit cell with the desired force-displacement response. 

However, the third action offers insight into how the force-displacement curve can be tailored. With 

the third action, the agent adds a small material support connecting the oval and x-shaped regions 

of the unit cell. A small angle exists between this support material and the bottom horizontal 

surface. Tracking the force-displacement response throughout the design process shows that this 

small support stiffens the response of the unit cell. Therefore, a human design could take this 

information and alter the angle between the support and bottom horizontal surface to provide 

additional stiffness if the desired response needed to be changed, as seen by the top two unit cell 

designs. This insight would not be possible with the brute-force approach as there is no sequential 

tracking of how the force-displacement curve changes.  
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Figure 4-21. DRL agent and human designer collaboration  

4.5.4 Domain and DRL Improvements 

While the results shown in this chapter are promising, several design domain improvements 

could be made to increase the validity of using the DRL method as a physical design tool. 

The first improvement would be to run the FEA simulations with nonlinear elastic 

materials. In the presented domain, the unit cells are constructed from linear elastic materials with 

reference properties. Therefore, the nonlinear deformation responses are entirely controlled by the 

nonlinear geometry of the unit cell. Incorporating nonlinear material models could task the DRL 

agents with achieving a desired force-displacement response by combining the nonlinear elasticity 

of the constitutive material and the nonlinear geometries of the unit cell. Incorporating nonlinear 

material models will validate that the DRL method can be incorporated to tackle a wide array of 

real-world design problems. This change is a fundamental component of RQ3. 

The second improvement would ensure the DRL agents account for stress concentrations 

and material yielding when designing the unit cells. The force-displacement response is the only 

output of interest in the current environment since the metamaterials are evaluated for a single 

loading sequence. The DRL agents do not check if material yielding has occurred, even though, 
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given the 20% metastrain constraint, it is fair to assume that yielding had occurred for some unit 

cell designs. Material yielding would drastically alter the mechanical performance if the 

metamaterials were tested under cyclical loading. Therefore, a design rule should be implemented 

in future work that ensures that proposed unit cell designs do not exhibit material yielding. This 

design rule should prompt the agents to propose designs that reduce stress concentrations.  

A third improvement would include designing for various loading types. This work only 

tested metamaterials in uniaxial tension or compression. Few real-world applications call on 

uniaxial loading.  Therefore, the DRL agents should be tested on various loading types, including 

shear, unevenly distributed loads, and combined loading. These unique loading combinations 

would teach the DRL agents to develop a generalized design strategy for any force-displacement 

curve for multiple loads. While implementing these changes may be time intensive, there could be 

incredible value in designing mechanical metamaterials with targeted deformation responses in 

multiple axes. These improvements are a small sample of the advances that could be applied to 

designing mechanical metamaterials via DRL. The proposed work, published in the following 

article [130], can be the foundation for mechanical metamaterial design tasks such as energy-

absorbing ceramics, hysteresis-minimizing foams, and shape-morphing metals. 
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CHAPTER FIVE 
 

RESEARCH QUESTION 3: FRAMEWORK AND IMPLEMENTATION 
 
  The limitations and envisioned future of DRL for metamaterial design discussed in RQ2 

gave rise to the work completed to solve RQ3. RQ2 provides an initial validation that DRL can be 

used to design mechanical metamaterial with tailorable deformation responses. However, the 

arbitrary material properties and lack of experimental validation limit the real-world applicability 

of the proposed design method. Therefore, RQ3 expands on RQ2 by introducing a material model 

validated against experimental results. Additionally, the DRL is given a more challenging design 

task by designing mechanical metamaterials with tailorable deformation and energy manipulation 

responses. These improvements are essential in further validating DRL as a powerful engineering 

design tool and show the first example of mechanical metamaterials being designed and 

experimentally validated with customizable deformation and energy responses. These unique 

performing materials have potential applications in such domains as footwear, wearable 

technologies, and medical equipment. There is considerable overlap between some methods used 

in RQ2 and 3. In fact, the design domain in RQ3 follows the same format as RQ2 with the alteration 

that the thickness variable of the added material elements according to the cubic Bezier curves, T, 

was increased to 3 or 4. This increase is to ensure that the metamaterials can be physically 

manufactured. Smaller material features can be challenging to manufacture. Therefore, the unit 

cells in RQ3 (example shown in Figure 5-1) have a higher material volume fraction than RQ2. All 

other aspects of the design domain remain the same as RQ2, and the reader is directed to the 

previous chapter for any clarification on the methods. 
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Figure 5- 1. A randomly generated unit cell of discrete elements (material in navy, void in 
white) 

5.1 Methods: Defining Nonlinear Elastic Material Model 

5.1.1 Capturing Deformation Response 

The metamaterials' mechanical properties rely on the complex interactions between the 

individual unit cell design and constitutive material. RQ3 aims to design metamaterials that exhibit 

tailorable deformation and energy manipulation properties. Therefore, finite element analysis 

(FEA) was performed using Abaqus/CAE (Dassault Systèmes) to determine the loading and 

unloading stress-strain responses of these metamaterials. Unlike the work in Chapter 4, the 

metamaterial constitutive material model is no longer arbitrary but calibrated to match the 

experimental results of thermoplastic polyurethane (TPU).  

TPU is a thermoplastic elastomer that offers the mechanical performance characteristics of 

rubber (high resilience, compliance, abrasion resistance, and flexibility) but can be processed like 

thermoplastics through additive manufacturing [64]. TPUs are built as randomly segmented 

copolymers consisting of hard and soft segments. The hard segments act as the physical crosslink 

immersed in the soft segment matrix. This combination of segments imparts the unique strain rate-

dependent deformation and hysteretic responses found in TPU [131]. The unique characteristics of 
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TPUs result in a wide array of applications ranging from wearables and footwear to medical devices 

and automotive parts. TPU was selected as the constitutive material precisely due to its low cost, 

ease of manufacturing, and compliance and hysteretic properties relatively similar to those of 

common running shoe midsole materials such as elastomeric polymers or expanded-thermoplastic 

polyurethane (E-TPU).  

5.1.2 Additively Manufacturing Samples  

The FEA material model was calibrated using experimentally determined compressive 

loading and unloading responses of additively manufactured samples using Filaflex 70A (Recreus, 

Elda, Spain) 2.85mm filament. This 'ultra-soft' TPU filament is highly elastic with a Shore hardness 

of 70A and can be used in most common fused-deposition modeling (FDM) 3D printers. Three 

70x30x30mm metamaterials (Figure 5-2) were additively manufactured from Filaflex 70A using a 

LulzBot Mini FDM printer (Fargo Additive Manufacturing Equipment 3D) with 235°C head 

temperature, 50°C print bed temperature, and 14mm/s print speed. These designs were produced 

following the cubic Bezier curve design method with a random number of curves with randomly 

selected control points. To ensure a continuous unit cell, the starting and ending control points were 

limited to one of the domain's four corners. The solid regions of the metamaterial were printed with 

100% infill. Three samples were printed and tested for each design.  
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Figure 5- 2. Three randomly designed and manufactured metamaterial samples  

5.1.3 Experimentally Testing  

The nine metamaterial samples were experimentally tested under cyclic compression 

loading. The tests were performed at room temperature (25 °C) using a universal testing machine 

(Instron 68TM-10, Norwood, MA) with a 10 kN load cell. The tests were performed using a 100mm 

crosshead with a speed of 248 mm/min and tested up to 20% strain (6mm), resulting in a 0.138 s-1 

strain rate. The compression-decompression cycle was repeated five times per run per specimen to 

capture any specimen softening that may occur from repeated loading. The loading and unloading 

stress-strain curves were captured for each specimen. Each sample was subjected to three runs of 

the cyclic compression testing schedule defined in the Instron Bluehill Universal software. 

To serve as a performance benchmark, three 70x30x30mm samples of Infinergy® 230 MP 

(BASF, Ludwigshafen, Germany) were bandsaw cut from a 400x400x30mm slab of the material 

and were tested using the same experimental methods. Infinergy® was the world’s first expanded 

thermoplastic polyurethane (E-TPU). This material is produced by molding TPU bead granules 

under high temperatures and pressures. The pressure and heat cause the granules to expand and 

exhibit a foam-like structure. Infinergy® provides exceptional energy return, strength, and weight 

properties for footwear, flooring, and sports equipment applications [132].  
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5.1.4 Calibrating Material Model 

A constitutive model of TPU has been proposed by Qi and Boyce [64] but was deemed 

unnecessarily complex to implement in the given study. The primary focus of this work is to 

validate DRL as a powerful engineering design tool; therefore, a material model calibrated against 

experimental data was deemed sufficient. The Abaqus hyperelastic model combined with hysteretic 

properties has previously been used to model TPU [131] and was calibrated using the randomly 

designed metamaterial’s experimental results. The polynomial strain energy potential with order 

two was used, following Equation 31: 

(2) 𝑈𝑈 = � 𝐶𝐶𝑖𝑖𝑖𝑖(𝐼𝐼1̅ − 3)𝑖𝑖(𝐼𝐼2̅ − 3)𝑖𝑖
2

𝑖𝑖+𝑖𝑖=1

 (31) 

where 𝐶𝐶𝑖𝑖𝑖𝑖 are material properties determined by cyclic compression testing and 𝐼𝐼1̅ and 𝐼𝐼2̅ are the 

first and second deviatoric strain invariants, respectively. The materials are assumed 

incompressible as they are tested in their rubbery state at room temperature. 

The hysteresis model in Abaqus is intended for modeling the large-strain, rate-dependent 

behavior of elastomers, specifically to capture the pronounced hysteresis in stress-strain curves 

over cyclic loading. The model does not capture the "Mullins effect," commonly seen in TPUs, 

which refers to the material softening experienced by elastomers during the initial loading cycles. 

While this limitation may reduce the accuracy of the proposed model, the experimental testing 

results show limited softening over the five-cycle compressive loading; therefore, the Mullins effect 

should have a limited effect in the current design domain. 

The hysteresis model [133] decomposes the mechanical response into an equilibrium 

network that works in collaboration with the hyperelastic model and is characterized by the 

following four parameters: S, a stress-scaling factor that defines the ratio of the stress carried by a 
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time-dependent vs. equilibrium network; m, a parameter characterizing the effective stress 

dependence of the effective creep strain rate of the time-dependent network; A, a scaling constant 

for the effective creep strain rate to maintain dimensional consistency; and E, the creep strain rate 

regularizing variable. The hysteresis parameters and hyperelastic model were calibrated to ensure 

the FEA simulations accurately capture the loading and unloading responses of the experimentally 

tested metamaterials. The comparison results are shown in a later section. 

5.1.5 Finite Element Modeling  

The FEAs were run as Abaqus dynamic-implicit simulations using the material model 

described above. The model boundary conditions (Figure 5-3) were built to mimic the experimental 

compressive testing conditions. Therefore, each 70x30mm metamaterial was modeled with a 

100mm rigid bar in contact with its top nodal surface. The rigid bar is nondeformable and mimics 

the flat plate used in experimental testing. The rigid bar is prescribed a vertical displacement 

boundary condition that compresses the metamaterial to 20% meta-strain over 1.45 seconds and 

then returns to its original position after an additional 1.45 seconds. This boundary condition 

maintains the 0.138 s-1 strain rate used in the experimental tests. The mid-point of the rigid bar is 

assigned an additional boundary condition that restricts horizontal motion to ensure uniaxial 

compression.  
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Figure 5- 3. Boundary conditions for cyclic compression simulation 

The contact between the rigid bar's bottom surface and the metamaterial's top surface was defined 

as a rigid, frictionless surface-to-surface contact. Separation after contact was allowed between the 

two surfaces. The metamaterial’s bottom nodal surface was limited to horizontal displacement.  

The loading and unloading stress-strain curves were determined by recording the vertical-

resultant force and displacement of the mid-point of the rigid bar. The resultant vertical force was 

divided by the top surface unit area of the metamaterial (70mm2) to determine the stress, and the 

displacement was divided by the height of the metamaterial (30mm) to determine the strain.  

5.2 Methods: Formation of Deep Reinforcement Learning Problem 

The cubic Bezier curve-based method for designing discrete metamaterials needs to be 

reformulated as a sequential DRL task, precisely, an MDP [41]. Similar to RQ1 and 2, if the 

Bezier curve design approach can be expressed in terms of state space (S), action space (A), 

transition probability function (P), and reward function (R), the proposed metamaterial design 

method can be an MDP.  

The details of the agent's interactions with the environment are in the following 

subsections, but a brief overview helps guide the description. First, the agent starts a design 

sequence with a wholly voided domain and receives information about the desired loading stress-

strain curve and whether hysteresis loss should be minimized or maximized. Given the material 
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distribution and objectives, the agent adds material to the design domain using a cubic Bezier curve. 

The stress-strain response of the resulting metamaterial is determined, and the agent is rewarded or 

penalized depending on the difference between the desired and resulting stress-strain curves and 

the amount of energy loss due to hysteresis. The agent uses this feedback to make intelligent 

decisions about designing unit cells according to desired deformation and energy characteristics.   

5.2.1 Surrogate Model Prediction of Deformation Response 

To account for the DRL agent’s reliance on a copious amount of data, I trained another 

surrogate model to predict the deformation response of the metamaterial designs. The deformation 

responses of the metamaterials are defined as the combined loading and unloading stress-strain 

curves. The FEA-produced results were reshaped into 42x2 arrays where one column represents 

the equidistant strain values from 0 to 0.2 and back to 0 over 42 intervals, and the other represents 

the resulting stress values. Training the surrogate model to capture the relationship between 

metamaterial design and deformation response by predicting the 42 stress values proved 

challenging. Therefore, I applied principal component analysis (PCA) to the stress-strain values to 

produce a low-dimensional data representation. PCA works by finding the directions of maximum 

variance (principal directions) in a high-dimensional dataset and projecting this data onto these 

directions. These projections (principal components) now represent a low-dimensional, 

uncorrelated linear representation of the original data [134].  

Ten-thousand metamaterials were designed and simulated in Abaqus using the previously 

described boundary conditions and material model. The combined loading and unloading stress-

strain curves were determined for each design, and an 80/20 training/testing set was used to fit the 

PCA. The results of this PCA fitting are included in a later section, but for clarity, three principal 

components were used to describe the low-dimensional representation of the stress-strain curves. 

The first three components were deemed sufficient as they captured 99.9% (83.57%, 15.18%, and 
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1.15%, respectively) of the variance in the original data. Therefore, these three principal 

components were determined for each of the 10,000 combined loading and unloading stress-strain 

curves and served as the output of the surrogate model. Each output was then linked to its 

corresponding metamaterial design input. 

The surrogate model architecture was built with a combination of 2D convolutional and 

fully connected layers, with a 360x120 discrete array defining the 3x3 tessellated metamaterial as 

input and the three principal component values as output. The 3x3 tessellated representation was 

used instead of a single unit cell to visualize the unique features that arise between interacting cells. 

Making these unique interactions visible proved critical for successful surrogate model training.  

Before training, the principal components underwent component-wise normalization. 

Bayes optimization was used on the architecture (Figure 5-4) and training hyperparameters (Table 

5-1) to improve the performance of the surrogate model. The number of convolutional filters, size 

of the fully connected layers, and training hyperparameters underwent Bayes optimization to 

improve the model's performance. The parameters of the Bayes optimization were the initial 

number of convolutional filters, the percent increase of the number of filters every two layers, the 

initial number of fully connected nodes, and the learning rate. The model was trained to minimize 

the mean squared error between the true and predicted PCA values. The model was trained for 100 

epochs on Clemson University's Palmetto Cluster using an 80/20 training/testing split. The 

successfully trained surrogate model could now be used as a rapid inline tool for the DRL agent to 

determine the deformation response of a proposed metamaterial design.  
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Figure 5- 4. Deep neural network architecture for PCA prediction surrogate model 

Table 5- 1. Hyperparameter for surrogate model training  

Hyperparameter Value 
Learning Rate 1x10-3 

Batch Size 128 
Training Epochs 100 
Initial # of Filters 124 

Filter Percent Increase 146% 
Initial # Fully Connected Nodes 304 

 

The trained surrogate, PCA, and VAE models (the same model trained from Chapter 4) 

ensure that the cubic Bezier curve design method will be highly efficient and avoid the curse of 

dimensionality. Therefore, the four components of the DRL environment can be established and 

should incorporate these powerful tools.  

5.2.2 DRL Environment: State Space  

For the metamaterial design problem, each observation within the state space should 

capture information about the design objective (desired deformation and energy responses) and the 

agent's location in the design domain (current unit cell design). Therefore, the observations are 
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encoded as a 28x1 vector. The first value is a discrete integer that specifies whether the agent should 

maximize (0) or minimize (1) hysteresis loss. The following three values represent the principal 

components of the desired deformation response. The remaining values are the 24-dimension latent 

space of the current unit cell. A sample observation can be seen in Figure 5- 5. The first four values 

will remain constant throughout a single design episode, but the 24-dimensional latent space values 

will change as the DRL agent sequentially alters the material distribution.    

 
Figure 5- 5. An individual observation within the deep reinforcement learning environment 

state space 

5.2.3 DRL Environment: Action Space  

Mimicking the action space defined in Chapter 4, a 7x1 action space allows the agent to 

select the starting and ending control points, the nodal coordinates for the two intermediate control 

points, and the thickness of the Bezier curve. The action space was designed to help the agent create 

fully-connected and continuous unit cell designs. Certain restrictions were placed on the starting 

and final control points to achieve this. The starting control point (𝑃𝑃0) was limited to either the 

bottom left (0,0) or bottom right (60,0) nodes of the design domain, while the final control point 

(𝑃𝑃3) was restricted to either the top left (0,20) or the top right (60,20) nodes of the design domain. 
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The first element in the action space is a discrete action that determines the position of 𝑃𝑃0. 

A value of 0 sets the nodal coordinates to (0,0), while a value of 1 sets them to (60,0). The second 

element in the action space is also a discrete element that determines the position of 𝑃𝑃3 . A value 

of 0 sets the nodal coordinates to (0,20), and a value of 1 sets them to (60,20). 

The third discrete action element relates to the additional material curve thickness, where 

a value of 0 results in T=3 and a value of 1 results in T=4. Larger thickness values were used 

compared to the domain in RQ2 to ensure manufacturability. The X and Y coordinates for the two 

intermediate control points (𝑃𝑃1) and (𝑃𝑃2) are represented in the action space using continuous 

values between 0 and 1. The action value between 0 and 1 corresponds to a proportional coordinate 

value between 0 and 60 for the X coordinate and between 0 and 20 for the Y coordinate. This action 

space allows the agent to iteratively modify the material distribution within the domain to satisfy 

the design objectives, as depicted in Figure 5- 6. 

 
Figure 5- 6. A representation of how the DRL agent adds material to the design domain 

5.2.4 DRL Environment: Reward Function  

  In the presented environment, the reward function was modeled to enable the agent to 

design metamaterials that exhibit targeted deformation and energy return characteristics. A two-

part negative reward function was formulated. The first part penalizes the agent according to the 

mean absolute percent error (MAPE) between the desired and resulting surrogate-model predicted 

loading stress-strain curves. To avoid exploding gradients, the maximum curve error penalty is 

limited to -2. Therefore, if the MAPE between the desired and resulting loading stress-strain curves 



 113 

exceeds 200%, the agent will only be penalized -2. The second component of the reward penalizes 

the agent according to the difference between the percent energy return and an energy return 

threshold value.  

The energy return phase of the reward function was built to capture the phenomenon that 

a metamaterial's achievable energy return depends on its compliance. More compliant 

metamaterials traditionally exhibit less constitutive material strain and internal friction, which can 

result in higher energy return. Alternatively, less compliant metamaterials commonly have higher 

material volume fractions and energy return properties that closely align with those of the 

constitutive material. Therefore, the distribution of achievable energy returns should increase 

relative to compliance. 

The energy return reward function was built to correlate to the maximum stress of the 

desired loading curve. The max stress and energy return of each of the 10,000 FEA simulations 

were determined and are shown in Figure 5-7. The mean and standard deviation were calculated 

for the energy return relative to the max stress in intervals of 0.01 MPa. These values were used to 

plot curves that correspond to the average (dash-dot), average ±1.28 standard deviations (dashed), 

and average ±3 standard deviations (solid) energy return relative to the max stress. These curves 

were produced by curve-fitting fourth-order polynomial equations that result in the following 

equations, given max stress (MS): 

𝑈𝑈𝑈𝑈𝑈𝑈𝑒𝑒𝑟𝑟 𝐵𝐵𝑜𝑜𝑢𝑢𝑠𝑠𝑑𝑑 = 6.042 ∗ 𝑀𝑀𝑀𝑀4 − 11.827 ∗ 𝑀𝑀𝑀𝑀3 + 8.096 ∗ 𝑀𝑀𝑀𝑀2 − 2.228 ∗ 𝑀𝑀𝑀𝑀 + 1.023 (32) 
𝑈𝑈𝑈𝑈𝑈𝑈𝑒𝑒𝑟𝑟 𝐵𝐵𝑜𝑜𝑠𝑠𝑢𝑢𝑠𝑠 = 4.693 ∗ 𝑀𝑀𝑀𝑀4 − 9.113 ∗ 𝑀𝑀𝑀𝑀3 + 6.184 ∗ 𝑀𝑀𝑀𝑀2 − 1.678 ∗ 𝑀𝑀𝑀𝑀 + 0.957 (33) 
𝐴𝐴𝐷𝐷𝑠𝑠.𝑅𝑅𝑒𝑒𝑡𝑡𝑢𝑢𝑟𝑟𝑠𝑠 = 3.689 ∗ 𝑀𝑀𝑀𝑀4 − 7.093 ∗ 𝑀𝑀𝑀𝑀3 + 4.761 ∗ 𝑀𝑀𝑀𝑀2 − 1.269 ∗ 𝑀𝑀𝑀𝑀 + 0.907 (34) 
𝐿𝐿𝑜𝑜𝐿𝐿𝑒𝑒𝑟𝑟 𝐵𝐵𝑜𝑜𝑠𝑠𝑢𝑢𝑠𝑠 = 2.684 ∗ 𝑀𝑀𝑀𝑀4 − 5.074 ∗ 𝑀𝑀𝑀𝑀3 + 3.338 ∗ 𝑀𝑀𝑀𝑀2 − 0.860 ∗ 𝑀𝑀𝑀𝑀 + 0.859 (35) 
𝐿𝐿𝑜𝑜𝐿𝐿𝑒𝑒𝑟𝑟 𝐵𝐵𝑜𝑜𝑢𝑢𝑠𝑠𝑑𝑑 = 1.335 ∗ 𝑀𝑀𝑀𝑀4 − 2.359 ∗ 𝑀𝑀𝑀𝑀3 + 1.427 ∗ 𝑀𝑀𝑀𝑀2 − 0.311 ∗ 𝑀𝑀𝑀𝑀 + 0.793 (36) 

  The average ±3 standard deviations curves, referred to as the Bounding Curves, are used 

as the energy return threshold values. The agent receives a smaller negative reward for achieving 
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an energy return closer to the upper or lower bounding curve depending on a minimize or maximize 

hysteresis objective, respectively. If the energy return is outside the ±1.28 standard deviations 

curves, referred to as the Bonus Curves, and the MAPE between curves is less than 10%, the agent 

is given a positive reward (1- MAPE), and the design episode is terminated. Achieving an energy 

return outside ±1.28 standard deviations represents a design greater than the 90th percentile. 

Therefore, the agent has produced a high-performing design solution and should not continue 

receiving negative penalties. The only other way for an agent to terminate a design episode is to 

take more than six actions. 

 

 
Figure 5-7. A comparison of the energy return and loading curve max stress used to 

determine energy return threshold and bonus  

The trained surrogate model can only predict the resulting stress-strain response of a legally 

designed metamaterial. Legal designs are represented as 60x20 design domains with a single, 

continuous material body with material elements in the four corner nodes ([0,0], [0,20], [60,0], 

[60,20]. Legal designs ensure that the unit cells can be tessellated into continuous metamaterials. 

If the DRL agent takes an action that results in an illegal design, the agent is penalized -2. This 

penalty should teach the agent to avoid actions leading to illegal designs. The exception to this rule 



 115 

is during the first action, as it is impossible to connect all four corner nodes with a single cubic 

Bezier curve. Therefore, on the first action, the agent always receives a reward of 0.  

        The reward function, rt, at a given episode timestep, t, where t:[0,5] can be summarized for 

hysteresis maximizing and minimizing objectives according to Equations 37 and 38, respectively: 

𝑟𝑟𝑡𝑡 =
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⎪
⎨

⎪
⎧

0

−2

1 −𝑀𝑀𝐴𝐴𝑃𝑃𝐸𝐸

𝑎𝑎𝑎𝑎𝑥𝑥[−2,−𝑀𝑀𝐴𝐴𝑃𝑃𝐸𝐸] − �𝐸𝐸𝑅𝑅 − 𝐿𝐿𝐵𝐵𝐷𝐷(𝑀𝑀𝑀𝑀)� ∗ 𝑀𝑀

 

𝑖𝑖𝑓𝑓 𝑡𝑡 = 0 

𝑖𝑖𝑓𝑓 𝑡𝑡 ≠ 0 & 𝐼𝐼𝑙𝑙𝑙𝑙𝑒𝑒𝑠𝑠𝑎𝑎𝑙𝑙  

𝑖𝑖𝑓𝑓 𝐿𝐿𝑒𝑒𝑠𝑠𝑎𝑎𝑙𝑙 & 𝑀𝑀𝐴𝐴𝑃𝑃𝐸𝐸 ≤ 0.1 & 𝐸𝐸𝑅𝑅 < 𝐿𝐿𝐵𝐵𝑀𝑀(𝑀𝑀𝑀𝑀) 

𝐸𝐸𝑙𝑙𝑠𝑠𝑒𝑒 

(37) 

where MAPE is the mean absolute percent error between the desired and resulting curves, ER is 

the energy return of the resulting stress-strain curve, LBS(MS) is the Lower Bonus Value given the 

max stress of the desired loading curve, MS, LBD(MS) is the Lower Bound Value given MS, and 

S is a scaler value that equals the inverse of the normalized energy return standard deviation at the 

max stress of the desired stress-strain curve. The standard deviation is normalized about the energy 

return standard deviation at all other max stress values. This scaler value normalizes the 

contribution of the energy return penalty regardless of the max stress. 
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𝑖𝑖𝑓𝑓 𝑡𝑡 = 0 

𝑖𝑖𝑓𝑓 𝑡𝑡 ≠ 0 & 𝐼𝐼𝑙𝑙𝑙𝑙𝑒𝑒𝑠𝑠𝑎𝑎𝑙𝑙  

𝑖𝑖𝑓𝑓 𝐿𝐿𝑒𝑒𝑠𝑠𝑎𝑎𝑙𝑙 & 𝑀𝑀𝐴𝐴𝑃𝑃𝐸𝐸 ≤ 0.1 & 𝐸𝐸𝑅𝑅 > 𝑈𝑈𝐵𝐵𝑀𝑀(𝑀𝑀𝑀𝑀) 

𝐸𝐸𝑙𝑙𝑠𝑠𝑒𝑒 

(38) 

where UBS(MS) is the Upper Bonus Value given the max stress of the desired curve, MS, and 

UBD(MS) is the Upper Bound Value given MS. While this objective-based reward function cannot 

be proven as optimal or the only viable approach, the effectiveness of this reward function is 

demonstrated by the favorable results in the following sections. 
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5.2.5 DRL Environment: Transition Probability Function 

       The deep deterministic policy gradient (DDPG) was implemented in the DRL environment to 

account for the continuous state and action spaces. This algorithm has also been used for RQ2. 

While the DDPG has been successfully implemented for RQ2, I would like to restate that I do not 

claim that DDPG is the only or optimal DRL algorithm for this application. DDPG can suffer from 

instability during training, inefficiency, high sensitivity to hyperparameters, and sub-optimal policy 

convergence. However, DDPG was selected due to its ease of implementation, previous success, 

and ability to account for continuous state and action spaces.   

5.3 Methods: Training the DRL Agent  

The previous sections defined the metamaterial design problem as an MPD, and therefore, 

a DRL agent should be able to learn to design mechanical metamaterials with customizable 

deformation and energy return responses. In the given design problem, an episode is defined as the 

DRL agent sequentially adding material to the unit cell design domain until the resulting loading 

stress-strain curve is sufficiently close to the desired curve and the energy return satisfies the Bonus 

threshold or the agent takes too many steps.  

The agent was trained to design unit cells given a diverse range of desired stress-strain 

curves and randomly selected objectives of maximizing or minimizing hysteresis loss. The 10,000 

stress-strain curves used to train the surrogate model were used as the possible desired curves. 

These curves underwent an 80/20 training/testing split. Therefore, at the beginning of each training 

episode, one of the 8,000 training stress-strain curves was randomly selected as the desired loading 

curve. Additionally, the energy return objective was randomly selected to maximize or minimize 

hysteresis.  

The desired loading curve, in the form of its principal components, and the Boolean energy 

return objective define the first four values of the observation, while the remaining 24 values are 0 
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due to the wholly voided starting design domain. This observation is passed to the actor-network, 

and an action is selected. To promote design domain exploration, the same decaying noise vector 

used in Chapter 4 is added to the selected action by sampling from a normal distribution with a 

mean, 𝜇𝜇, of 0 and standard deviation, 𝜎𝜎, that decays according to the following equation: 

 𝜎𝜎 = 𝑎𝑎𝑎𝑎𝑥𝑥�𝜎𝜎𝑚𝑚𝑎𝑎𝑥𝑥 − 𝑁𝑁 ∙ 𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑦𝑦,𝜎𝜎𝑚𝑚𝑖𝑖𝑚𝑚� (39) 

where 𝜎𝜎𝑚𝑚𝑎𝑎𝑥𝑥 is the starting action noise (𝜎𝜎𝑚𝑚𝑎𝑎𝑥𝑥 = 0.25),  𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑦𝑦 is the rate at which 𝜎𝜎 decreases per 

action (𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑦𝑦 = 4.5𝑥𝑥10−6) until 𝜎𝜎 reaches its minimal allowed value, 𝜎𝜎𝑚𝑚𝑖𝑖𝑚𝑚 (𝜎𝜎𝑚𝑚𝑖𝑖𝑚𝑚 = 0.01), and 

𝑁𝑁 is the current number of actions taken during all training episodes. 

The action and added noise define the cubic Bezier curve that adds material to the design 

domain. The resulting design domain is double-mirrored to produce the unit cell of the 

metamaterial. The surrogate model predicts the metamaterial’s stress-strain response (via principal 

component prediction), which is compared to the desired curve and energy return objective to 

calculate the reward. Next, the new material distribution is passed to the VAE encoder to produce 

the new observation. After each action, the previous observation, new observation, action, and 

reward are recorded in a replay buffer. Once the replay buffer includes at least 300 experiences, a 

batch of 64 experiences is randomly sampled after each design episode to train the DDPG actor 

and critic networks. The architecture of the actor and critic networks and other hyperparameters 

can be found in Figure 5-8 and Table 5-2, respectively. Due to increased training times, the 

hyperparameters underwent limit tuning but not Bayes optimization and cannot be considered 

optimal. However, the favorable performance of the DRL agent confirms that the selected 

hyperparameters are sufficient. 
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Figure 5- 8. The architecture of the actor and critic networks in the deep deterministic 
policy gradient algorithm 

Table 5-2. The deep deterministic policy gradient architecture hyperparameters  

Hyperparameter Value 
Learning Rate 1x10-4 

Tau 5x10-3 
Batch Size  64 

Max Action Noise 0.25 
Action Noise Decay 4.5x10-6 
Min Action Noise 0.01 

Min Replay Buffer Size 300 
Max Replay Buffer Size  20,000 

Gamma  0.99 
Training Epochs 20,000 
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5.4 Results  

5.4.1 Material Model Results  

The Abaqus hyperelastic material model and hysteresis parameters were validated against 

the experimental cyclic loading. Figure 5-9 shows the average of the three experimental loading 

and unloading stress-strain curves for each metamaterial design compared to the FEA response of 

the metamaterials captured by the Abaqus material model. The three experimental deformation 

responses used to determine the average response for each metamaterial design can be found in 

Appendix A. The figure shows that the FEA model can accurately capture the general compressive 

trends from the experimental tests.  

 

Figure 5-9. The average experimental cyclic compressive response compared to the FEA 
simulation for the three random metamaterials 

As previously stated, each sample underwent five compressive loading and unloading 

cycles. The experimental results showed slight material softening between the first and second 

cycles, as seen in Figure 5-10; therefore, the loading and unloading curves of the third cycle have 

been used to define the deformation response of the metamaterials. The model accurately captures 

compliance magnitude and nonlinearity exhibited in the experimental results. However, limitations 
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such as disregard for internal contacts and larger residual strain values can hinder the model's 

accuracy. These limitations are discussed in more detail in a later section. While these two 

limitations should be considered, I believe the model is sufficiently accurate to validate its use in 

the DRL design problem.  

 

Figure 5- 10. The five loading and unloading stress-strain curves from a single experimental 
trial of a) Metamaterial Design 1 and b) Metamaterial Design 2 

5.4.2 Stress-Strain Prediction Results  

The validated material model was used in the 10,000 FEA metamaterial simulations that 

trained the PCA and surrogate models. The accuracy of the trained PCA model can be determined 

by calculating the MAPE between the original 2,000 testing stress-strain curves and recreated 

curves produced by inversely transforming the principal components. To determine the minimal 

number of required principal components, the authors calculated the MAPE for PCA models 

trained using an increasing number of principal components. Table 5-3 shows that the MAPE 

decreases as the number of principal components increases. The error appears to converge at three 

principal components, where an additional principal component would result in a minuscule 

increase in reconstruction accuracy. 

As previously stated, three principal components account for 99.9% of the variance in the 

stress-strain curves. This surprisingly high variance attribution may indicate that the Abaqus 

material model is overly simplified. While the simplification of the proposed material model should 
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be addressed in future work, the reconstruction accuracy of the three-component PCA proved to be 

sufficient, such that the trained PCA can be used to define a low-dimensional representation of the 

loading and unloading stress-strain curves of the metamaterials. Therefore, the principal 

components can be used as the output of the surrogate model and within the DRL observation. 

Table 5- 3. Mean absolute percent error and variance attribution for an increasing number 
of principal components to describe the stress-strain curves 

No. of Principal 
Components MAPE [%] Variance Attribution 

[%] 
1 9.49 83.57 
2 4.62 15.18 
3 2.87 1.15 
4 2.57 1.34e-3 
5 2.25 2.07e-4 

 
  The trained surrogate model was tested using the 2,000 samples from the testing dataset. 

The surrogate model was evaluated by calculating the mean absolute error (MAE) between the true 

and predicted principal components of these 2,000 samples. The principal components of the 2,000 

samples underwent the inverse PCA process to produce the resulting predicted stress-strain curves. 

Additionally, the MAPE was calculated between the predicted and true stress-strain curves. The 

MAE was calculated for the principal components instead of MAPE due to the large concentration 

of values near 0 which could artificially inflate a percent-based error metric. 

The results in Figure 5-10 and Table 5-4 show that the surrogate model can predict the 

principal components corresponding to the stress-strain curves of random metamaterials with 

sufficiently high accuracy. These results show that the surrogate model’s prediction capabilities 

progressively worsen from principal component #1 to #3. This worsening performance can be seen 

in Table 5-4, with a weaker linear correlation between the true and predicted values and a higher 

reconstruction error for principal component #3 compared to principal components #1 and #2.  
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Table 5- 4. The error and R2 values for the surrogate model performance for predicting 
each principal component 

Dataset MAE [-] R2  
All Principal Components 0.079 0.922 
Principal Component #1 0.046 0.984 
Principal Component #2 0.064 0.950 
Principal Component #3 0.121 0.760 

 MAPE [%]  
Stress-Strain Values 8.8 0.992 

 

It should be noted that principal component #3 has the largest concentration of true and 

predicted values approaching 0. Very small numbers can result in excessively high percent errors, 

which aren’t indicative of the actual performance of the surrogate model. Fortunately, principal 

component #3 has the smallest variance attribution on the stress-strain curves, and poor prediction 

performance on this one component does not severely hinder the surrogate model’s ability to 

accurately predict the stress-strain curves. The 2,000 surrogate model predictions were completed 

~170x faster than running the FEAs. The combination of accuracy and efficiency validates that the 

surrogate model can act as a rapidly accurate deformation response prediction tool for the DRL 

agent. 
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Figure 5- 11. Comparing the true vs. predicted values from the surrogate model 

5.4.3 DRL Training Results  

The DRL agent was trained for 20,000 design episodes using Clemson University’s 

Palmetto Cluster. Figure 5-11 shows the moving average training reward increases until 

convergence around 0.5. The increase in reward coincides with the decrease in the action space 

noise, which decayed to its minimum value after approximately 11,5000 episodes. The increase 

indicates that the agent is taking better steps, resulting in high-performing metamaterials that more 

closely align with the desired deformation and energy return characteristics. Also, the reward 

converging at a value greater than 0 means that the agent regularly receives the positive bonus 

reward for satisfying the curve error and energy return thresholds.  
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Figure 5-12. The running average of the reward (solid) steadily increases as the action noise 

(dashed) decreases.  

5.4.4 DRL Testing Results  

I wanted to provide an initial testing benchmark for the DRL agent by prompting it to 

design hysteresis-maximizing and -minimizing metamaterials with a compressive deformation 

response like the experimentally tested E-TPU. The DRL agent was not prompted to design for the 

E-TPU deformation response during training and could not be overfitting to previously seen 

experiences. Figure 5- 12 shows that the agent can satisfy the objectives in a two-step design 

process. By the second step, the proposed unit cells resulted in metamaterials with compressive 

deformation with a MAPE of less than 10% compared to the desired response. Additionally, the 

designs exhibit considerably different energy return characteristics that satisfy their respective 

bonus thresholds. Regarding the hysteresis minimizing metamaterial, the energy return of 88.9% 

was slightly lower than the E-TPU’s return of 90.0% but proved to be in the 92nd percentile of 

possible solutions at that maximum desired stress. The hysteresis maximizing metamaterial was in 

the 99th percentile.  
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Figure 5- 13. The agent produced hysteresis minimizing and maximizing designs with 

loading responses similar to the E-TPU material 

I wanted to validate that the optimized metamaterials can exhibit variable deformation and 

energy return characteristics in both simulation and physical testing. Therefore, three samples of 

the two optimized metamaterials were additively manufactured and experimentally tested using the 

same methods as the randomly designed metamaterials. Figure 5- 14 compares the DRL predicted 

(via the trained surrogate model), FEA simulated, and experimental loading and unloading stress-

strain curves of the optimized designs. Due to printing variability, the average of the three 

experimental tests was plotted.  
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Figure 5- 14. Comparison of the DRL agent (via surrogate model prediction), Abaqus 

simulation, and experimental cyclic compression testing for the optimized designs. 

The individual sample responses are found in Figure 5-14. These results show a sufficient 

similarity between the three methods for both designs. The average experimental responses are 

stiffer than the FEA or DRL predicted responses, which is believed to arise from overprinting by 

the relatively inexpensive FDM printer used in this study. Overprinting can reduce the compliance 

of a metamaterial by introducing excess material in the unit cell. These overprinted metamaterials 

will be less compliant and exhibit higher energy loss than the nominal metamaterial designs used 

in the FEA and DRL simulations. Additively manufacturing TPU via an FDM printer can be 

challenging [135]. Therefore, future work should investigate alternative additive manufacturing 

methods for TPU, such as selective laser sintering, to improve the accuracy and reliability of the 

manufactured parts. 
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Figure 5-14 shows that the samples suffered from performance variability between prints. 

This variability was not seen in the original additively manufactured samples and may indicate that 

the optimized designs are particularly susceptible to overprinting or poor material bonding. These 

results also indicate that further printing parameter calibration is needed to ensure reliable design 

performance. 

 

Figure 5- 15. The individual experimental results for the hysteresis a) -maximizing and b) -
minimizing metamaterials 

This example shows that the DRL agent can design mechanical metamaterials with a 

targeted deformation response while altering the energy return characteristics. However, it does not 

prove that the agent has produced a generalized design strategy that can design for various desired 

deformation and energy return characteristics. Therefore, the trained DRL agent was further tested 

using the 2,000 testing loading stress-strain curves. The agent was tested on each unique curve 

twice with both hysteresis minimizing and maximizing objectives. The performance of the agent 

can be determined by (1) the MAPE between the desired loading stress-strain curve and the 

resulting stress-strain curve of the DRL-produced metamaterials and (2) whether or not the agent 

has achieved an energy return outside of the bonus thresholds.  

The 2,000 unit cells were designed following a similar process seen in Figure 5- 12. A 

small sample of resulting hysteresis minimizing and maximizing unit cells are shown in Figure 5- 

15, based on various desired stress-strain curves. Table 5-5 shows that the DRL agent could design 
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metamaterials that exhibit compressive deformation responses similar to those not seen during 

training. Additionally, the metamaterials exhibit hysteretic properties that regularly satisfy the 

upper or lower energy return threshold, depending on the objective. Each of the design episodes 

took between 1-3 seconds. Therefore, the DRL has proven itself as a highly-accurate and efficient 

engineering design tool to produce mechanical metamaterials with customizable deformation and 

energy return characteristics.  

Table 5- 5. Evaluating the design performance of the DRL agent  

MAPE [%] Lower Bonus Satisfied  [%] Upper Bonus Satisfied 
[%] 

9.23 95.4 81.8 
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Figure 5- 16. The DRL agent can produce hysteresis-minimizing and -maximizing 
metamaterials that exhibit an array of desired loading stress-strain curves 

5.5 Discussion 

5.5.1 Comparing TPU and E-TPU 
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The Infinergy® E-TPU material was used as a benchmark due to its application as the 

midsole material for the Adidas® Ultraboost™ running shoe. Running shoe midsoles must be 

compliant, lightweight, and resilient (high energy return). The experimental results from this work 

and the literature [136], [137] show that Infingergy® exhibits all these qualities. While the 

performance capabilities of E-TPUs are impressive, their manufacturing challenges and costs must 

be considered. 

E-TPUs are manufactured by injection molding TPU pellets into the desired shape at high 

temperatures and pressure. After cooling, the mold cavity is vulcanized with a blowing agent, such 

as N2 or CO2, under high temperatures and pressures to achieve a foam-like appearance and 

performance. This manufacturing process can require substantial investment in the appropriate 

equipment and calibration parameters, such as blowing agent type and concentration, mold 

temperature and shape, cooling time, and injection speed and volume [63]. This investment may be 

practical for large corporations with mass-manufactured products but may not be feasible under 

smaller budgets, shorter timelines, and increased customization, justifying an investigation into 

alternative compliant, lightweight, and resilient materials. 

Optimized mechanical metamaterials paired with additive manufacturing may provide an 

alternative to costly E-TPU. Adidas® has already begun implementing this combination with their 

FUTURECRAFT 4D midsole. This midsole is built as an array of additively manufactured 

patterned lattices using Digit Light Synthesis (DLS) [138]. The DRL metamaterial design method 

proposed in this work can also provide an introductory investigation into this domain. The method 

showed that mechanical metamaterials with a TPU constitutive material could achieve similar 

deformation and energy return characteristics as an E-TPU sample. It should be noted that the 

energy return of the hysteresis-minimizing metamaterial was approximately 3.7% lower than the 

E-TPU, which can be substantial when viewed in the domain of running shoe performance. 
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Additionally, the mass of the hysteresis-minimizing metamaterial was ~2x heavier than the 

E-TPU, which would drastically inhibit running performance. With additional investigation, the 

optimized metamaterial solutions could be made lighter by introducing an additional design rule to 

the DRL environment that assigns more rewards for designs with less mass. Regardless, the 

metamaterial samples achieved impressive results while being produced using a relatively 

inexpensive FDM printer and filament. The authors acknowledge that the testing conditions and 

manufactured shapes are not representative of a midsole running shoe, and therefore, the 

applicability of this comparison is limited to the specific experimental methods. 

Further research should investigate alternative additive manufacturing methods and 

materials for developing compliant, resilient, and lightweight mechanical metamaterials for 

applications beyond midsoles, including other sports equipment, wearable technologies, medical 

devices, and flooring. The key advantage of implementing metamaterials and additive 

manufacturing is improved customization. Metamaterials do not need to be built with homogenous 

unit cells so long as the nonhomogeneous unit cells have features that form a continuous body when 

patterned together. Therefore, an engineering designer can tailor a structure's deformation and 

energy response using variable metamaterial designs to account for nonuniform dynamic loading, 

providing a superior performance to monolithic materials.  

5.5.2 Material and DRL Model Limitations  

The results from Figure 5-15 show two potential limitations of the proposed DRL design 

method. The first is that the DRL agent can only design for a relatively limited degree of desired 

deformation nonlinearity. The second is that the DRL proposed designs show limited topological 

diversity. The metamaterials’ deformation nonlinearities are controlled by the geometric 

nonlinearities of their base unit cells and the hyperelastic nonlinearity of the TPU constitutive 

material. The contribution of each is dependent on the material volume fraction of the unit cell. The 
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deformation response of a metamaterial with high material volume fraction is more controlled by 

the hyperelastic nonlinearity of the constitutive material. Low-volume fraction metamaterials can 

be highly compliant, and the interaction between neighboring unit cells with geometric 

nonlinearities helps manipulate the deformation nonlinearity.  

The metamaterials investigated in the present work had an average volume fraction of 

59.5%, which is considerably higher than the unit cells designed for RQ2, which had an average 

volume fraction of 35.7%. The present work had higher volume fraction metamaterials because the 

thickness of the material features was made larger to ensure manufacturability. The larger volume 

fractions result in a database of metamaterials whose deformation nonlinearity will primarily be 

controlled by the material model's hyperelasticity. Therefore, the degree of achievable deformation 

nonlinearity will be limited.  

To validate this claim, the authors designed 100 metamaterials using the same design 

method but limited the material thickness variable, T, to 1 or 2. These 100 samples were simulated 

using the same material model and FEA methods of RQ3. The dimensional nonlinearity of the 

resulting 100 loading curves was calculated as the root mean squared deviation of the curve from 

the straight line connecting the first and last stress and strain values. These 100-dimensional 

nonlinearities were compared to 100 randomly selected metamaterials designed using the original 

T=3 or 4 method. Figure 5- 16 shows that the low-volume fraction metamaterials achieve a wider 

range of dimensional nonlinearity, thus proving the contribution of geometric nonlinearity to the 

entire deformation nonlinearity. Therefore, the limited range of deformation nonlinearity in the 

present work can be attributed to the metamaterials being designed with larger concentrations of 

constitutive material. 
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Figure 5- 17 The diversity of dimensional nonlinearity is limited given samples with larger 

material volume fractions 

The assumptions and limitations of the constitutive material model and FEA simulations 

play a critical role in the limited nonlinear diversity seen in this work. The hysteretic parameters 

introduced a residual strain in the unloading curve. This residual strain represents the separation of 

the loading crosshead and the specimen's top surface. This phenomenon was not seen in the 

experimental testing due to the small strain rate. Therefore, the material model’s residual strain 

artificially increased the hysteresis for the FEA simulations.  

The simulations did not consider internal contacts and plastic deformation due to 

computational costs and convergence concerns. These assumptions ensure that the simulations 

remain computationally efficient but can also limit accuracy. I recognize that under 20% meta-

strain boundary conditions, specific metamaterial designs will experience internal contact that will 

not be captured in the FEA model. Additionally, the permanent distortion of plastic deformation 

should be considered in future work if the objective is to achieve targeted nonlinear deformation 

responses in multi-cycle loading. 

Beyond material model improvements, I believe the DRL method should be improved in 

future work to increase the topological diversity of the proposed metamaterial designs. Figure 5-15 



 134 

shows that the DRL-designed metamaterials have similar topologies, especially the hysteresis 

maximizing designs. This similarity can be accredited to the agent taking similar actions given 

similar observations. The limited nonlinear diversity of the desired deformation responses results 

in the agent being regularly prompted with similar observations. These similar observations will 

result in the agent taking similar actions and producing metamaterials with limited topological 

diversity. 

A potential solution for future work is the introduction of new DRL algorithms or reward 

functions that help the agent achieve design diversity. One such algorithm is Soft Actor-Critic 

(SAC) [139]. SAC is an actor-critic DRL algorithm based on the maximum entropy framework, 

which prompts the agent to take more random actions. In the metamaterial design task, the agent 

would be prompted to produce metamaterials with greater topological diversity. Additionally, 

including action diversity in the DRL reward function is an active area of research [140], [141]. 

Incorporating a diversity-based reward function would give the agent additional rewards for 

producing unique, high-performing metamaterials. This reward would track the previous design 

suggestions of the agent, calculate the variance of a current design, and assign additional rewards 

based on the variance.  
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CHAPTER SIX 
 

GENERAL FRAMEWORK FOR DEEP REINFORCEMENT LEARNING 
FOR ENGINEERING DESIGN 

 
This manuscript shows that deep reinforcement learning environments can be built to allow 

agents to iteratively design 2D structural topologies to achieve high-performing design solutions 

for a diverse range of objectives and constraints. While this work has been limited to 2D grid design 

domains, I believe that deep reinforcement learning can be used to achieve optimized design 

solutions in various engineering design domains. To implement deep reinforcement learning, a 

human user must establish an environment that encodes the core aspects of the design problem that 

will allow the agent to discover hidden relationships and generate non-intuitive designs that may 

not be apparent to the human designer.  

I wanted to recommend a general framework that could be followed to represent an 

engineering design problem as a DRL problem. DRL is a generative design tool that can iteratively 

alter a design to generate an output that meets specified constraints and objectives. The iterative 

design process is controlled by feedback that controls design domain exploration. Therefore, the 

most critical components of any generative design problem are design domain representation, 

feedback, and “tools” to alter the current state in the design domain. All of these features have been 

addressed in each of the previously discussed DRL design problems. 

       The first step of establishing an engineering design problem as a DRL problem is ensuring the 

design domain can be analytically derived. The design domain must be represented mathematically 

such that its defining features can be utilized for the state space, action space, and reward function 

of the DRL environment. These forms include but are not limited to:  

1. Discrete elements: Each design variable is represented as a single element that takes the 

form of solid material (1) or void (0). 
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2. Continuous elements: The densities of the material elements can range from [0,1]. This 

representation is common in topology optimization approaches and can drastically increase 

the design domain but can lead to potentially unmanufactured solutions as there is no 

physical representation of partial material densities. 

3. Discrete beams: The design variables take the form of connected beams with variable 

lengths, orientations, and thicknesses. 

4. Geometric Parameterization: An initially proposed design is altered to optimize the 

geometric parameters of critical features in the design space to best satisfy an objective and 

constraint(s). This parameterization can drastically increase computational efficiencies but 

limit the explorable design domain. 

5. Point Clouds: The shape of a structure is defined by the coordinates and connections 

between a finite number of nodes. 

6. Physical Model: Obtaining a physical structure model will yield the most helpful 

information but can be infeasible due to time and cost constraints. 

These design domain representations must provide sufficient information to define a 

relationship between the current design, objective (s), and constraint(s). This information could 

include topology, shape, segment connectivity, structural performance, and manufacturability. 

Properly selecting a design domain representation depends on the human designer's thorough 

understanding of the design task and what information would be critical for satisfying the 

objective(s) and constraint(s).  

The design domain should be rich in information that can be fed into the DRL state space. 

However, as discussed in the unit cell design problems, large-dimensional design domains can be 

susceptible to the curse of dimensionality. Therefore, the domain should have a relatively small 

number of design variables or be able to be represented in a low-dimensional manner through the 
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use of parameter-reduction tools like the principal component analysis or variational autoencoder 

discussed in the presented work.  

DRL agents succeed in producing high-performing design solutions when the state spaces 

include structural information about the current design and additional information regarding at least 

one of the following: 1) Objectives, 2) Constraints, and 3) Mechanical performance. The agent can 

be given this information from partial differential equation solvers, finite element analysis (used in 

RQ1), analytical equations, encoded features (used in all RQs), and surrogate models (used in RQ2 

& 3). This information could also prioritize objectives not explored in the presented work, such as 

design aesthetics, joinability, or manufacturability.  

The action space is highly dependent on the representation of the design domain. The agent 

can add, delete, or geometrically alter the material in the structure. Selecting an action space 

representation depends on how the design variables are viewed in the design domain. In discrete 

grid domains, the agent should be allowed to add and/or remove elements to satisfy the objective. 

This addition or removal can be completed on individual elements or following constrained forms 

such as Bezier curves or predefined geometric shapes. The presented work limited the agent to 

either material addition or removal, but the combination would allow the agent to mimic the design 

methodology of humans. However, initial investigations into this method show that the agent can 

quickly become stuck in a suboptimal, conservative policy where the agent takes consecutive 

actions that add and remove the same elements for an entire design episode without producing a 

meaningful solution. While untested in the presented work, a reward function that penalizes the 

agent for immediately undoing a step could eliminate this phenomenon. 

If the combined action space does not seem practical in a presented design domain, a user can 

select either material addition or subtraction depending on two factors. The first is whether feasible 

and practical designs can quickly be achieved using material addition. Adding material you need 
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compared to removing material you don’t need will almost always be more efficient. For example, 

the agent took considerably more steps to achieve optimized designs in the TO environment 

compared to the unit cell design. In the TO environment, the agent could iteratively remove a single 

material element from a starting topology because individually adding elements would take several 

steps until a legal design could be achieved, resulting in a sparse reward problem. Alternatively, 

the unit cell design problem allowed the agent to iteratively add material to a starting blank domain.  

Therefore, if the design domain can produce continuous, single-body material concentrations that 

satisfy all constraints using material addition, then the action space should be configured 

accordingly. Therefore, material addition should be prioritized over material subtraction. This 

method is particularly beneficial if multiple material elements can be added in a single action, like 

the Bezier curve method. 

       This recommendation is limited to discrete grid domains. In geometrically parameterized 

domains, the action space should allow the agent to iteratively increase, decrease, or maintain the 

parameters to satisfy the objectives and constraints. These action spaces can either adjust the 

parameters individually or simultaneously.  

       Defining the reward function depends highly on a human user’s understanding of the design 

problem. The reward function should incorporate the design objectives and constraints such that 

actions that achieve solutions closer to optimizing the objective should achieve higher rewards. If 

actions lead to solutions that do not satisfy the constraints, then a sizeable negative penalty should 

be introduced to teach the agent to avoid these actions. 

 The reward function can be comprised of positive or negative rewards. In the unit cell 

design problem, prompting the agent to minimize the magnitude of a negative reward was used in 

the material addition problems to ensure the agent was highly efficient and did not attempt to keep 

adding material to continue accumulating reward. Alternatively, the TO problem prompted the 
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agent to maximize a positive reward as the agent should take the most actions to continually reduce 

the volume fraction. Based on these findings, a negative objective-based reward function should be 

used in material addition problems, and a positive objective-based reward function should be used 

in material subtraction problems. With combined addition and subtraction action spaces, a negative 

reward function should also be used to ensure the agent does not continue accumulating rewards 

for taking as many actions as possible without achieving a meaningful design. In geometrically 

parameterized domains, a negative reward function will also ensure the agent can efficiently 

achieve a high-performing solutions without being stuck in a loop of taking and undoing small 

parameter changes.  

Regardless of positive or negative reward formulation, the reward function should undergo 

some form of normalization to ensure no significant disparities between the rewards for different 

state-action pairs. These disparities can cause exploding gradients in the training of the DRL agent, 

which can greatly inhibit the agent’s performance. To avoid this exploding gradient threat, the 

reward function should be normalized, standardized, or paired with reward saltation (as in RQ1).  

Termination thresholds should be established for all domains that allow the agent to 

terminate a design episode. This threshold should relate to the design objective. If the agent 

proposes a design that sufficiently satisfies the objective, the design episode should be terminated, 

and the agent should receive a significant reward bonus. This bonus will teach the agent that it has 

achieved a sufficiently high-performing design solution. The human user must specify this 

termination threshold depending on the design domain and required level of performance.  

A critical exception to the negative reward paired with termination criteria should be if the 

environment is established to ensure the agent has to take a predetermined number of actions, and 

the final performance of a design is only evaluated after these steps are taken. A positive reward 

function should allow the agent to accumulate the maximum positive reward in this situation. 
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The final consideration for reformulating an engineering design problem as a DRL problem 

is the selection of the DRL algorithm. This can be the most challenging recommendation due to the 

constant influx of publications with new and improved DRL algorithms. Additionally, there was 

limited algorithm exploration in this dissertation. That said, selecting a DRL algorithm depends on 

the state and action space representations. With discrete state and action spaces, value-based 

algorithms will provide robust and easy-to-implement options. Alternatively, continuous action 

spaces will generally require actor-critic policy-based approaches. I highly recommend that the 

dissertation reader examine the literature for the current state of the art for DRL algorithms that can 

appropriately integrate your DRL environment’s state and action spaces. 

Additionally, ensure your computational resources will be capable of training the DNN 

that serves as the cornerstone of these algorithms. The choice of DNN depends on the representation 

of the state space observations. Observations represented as 2D arrays will require convolution 

filter layers, while 1D vectors will require fully connected dense layers. Network architecture and 

hyperparameter optimization are critical steps for successfully training a DRL agent. Therefore, 

Bayes's optimization of the number and size of the DNN layers and hyperparameters (learning rate, 

discount factor, action space noise, batch size, etc.) is critical to ensure improved model 

performance. Baye’s optimization cannot guarantee optimal architectures or hyperparameters but 

will ensure appropriate steps are taken for a high-performing model. 

These recommendations are derived from my experiences with incorporating DRL 

environments to achieve high-performing design solutions in several structural topology design 

problems. These recommendations may not apply to all design problems but should give human 

users a strong starting point for environment creation. The user should creatively and iteratively 

refine the components to produce a DRL environment rich with information that can teach a DRL 

agent to act as the powerful co-designer. 
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CHAPTER SEVEN 
 

CONCLUSIONS  
 

This dissertation aims to validate that deep reinforcement learning methods can be a highly 

valuable engineering design tool for various domains. Deep reinforcement learning offers a 

gradient-free optimization approach that achieves high-performing design solutions by teaching an 

agent to complete a task by taking actions and receiving feedback in an interactive environment. 

This work explicitly targets the domain of structural topologies. In the context of this work, 

structural topologies are the connections of solid or voided material within a continuous structure 

or subsystem. Therefore, the agent is tasked with altering the material layout within a topology to 

satisfy an objective. Three unique design problems were introduced to validate the effectiveness of 

using deep reinforcement learning as a design tool.  

The first design problem was addressed by showing that a deep reinforcement learning 

agent can successfully optimize discretized 2D topologies similarly to traditional gradient-based 

topology optimization. The deep reinforcement learning environment was structured to allow an 

agent to sequentially remove elements from a solid topology and be rewarded for actions that lead 

to a minimal increase in strain energy while decreasing the volume fraction of the topology. This 

multi-objective reward function was built to mimic the multi-objective nature of compliance 

minimization topology optimization. The agent was trained to design optimal topologies at a 6x6 

topology size with randomly selected loaded and bounded elements. A multi-step progressive 

refinement approach was used during testing to improve the detailed representation of the 

topologies from 6x6 to 12x12 to 24x24 without retraining the agent. The agent was tested on a 

series of common load cases, including cases the agent had not seen during training. The results 

showed that after training, the deep reinforcement learning agent adopted a generalized design 

strategy that could generate high-performing topologies similar to the output of gradient-based 
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topology optimizers. The results imply that a deep reinforcement learning agent possesses 

generalized performance capabilities for a complex engineering design task.  

The second phase of this dissertation work expands into a more complex design domain by 

showing that a deep reinforcement learning agent could successfully design mechanical 

metamaterials that exhibit targeted nonlinear deformation responses. The deep reinforcement 

learning environment was structured to allow an agent to design latent space-encoded metamaterial 

unit cells by sequentially adding material elements to a starting blank design domain according to 

Cubic Bezier curve functions. The agent was rewarded for producing unit cells that, when 

tessellated, have a surrogate-model predicted force-displacement response similar to a desired 

response.  

Separate agents were trained to design for compressive and tensile loading. Both agents 

were tested on a series of force-displacement curves with varying degrees of nonlinearity they had 

not seen during training. The results showed that after training, the deep reinforcement learning 

agents adopted a generalized design strategy that could sequentially design metamaterial unit cells 

with force-displacement responses with mean absolute percent errors of  5.3% and 8.7% compared 

to the desired response for the tensile and compressive agent, respectively. The results imply that 

a deep reinforcement learning agent possesses generalized performance capabilities for designing 

rapid, on-demand mechanical metamaterials with customizable nonlinearity. 

The final phase of this research expanded on the second to increase the metamaterial 

capabilities by designing metamaterials with customizable deformation and energy return 

capabilities and improve the world-world applicabilities of the design domain by introducing a 

constitutive material model calibrated against thermoplastic polyurethane (TPU) experimental data. 

The agent designed the metamaterials using a similar environment as the second phase of this 

manuscript but was rewarded for producing metamaterials with a surrogate-model predicted 
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compressive loading stress-strain curve similar to a desired response and minimizing or 

maximizing the energy return upon unloading. 

The agent was tested by designing mechanical metamaterials that mimic the compressive 

response of the expanded-thermoplastic polyurethane (E-TPU) material Infingergy® while 

maximizing or minimizing hysteric energy loss in compressive cyclic loading. These optimized 

designs were additively manufactured using a TPU filament and a fused deposition modeling 

(FDM) printer and experimentally tested. The experimental results show that the optimized designs 

achieve a highly similar loading response as the E-TPU material while being able to customize the 

energy return. These results show that the strategic design of mechanical metamaterials can result 

in materials that exhibit customizable deformation and energy manipulation responses.  

The deep reinforcement learning agent was also tested on an array of desired loading 

deformation responses it had not seen during training while randomly being prompted to minimize 

or maximize hysteresis. The agent designed metamaterials that exhibited deformation responses 

with an average mean absolute percent error of 9.23% compared to the desired response. 

Additionally, 95.4% and 81.8% of the hysteresis-maximizing and -minimizing designs had energy 

return percentages in at least the 90th percentile of feasible designs. The results imply that a deep 

reinforcement learning agent possesses generalized performance capabilities for designing rapid, 

on-demand mechanical metamaterials with customizable deformation and energy return 

characteristics. 

This work aims to show that formulating complex engineering design problems as a deep 

reinforcement learning optimization problem can lead to high-performing solutions. By interacting 

with an environment that encodes the core aspects of the problem, deep reinforcement learning 

agents can discover hidden relationships and generate non-intuitive optimal designs that may not 

be apparent to a human designer for a range of design problems. This work aims to inspire further 
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research into applying deep reinforcement learning as a high-level co-designer for solving 

arbitrarily complex design problems across many domains. 
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Appendix A 
 

 Individual Experimental Results  
 
       The loading and unloading stress-strain responses for the three samples of the three randomly 

produced metamaterial designs have been included. These designs were used to calibrate the 

Abaqus material model.  

 
Figure A- 1. Metamaterial Design 1 experimental results from the three additively 

manufactured samples 
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Figure A-2. Metamaterial Design 2 experimental results from the three additively 

manufactured samples 

 

 
Figure A-3. Metamaterial Design 3 experimental results from the three additively 

manufactured samples 
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