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Abstract

The growing number of chronic disease patients, emergency and disaster manage-
ment, that demand constant monitoring and examination of human biosignals and
vital signs, have increased the prominence of telemonitoring systems. There is also a
top national interest worldwide to reduce costs of healthcare services while main-
taining high-quality care to patients. Coinciding with this worldwide interest, the
rapid advances in Edge Computing, wireless communication technologies, Internet
of Things (IoT), and Big Data have facilitated the development of smart-health
(s-health) systems. S-health systems leveraging the wide range of technologies (e.g.,
smartphones, wearable devices, and portable health devices) enable providing effi-
cient continuous-remote healthcare services. However, the need of delivering decent
healthcare services to the patients while reducing healthcare costs is a challenging
issue. S-health systems require recording, transmitting and processing large volumes
of multimodal medical data generated from different types of sensors and medical
devices, which is challenging and may turn some of the remote health monitoring
applications impractical. One of the promising approaches for enabling s-health
is adopting edge computing capabilities with next generation wireless networking
technologies to provide real-time and cost-effective healthcare services.

In this thesis, we present our vision for the benefits of exploiting multi-access
edge computing (MEC) within the field of s-health. We envision a MEC-based
architecture and discuss the benefits that it can bring to realize context-aware ap-
proaches so that the s-health requirements are met. In particular, we propose four
main approaches that can be implemented leveraging such an architecture to pro-
vide efficient data delivery, namely, adaptive data classification and compression
at the edge, data-specific transceiver design for healthcare applications, distributed
in-network processing and resource optimization, and dynamic networks associa-
tion. The first approach allows for efficient and low distortion compression, while
ensuring high-reliability and fast response in case of emergency applications lever-



v

aging fuzzy classification and feature extraction techniques. The second approach
proposes an efficient transceiver design that reduces amount of transmitted data,
while considering the characteristics of the acquired data as well as maintaining
application Quality-of-Service (QoS) requirements. The third approach enables data
transfer from mobile edge nodes to the cloud in an energy-efficient and cost-effective
manner leveraging available network resources and applications’ characteristics. The
fourth approach focuses on how to benefit from the integration of multiple Radio
Access Technologies (RATs) within the MEC architecture, in order to meet the
applications’ requirements, and optimize medical data delivery. Finally, we discuss
several opportunities that edge computing can facilitate for s-health to inspire more
research in this direction.
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Chapter 1

Introduction

The investment in the healthcare field becomes a top national interest worldwide.
The governments have a moral obligation to provide decent healthcare services for
the chronically ill and elderly people [2]. However, traditional healthcare systems
cannot provide the scalability needed to cope with the increasing number of el-
derly and chronic disease patients, given that they require one-to-one relationship
between the caregiver and the patient. Hence, the evolution of computational intelli-
gence systems and Internet of Medical Things (IoMT), along with the advances of
next-generation wireless technologies, has boosted the development of traditional
healthcare processes into smart health services.

One of the promising approaches for enabling smart health services is to have
patients participate in their own treatment by providing them with intuitive, non-
intrusive tools that allow them to communicate efficiently with their caregivers. Thus,
smart-health (s-health) systems have emerged to provide healthcare stakeholders
with innovative techniques and tools that promote novel approaches to acquire, pro-
cess, transfer, and store the medical data. Part of the s-health concept is remote
health monitoring, where patients and caregivers can leverage wireless technologies
for transferring healthcare information without physical contact. S-health can be
considered as the context-aware evolution of mobile health systems [3]. In this thesis,
context aware refers to exploiting medical devices and wireless communication
technologies to detect the patient context, i.e., patient conditions, gathered data
characteristics, and surrounding networks state. This allows us to design intelligent
techniques that significantly improve the scalability of such health systems through
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optimizing the delivery of the patient’s data from the edge network to the cloud. We
argue that moving computational intelligence to the network edge is of paramount
importance to provide efficient and convenient ways for continuous-remote monitor-
ing. Realizing such concept can assist in reducing hospitalization and enable timely
delivery of healthcare services to distant communities at low costs [4]. However,
critical challenges have emerged, in such systems, that need to be addressed. In what
follows, we will discuss these challenges along with the requirements of relevant
e-health systems; then we will introduce our system architecture and thesis objectives
to tackle these challenges and meet s-health requirements.

1.1 Motivation

S-Health applications are expected to inspire substantial evolutions in the healthcare
industry toward Healthcare Industry 4.0 (Health 4.0) [5], especially in pre-hospital
emergency situations and for chronic disease monitoring. Health 4.0 facilitates
the automation and personalization of the whole medical process by leveraging
medical cyber-physical systems, IoMT, and Edge/Cloud computing. Furthermore, it
allows, on one hand, patients to monitor their health without the frequent visits of
the hospital or clinic. On the other hand, the healthcare service providers can provide
patients with medical services through computerized medical information systems
and efficient bidirectional communication. However, new challenges have emerged
with these major trends including:

• The massive real-time data collected by health monitoring systems. In s-health
systems, besides IoMT, various wireless sensors, cameras, and controllers play
an important role: they allow patients’ automatic identification and tracking,
correct drug patient associations, and continuous real-time vital signs monitor-
ing for early detection of clinical deterioration (e.g., seizure detection, heart
failure, fall detection, etc.). All these sources report an enormous amount of
real-time data that needs to be transported, swiftly processed, and stored.1

• Limited power sources and small form factor of the sensor nodes. E-health
systems typically consist of several battery-operated devices that should run

1It is expected that data produced by people, machines, and IoT will reach 500 zettabytes by 2019
[6].
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for a long time without replacement. Hence, continuous data transmission is
not viable due to the high energy toll it implies.

• The need for fast prediction and detection of emergency situations. The
increased response time due to large volume of data to be delivered and
processed may threaten people’s lives.

For the sake of completeness, we highlight the above challenges through discussing
some of the relevant e-health systems in the next section.

1.2 Characteristics and Requirements of the Relevant
E-health Systems

In Table 1.1 and Table 1.2, we summarize the characteristics and requirements of
some of the e-health systems. It is not the objective of this thesis to provide an
in-depth technical comparison on the different proposed e-health systems. However,
we investigate the practical challenges of s-health applications in the light of these
systems.

1.2.1 Monitoring systems using wearable devices

Heart monitoring applications are the most common type of remote monitoring
applications. Monitoring vital signs related to the heart reveals many types of
diseases, e.g., Cardiac arrhythmia, chronic heart failure, Ischemia and Myocardial
Infarction (MI) [7][8][9]. In [7], authors present a real-time heart monitoring system,
where the extracted medical data of the patients are transmitted to an Android based
listening port via Bluetooth. Then, this listening port forwards these data to a web
server for processing. Also, [8] exploits Android smartphone to gather patient’s
information from wearable sensors and forward it to a web portal in order to facilitate
the remote cardiac monitoring. However, in these systems, the smartphone is used
only as a communication hub to forward collected data to the cloud.

There is also a prompt progress in the field of neurologically-oriented monitoring
systems. However, the enormous amount of data generated from such systems is also
challenging. For instance, in Intensive Care Unit (ICU) of Electroencephalography
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Table 1.1 Sample of the e-health monitoring systems.

Application Description Limitations
Cardiac disorder Heart monitoring system is All data
detection [7] proposed for detecting patients’ processing tasks

state and sending an alert are performed
message in case of at a web server
abnormalities
Data: Electrocardiography (ECG)
Requirements: long lifetime for
the battery-operated devices

Remote Cardiac A location based real-time Few number
monitoring [8] Cardiac monitoring system is of subjects

developed participated in
Data: Heart rate, blood the experiments
pressure, and body temperature
Requirements: long lifetime for
the battery-operated devices

Detection of Different methods to detect Majority of
Ischemia and Ischemia and MI are presented the reviewed
Myocardial using ECG signal along with methods did
Infarction [9] Electronic Health Records (EHR) not exploit

information contextual
Data: ECG and EHR information
Requirements: low computational
complexity

Parkinson’s A PD monitoring system over the All data
disease (PD) cloud is proposed using feature processing tasks
detection [10] selection and classification are performed

Data: Voice signal at the cloud
Requirements: Reliability and high
classification accuracy

Contactless heart Heart rate measurements from Illumination
rate measurement facial videos are performed using variance, motion
[11] digital camera variance, and

Data: Heart rate motion artifacts
Requirements: Reliability and high
measurement accuracy
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(EEG) monitoring system, samples of EEG along with video recording should be
stored and accessed remotely for correlating clinical activity with EEG pattern.
This can result in generating 8-10 GB per patient every day [12], which obviously
sets a significant load on the system design and scalability in terms of processing
capabilities, storage space, and transmission power.

1.2.2 Contactless monitoring systems

Along with the evaluation of remote sensing, contactless monitoring has attained
much focus recently. The main motivation of using contactless sensors is enabling
ordinary life as much comfortable as possible to all patients, since the patients
are required only to be present within a few meters from the sensors [10]. Heart
rate measurement from facial videos using digital camera sensors is one of the
rapidly growing directions to extract physiological signals without affecting patient’s
activities [11]. However, transmitting large volumes of data generated from these
camera sensors using conventional cloud-based architecture is not advisable and may
deem some of these applications impractical given the limited network resources.
For instance, the amount of digital data generated from a single-standard camera can
reach to 40 GB per day.

1.2.3 Disorder prediction/detection systems

One of the promising applications of e-health systems, is the predictive monitoring
of high-risk patients. The aim of these techniques is improving prediction/detection
of the emergency to implement preventative strategies for reducing morbidity and
mortality associated with high-risk patients. For instance, [13] presented a sim-
plistic framework for near-term prediction of Bradycardia in preterm infants using
statistical features extracted from ECG signal. Also, [14] proposed a quick seizure
detection algorithm using fast wavelet decomposition method. In such real-time
prediction/detection systems, the swift delivery of data to the server is a necessity.
In many cases, this requires that data are analyzed and possibly diagnosis is made
as close as possible to the patient in order to reduce the response time. However,
detecting the changes of the physiological signals (e.g., abnormality in ECG signals)
in continuous health monitoring systems is not an easy task. It can be an indica-
tion for an emergency situation (e.g., occurrence of a heart attack) [15][16]. This
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abnormality detection task becomes even more challenging during wireless commu-
nication transfer of patient’s data to the cloud due to the erroneous communication
and security attacks that could introduce errors or affect patient data integrity.

Such requirements of e-health systems make the conventional cloud computing
paradigm unsuitable for s-health, since the centralized approach cannot provide a
sufficiently high level of scalability and responsiveness while causing heavy network
load.

Table 1.2 Sample of the e-health prediction/detection systems.

Application Description Limitations
Prediction of Leveraging point process Using single
Bradycardia in analysis of the heartbeat time channel ECG
preterm infants series for near-term prediction data to predict
[13] of Bradycardia in preterm Bradycardia

infants
Data: ECG
Requirements: Fast prediction of
emergency situations

Real-time Automatic epileptic seizure Requiring large
epileptic seizure detection system is amount of data
detection [14] developed using wavelet for training

decomposition to improve
Data: EEG specificity of the
Requirements: Fast seizure detector
detection

ECG change A centralized approach for the Using one type
detection [15] detection of abnormalities and of data for

intrusions in the ECG data detecting
is developed abnormality
Data: ECG and emergency
Requirements: Fast detection of situations
abnormalities

Remote monitoring Real-time tracking system Relying on one
of chronic of chronic pulmonary type of data
obstructive patients comfortable in their
pulmonary [16] home environment is developed

Data: Pulmonary Function
Test (PFT)
Requirements: Fast detection of
abnormalities
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Fig. 1.1 Proposed smart health system architecture.

1.3 Multi-access Edge Computing for Smart Health

Edge computing can significantly help in the healthcare evolution to smart healthcare
through enabling better insight of heterogeneous healthcare environment in order to
provide affordable and quality patient care [17]. Hence, a new approach has emerged,
known as Mobile Edge Computing or Multi-access Edge Computing (MEC), defined
as the ability to intelligently process data at the edge of the network, i.e., at the
proximity of the data sources [18, 19]. Thus, this section gives a brief description of
our MEC-based architecture for s-health systems (see Figure 1.1), while discussing
the benefits that it offers to such systems given the above challenges.

1.3.1 MEC-based Architecture

The presented system architecture, shown in Figure 1.1, stretches from the data
sources located on or around patients to the healthcare service providers. It contains
the following major components:

1) Hybrid sensing sources: A combination of sensing devices attached/near
to the patients represents the set of data sources. Examples include: body area
sensor networks (including wearable medical and non-medical sensors), IP cameras,
smartphones, and external medical devices. All such devices are leveraged for
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monitoring patients’ state within the smart assisted environment, which facilitates
continuous-remote monitoring and automatic detection of emergency conditions.

2) Mobile/infrastructure Edge Node (MEN): Herein, a MEN can be a mobile
edge node, which works as a Personal/Patient Data Aggregator (PDA), or an infras-
tructure edge node that is deployed near to the patient to aggregate the data collected
by a Body Area Sensor Network (BASN) and transmit it to the cloud. This MEN
implements intermediate processing functions between the data sources and the
cloud. In particular, the MEN fuses the medical and non-medical data from different
sources, performs in-network processing on the gathered data, classification, and
detection of the patient context, extracts information of interest, and forwards the
processed data or extracted information to the cloud. In addition to that, the MEN
can be a data source itself, which acquires signals related to the health of the patients
as well as context data. Importantly, various e-health applications (apps) can also be
implemented in the MEN, e.g., for long-term chronic disease management. Such
apps can help patients to actively participate in their treatment and to ubiquitously
interact with their doctors anytime and anywhere. Furthermore, with a MEN run-
ning specialized context-aware processing, various data sources can be connected
and managed easily near the patient in order to optimize data delivery based on
the patient’s context, i.e., data type, supported application, and wireless network
conditions.

3) Heterogeneous Radio Access Network: Several s-health services demand
for high data rates and quality of service (QoS) level, thus motivating the use of
wireless heterogeneous network (HetNet). Thanks to the availability of different
technologies such as UMTS (Universal Mobile Telecommunications Service), LTE
(Long-Term Evolution), Wi-Fi, and Bluetooth, HetNet can face the increasing traffic
demand and successfully meet the QoS requirements. Also, it allows the selection of
the most convenient radio interface, in terms of energy as well as monetary cost.

4) Cloud: It is a healthcare cloud where data storage, sophisticated data analysis
methods for pattern detection, trend discovery, and population health management
can be enabled. An example of the healthcare cloud can be a hospital, which monitors
and records patients’ state while providing required help if needed.

5) Monitoring and services provider: A health service provider can be a doctor,
an intelligent ambulance, or even a patient’s relative, who provides preventive,
curative, or emergency healthcare services to the patients.
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1.3.2 Benefits of MEC-based Architecture for S-health

In the light of the aforementioned challenges described in Section 1.2, the proposed
MEC-based system architecture exhibits the following major advantages:

Reduced amount of transferred data: E-health monitoring systems require
the collection, hence transmission, of large volumes of data (as shown in Table 1.1),
since many sensors and medical devices continuously generate a massive amount
of data every few seconds [4]. Thus, considering centralized cloud to support
such traffic workload is not advisable and may deem some of these applications
impractical given the limited bandwidth availability and battery-operated devices.
On the contrary, processing, compressing, and extracting most important information
from the gathered data at the MEN greatly reduce the amount of data to be transferred
toward the cloud, hence reduce the bandwidth consumption, and even makes it
possible to store the data locally.

Extended devices lifetime: Given the requirement of e-health monitoring sys-
tems discussed in Section 1.2.1 and 1.2.2, managing the devices operational state
and their data transfer at the MEN allows for a better usage of the devices’ battery.
Moreover, the proximity between devices and MEN further reduces the energy
consumption due to data transmission. Regarding the data transmission from the
MEN toward the cloud, data compression and selection of the most convenient radio
interface to be used, can also significantly decrease the energy consumption at the
MEN – a component that amounts to about 70% of the total power consumption of a
wireless monitoring system [20].

Low latency: For real-time high-intensive monitoring applications, the swift
delivery of data to the cloud is a necessity (as shown in Table 1.2). In many cases,
this requires that data is analyzed and possibly diagnosis is made as close as possible
to the patient. Hence, quick detection of the changes in the gathered medical data
at the MEN can significantly help in real-time abnormal event detection. The
implementation of a smart edge node addresses this issue, and the ability of the MEN
to perform event detection fulfills this requirement even in the case of emergency
applications.

Location Awareness: Given the requirements of prediction/detection systems
discussed in Section 1.2.3, the network edge can be fruitfully exploited to extract
context information and apply localization techniques. This brings two main ad-
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vantages to s-health applications. First, localizing a patient allows matching his/her
geographical position with the nearest appropriate caregivers (e.g., hospital or ambu-
lance). Second, data delivery can be optimized accounting for the nearest edge node,
or the most suitable device that can further relay data to the network infrastructure,
which ultimately lowers the total energy consumption and increases reliability.

1.4 Thesis Objectives and Contributions

This thesis presents a generalized s-health architecture for reliable, scalable, and
effective patient monitoring, leveraging sensors and smartphone technologies for
connecting patients’ networks with medical infrastructure to facilitate remote diag-
nosis and treatment. In particular, we propose an edge-based s-health framework for
improving healthcare services through the development of smart techniques, algo-
rithms, and tools enabling the early diagnosis, remote monitoring, and fast emergency
response for the elderly and chronic disease patients. In contrast to the previous
work in this domain, the adopted framework considers context-aware approaches by
focusing on applications’ requirements and patients’ data characteristics, leveraging
heterogeneous wireless networks for optimized medical data delivery. Accordingly,
we focus in this thesis on answering the following major questions:

1. How to reduce the amount of transmitted data, while providing reliable health-
care services?

2. How to integrate wireless network components, and application-layer charac-
teristics to propose energy-efficient s-health system?

3. How to leverage the spectrum across multiple RANs, in order to maintain
healthcare applications’ QoS?

1.4.1 Objectives

Given the aforementioned challenges and requirements for e-health systems, our
thesis targets the following major objectives:

(A) Design a scalable s-health architecture that enables the development of process-
ing and event-detection solutions for collecting, processing, and transferring
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patients’ data (e.g., vital signs, and health information) to healthcare service
providers in an energy-efficient manner.

(B) Develop optimized transmission mechanisms over heterogeneous s-health
system leveraging networks characteristics and applications’ requirements,
while addressing the tradeoff between energy consumption and latency.

1.4.2 Contributions

In order to achieve the above objectives, we propose different context-aware tech-
niques over the proposed MEC architecture (see Figure 1.2). These techniques can:
promote effective and convenient ways for continuous-remote monitoring, foster
supportive environments for enhancing efficiency of patient treatment, enhance over-
all system performance, and satisfy the s-health requirements. Specifically, our main
contributions can be summarized as follows:

1. Develop automatic, fast-response, and highly-scalable s-health system, which
aims to reduce unnecessary doctor’s visits through enabling the early diag-
nosis and detection of the health risks. In our way to maintain objective (A),
adaptive edge-based classification and compression techniques are proposed in
the Processing Stage to be implemented in the devices nearest to the patients
and infrastructure components, e.g., gateways, routers and access points (see
Figure 1.1). These techniques could significantly improve medical data deliv-
ery and QoS for s-health systems through moving intelligence to the network
edge while accounting for the importance and characteristics of the gathered
data, as well as patient’s state. Description of the proposed techniques can be
found in Chapter 2.

2. Design a data-specific low-complexity transceiver that maintains application
QoS requirements, i.e., signal distortion, taking into consideration the char-
acteristics of the transmitted data, while saving a significant amount of data
that needs to be transmitted. In particular, in the Transmission Stage , we
propose an efficient compression scheme at the physical layer exploiting the
existing Orthogonal Frequency Division Multiplexing (OFDM) transceiver’s
components in order to obtain high compression efficiency without adding
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Fig. 1.2 The main contributions of the thesis.

much overheads, as illustrated in Chapter 3. This work helps in achieving
objective (B).

3. Formulate and analytically solve a multi-objective optimization problem that
targets optimizing different QoS metrics, namely, signal distortion, delay, and
Bit Error Rate (BER), as well as monetary cost and transmission energy at
the processing and transmission stages. Specifically, we aim to achieve both
objectives (A) and (B) through obtaining the optimal tradeoff among the above
factors, which exhibit conflicting trends. Thus, in Chapter 4, we propose an
optimal, centralized solution leveraging geometric program transformation
and Lagrangian duality theory, in addition to a scalable distributed solution.
The proposed distributed algorithm converges to the optimal solution and
adapts to varying network conditions. Hence, it enhances the overall system
performance while providing energy-efficient and reliable connectivity over
s-health system.

4. Develop efficient networks association mechanism with adaptive compression
for improving medical data delivery over heterogeneous s-health systems.
Thanks to the availability of several cellular, WiFi and fixed access technolo-
gies, the performance of s-health systems can be significantly enhanced by
enabling efficient data transfer from edge nodes to the cloud in an energy-
efficient manner, while maintaining the applications’ requirements for low
latency. This calls for innovative networks association mechanisms at the edge,



1.4 Thesis Objectives and Contributions 13

which provide optimized data delivery over heterogeneous s-health systems,
hence achieving objective (B). Thus, in Chapter 5, we leverage optimization
techniques for networks association to allow the edge nodes to minimize
their energy consumption and monetary cost, while considering the different
QoS constraints, dynamics and characteristics of the available Radio Access
Networks (RANs), and applications’ requirements.



Chapter 2

Edge-based Compression and
Classification for Real-time
Healthcare Systems

2.1 Overview

This chapter presents our vision of leveraging edge computing to monitor, process,
and make autonomous decisions for smart health applications.1 It focuses on remote
health monitoring system for brain disorders and, in particular, it proposes an energy-
efficient remote monitoring system for epileptic seizure detection.2 EEG signal plays
an important role in the diagnosis of epileptic disease, brain death, tumors, stroke,
and several brain disorders [24]. Such applications typically require the recording,
transmission, and processing of very large volumes of data. Consider, for instance,
high-resolution EEG devices consisting of up to 100 electrodes, each working at
sampling rate as high as 1000 samples/s. By representing each sample by 2 bytes,
it results in a data rate of 1.6 Mbps per single patient. Also, in normal conditions,
information about medical patients should be reported to the Mobile-Health Cloud
(MHC) every 5 minutes, while, in the case of emergency where high-intensive
monitoring is needed, all data collected by the BASN should be reported every 10

1This work has been published in [21][22].
2Epilepsy is the most common neurological disorder in the world after stroke and Alzheimer’s

disease. It is estimated to affect more than 65 million people worldwide, with more than 80% of
people with epilepsy living in developing countries [23].
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seconds [25]. Furthermore, the wireless transmission of such amount of data is
highly energy consuming (it amounts to about 70% of the total power consumption
of a wireless EEG monitoring system [20]); also, it requires significant processing
capabilities, high reliability and, in the case of emergency, very short latency.

Such requirements cannot be supported by resource-constrained PDA, unless we
adopt smart solutions. The conventional remote monitoring system using simple
sensor-to-cloud architecture [26], where the raw date is collected from different
sensor nodes and send to the cloud for processing, becomes unsuitable for s-health.
Such centralized approach cannot provide sufficient scalability and responsiveness,
while causing heavy network load. On the contrary, by leveraging edge computing
capabilities, s-health systems can significantly improve medical data delivery while
decreasing the latency and energy consumption.

Given the aforementioned requirements and constraints of remote monitoring
systems, our goal is to enable energy-efficient delivery of real-time medical data
through implementing: (i) a mechanism for abnormal pattern detection at the network
edge that allows us to identify the patient’s state, and (ii) a selective transfer scheme
that, exploiting the above detection mechanism, transmits toward the MHC only the
essential data based on the current situation. Hence, our main contributions can be
summarized as follows.

1. Design an energy-efficient remote monitoring system for epileptic seizure de-
tection and notification, which adapts the type of information to be transmitted
over the wireless channel based on the patient’s state. In the proposed system,
local in-network processing at the edge is executed on the raw EEG data before
their transmission in order to accurately detect patient’s state. Then, depending
on the patient’s state, our system leverages different data reduction techniques
to reduce the amount of transmitted data.

2. Develop a fuzzy classification technique based on feature extraction and For-
mal Concept Analysis (FCA). Our classifier, named Swift In-network Clas-
sification (SIC), enables an accurate detection of the patient’s state, while
providing a quick notification about the patient’s state at the PDA, as well as at
the remote monitoring server (doctor’s machine). We remark that the proposed
mechanism allows for a quick response while keeping the complexity low,
thus it is amenable for implementation at the PDA (i.e., mobile edge).



16 Edge-based Compression and Classification for Real-time Healthcare Systems

3. Present a comparative study of the applied time-domain and frequency-domain
feature extraction techniques, discussing the tradeoff that they exhibit in terms
of transmitted data length and classification accuracy.

4. Propose an automated class-based compression scheme that allows for satis-
fying application QoS requirements (i.e., signal distortion and classification
accuracy), while saving a significant amount of energy at the edge considering
the class of the data.

5. Evaluating the proposed mechanisms using an implemented real-time EEG
monitoring system. In this implemented system, the PDA handles the EEG
readings via a specific mobile application that we have developed, and applies
proposed SIC technique for detecting the patient’s state. Based on the detected
state, the PDA transmits the appropriate data type to a remote server, while
in case of emergency, an emergency notification is declared at the PDA and
forwarded to the server. At the server, the transmitted data from the PDA is
received, and a real-time data reconstruction and distortion evaluation for the
compressed-received data is applied.

2.2 Related Work

The rapid growth of IoMT has motivated the development of innovative applications
for information intensive fields such as healthcare services [27]. The conventional
cloud computing architecture facilitates for the smart devices (e.g., sensors, smart-
phones) to exchange information with the cloud through 3G/4G technologies, or
IoT gateway [28]. Thus, on one hand provides uniform, concise, and scalable pro-
cessing as well as storage services for supporting application requirements. On
the other hand, the deployments of remote monitoring applications, and in general
delay-sensitive IoT applications on the cloud are facing challenges. For instance, the
delay caused by transferring data to and from the cloud is unpredictable, in addition
to the economic considerations, technical limitations, and administrative issues [29].

In [30], the authors implement an automatic mobile-based health system exploit-
ing the information contained in EEG signals for seizures detection. This system
consists of back-end part (i.e., server part) and front-end part (i.e., mobile part).
Server part comprises the pre-processing tasks, which include feature extraction,
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normalization, and selection, as well as classification task. While mobile part in-
cludes data acquisition, visualization, and transmission. The authors in this study
also present different algorithms in the pre-processing and classification stages to
implement a reliable system in terms of execution time and classification accuracy.
However, they consider the mobile part as a communication hub, while moving the
pre-processing and classification tasks to the server. Considering such centralized
approach cannot provide a sufficiently high level of scalability and responsiveness
given the limited bandwidth availability, energy consumption, and data privacy con-
cerns. On the contrary, processing and compressing the gathered data at the edge
greatly reduce the amount of information to be transferred toward the cloud, hence
the bandwidth and energy consumption, while ensuring privacy protection.

To address the aforementioned challenges, Edge computing and Fog computing
were proposed to use computing resources near IoMT devices for local storage
and preliminary data processing [31]. In this context, the authors in [32] proposed
a software framework for healthcare applications based on Edge paradigm. This
framework is used for acquiring and analyzing Heart Rate Variability (HRV) signals,
while presenting the advantages of leveraging Edge paradigm rather than the clas-
sical Cloud paradigm. The authors in [33] discuss the benefits of Fog architecture
in preventive healthcare applications, and the feasibility of Field-Programmable
Gate Array (FPGA) technology in implementing efficient Fog nodes. This afore-
mentioned work motivates that performing efficient in-network processing with
feature extraction and adaptive compression at the edge would significantly assist in
network congestion, offload core network traffic, accelerating analysis, and meeting
application requirements for swift and secure data transfer.

Most of the related work in the context of Wireless Sensor Network (WSN) was
motivated by the reduction of latency to perform classification at the sensor network.
Different machine learning methods have been investigated to exploit historical data
and improve the performance of sensor networks through discovering important
correlations in the sensor data and adopting better sensor deployment for maximum
data coverage. For instance, the authors in [34] present a classification technique
for efficient data collection in WSN. However, it is assumed that the end users are
interested only in rounds of measurements characterized by certain patterns. Hence,
the WSN exploits the classification with the goal of selecting the most relevant rounds
of gathered data in order to reduce the amount of transmitted data. A comprehensive
overview of recent machine learning methods applied in WSN can be found in [35].
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However, many of the aforementioned works performing classification at the sensor
network focused on the reduction of latency rather than energy efficiency. It is not
clear whether that is more energy efficient than transmitting and classifying the data
at the end users or not, since such classification techniques require distributed feature
extraction and transmission, which may be less or more energy consuming than
the transmission of measurements without classification. Furthermore, learning by
examples needs to process large data sets to ensure high accuracy, whereas it is not
straightforward to mathematically formulate the learned models, or to have the full
control over the knowledge discovery process

Fuzzy logic techniques have been also investigated in the area of patients’ care
to predict and categorize patients’ states [36][37]. For instance, the author in [36]
leverages fuzzy techniques in the development of a decision support system that
optimizes the postprandial glycemia in type 1 diabetes patients, while the authors
in [37] exploit fuzzy and probabilistic computing to assess breast cancer risk. In
[38], the authors discuss the design and implementation of a fuzzy logic-based
warning system that exploits fuzzy logic to categorize patients’ states and send
timely warning messages to the healthcare service providers. In [39], a fuzzy expert
system is developed to classify the patients with confined or non-confined prostate
cancer showing the efficiency of the presented fuzzy system compared with other
probabilistic systems.

Regarding the data compression, number of biosignal compression algorithms
were proposed in the literature [40], which vary in the lossiness, computational
complexity, and waveform transformation (e.g., Discrete Wavelet Transform (DWT),
Autoencoders, vector quantization, discrete cosine transform, etc.) [41][42]. In [43],
the authors presented lossless/near-lossless compression algorithms for multichannel
biomedical signals using information theory and signal processing tools through
leveraging the spatial and temporal redundancies in biomedical signals. However,
the intensive computational complexity of such techniques might turn the in-network
processing on battery-operated devices impractical [44][45][46]. Furthermore, non
of the aforementioned works have considered the characteristics of the gathered
data, or the class of the patient before compression, in order to adapt the proposed
compression techniques based on the class of the data and application’s requirements.

The enormous advances in smartphone capabilities have also motivated the devel-
opment of smartphone apps for healthcare monitoring. Leveraging built-in sensors of
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the mobile phones, smartwatchs, gyroscopic sensors, and GPS modules have enabled
developing different apps for seizures detection at the smartphone. For instance,
“Epdetect” application employs signal processing techniques to differentiate between
normal movements and those associated with seizures [47]. When any abnormal
movements are detected, this app triggers seizures detected alarm. Seizario [48] is
another mobile app that uses only smartphone to detect seizures convulsions and
falls exploiting accelerometer-based learning algorithms with elaborate finite-state-
machines. However, such apps that relay on movements detection instead of the
analysis of EEG signals are not reliable for detecting absence seizures that do not
result in convulsions.

Accordingly, leveraging higher levels of autonomy and intelligence at the network
edge through moving processing and classification tasks to the mobile edge node
can significantly enhance energy consumption, as well as latency and response time,
while satisfying the requirements of smart healthcare services.

2.3 System Model

Motivated by the edge computing paradigm, where we push the computational
intelligence closer to the patient, we propose and implement s-health system, shown
in Figure 2.1. This system aims for detecting patient’s state exploiting feature
extraction and fuzzy classification at the network edge. In particular, the proposed
system is organized in a three-tier (i.e. cloud/edge/IoT devices) architecture that
provides the gathered data/emergency notification to the healthcare provider. In this
architecture, the EEG data is collected from a patient using an EEG headset in the
IoT devices layer. Then, it is periodically transferred to a PDA, i.e., a smartphone,
that represents the Edge Layer, which processes the gathered data and forwards the
processed data to the far cloud, hereinafter referred to as MHC.

This study focuses on epileptic seizure detection as an application of EEG-
based diagnosis.3 Recent studies have indeed shown that the dynamic properties
of EEG signals can be effectively used to differentiate between healthy subjects
and diagnosed patients with epileptic disease. We remark that our study does not

3Although the proposed framework focuses on EEG-based application, it can be easily extended
to a range of applications which are typically at a low data rate, or at higher data rates such as video
streaming.
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Fig. 2.1 System model under study.

only focus on monitoring people who suffer from active epilepsy, but also considers
normal people who are more susceptible to seizures (i.e., high risk people). For
instance, people who have surgery and became seizures free are able to stop seizures
medicine. However, they may need to stay on monitoring to prevent seizures from
coming back, even after becoming normal [49]. Also, seizures do happen frequently
in people who have had a traumatic injury to the brain. Most seizures occur in the
first several days or weeks after the brain injury, however some cases may appear
months or years after the injury [50]. These kind of seizures free people we can not
consider them as epileptic. However, they are more susceptible to seizures. Thus, it
is of prominent importance to monitor such high risk people for seizures.

In order to conduct our study, we leverage the EEG database in [51] considering
three classes of patients: seizure-free (SF), non-active (NAC), and active (AC). The
first one includes seizure-free subjects (i.e., do not have seizures), the second refers to
non-active patients diagnosed with epileptic disorder, however they are in non-active
state, while the third class comprises patients with active epileptic seizure, as shown
in Figure 2.2. Each class includes 100 single-channel EEG segments (i.e., 100 rows),
and, given a sensing time frame of 23.6 s and a sampling rate of 173.6 sample/s, for
each channel there are 4096 samples (i.e., columns).

With the aim to develop an energy-efficient monitoring system, we design a
mechanism that enables a PDA to always select the most appropriate configuration
for transmitting the patient’s information, based on the patient’s state. The proposed
scheme is depicted in Figure 2.3.
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Fig. 2.2 Representation of the three classes of EEG signals in the time domain.

Starting from the collected EEG data, the PDA first derives specific values
(features) that are informative, non-redundant, and pertinent to seizures detection.
These features allow the classification process at the PDA (i.e., the mobile edge),
as well as at the MHC when necessary, leading to an accurate interpretation of the
patient’s state. Based on the detected patient’s state, the PDA will act as follows:

• in case of AC (i.e., emergency), it will send toward the healthcare service
provider an Emergency Notification (EN) signal, along with raw EEG data to
the MHC for high-intensive monitoring;

• in case of NAC, it will compress and, then, forward EEG data;

• in case of SF, it will send only EEG features (i.e., frequency-domain or time-
domain features).

At the MHC, according to the received data, signal reconstruction, feature extraction,
classification, or distortion evaluation can be performed, in order to accurately
evaluate the state of the patient.

It is worth mentioning that for SF it is important to monitor patient’s state
through sending EEG features to confirm the status stability, whereas sending raw
or compressed signal will not add much information to the physicians as long as
the state is stable (no further analysis is needed in this case). While for NAC, it is
important for the physicians to analyze the EEG signal not only the features, so they
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Fig. 2.3 Proposed in-network processing tasks at the edge.

can expect when seizures could happen. Thus, it is worth to send the compressed
data with acceptable level of distortion to the MHC. In case of emergency (AC), it is
important to send raw data without distortion for enabling sophisticated analysis of
EEG signals at the cloud.

2.4 Feature Extraction

The first step in our procedure toward the design of a reliable and energy-efficient
system for epileptic seizure detection and notification, consists in identifying a set
of epileptic-related features through executing feature extraction on the gathered
data at the PDA. To this end, we leverage two approaches: time-domain and the
frequency-domain feature extraction.

2.4.1 Time-Domain Feature Extraction (TD-FE)

Our aim is to pick out the most representative time features to be used in identifying
the different EEG classes. From the signal behavior shown in Figure 2.2, the three
EEG classes under study exhibit different mean and variance values, in addition to
different amplitude variations over time. To account for the latter, it is crucial to
consider as relevant feature the waveform length, as a representation of the signal
variation over time, i.e., the cumulative length of the waveform over a given time
window. Moreover, it is important to consider the Auto-regression (AR) coefficients
as they provide a smooth and compact representation of the signal spectrum [52][53].
We therefore select the following four statistical features:
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Mean absolute value

µ̃ j =
∑

N
k=1 |x j(k)|

N
(2.1)

Variance

σ̃
2
j =

∑
N
k=1 x2

j(k)

N−1
(2.2)

Waveform length

WL j =
N−1

∑
k=1
|x j(k+1)− x j(k)| (2.3)

Auto-regression coefficients

x̃ j(k) =
p

∑
i=1

aix j(k− i)+ ek (2.4)

where:

• N is the considered time window expressed in number of samples, namely
N = 4096 samples,

• x̃ j(k) is the k-th sample, k ∈ {1, ..,N}, referring to the generic patient j,

• ai represents the auto-regression coefficient, p is the order of the auto-regression
model, and ek is the residual white noise [54].

Accordingly, for a given patient, the above four time features are representative of
the patient’s state over a time window of N samples.

2.4.2 Frequency-Domain Feature Extraction (FD-FE)

By transforming the gathered EEG signal into the frequency domain,4 we observe
that the different EEG classes have diverse amplitude range (see Figure 2.4) – an
important characteristic that significantly facilitates discrimination between the dif-
ferent classes. Also, the main advantage of leveraging FD-FE is their immune to
signal variations resultant from electrode placement or physical characteristics of
patients [56]. Thus, by segmenting the frequency spectrum of the EEG signal into
multi-subbands, each of which includes a certain number of frequency components,

4The EEG signal is transformed into the frequency domain using the Fast Fourier Transform
(FFT) [55]. FFT is considered as a classic frequency analysis method with complexity O(N logN).
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Fig. 2.4 The three classes of EEG signal after FFT.

different subsets of these sub-bands can be selected as features vector [57]. Specifi-
cally, we use the following five frequency sub-bands, named α f , β f , δ f , γ f , and θ f ,
corresponding to the frequency ranges 8−12, 12−32, 0.2−3, > 32, and 3−8 Hz,
respectively [58]. Clearly, the more the frequency subsets that we consider, the larger
the amount of data to be processed (and then transmitted), which in turn increases
the energy consumption while providing higher classification accuracy.

2.5 Swift In-network Classification

The second step in our procedure toward a reliable and energy-efficient detection of
epileptic seizure is classification of the patient’s state. In particular, we propose a
fuzzy classification mechanism to detect different EEG classes at the PDA leveraging
the feature extraction techniques described above. As mentioned before, such classi-
fication, named SIC (Swift In-network Classification), has two advantages. First, it
allows the PDA to select the most convenient transmission option given the detected
state of the patient. Second, in case of emergency, a quick alert and notification
can be initiated, which saves significant delays resulting from transmitting then
classifying the data at the MHC.

In what follows, we first review some basic definitions from relational algebra as
well as Formal Concept Analysis (FCA), for analyzing data and formally representing
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conceptual knowledge. Then, we introduce an automated method to transform EEG
signal into a fuzzy binary relation. The resultant relation is decomposed into a set of
optimal concepts to build association rules for a fast, yet accurate, classification.

2.5.1 Using Knowledge Discovery in EEG Datasets

This section introduces the basic notions that will be utilized to induce a crisp relation
from a fuzzy one [59], and to create a set of association rules from the obtained
crisp relation [60][61]. Let O be the set of patients (i.e., objects) and P the set of
features (i.e., properties). The fuzzy relation on the universe U = O×P measures
the strength of the correlation between patients and features. In order to proceed
further, we recall the following formal definitions [62][63]:

Definition 1. A fuzzy binary relation, R, on the universe U = O×P , is a fuzzy
set defined on U , such that for any given pair (o, p), where o ∈ O, p ∈P , µR(o, p)
is the value of the membership function within R, representing the degree to which o
and p are related under R.

Definition 2. Let α ∈ [0,1]. The α-cut of R, denoted by Rα , is a crisp bi-
nary relation such that, for all (o, p) ∈ U , µRα

(o, p) = 1, if µR(o, p) ≥ α . Else,
µRα

(o, p) = 0.

Definition 3. A rectangle of Rα , denoted by (A ,B), is a Cartesian product of
two subsets A ⊆ O , B ⊆P , such that A ×B ⊆ Rα .

Definition 4. A rectangle (A ,B) is said to be maximal under relation Rα if
A ×B ⊆ ˆA × B̂ ⊆ Rα ⇒A = ˆA and B = B̂.

Definition 5. A maximal rectangle (A ,B) is said to be optimal if it maximizes
the gain function. The gain function of a rectangle (A ,B) is given by: G(A ,B) =

|A | · |B|− (|A |+ |B|) where | · | denotes the set cardinality.

Definition 6. The coverage of Rα is defined as a set of optimal rectangles V

under Rα such that any element (a,b) ∈ Rα is included in at least one rectangle of
V .

Examples illustrating the above definitions can be found in [59][64].

As mentioned, in our case R represents the correlation between patients and
features, which can be converted into a crisp binary relation, Rα , by adjusting the
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threshold α . Thus, an optimal rectangle corresponds to the maximum number of
patients that share the maximum number of features can be obtained. Our aim is to
obtain the minimal set of optimal rectangles covering our binary relation.

To this end, given Rα , we adopt the decomposition of a binary relation presented
in [65], which is based on difunctional decomposition. Accordingly, first the Fringe
Relation of a binary relation is calculated. This fringe relation is, by definition, a
difunctional relation, and all its elements are isolated points. If (a,b) is an isolated
point, by definition it is included in one maximal rectangle only [65]. Hence, it
follows that the maximal rectangles can be easily obtained by finding such isolated
points.

We then select the optimal rectangles and consider that each of them is an
equivalent representation of an association rule whose head is a class label (e.g., SF,
NAC, or AC). Such rules are utilized to build our classifier.

The steps we follow in order to extract the association rules from the EEG data
and to classify a patient’s state are exemplified in the next section.

2.5.2 Rule Extraction and Classification

For the sake of clarity, we describe the adopted procedure by referring to a toy
example where the data used as training set refers to nine patients (three for each
class).

Step 1: Feature extraction. Consider the patients’ raw EEG samples that are
available as training set. We first extract features from the collected EEG samples,
using the TD-FE or FD-FE schemes presented in Section 2.4. As an example,
Figure 2.5 illustrates the features obtained when the TD-FE technique is applied.
These features are computed using equations (2.1)-(2.4) over the data of nine patients
belonging to three classes of EEG data, namely, SF, NAC and AC.

The features are then assessed and selected. We do so by calculating the cor-
relation of these features with the different patient classes: the features that are
highly correlated with a class label, and low correlated with each other, are the most
informative ones, and are thus selected.

Step 2: From feature values to fuzzy relation. In order to transform the
selected features into a fuzzy binary relation, negative feature values are multiplied
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Fig. 2.5 Step 1: EEG time-domain features computed over the data of nine patients belonging
to the three classes, namely, SF, NAC and AC.

Fig. 2.6 Step 2: Transformation of EEG time-domain features into fuzzy binary relation.

by −1 and all values are normalized with respect to their maximum. The goal of the
normalization is to map all selected features from Figure 2.5 onto non-dimensional
values within the [0,1] range. The result is reported in Figure 2.6.

Step 3: From fuzzy to crisp. We then transform the resultant fuzzy binary
relation into a crisp relation (see Definition 2), by properly setting the α parameter
(see Figure 2.7).

Step 4: Finding optimal rectangles. The crisp binary relation values are then
decomposed into a set of optimal rectangles (see Definition 6), using the algorithm
presented in [65] and discussed in the previous section. The result of this operation in
our example is shown in Figure 2.7, where we note that there is an optimal rectangle
for each patient class.

Step 5: From rectangles to rules. Based on the identified rectangles, we derive
a set of association rules that can be used to effectively detect the class to which
patients belong (see Table 2.1). As mentioned above, in our example there are three
optimal rectangles, one for each class. Given a rectangle, we create a rule whose
head is given by the corresponding class label and the body is determined by the
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Fig. 2.7 Steps 3 and 4: Transformation of fuzzy binary relation into a crisp relation with
α = 0.3, and identification of optimal rectangles (highlighted in colors).

values taken by the selected features within the rectangle. For instance, looking at
Figure 2.7, if all the patient’s features take the value 1 under the crisp relation, then
the patient belongs to the AC class.

However, this turned out into low classification accuracy while differentiating
between the two classes SF and NAC. To enhance our approach, we therefore
leverage what we called shadow concept: we consider not only the feature values
for which the relation Rα is equal to 1, but also the negation of the features, i.e., the
feature values for which the relation is equal to 0. In this case, both the features and
the negation of the features of an optimal rectangle yield the condition part (body)
of the rule, while the class of the patient represents its consequent part (head of the
rule). Accordingly, we obtain three association rules (one for each class), as shown
in Table 2.1. For completeness, in Table 2.2 we also report the association rules that
we obtain applying the same procedure but using FD-FE instead of TD-FE.

Step 6: Classification. The obtained association rules are used to build a classi-
fier at the mobile edge (the PDA). They are therefore applied to the patient’s data in
order to detect his/her state. Recall that, based on the detected patient’s state, the
PDA can select the most appropriate transmission option.

With regards to classification, while applying the above procedure to our training
and validation data set, we observed that the parameter α has a strong impact on
the accuracy of the classification procedure. In order to ensure high performance,
we therefore perform classification in two sequential steps, each using a different
value of α (namely, α1 and α2). At the first stage, we only differentiate between
normal cases (class SF or NAC) and abnormal cases (class AC), using the value α1.
Then, if a normal case is detected, we move to the next stage, and, use α2 to further
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differentiate between SF and NAC patients. We remark here that the values of α1

and α2 are obtained during an offline training phase using exhaustive search.

Table 2.1 Association rules extracted from the relation Rα of Figure 2.7 (i.e., when TD
features are used).

Rule Class
If B1 = 0 AND B3 = 0 AND (B6 = 1 OR B8 = 1) Class Healthy
Then Class Healthy
else If B3 = 0 Class Non-active
Then Class Non-active
else If B1 = 1 AND B3 = 1 AND B6 = 1 AND B8 = 1 Class Active
Then Class Active

Table 2.2 Association rules created using FD features.

Rule Class
If (all selected features = 0) Class Healthy
Then Class Healthy
If (at least one feature = 1 AND one feature = 0) Class Non-active
Then Class Non-active
If (all selected features = 1) Class Active
Then Class Active

In nutshell, the main proposed tasks at the PDA are illustrated in Figure 2.8. In
case of AC detection, our system triggers a mental disorder emergency signal at the
local processing unit (i.e., PDA), as well as at the remote health monitoring server;
and instead of sending the EEG features as in normal case, raw EEG data is sent.
On the contrary, in case of NAC detection, the compressed EEG data is sent, while
sending EEG features in case of SF. Thus, the PDA ensures fast emergency response,
while saving energy, time, and memory space, by sending to the MHC compressed
data for the NAC and by transmitting only the relevant features for the SF.

2.6 Data Compression Using DWT

The third and last component of our epileptic seizure detection system is the com-
pressing and transferring the EEG data toward the MHC. In the following, we detail
the adaptive mechanism we exploit for EEG data compression at the PDA.
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Fig. 2.8 The main proposed tasks at the PDA.

In the case of NAC, it is assumed that the PDA processes the EEG signal using
the so-called threshold-based Discrete Wavelet Transform (DWT) [66], and that a
Daubechies wavelet family is selected for this purpose [67]. Given signal x, we
can write: x = Ψαw where Ψ is the Daubechies wavelet family basis and αw is the
vector of wavelet domain coefficients.5 Such coefficients are then filtered using a
filter with length F = 2ς , where ς is the order of the selected wavelet family. The
longer the filter length, the higher the number of output coefficients. Next, according
to the threshold-based DWT, the filtered coefficients that are below a predefined
threshold are zeroed [68]. It follows that the number of output samples generated
from the threshold-based DWT, hence the compression ratio, can be controlled by
properly setting F as well as the value of such threshold. Indeed, the compression
ratio (expressed as percentage) is given by:

Cr =

(
1−M

N

)
×100 (2.5)

5Note that, in the case of multistage DWT, these coefficients are calculated recursively on
multilevel wavelet decomposition.
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where M is the number of output samples generated after the threshold-based DWT,
and N is the length of the original signal. The encoding distortion caused by the
compression can then be defined by the percentage Root-mean-square Difference
(PRD) between the reconstructed EEG signal and the original one, as

D =
∥x− x̂∥
∥x∥

·100, (2.6)

where x and x̂ are the original and the reconstructed signal, respectively.

It is important to remark here the well-known fact observed in practical system
design: there is always a tradeoff between energy consumption, system complexity
and encoding distortion. Our experimental results, depicted in Figure 2.9, confirm
that the main parameters affecting the encoding distortion are the wavelet filter length
(F) and the threshold value. The plot shows both the compression ratio and the
distortion that are obtained by varying the two parameters. As mentioned, given F ,
the higher the threshold, the larger the number of samples that are zeroed, hence
the higher the compression ratio. The reduced amount of data to be transferred
clearly translates into a lower energy consumption but at the expense of an increased
distortion. When we fix the threshold value, an increasing F (i.e., a higher order of
the Daubechies wavelet family) leads to a larger number of output samples and a
more detailed representation of the signal, which reduces distortion. Interestingly,
when the threshold value is small, the compression ratio grows quite noticeably with
increasing F since the generated coefficients exhibit a smaller value and are therefore
zeroed when thresholding is applied (see the green curves in Figure 2.9). The
price to pay for such better performance is an increased computational complexity.
Accordingly, our adaptive compression technique enables the PDA to establish the
preferred tradeoff by properly adjusting the encoder parameters, namely, F and the
threshold value.

2.7 Automated Class-based Compression

Now, we extend the aforementioned work, leveraging the concept of applying swift
classification at the edge, in order to propose an automated Class-based Compression
mechanism (CbC) [22]. This mechanism will allows for decreasing the amount of
transferred data, according to the class of patients. Using such an approach, the
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Fig. 2.9 Distortion versus compression ratio. Different values of filter length are considered.

PDA can automatically reconfigures its compression parameters based on the charac-
teristics of the gathered data, while maintaining the application QoS requirements
(i.e., signal distortion and classification accuracy). To the best of our knowledge,
performing class-based data reduction at the network edge to minimize the transmis-
sion energy, while maintaining applications’ QoS requirements has not been studied
before.

Figure 2.10 depicts the main proposed tasks at the PDA toward implementing
our CbC scheme. In particular, we propose the following tasks at the PDA:

1. Transforming EEG data into frequency domain and extracting frequency-
domain features, which are informative, non-redundant, and pertinent to
epileptic seizure.

2. Performing a low-complexity classification using extracted features in order to
differentiate between normal/abnormal EEG signals.

3. Compressing EEG data before transmission leveraging a reconfigurable or
adaptive compression threshold that is varying based on the identified class.

Accordingly, we decrease transferred data size by compressing the data, while retriev-
ing the original data at the MHC without affecting application’s QoS requirements.
In what follows, we investigate the above tasks in details. Herein, we consider that
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Fig. 2.10 Proposed processing tasks at the PDA toward implementing a CbC mechanism.

class SF and NAC represent the normal EEG pattern, while class AC representing
the abnormal EEG pattern.

2.7.1 Feature Extraction

In our CbC scheme, we consider Frequency Features (FF). However, we leverage
here the variations in the mean, median, and amplitude of normal/abnormal EEG
patterns after FFT to construct our features vector (i.e., different from the previous-
selected frequency features vector in section 2.4.2). Furthermore, it is crucial to
consider as relevant features the Root Mean Square (RMS) to distinguish between
seizures and non-seizure events, and Signal Energy (SE). RMS and SE are good
signal strength estimators in different frequency bands. We therefore select the
following five frequency features:

Mean absolute value

µ f =
∑

N
k=1 |x f (k)|

N
(2.7)

Median

M f =

|x f (
N+1

2 )|, if N is odd
|x f (

N
2 )|+|x f (

N
2 +1)|

2 , if N is even
(2.8)

Peak absolute value
Pf = max(|x f |) (2.9)
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Root mean square

R f =

√√√√ 1
N

N

∑
k=1
|x f (k)|2 (2.10)

Signal energy

E f =
N

∑
k=1
|x f (k)|2 (2.11)

where |x f | is the absolute value of input EEG signal x after FFT.

2.7.2 Classification

The second step in our CbC scheme is proposing a reliable classification rule for
epileptic seizure detection at the edge (i.e., PDA). We leverage the extracted fre-
quency features to perform an initial classification on normal/abnormal EEG patterns.
The benefit of such classifier is that, by knowing the data class at the transmitter,
we can enhance the performance of our compression technique through increas-
ing/decreasing compression threshold without violating distortion threshold imposed
by the application.

The main question here is: How can we determine a simple yet accurate classifi-
cation rule using generated FF in order to distinguish between normal/abnormal EEG
patterns? First, we define a classification indicator λ̃ that integrates the generated FF
as follow

λ̃ = µ f +M f +Pf +R f +E f . (2.12)

Second, we define a classification rule based on λ̃ , in which λ̃ will represent the
condition part of the rule, while the status of the patient S will represent its consequent
part. Accordingly, we obtain through our experiments the following classification
rule

S =

Normal, if λ̃

ϑ
≤ ζ

Abnormal, if λ̃

ϑ
> ζ

(2.13)

where ϑ is a scaling factor, and ζ is the classification threshold that is defined during
an offline training phase based on classification indicator values for different EEG
signals behavior. This classification rule is exploited to determine the state of the
patient at the PDA, hence, adapting our CbC scheme.
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2.7.3 Adaptive Class-based Compression

The third step in our scheme is developing an adaptive class-based compression by
adjusting the transferred data size based on patient’s state (i.e., class of the data).
After transforming the collected EEG data into the frequency domain, the FFT returns
N complex numbers (coefficients) corresponding to the N input samples. However,
the generated spectrum is conjugate even (i.e., two-sided spectrum); the magnitude
spectrum is symmetrical (see Figure 2.11). Leveraging such characteristics in the
frequency domain, we can only transmit one-sided spectrum, hence, the output after
the FFT will be N/2 complex coefficients. Furthermore, the coefficients that are
below a predefined threshold δ̃ can be discarded without much signal quality loss.
Accordingly, by properly adjusting such a threshold we can control the length of the
output data generated from CbC and, hence, the compression ratio of the CbC.

At the receiver side, the reconstruction and data recovery is performed using
IFFT to retrieve the original signal. To quantify the difference between the original
and the reconstructed signal, the signal distortion is evaluated as in (2.6).
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Fig. 2.11 An example of abnormal EEG signal coefficients after FFT.

The question now is: How can we define the threshold δ̃? It is a fact that, in lossy
compression techniques, there is always a tradeoff between increasing compression
ratio and decreasing distortion. Hence, it is important to maximize compression ratio,
for saving energy consumption, without violating application QoS requirement, i.e.,
distortion. To consummate this, we propose an Automated Seizure Detection (ASD)
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algorithm. This algorithm enables the PDA to automatically update its compression
threshold, hence the compression ratio, based on the class and the characteristics of
the gathered data, such that it can satisfy application distortion constraint. Leveraging
the extracted FF, ASD algorithm can detect normal/abnormal EEG patterns, hence
update threshold δ̃ as follows:

δ̃ =

µ f · λ̃

ϑ
·υ , if S is Normal

µ f · λ̃

ϑ̂
·υ , if S is Abnormal

(2.14)

where υ is an optional tuning parameter for a user to increase/decrease compression
ratio, ϑ and ϑ̂ are normalizing parameters for normal and abnormal EEG pattern,
respectively. The main steps of the proposed ASD algorithm are illustrated in
Algorithm 1.

Algorithm 1 Automated Seizure Detection (ASD)
1: Input:

x: Collected EEG signal.
2: Compute x f .
3: From x f , generate frequency features using equations (2.7)-(2.11).
4: Compute λ̃ , as in (2.12).
5: if λ̃

ϑ
≤ ζ then

6: Normal EEG pattern detected.
7: Update the value of δ̃ as in (2.14).
8: else
9: Abnormal EEG pattern detected.

10: Generate emergency notification signal.
11: Update the value of δ̃ as in (2.14).
12: end if
13: Compress and transmit x f using obtained δ̃ .

We remark here that leveraging the proposed CbC scheme allows for the PDA to
determine the best compression threshold based on the class of the data, while main-
taining application QoS requirements. Unlike the other threshold-based techniques
that neglect the class of the data and define a threshold taking the conservative ap-
proach (i.e., fixing the value of the threshold corresponding to the maximum-obtained
distortion for normal EEG pattern), which decreases the obtained compression ratio
for abnormal EEG pattern, or using greedy approach (i.e., fixing the value of the
threshold corresponding to the maximum-obtained distortion for abnormal EEG
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pattern), which results in high distortion for normal EEG pattern, as will be shown
in the next section.

2.8 Performance Evaluation

In this section, we investigate the performance of our s-health system using the
implemented framework shown in Figure 2.12. In the following, after presenting the
experimental setup, we start by comparing the accuracy level of the classification
outcome obtained at the server, when the different data reduction techniques are
applied. Then, we focus on the performance of the proposed SIC scheme compared
with different machine learning classifiers from the literature. After that, we compare
the performance of the implemented s-health system with a mobile-health monitoring
system in terms of energy saving, battery lifetime, and delay reduction. Finally, we
assess the performance of the proposed CbC scheme.

2.8.1 Experimental Setup

The main components and functionality of the implemented system (see Figure 2.12)
can be summarized as follow:

Server

Emulator
Edge Nodes

Fig. 2.12 The implemented system for EEG telemonitoring.

Data Source (i.e., Emulator). This module is responsible for generating and
sending the EEG signals to the PDA. Specifically, we focus on epileptic seizure
detection leveraging the EEG dataset in [51]. Thus, every 200 msec, the Emulator
sends a “Medical Record" to the PDA, i.e., our application-based packet. Each record
contains 4096 EEG samples and is 32 KB in size. The experiment ends when the
server receives and acknowledges 18000 medical records.
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PDA (i.e. smartphone). It is responsible for the communication with the
Emulator, as well as receiving, processing, and forwarding the processed data to a
health monitoring server. The communication between the PDA and the server is
performed through WiFi following the IEEE 802.11 (WiFi) standard [69]. We have
developed and implemented an Android application at the PDA (see Figure 2.13)
that performs the following tasks:

• Swift classification using the proposed SIC algorithm in order to classify the
acquired EEG signals.

• Threshold-based DWT compression, where the appropriate threshold can be
adjusted based on the patient’s state, desired compression ratio, application
distortion threshold, and available energy budget.

• Energy-efficient transmission, where the PDA decides to send to the remote
server the extracted features (i.e., time features or frequency features), com-
pressed data, or raw data, according to the detected state of the patient, while
sending an emergency notification for the patients with abnormality.

Health monitoring server. A server application is developed to receive the
transmitted data from PDA, then it performs: (i) data analysis and classification
if it receives raw data; (ii) classification if it receives time/frequency features; (iii)
data reconstruction, distortion evaluation, and classification if it receives compressed
data.

(a) (b) (b)

Fig. 2.13 Developed applications at: (a) Emulator, (b) PDA, and (c) health monitoring server.
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2.8.2 Feature Extraction and Data Reduction: A Comparative
Study

We first consider the FD-FE technique and the classification accuracy (CA) that
it can yield. In FD-FE, the EEG signal represented in the frequency domain is
segmented into multiple sub-bands, each sub-band having a number of frequency
components. Different subsets of these sub-bands can be selected as features vector.
Doing so we can control the amount of data corresponding to the selected features
and, hence, the amount of transmitted data (see Table 2.3). Here, we assume that each
sample/frequency coefficient is represented by one byte. Also, Table 2.3 illustrates
the CA variations with increasing features vector length, expressed in percentage.
In general, the larger the amount of transmitted data, the higher the CA, except for
some cases where the added sub-bands yield a performance decrease. The reason
for this behavior is that, in some cases, the added data may “confuse” the classifier
rather than help. On the contrary, with increasing length of the transmitted data, the
consumed energy in the transmission process always increases. Thus, an optimal
tradeoff between classification accuracy and energy consumption can be established,
based on the application’s requirements, patient’s state, and energy availability at the
PDA.

Table 2.3 Selected sub-bands and corresponding amount of transmitted data as well as
classification accuracy.

Frequency sub-bands Transmitted data CA
γ β α θ δ length [B] [%]
0 0 0 0 1 133 80.3
0 0 0 1 0 236 93.3
0 0 0 1 1 369 92.3
0 0 1 1 1 557 96.67
0 1 1 1 1 1501 97.78
1 0 0 0 1 2719 94.1
1 0 1 0 0 2774 87.6
1 1 1 1 0 3954 97.78
1 1 1 1 1 4087 98.89

The comparison among different data reduction techniques including TD-FE, FD-
FE, downsampling (where the EEG sampling rate fs varies), and DWT compression
is presented in Table 2.4 and Table 2.5. In the case of data compression, we present
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the reduction in CA compared to the case of no compression (i.e., when raw data
is transmitted), which yields a CA equal to 86.67%. Note that classification based
on raw data in general leads to worse performance than in the case where TD or FD
features are used. The reason is again that too much redundant information may
mislead the classifier rather than improve its accuracy.

We observe also that the higher the sampling rate (i.e, number of sensed EEG
samples per second), the larger the amount of transmitted data and the higher the
accuracy. The only remarkable exception is represented by TD-FE: in this case (i)
the amount of transmitted data does not depend on the sampling rate, and (ii) we can
achieve an accuracy of 95.56%, while transmitting only 13 bytes instead of 4096.
When, instead, compressed data is sent by the PDA to the MHC, increasing the
compression ratio leads to a slight decrease in the CA with respect to the case where
raw data is transferred, while significantly reducing the amount of transmitted data.
Seemingly to the effect of increasing the compression ratio, lowering fs decreases
the length of transmitted data at the expense of a reduced CA. However, it is worth
noticing that in some cases a higher compression ratio, or smaller fs, still yields
satisfactory values of CA. The reason is that, in such cases, the missed data is actually
redundant, thus not beneficial in terms of CA.

At last, comparing FD-FE to TD-FE and data compression, we observe that
FD-FE can provide the best CA while offering significant flexibility in terms of data
length: by properly selecting the subset of frequency sub-bands, the desired tradeoff
between amount of transmitted data and CA can be easily obtained. However, while
data compression still allows signal reconstruction at the MHC, FD-FE as well as
TD-FE are irreversible: the original EEG signal cannot be reconstructed from its
features, which may not be acceptable for some applications.

Table 2.4 Classification accuracy using compressed data relative to transferring raw data
(which yields CA=86.67%) and downsampling.

Compressed Loss in Data length [B] CA
data length [B] CA [%] / fs [sample/s] [%]
4096 0 4096/128 86.67
2384 3.3 2048/64 86.67
1601 1.17 1024/32 84.33
1239 0.9 819/25.6 81.33
819 2.37 682/21.3 85.67
645 1.67 585/18.3 86.3
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Table 2.5 Classification accuracy of FD-FE and TD-FE.

FD-FE CA TD-FE CA
length [B] [%] length [B] [%]
4087 98.89 13 95.56
3954 97.78 13 95.56
1501 97.78 13 95.56
557 96.67 13 95.56
236 93.3 13 95.56
133 80.3 13 95.56

2.8.3 Classification Evaluation

We now focus on the performance of the proposed SIC algorithm, and illustrate the
effect of the α-cut on the obtained CA at the PDA level. We evaluate the performance
of our SIC algorithm when TD-FE and FD-FE are applied. Recall that for SIC-TD we
use the TD-FE scheme presented in Section 2.4.1 and the association rules described
in Table 2.1, while for SIC-FD, we use the feature extraction technique introduced
in Section 2.4.2 and the association rules presented in Table 2.2. Also, we remark
that, when working in the frequency domain, we get a much longer feature vector
than in the case of TD-FE. Thus, for the sake of fairness, for FD-FE we apply the
association rules only to the first 10 features.

Figure 2.14 depicts the obtained CA as the value of α varies, for the three EEG
classes (i.e., SF, NAC, and AC). Herein, 270 subjects are classified by running
the procedure only once (one-stage procedure). Also, we compare the CA of the
proposed SIC algorithm with different machine learning classifiers, including random
decision forests (RandomForest), Naive Bayes (NaiveBayes), k-Nearest Neighbors
(IBk), and classification/regression trees (REPTree). Each of these classifiers is run
using the default configuration in WEKA software with 5-fold cross-validation [70].
In SIC, when α is small, most of the obtained normalized features are equal to 1,
while at high values of α , most of the obtained features are equal to 0. In both cases,
our classifier cannot accurately differentiate between the patients’ classes. In the
middle region, when α ranges between 0.1 and 0.4, the value of the obtained features
starts to vary between 1 and 0, which enables the SIC classifier to discriminate
between different classes yielding a high accuracy. The best performance is obtained
with SIC-TD and for α around 0.3, which corresponds to a CA of 82%. With
SIC-FD, the best α is 0.27 leading to a CA of 64%.
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Fig. 2.14 Impact of α on the classification accuracy, for the three EEG classes.

As indicated previously, Class SF and NAC exhibit many similarities, which
leads to a relatively low CA while trying to discriminate between these two classes.
Thus, in order to enhance the performance of the SIC algorithm, we switch to a
two-stage classification procedure using two different values of α (namely, α1 and
α2). The results for the SIC algorithm are depicted in Figure 2.15 and Figure 2.16.

In particular, Figure 2.15 shows the results of the first classification stage as α1

varies. In this stage, the patient’s state is classified as normal and abnormal based on
the gathered EEG signals. The former corresponds to class SF and NAC while the
latter to class AC. The optimal value of α1 for SIC-TD is now around 0.21 with CA
equal to 98.3%, while it is 0.17 with a CA of 83% for SIC-FD.

For normal EEG patterns, we then proceed with the second stage using α2. As
shown in Figure 2.16, in this case the optimal α2 is 0.36 with a CA 80% and 0.27
with a CA 75% for SIC-TD and SIC-FD, respectively.

In nutshell, the advantages of the proposed SIC scheme are three-fold. First, its
high classification accuracy and low complexity, which turns it to be amenable for
implementation in any smartphone or PDA. Second, the quick emergency notification
in case of abnormality, thanks to our swift classification technique. Third, energy
savings at the PDA, in case of normal EEG patterns, through transferring only the
EEG features.



2.8 Performance Evaluation 43

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
50

55

60

65

70

75

80

85

90

95

100

α1

C
la

s
s
if
ic

a
ti
o

n
 A

c
c
u

ra
c
y
  
(%

)

 

 

SIC-TD

SIC-FD

Fig. 2.15 Effect of varying α1 on classification accuracy of normal/abnormal EEG patterns.
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Fig. 2.16 Classification accuracy while discriminating between class SF and class NAC, as
α2 varies.
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2.8.4 Energy and Delay Reduction

Here, we investigate the benefits of the proposed s-health system in terms of energy
saving and delay reduction – indeed, reducing PDA’s energy consumption due to
continuous monitoring is one of the main objectives of this thesis. Specifically,
we compare the proposed s-health system with a mobile-health monitoring system
(m-health) and a remote monitoring system (RM). M-health refers to a system
that acquires and transmits EEG signals from wireless sensors to the PDA, which
compresses and forwards the acquired data to the server/cloud. On the contrary,
RM system conveys all processing tasks to the server, while a PDA is used as a
communication hub that acquires and forwards the data from wireless sensors to
the server [30]. In these experiments, we analyze power usage and PDA’s battery
consumption using Battery Historian [71].

In Table 2.6, we conducted set of experiments considering a practical scenario
where a PDA (i.e., smartphone) with full battery is running our monitoring applica-
tion in parallel with the other default applications (e.g., Google services and Android
system) until it runs out of battery. Also, it is assumed that 99% of the acquired
EEG signals belong to SF, while 1% belong to AC. Table 2.6 shows the percentile
of battery consumption at the PDA due to the processing and transmission of our
monitoring application, running time that PDA takes until it runs out of battery, and
monitoring time which is the actual time of continuous monitoring (i.e., actual time
of sensing).

These experiments show the efficiency of our system and its ability to increase
the monitoring time compared to RM, while decreasing battery consumption with
respect to both RM and m-health. Furthermore, leveraging the proposed s-health
system avoids network congestion, hence, the monitoring time is almost the same as
running time, which means that the PDA is able to continuously monitor patient’s
state during the whole run time. On the contrary, using RM and m-health (with
Cr = 40%), there is a significant gap between monitoring time and running time due
to the network congestion resulting from continuously sending of large volumes of
data (see Table 2.6). Accordingly, the proposed s-health system has the ability to
deal with a growing size of acquired data in an energy-efficient manner.

To further illustrate the advantages of the proposed s-health system in terms of
energy saving, Figure 2.17 is presented. This figure assesses the performance of
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Table 2.6 PDA battery consumption, running time, and monitoring time of s-health, m-health
(with Cr = 40% and Cr = 60%), and RM systems.

Monitoring Battery Running Monitoring
system consumption [%] time [hours] time [hours]
RM 14.71 13.5 4.5
m-health (40%) 17.62 10 8.6
m-health (60%) 16.76 11.25 10.5
s-health 11.2 10.62 10.36

s-health, in terms of PDA’s battery lifetime, compared to m-health (with Cr = 40%)
and RM. To generate these results, we set the compression ratio for s-health in case
of NAC class to 40%,6 while considering that 10% of the acquired EEG signals
belong to AC, 20% belong to NAC, and 70% belong to SF. Also, we consider the
battery consumption due to our monitoring application only, while neglecting the
battery consumption due to other running applications on the smartphone. Our
results clearly demonstrate that s-health significantly outperforms RM and m-health
with 60% and 30% extension in battery lifetime, respectively.
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Fig. 2.17 Battery lifetime of s-health, m-health (with C = 40%), and RM.

6The selected value for the compression ratio maintains a good tradeoff between transmission
energy consumption and signal distortion (see Figure 2.9). However, other values can also be selected,
according to the application requirements, patient’s status, wireless channel conditions, and energy
availability at the PDA.
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Regarding the obtained delay reduction, Figure 2.18 shows the benefit of s-health
in reducing average transmission delay. Herein, transmission delay refers to the
latency experienced by the data from its receiving time at the PDA until its receiving
time at the server. It is clear that reducing the amount of transmitted data using
s-health has a significant impact on mitigating network congestion, hence, decreasing
average transmission delay by more than 90% compared to RM.

We remark here that the obtained reduction in energy consumption and delay
using s-health depends on the states of the patient, since in case of emergency (i.e.,
AC) the raw data should be sent to the MHC for intensive monitoring. However, the
probability of AC is practically less than 1%, while seizures usually last for less than
3 minutes. After that the patient can recover his/her normal state for a long time
before seizures coming back. Moreover, people who are more likely to have seizures
and epilepsy (e.g., babies with abnormal areas in the brain, people with traumatic
injury or serious brain injury, etc.) are usually put under monitoring after getting
free of seizures for one to two years. In such cases, the proposed s-health system is
recommended as an efficient solution for continuous monitoring without limiting
patients’ daily activities.
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Fig. 2.18 Transmission delay of the s-health, m-health (with C = 40% and C = 60%), and
RM.
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2.8.5 Class-based Compression Scheme

First, We assess the performance of our classification rule, presented in section
2.7.2, in differentiating between normal/abnormal EEG pattern. Figure 2.19 depicts
the obtained CA using our classifier with changing ζ while considering 270 EEG
records (180 for normal EEG signals, and 90 for abnormal EEG signals). At low
ζ , the classifier tends to consider most of the normal EEG signals as an abnormal
signals, which results in maintaining low CA. However, by adjusting the value of ζ ,
the classifier obtains high CA. The results show that the proposed classifier could
achieve 98.3% CA with the optimal-obtained ζ , which is around 0.65. Accordingly,
we could efficiently detect the emergency case (i.e., abnormal EEG signals) with
very high accuracy using the proposed edge-based classifier.

ζ

Fig. 2.19 Effect of varying ζ on obtained classification accuracy.

Next, we assess the performance of the proposed CbC technique compared
to threshold-based DWT [67]. In general, by increasing the compression ratio,
the distortion increases for both CbC and DWT. However, in CbC, at the same
compression ratio, we could maintain less distortion than DWT (see Figure 2.20). It
is worth mentioning that through varying the Daubechies families, or decomposition
levels of the DWT, it can maintain less distortion, however, it comes at the expense
of increasing the computational complexity, which may not be acceptable for such
battery-operated devices [72].
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Fig. 2.20 Distortion variation with compression ratio for proposed CbC technique and DWT.

Furthermore, we remark here that for the same compression ratio, the value of
the distortion varies based on the class of the data. Thus, by knowing the class of
the data at the PDA, the compression ratio can be increased, while maintaining the
required distortion threshold. It is clearly illustrated in Figure 2.21. As mentioned, in
our CbC technique we control the transmitted data length by changing the threshold
δ̃ : as δ̃ increases, Cr increases, at the expense of increasing the distortion. As shown
in Figure 2.21, at the same δ̃ , the distortion D and Cr vary according to the EEG class.
Hence, to obtain the best Cr that satisfies application distortion threshold, the PDA
should properly adjust δ̃ based on the detected EEG class. Thus, it is important to
have an initial-swift classifier at the PDA to obtain the proper compression threshold
based on the class of the data.

Finally, Figure 2.22 illustrates the main advantage of the proposed ASD scheme
compared to fixed threshold compression scheme, and assesses the ability of our
scheme to adapt to varying EEG records. This figure depicts the average obtained
distortion and compression ratio for each EEG class (i.e., class SF, NAC, and AC,
respectively) over the time. Also, it is assumed that there is a constraint on the
maximum obtained distortion, i.e., D≤ 7%. We compare the ASD algorithm with
two fixed threshold schemes: Conservative and Greedy compression schemes. In
Conservative scheme, we consider that the threshold δ̃ is fixed and identified using
normal EEG class, such that the obtained distortion at normal EEG class is below the
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Fig. 2.21 Effect of varying the threshold δ̃ on compression ratio and distortion for different
EEG classes.

predefined distortion constraint. In Greedy scheme, δ̃ is fixed such that the obtained
distortion at abnormal EEG class is below the predefined distortion constraint. On the
contrary, ASD algorithm obtains compression threshold δ̃ taking into consideration
the class and characteristics of the compressed data, unlike the other algorithms that
consider fixed δ̃ over the time. Thus, with changing the class of the collected data,
ASD algorithm can adapt transmitted data size without violating given distortion
constraint. On the contrary, fixing δ̃ at low value (as in Conservative approach)
maintains distortion constraint at the expense of obtaining very low compression
ratio for abnormal class. While fixing δ̃ at high value (as in Greedy approach)
achieves high compression ratio at the expense of violating distortion constraint for
normal class (see Figure 2.22).

2.9 Summary

Motivated by the advantages of edge computing in pushing data processing toward
the data sources, we investigate wireless EEG telemonitoring system and present
a full-fledged framework for seizures detection and notification. In particular, we
develop and implement an accurate, lightweight classification mechanism that, lever-
aging some time-domain features extracted from the collected EEG data, enables a
reliable seizures detection at the network edge with precise classification accuracy
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Fig. 2.22 Temporal evolution of the system performance, (a) compression ratio and (b)
distortion, with varying EEG records.

and low computational complexity. In addition to that, we propose a selective data
transmission scheme, which opts for the most appropriate way for data transmission
depending on the detected patient’s state. Finally, we propose a class-based data
compression scheme that is used in epileptic monitoring systems.

Our experimental results assess the performance of the proposed system in terms
of data reduction, classification accuracy, battery lifetime, and transmission delay.
Specifically, the results show that:

(i) Time-domain feature extraction exhibits high classification accuracy, while
minimizing the amount of transmitted data and energy consumption at the
PDA. The amount of transmitted data could be decreased from 4096 to 13
samples per patient, while obtaining high seizures detection performance with
a classification accuracy above 98%.

(ii) Frequency-domain feature extraction provides high flexibility, yielding the
best tradeoff between classification accuracy and energy consumption.

(iii) Adaptive data compression is a very valuable option whenever more data is
needed at the MHC for further processing: compared to transmitting raw data,
it reduces energy consumption and, unlike feature extraction techniques, it
enables signal reconstruction at the MHC.

In addition to that, we demonstrate the effectiveness of our system and its ability to
outperform conventional remote monitoring systems that ignore data processing at
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the edge by: (i) achieving 98.3% classification accuracy for seizures detection, (ii)
extending battery lifetime by 60%, and (iii) decreasing average transmission delay
by 90%.

Regarding the proposed CbC scheme, it is shown that the PDA can automat-
ically reconfigure its compression ratio based on the class of the gathered data
through adjusting its threshold, hence, save a significant amount of transmitted data
while maintaining distortion constraint. Moreover, our results demonstrate that the
proposed scheme outperforms the state-of-the-art compression schemes, with the
advantage of reconstructing the signal at the receiver side with minimum distortion.



Chapter 3

Data-specific Transceiver Design for
Healthcare Applications

3.1 Overview

Given the aforementioned requirements and challenges of e-health applications (i.e.,
discussed in section 1.2), designing efficient transceivers is important for s-health
systems to decrease latency and energy consumption through utilizing efficient data
reduction techniques. Different modules of physical layer have to be optimized
in order to be flexibly configured according to the technical requirements of each
application. Thus, we propose in this chapter an efficient data-specific transceiver
design that leverages the inherent characteristics of the generated data at the physical
layer to reduce transferred data size without adding significant overheads.1 Our goal
is to adaptively decrease the amount of data that needs to be transmitted in order to
efficiently communicate with the MHC, while maintaining the required application
QoS requirements.

We argue that devoting transceiver design to be specific for a certain type of data
(e.g., EEG) is perfectly in consistence with IoMT devices that mostly acquire one
type of data efficiently (e.g., using Emotiv headset, or QardioCore wireless ECG
monitor). Hence, leveraging the characteristics of such data at the physical layer will
have positive effects on the costs as well as on the energy consumption of the radio
frequency (RF) transceiver. In particular, this chapter focuses on EEG signal, which

1This work has been published in [73].
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is the main source of information on brain electrical activities that play an important
role in the diagnosis of several brain disorders [24], and have a primary role in Brain
Computer Interface (BCI) applications [74][75]. Thus, our main contributions can
be summarized as follows:

1. Design an efficient EEG-based transceiver that leverages the characteristics of
the EEG signals at the physical layer in order to provide an efficient transmis-
sion, while maintaining application QoS. Leveraging the existing orthogonal
frequency division multiplexing (OFDM) transceiver’s components, the pro-
posed design performs the data compression task as part of the physical layer,
hence leading to an efficient compression scheme with no significant overhead.

2. Decompose generated data into multiple streams to further increase compres-
sion ratio through discovering the dependency between different streams, and
applying different compression thresholds for each stream.

3. Evaluate the proposed design through simulations discussing the tradeoff
between transmitted data length and signal distortion. Our results show the
gain provided by our solution, and its ability to obtain high lossless and lossy
compression ratios.

3.2 Related Work

In the era of IoMT and Industry 4.0, the rapid advances in data volumes, cloud
storage, edge computing, and ubiquitous network connectivity have enabled gather-
ing, storing, and analysis of large volumes of operational data that were previously
impossible. A key aspect in achieving the anticipated goals of Industry 4.0 is data
processing. Given the expected volumes of gathered data, the provision of valuable
services is challenging without adequate information processing and management.
This is also manifested through the leading International Patent Classification (IPC)
analysis, where G06F19/00 category (i.e., digital computing or data processing
equipment or methods, specially adapted for specific applications) is ranked fifth
in the top 20 technical IPC categories, with 130 patents between January 2006
and December 2015 [76]. Furthermore, reducing the amount of transmitted data is
essential for battery-operated IoMT devices in order to save transmission energy.
Some promising approaches in this context are: (i) performing local in-network
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processing and compression on the gathered data before transmission, including
compressive sensing (CS) [77][78][44], (ii) leveraging deep learning as a powerful
tool for machine learning and health informatics to generate optimized high-level
features and semantic interpretation from the gathered data [79].

In CS, sampling is performed by multiplying the original signal with a linear
embedding matrix, hence, the high-dimensional data vector is projected into a low-
dimensional subspace. Although, CS has shown great promise for providing high
compression ratio, the construction of CS-based hardware is challenging [80]. In
particular, the signal reconstruction requires in general high computational cost,
which limits the use of CS in strictly real-time applications [81]. As an example, the
Orthogonal Matching Pursuit (OMP) technique for signal reconstruction involves
heavy matrix computation (see, e.g., [82] for details). Furthermore, there is a tradeoff
between hardware energy-efficiency and signal recovery accuracy. For instance, if a
data-driven optimization method (e.g., NuMax [83]) is used for improving signal
recovery accuracy, more hardware power consumption is expected. On the contrary,
if non-data-driven random Boolean embedding is applied for enhancing hardware
energy-efficiency, high recovery accuracy cannot be guaranteed [84].

Relevant to our work are also the compression techniques that have been proposed
in the literature specifically for e-health applications and that are summarized in
Table 3.1. Such techniques differ in computational complexity, lossy and lossless
characteristics, as well as the used waveform transformation (e.g., Fourier or wavelet
transforms, vector quantization, or discrete cosine transform).

In short, most of the existing work on compression is applied at the higher
layers, while ignoring lower layers features (e.g., characteristics of wireless channels,
signal-to-interference-plus-noise ratio (SINR), and bit/symbol error rate). Also,
consequent computational complexity might turn implementing such schemes on
battery-operated devices costly.

On the other hand, designing application-specific transceivers has recently gained
interest. There are some efforts on enhancing future transceivers architecture to
cope with long-range IoT communication and multi-standard RF transceivers, while
providing high degree of scalability, flexibility, and reusability [1][92]. For instance,
SRT Marine Systems granted reversible radio transceiver US patent 9473197 and Eu-
ropean patent EP2951930 for its reversible time domain duplex (RTDD) transceiver
technology. This technology enables a specific single RF architecture to be used
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simultaneously for both receiving and transmitting through electronic reversing of
the RF chain between receive and transmit. This could be maintained through a com-
plex combination of intelligent selection of intermediate frequencies and ultra-fast
switching. Also, SRT Marine Technology Ltd of Bristol recently obtained a patent
for a radio transceiver which enables multiple transceivers to share a single antenna
in order to reduce costs and installation effort (GB patent no. 2460012). In the
field of fiber-optic communications, [93] provides a transceiver for: (a) transmitting
combined data and time code information over a fiber-optic communication means,
and (b) receiving combined data and time code information from the fiber-optic com-
munication means. In [94], the inventors present a transmitter that can receive digital
audio and program information input from a plurality of sources and simultaneously
broadcast a plurality of digital audio and program information signals over a limited
range, hence, a user can enjoy listening to the digital audio, while enabling portable
reception of the service within a localized setting.

In this context, one of the key components for the proposed transceiver design is
reducing transmitted data size without adding additional hardware, while retaining
the ability to reconstruct the original data from the received sequence. Also, equipped
with accelerated FFT blocks, most of the current and future transceivers architecture
[95][96] have the opportunity to leverage such a concept at the physical layer,
saving significant amount of energy consumption and computational overheads. Our
results can also be extended to have a significant practical impact in many big data
domains, since most video, audio, and medical images are compressible or sparse in
nature, hence, they can benefit from such compression scheme through leveraging
the acquired data characteristics in the physical layer of the wireless transceiver.
However, new challenges, such as the effect of quantization and modulation, have to
be tackled at the physical layer to achieve such adaptive compression.

3.3 System Model

This chapter proposes an efficient transceiver design that relies on OFDM technology
while obtaining an adaptive compression method to control the size of the transmitted
data. OFDM is a well designed technology for high-rate wireless communication.
However, the performance of such systems is generally limited by the available
energy budget. Thus, we can save in energy consumption through compressing the
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Fig. 3.1 System model under study.

data before transmission, while retrieving the original data at the receiver with zero or
low distortion depending on the applied compression and application requirements.

The proposed system, shown in Figure 3.1, represents the end-to-end system
from the EEG data acquisition to the MHC. The EEG data acquisition is performed
using an EEG Headset [97]; the signal is then sampled, quantized, and transmitted to
the MHC through our proposed transceiver. The main considered modules in our
system are described below.

Sampling: Let the original continuous-time electroencephalography (EEG)
waveform s(t) have a duration of T seconds. The waveform is sampled at a constant
interval of Ts seconds to yield Ns discrete-time consecutive samples. The sampling
frequency is then given as Fs =

1
Ts

Hz. Hence,

sn = s(t) δ (t−nTs) = s(nTs), (3.1)

for n ∈ {0,1, · · · ,Ns− 1}, where δ (·) is the Dirac delta function. Our adopted
notations are reported in Table 3.2.

Quantization: The continuous amplitude of each sampled signal is quantized
using an L-bit analog-to-digital converter (ADC) to one of 2L levels, yielding the
quantized signal x̃n at time index n. Each signal x̃n holds a signed integer value in the
range {−2L−1, · · · ,2L−1−1}. We can express the quantized signal in vector form as

x̃
Ns×1

=
[
x0 x1 · · · xNs−1

]T
. (3.2)
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Table 3.2 Summary of the used Notations

Notation Definition
T EEG waveform duration
Ns Number of samples
Fs = Ns/T Hz Sampling Frequency
Ts Inter-sample duration
L Number of bits per sample
M Number of symbols per sample
K = L/M Number of bits per symbol

Data decomposition: The collected EEG quantized samples are written as a
sequence of symbols that depend on the adopted modulation. Such symbols are then
divided into multiple streams, which are processed using Formal Concept Analysis in
order to discover the correlation existing between the different streams. The streams
that are found to be independent of each other, are compressed and transmitted,
while others are discarded. Additionally, each stream is compressed separately, using
a compression threshold that suits its characteristics, thus further increasing the
compression ratio.

Threshold-based transceiver: To comply with the current and future trends,
we start from the typical OFDM transceiver architecture [98] (depicted in Figure 3.2-
(a)), and add two simple blocks: the Threshold-based Compression (TBC) and the
FFT Vector Reconstruction (see Figure 3.2). OFDM-based waveforms family is the
foundation for the current LTE and WiFi systems, and is also recommended to meet
the evolving requirements of 5G due to higher spectral efficiency, asynchronous
multiplexing, and lower complexity. Nevertheless, our solution can be applied to
other transceiver architectures such as the one adopted by the IEEE802.11ah [1] and
the IEEE802.15.4g standards [96].

In the proposed transceiver architecture, it is assumed that the available quantized
samples are encoded into an unsigned binary sequence via the L-bit ADC. We first
turn the generated signed-integer samples into non-negative integers by a simple
shift, i.e.,

xn = x̃n +2L−1. (3.3)

Then the symbols are forwarded to the modulation and IFFT modules. Details on the
TBC and FFT vector reconstruction blocks are discussed in the following sections.
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Fig. 3.2 Block diagram of (a) the basic transceiver architecture for IEEE802.11ah systems
[1], (b) the adopted EEG transceiver.

3.4 Data Decomposition and Knowledge Discovery

In this section, we leverage the physical layer’s characteristics to decompose quan-
tized EEG samples into multiple streams of symbols, such that the dependency
between different streams can be reduced, hence, increase compressibility.

3.4.1 Data Decomposition

First, the EEG signal xn is decomposed into multiple streams of symbols xm, for
m ∈ {1,2, · · · ,M}. Let the binary encoded sequence of xn be denoted as b ∈ F2L ,
with Fp being the Galois Field of order p. Hence, b is a sequence of L bits on the
form

b =

L bits︷ ︸︸ ︷[
b(M−1)

K−1 · · ·b
(M−1)
0︸ ︷︷ ︸

b(M−1)

· · · b(0)K−1 · · ·b
(0)
0︸ ︷︷ ︸

b(0)

]
(3.4)

where b(m) is the group of K bits composing the m-th symbol, with m ∈ {1, · · · ,M},
where K and M depend on the modulation type. More specifically, M is the number
of symbols per sample, which depends, not only on the modulation order O, but also
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on the number of bits per sample L, as follows:

M =
L

log2(O)
=

L
K
. (3.5)

Then, xn can be rewritten as:

xn =
M−1

∑
m=0

K−1

∑
k=0

2mK+kb(m)
k =

M−1

∑
m=0

2mKxm, (3.6)

with

xm =
K−1

∑
k=0

2kb(m)
k . (3.7)

In conclusion, the bit stream block b(m) is simply the binary representation of xm,
which implies xm ∈ {0,1, · · · ,2K − 1}. For example, using 16-QAM modulation
with L = 12 bits, each EEG sample will be represented in three data symbols, where
M = L/4 = 3.

3.4.2 Knowledge Discovery

Leveraging the created symbol streams, the compression ratio can be further in-
creased by discovering the correlation between different streams. In a nutshell,
using FCA for knowledge discovery [64], we can define the minimal-representative
streams, so as to reduce the number of transmitted data streams, without losing
knowledge.

We start by introducing the basic notions used to induce a binary relation between
the generated streams. Let O be the set of streams (i.e., objects), A the set of
symbols’ values (i.e., attributes), and I the binary relation on the universe U =

O×A that defines which objects have which attributes. In order to transform our
streams into formal context of (O,A , I), we consider the attributes av of each symbol
s to be all the possible values it may take, depending on the employed modulation,
for v ∈ {0,1, · · · ,2K−1}, and av ∈ {0,1}. Thus, the vector of attributes A for each
stream xm is defined as

A (x̃m) =

[
a0 · · ·a2K−1︸ ︷︷ ︸

s1

· · · a0 · · ·a2K−1︸ ︷︷ ︸
sNs

]
, (3.8)
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Fig. 3.3 Steps 1 and 2: Transformation of generated streams into a binary relation, and
identification of the concepts (highlighted in colors).

where A represents the possible values of each symbol.

Our aim now is to determine the dependency between various streams through
defining the minimal set of formal concepts2 covering our relation. Herein, we
refer to the implications as the minimal set of rules, by which we can infer some
attributes from others. We can derive formal concepts from our formal context using
the derivation operators or difunctional decomposition3 [65][99]. Once the formal
concepts are derived, implications can be identified, hence transmitting only the
minimal-representative number of streams. For the sake of clarity, we describe the
adopted procedure by referring to a toy example, where a data length of 20 symbols
with QPSK modulation is considered.

Step 1: Generation of formal context. Consider the generated streams of
symbols. We consider each stream as an object with attributes corresponding to
its symbols’ values. As an example, Figure 3.3 illustrates the formal context of 6
streams with 20 symbols.

Step 2: Identifying formal concepts. The generated binary relation are then
decomposed into a set of concepts, using the algorithm presented in [65]. However,
in order to well identify the dependency between different streams, we leverage what
we called shadow concept, presented in section 2.5.2. In this case, both the attributes
and the negation of the attributes form the identified concept.

2(O,A) is a formal concept if A is the set of all attributes shared by the objects O, and in the same
time O is the set of all objects that have all attributes in A.

3Difunctional decomposition enables obtaining the isolated points of a binary relation through
calculating the Fringe Relation. This fringe relation is, by definition, a difunctional relation, and all
its elements are isolated points. Thus, the formal concepts can be easily obtained by finding such
isolated points, since if (a,b) is an isolated point, by definition it is included in one concept only [65].
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Step 3: From concepts to implications. Based on the identified concepts,
we derive the implications that can be used to effectively eliminate the streams
that can be retrieved at the receiver using their implications with other received
streams. For instance, looking at Figure 3.3, we can easily identify from the obtained
concept that O2→ O1, where→ stands for the implications, since O2 = O1 +2, for
O2,O1 ∈ [0, · · · ,3].

Step 4: Elimination. For each obtained concept, we transmit only one stream
and eliminate other streams that belong to the same concept. Then, the retrieval
process is done at the receiver using identified implications.

3.5 Threshold-based EEG Transceiver Design

The proposed transceiver enables an adaptive threshold-based compression taking
into account the characteristics of the generated traffic, and physical layer compo-
nents.

3.5.1 EEG Signal Characteristics

We first visualize and analyze the EEG signal in the time and frequency domains
in order to understand its properties and obtain the best approach of processing
and transmission. A normal continuous EEG signal in the time domain is shown
in Figure 3.4. Using frequency domain analysis, we can significantly decrease the
amount of data to be transferred. Looking at the generated spectrum shown in
Figure 3.5, we observe that it is to some extent sparse, or compressible.4 Thus,
we can efficiently reduce transmission energy consumption for such signal through
transmitting only energetic Fourier coefficients, while retrieving original signal at
the receiver side.

4Here compressible means that the generated spectrum f has a large number of frequencies whose
entries (i.e., Fourier coefficients) have magnitudes that are small compared to the norm of f (i.e., the
energy of f ).
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Fig. 3.4 An example of class Healthy EEG signal in the time domain.

3.5.2 Threshold-based Compression

Motivated by the EEG signal characteristics in the frequency domain, we update
the OFDM transceiver architecture at the physical layer to support our compression
scheme. Unlike the state-of-the-art compression techniques that are applied at the
higher layers [44][85], we convey our compression scheme into the physical layer
exploiting the existing OFDM transceiver’s components in order to perform efficient
compression without adding much complexity.

As mentioned, given the basic OFDM transceiver architecture in Figure 3.2,
we have added two blocks in order to implement our TBC scheme, namely, the
TBC and the FFT Vector Reconstruction. In the TBC block, leveraging the fact that
several Fourier coefficients x f of the EEG signal x have negligible magnitude after
IFFT (see Figure 3.6), we consider as 0s all symbols with magnitude lower than a
predefined threshold δ (see Figure 3.8). The threshold is set according to the channel
characteristics and the maximum distortion that can be tolerated at the receiver side.
Clearly, the higher the value of δ , the larger the compression ratio and the resulting
distortion. Then, whenever we have a number of consecutive zeros greater than two,
the transmitter does not send them, but it notifies the receiver about the length of
this sequence and its position in the stream of transferred data. We remark here that
efficient techniques like run-length encoding [100] can be leveraged to perform such
task.
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Fig. 3.5 An example of class Healthy EEG signal in the frequency domain.

At the receiver side, the FFT vector reconstruction block is responsible for adding
zeros in the received vector at the positions of the ignored symbols before forwarding
it to the FFT block. The latter will then demodulate the received symbols and
reconstruct the EEG signal.

3.5.3 Error Correction

In order to quantify the achieved compression gain compared to the consequent
signal distortion due to our compression scheme, we define the compression ratio as

Cr =

(
1− γ

µ

)
×100 (3.9)

where γ is the number of data symbols to be transmitted, and µ is the number of the
generated data symbols after modulation. While the signal distortion is quantified
using PRD, which is given by

PRD =

√
∑

N
i=1 [x(i)− xr(i)]

2

∑
N
i=1 [x(i)− x̄]2

×100, (3.10)

where x̄ is the average value of the original quantized signal, and xr is the recon-
structed one.
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Fig. 3.6 Generated symbols after IFFT while considering 16-QAM modulation.

Interestingly, using our EEG compression transceiver, we can easily define some
of the wrong reconstructed samples at the receiver side. As shown in Figure 3.7,
some of the wrong samples have very large amplitude compared to the correct
samples. This advantage can be used as an Error Correction (EC) scheme in order to
decrease Sample Error Rate (SER) and signal distortion at the receiver through: (i)
identifying received samples with relatively large amplitude (samples with error),
(ii) retransmitting the reconstructed samples with error.
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Fig. 3.7 A comparison between reconstructed and original EEG signal for healthy class.
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Despite the achieved compression ratio using TBC, we found that it is of promi-
nent importance to further analyze the effect of symbol mapping and modulation
on EEG signal characteristics in order to enhance the compression ratio. As noted
from Figure 3.5 and Figure 3.6, the EEG signal characteristics after modulation
and IFFT modules have been changed and turned to be less compressible. This is
mainly due to the effect of symbol mapping and modulation, since representing each
data sample with multiple symbols turns the generated symbols after IFFT to be
less compressible, i.e., most of the generated symbols after IFFT will have large
magnitudes, thus, cannot be neglected. We will tackle this challenge in the next two
sub-sections.

3.5.4 Higher-order Modulation

To tackle the problem of symbol mapping effect on EEG characteristics and increase
compression efficiency of our transceiver, we study the characteristics of generated
symbols after Fourier transform with and without symbol mapping and modulation
(see Figure 3.6 and Figure 3.5). We find that exploiting higher-order modulation can
help in increasing compression ratio of our transceiver through representing each
EEG sample in one symbol, which relieves the effect of symbols mapping. However,
as shown in Figure 3.8-(a), magnitudes of the generated symbols after IFFT

∣∣x f
∣∣

are still less compressible compared to the original case without modulation, i.e., in
Figure 3.5 (even after considering the higher-order modulation). As a result, when
applying our threshold-based compression, some of the important symbols may
be also neglected. To avoid this, we apply Symbols Masking before compression.
This masking is based on our prior knowledge about the EEG characteristics in
the frequency domain. We define a window size W which is the percentage of
compressible symbols relative to the total number of symbols. Using this masking,
we define the less important symbols of x f to be passed by the TBC scheme, while
isolating more important symbols from compression (see Figure 3.8-(b)). Using
such masking with higher-order modulation can significantly mitigate the effect of
symbols mapping and modulation on EEG characteristics. By doing so, we could
obtain higher compression ratio compared to initial TBC scheme with lower order
modulation, as will be shown in simulation results.
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Fig. 3.8 Generated symbols after IFFT while considering 256-QAM modulation, (a) before
compression, (b) after compression.

3.5.5 Steam-based Compression

Due to the quality of wireless channel, hardware design, or standards limitations,
leveraging higher-order modulation may not be recommended in all cases. Thus, in
order to make our transceiver adaptive for different channel conditions and modula-
tion schemes, we propose a Stream-Based Compression (SBC) scheme. Leveraging
the generated symbol streams in Section 3.4, the compression ratio can be further
increased as follows. The independent streams of symbols are forwarded to the
modulation and IFFT blocks, thus at TBC block, we can deal with each stream
separately using different values of the threshold δ . This, as also shown in the
simulation results section, yields a greater overall compression ratio.

For instance, using QPSK modulation and L = 12 bits, we generate 6 streams of
symbols. The symbols in each stream will have different values before modulation
(see Figure 3.9) and after IFFT (see Figure 3.10). Thus, we can set per-stream
thresholds so that each stream can be compressed as much as possible while still
meeting the requirement on the maximum allowed distortion.

We remark that discovering the dependency between different streams and se-
lecting only the independent streams is performed before IFFT (i.e., it pertains to
the higher-layers of the transceiver architecture), while only the threshold-based
compression is done after IFFT, i.e., in the physical layers of the transceiver. Thus,
to summarize, the main steps of our SBC scheme are as follows (see Figure 3.11):
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Fig. 3.9 Generated symbols’ streams before modulation.
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Fig. 3.10 Generated symbols’ streams after IFFT while considering QPSK modulation.
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• Higher-layers steps, which include stream creation, knowledge discovery, and
defining the threshold δ , for individual streams.

• Physical-layer step, which includes TBC.

While at the receiver side, the inverse process is adopted through: (i) using FFT
vector reconstruction, which is responsible for adding zeros in the received vector
at the positions of the compressed symbols before forwarding it to the FFT, (ii)
leveraging obtained dependency between different streams to retrieve discarded
streams from transmission.

3.6 Performance Evaluation

In order to derive our simulation results, we consider the system model shown in
Figure 3.1 and use the EEG dataset in [51]. Also, to quantify the performance
gain provided by our solution, we investigate both the compression ratio and the
consequent signal distortion, while considering high signal-to-noise ratio (SNR) for
the wireless channel. The simulation parameters we used herein are reported in Table
3.3.

First, we assess the performance of the proposed TBC transceiver in Section
3.5 without performing the signal decomposition into different symbol streams.
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Table 3.3 Simulation Parameters

Parameter T Ns Ts L M
Value 23.6 sec 4096 0.0058 12 bits ∈ {2,3,4,6}
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Fig. 3.12 Effect of varying Cr on signal distortion and SER when the TBC scheme and
16-QAM modulation are used.

Figure 3.12 shows the performance gain of the transceiver when the 16-QAM
modulation (i.e., M = 3 symbols per sample) is used. Herein, we gradually increase
the compression ratio Cr by increasing the threshold δ ; furthermore, both the cases
with and without our Error Correction (EC) scheme are considered. As expected,
with increasing δ , the Sample Error Rate (SER) and signal distortion (PRD) increase.
However, when EC is applied, SER and PRD reduce significantly thanks to the
retransmission of the erroneous samples. On the contrary, the actual or effective Cr

decreases due to the higher retransmission overhead. Importantly, these results show
that, using the well-known OFDM transceiver architecture with slight modifications,
we can obtain about 25% compression ratio while keeping SER and distortion below
10%, which is acceptable by many applications.

Figure 3.13 highlights the increase in Cr that we can obtain by leveraging higher-
order modulation and symbols masking. We can now achieve about 40% compression
ratio, while keeping distortion around 10%. Also, with larger window size W , the
compression ratio grows at the expense of increasing signal distortion. We remark
that, depending on the quality of the wireless channel, the modulation order can be
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Fig. 3.13 Effect of varying the threshold δ on Cr and signal distortion using TBC scheme
and 256-QAM modulation, for different window size W .

increased (i.e., enabling high-order modulations for low channel errors), hence the
compression ratio, while still meeting the application requirements.

Next, we assess the performance of the proposed SBC scheme in Section 3.4,
i.e., we also account for the benefits brought by the decomposition of the signal
into streams of symbols and their processing. Interestingly, our SBC transceiver
can support both lossless and lossy compression. As depicted in Figure 3.14, we
can achieve about 45% compression ratio at 0% SER and distortion, or about 55%
compression ratio at less than 10% SER and distortion. Herein, we used the QPSK
modulation with two compression thresholds δ1 and δ2, where δ2 is fixed to 0.011
while δ1 varies. In particular, δ2 was used for stream 3, since its values have high
variability before modulation and low amplitude after IFFT (see Figure 3.9 and
Figure 3.10), while δ1 was adopted for the other streams. Interestingly, such results
show that, thanks to the signal decomposition into streams, we can significantly
increase the compression ratio while applying low-order modulation schemes.

The transceiver performance further improves if the Stream-Based Compression
with Knowledge Discovery (SBC-KD) scheme is used. Indeed, by applying knowl-
edge discovery and transmitting only the minimal-representation streams, we can
considerably reduce the amount of transferred data while still accurately reconstruct-
ing the signal at the receiver side. The results in Figure 3.15 demonstrate that in this
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Fig. 3.14 Effect of varying threshold δ1 on the compression ratio, signal distortion, and SER,
when the QPSK modulation is used.
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Fig. 3.15 Effect of knowledge discovery on enhancing compression ratio and signal distortion
for QPSK modulation.

case we can obtain, roughly, 50% compression ratio at 0% SER and distortion, or
67% compression ratio with less than 20% distortion.

Finally, in Figure 3.16 we compare the performance of the proposed SBC-KD
scheme with the DWT technique. Wavelet-based compression techniques consist
of transmitting the most significant wavelet coefficients. The strategy adopted to
select such coefficients is the main distinguishing factor of the algorithms proposed
in the literature [85]. Comparing to DWT-Level thresholding [101], we obtain
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13% reduction in the PRD for compression ratios up to 50%, while achieving 5%
reduction in the PRD for higher values, namely, up to 80%, of the compression
ratio. Furthermore, we can use the proposed scheme for lossless compression
for compression ratios up to 50%, which shows significant gains over DWT in
applications requiring zero distortion and high quality analysis of the vital signs.

3.7 Summary

In this chapter, we proposed a novel transceiver design based on symbol-streams
compression: the generated symbols are grouped into streams, and only streams that
are independent of each other are compressed and transmitted. Additionally, streams
are compressed separately, thus the compression thresholds can be tailored to each
stream so that the compression ratio is increased while yielding low distortion. In
this context, we focused on the case of the EEG signal and showed how the Fourier
coefficients representing such signal can be effectively compressed while accounting
for the wireless channel characteristics and the application requirements in terms of
signal distortion.

Our results show the excellent performance of the proposed design in terms of
data reduction gain, signal distortion, low complexity, and the advantages that it



74 Data-specific Transceiver Design for Healthcare Applications

exhibits with respect to state-of-the-art techniques since we could obtain about 50%
compression ratio at 0% distortion and sample error rate.



Chapter 4

Distributed In-network Processing
and Resource Optimization over
Mobile-health Systems

4.1 Overview

This chapter integrates wireless network characteristics and application-layer require-
ments to provide sustainable, energy-efficient and high-quality services for s-health
systems.1 The proposed scheme enables energy-efficient high-quality patient health
monitoring to facilitate remote chronic disease management. In particular, we pro-
pose a multi-objective optimization problem that targets different QoS metrics at the
application layer like signal distortion, and at the physical layer like transmission
delay and Bit Error Rate (BER), as well as monetary cost and transmission energy.
In particular, we aim to achieve the optimal tradeoff among the above factors, which
exhibit conflicting trends. The main contributions of our work can be summarized as
follows:

1. Formulate a cross-layer multi-objective optimization model that aims at adapt-
ing and minimizing, at each PDA, the encoding distortion and monetary cost
at the application layer, as well as the transmission energy at the physical layer,
while meeting the delay and BER constraints.

1This work has been published in [102].
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2. Leverage geometric program transformation to convert the aforementioned
problem into a convex problem, for which an optimal, centralized solution is
obtained.

3. Propose a distributed solution through leveraging Lagrangian duality theory.
The dual decomposition approach enables us to decouple the problem into a set
of sub-problems that can be solved locally, leading to a distributed algorithm
that converges to the optimal solution.

4. The proposed distributed algorithm is analyzed and compared to the centralized
approach. Our results show the efficiency of our distributed solution, its ability
to converge to the optimal solution and to adapt to varying network conditions.

4.2 Related Work

The investigated approaches in the field of m-health can be broadly classified into
five categories: energy efficient BASNs design, wireless transmission resource allo-
cation and optimization, implementation of smartphone health monitoring and BCI
applications, efficient low-power hardware designs, as well as signal compression,
feature extraction, and classification algorithms.

Among different factors, energy efficiency in BASNs, and in general m-health
systems, is one of the most challenging problems due to the requirements for high
QoS and low transmission delay given the resource constraints. Many of the existing
studies focus on Routing, MAC, and physical layer design to address energy and
power issues [103]. The basic idea of these techniques is to design new communica-
tion methods that obtain optimal performance under the resource constraints. For
example, authors in [104] presented a multi-channel MAC protocol (MC-LMAC)
that is designed for maximizing system throughput. MC-LMAC combines the ad-
vantages of interference-free and contention-free parallel transmissions on different
channels. However, the overhead added by this solution is high, and the channel/slot
utilization is low for low data rates. The authors in [105] developed a MAC model
for BASNs to fulfill the desired reliability and latency of data transmission, while
simultaneously maximizing battery lifetime of individual body sensors. In [106], the
authors studied the energy-distortion tradeoff from the information-theoretic point
of view, in the context of various joint source-channel coding problems.
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Wireless transmission optimization in m-health systems has also been widely
investigated. For instance, authors in [107] analyzed the relationship between the
source rate and the uninterrupted lifetime of a sensor. They formulated a steady-rate
optimization problem to minimize rate fluctuation with respect to average sustainable
rate. Moreover, they minimized the transmission power of the data aggregators,
subject to some power constraints, the requirements on packet loss rate, transmission
BER, and packet delay. However, they neither consider the signal processing part in
their model nor take the application characteristics into consideration.

In addition to that, the growing power requirements and the need for green
communications motivate developing energy efficient techniques to minimize power
consumption in next-generation wireless networks, while meeting high user’s QoS
expectations [108]. In this context, the authors in [109] proposed a hybrid multime-
dia delivery solution, which achieves an energy-quality-cost tradeoff by combining
an adaptive multimedia delivery mechanism with a network selection solution. Based
on user preferences, location-based and network related information, the proposed so-
lution in [109] determines whether to adapt multimedia delivery or handover to a new
network by computing a score function for each of the selected candidate networks.
Then, it selects the network with the highest score as the target network. In [110],
the authors focused on the energy efficient design of physical-layer transmission
technologies and MAC-layer radio resource management. They studied the tradeoff
between spectrum efficiency and energy efficiency as part of their optimization
model. Some studies have also focused on joint compression and communication
optimization, where the compression power consumption and transmission power
consumption are jointly considered in order to optimize the performance of the entire
system. However, this approach is mainly applied to video transmission systems,
since the video encoding itself consumes high power compared with the wireless
transmission [111]. In general, it is agreed that energy-efficient cross-layer design is
a very complex problem, since it requires to effectively investigate all the network
layers optimizations jointly [112].

The immense advancements in smartphone features and capabilities have pro-
moted the development of smartphone apps for long-term chronic condition manage-
ment. Health-related smartphone apps can build a sense of security for patients with
chronic conditions, since they felt secure that their states are carefully monitored,
and their doctors take care of them even outside the hospital or clinic. Thus, there is
a growing interest in the literature in leveraging mobile apps to enhance healthcare
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services for chronically ill and elderly people. For instance, the authors in [113]
have implemented an embedded low cost, low power web server for internet based
wireless control of BCI-based home environments. This web server provides remote
access to the environmental control module through transmitting BCI output com-
mands determined by BCI system to drive the output devices. In [114], the authors
presented a real-time mobile adaptive tracking system, where the wireless local
area network, or third-generation-based wireless networks are used to transfer test
results from a smartphone to the remote database. This system provides real-time
classification of test results, generation of appropriate short message service-based
notification, and sending of all data to the Web server. We remark here that aspects
related to wireless transmission, channel characterization, and transmission energy
minimization are not within the scope of this previous work. A comprehensive
overview of recent smartphone apps designed for remote health monitoring can be
found in [115][116]. However, more studies involving larger samples size, patients,
and health professionals are still necessary to investigate mobile apps’ acceptability
and effectiveness.

Accordingly, studying energy and monetary cost minimization in wireless trans-
mission, as well as signal distortion tradeoff for delay sensitive transmission of med-
ical data should be taken into consideration. However, neither the aforementioned
work nor the studies in [117] and [118], have considered a cross-layer approach
that takes the application requirements, in-network data processing, and physical
layer components jointly into consideration. With regards to our previous work
[119][120][121], we have studied the transmission and processing energy consump-
tion and developed an Energy-Compression-Distortion analysis framework. Using
this framework, [119] proposed a cross-layer optimization model that minimizes the
total energy consumption, under a TDMA scheduling. The work has been extended
in [120] to the case where more than one link can be activated simultaneously, using
the same TDMA slot. Furthermore, to evaluate and verify our model, we have
developed a smartphone app in [121], where the PDA compresses the gathered EEG
data using dynamically obtained optimal compression parameters based on real-time
measurements of the packet delivery ratio and end-to-end delay, then forwards it
to the healthcare server which decompresses and reconstructs the original signal.
However, this previous work addresses energy consumption minimization only using
centralized approach, and it completely ignores the energy-cost-distortion tradeoff.
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Finally, [122] presents a preliminary version of our study, where only one single
PDA is considered.

4.3 System model and objectives

First, we start by introducing the system under study, as well as the application and
network requirements, which will be addressed in our optimization problem.

SMS1
S2

PDA 1

SMS1
S2

PDA 2

SMS1
S2

PDA N

M-Health Cloud

Fig. 4.1 System Model.

4.3.1 Reference scenario

We consider a wireless m-health system, as shown in Figure 4.1. In our model,
PDA gathers sensed data from a group of sensor nodes, compresses it, and then
forwards the aggregate traffic to the MHC. The MHC can be considered as a virtual
central node that is responsible for gathering the transmitted data from PDAs, and
for coordinating different PDAs in a central fashion whenever needed. In addition to
that, signal reconstruction, feature extraction, classification and distortion evaluation
can be performed at the MHC to detect the status of the patient [123]. We denote the
number of PDAs that want to transfer their data to the MHC by Ñ. Each PDA will
perform DWT compression, quantization and encoding on the raw EEG data, and it
will transmit the output through its RF interface [124] (see Figure 4.2). It is assumed
that the PDA can adapt the transmission power level as well as the compression ratio,
according to, e.g., the radio propagation conditions. In particular, the PDA employs
a threshold-based DWT so that the number of output samples generated from DWT,
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Fig. 4.2 A detailed medical EEG system diagram.

and thus the compression ratio of the DWT, can be easily controlled. Although the
adopted framework employs the encoding model of EEG signal, it can be easily
extended to different data types which are typically at a low data rate (e.g., body
temperature, blood pressure or heart-rate reading), or at higher data rates such as
video streaming.

Furthermore, each PDA receives from the sensor nodes (i.e., S1 to SM), the
application layer constraints, namely, maximum BER and data transfer delay. After
that, given the channel conditions, it determines the transmitted rate and compression
ratio that satisfy the application layer constraints, while providing the optimal tradeoff
among energy consumption, monetary cost, and signal distortion.

4.3.2 Performance metrics

Following [125], we express the QoS requirements of our healthcare application
through signal distortion, BER, and data transfer delay from the PDA to the MHC.
In particular, typically BER and transfer delay are constrained not to exceed a given
maximum value (i.e., ϑ = 10−6 and τ = 10 ms, respectively), while the distortion
Di with which the signal from the generic PDA i (i = 1, . . . , Ñ) is reconstructed at
the receiver side should be as small as possible. Using the results obtained through
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our real-time implementation [121], such quantity can be written as:

Di =
c1e(1−κi)+ c2 · (1−κi)

−c3 + c4 ·F−c5− c6

100
. (4.1)

where F is the wavelet filter length [68], κi is the compression ratio, and the model
parameters c1, c2, c3, c4, c5 and c6 are estimated by the statistics of the typical EEG
encoder used in [121]. We remark that given a string of ls bits representing raw
EEG samples, the encoder at PDA i will output l = ls(1−κi) bits to be transmitted
through the radio interface.

Then, looking at the communication network, it is of paramount importance to
minimize the energy consumption and the monetary cost that the PDA incurs for
transferring its data to the MHC. We define the energy expenditure of PDA i to
transmit li bits over a channel with bandwidth w, at rate ri, as [120]:

Ẽi =
li ·N0 ·w

ri ·gi
(2ri/w−1) (4.2)

where N0 is the noise spectral density and the channel gain gi is given by

gi = k ·α · |hi|2 . (4.3)

In (4.3), k = −1.5/[log(5ϑ)], α is the path loss, and |hi| is the fading channel
magnitude. Also, we remark that the above equations express the relationship
between energy consumption and BER: the lower the BER, the higher the energy
that is required for data transmission.

The monetary cost to send li bits is instead expressed in Euro and defined as:

C̃i = ε · li (4.4)

where ε is the cost of sending one bit. Monetary cost could be easily obtained
through the use of IEEE 802.21 standard [126], which allows a user device to gather
information about the available wireless networks (of course, such value can be
updated if there are any changes in pricing) [127].

Importantly, looking at the above expressions, it can be seen that some factors
exhibit opposite trends. The higher the compression ratio κi, hence, the signal
distortion, the fewer the transmitted bits (li). Conversely, the smaller the li, the lower
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the energy consumption and the monetary cost. Thus, in order to achieve the system
goals stated above, it is necessary to find the optimal tradeoff between two conflicting
objectives, energy and cost on one side and distortion on the other. We take this
challenge in the next section, where our optimization problem is set out.

4.4 Energy-Cost-Distortion Optimization

As mentioned, the proposed optimization problem considers three criteria: transmis-
sion energy consumption, monetary cost, and encoding distortion. Each criterion
presents different ranges and units of measurement, thus we need first to normalize
them in order to make them adimensional and comparable. Considering that distor-
tion is already expressed as a percentage, we normalize Ẽi and C̃i with respect to
their maximum value, i.e., the value they take when no compression is used (i.e.,
κi = 0). We denote the normalized energy and monetary cost (hereinafter referred to
as cost for brevity) by Ei and Ci.

Then, considering that the problem can be solved in a centralized manner at the
MHC, we write our objective function as:

min
κi,ri

Ñ

∑
i=1

λ · (Ei +Ci)+(1−λ ) ·Di (4.5)

where λ is a weighting factor, 0 < λ < 1, that can be set by the PDA based on
the desired energy-cost-distortion tradeoff. In particular, λ = 1 means that we
aim at minimizing the transmission energy and monetary cost only, and neglect
the distortion. On the contrary, λ = 0 means to neglect transmission energy and
monetary cost, and only consider distortion. The unknowns in this problem are the
transmission rates ri, on which Ei depends, and the compression ratios κi, on which
all three performance metrics (Ei, Ci and Di) depend. Indeed, recall that, given the
number ls of raw bits as input to the encoder of PDA i, the number of output bits to
be transmitted is given by l = ls(1−κi).

Based on the requirements of the healthcare applications and of the communica-
tion networks, the above expression should be minimized subject to the following
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constraints:

ls (1−κi)

ri
≤ τ, ∀i ∈ Ñ (4.6)

Ñ

∑
i=1

ri ≤ B (4.7)

0≤ ri, 0≤ κi ≤ 1, ∀i ∈ Ñ (4.8)

Constraint (4.6) accounts for the fact that the transmitted data must be received at
the MHC with a maximum transmission delay τ , which for simplicity we assume
to be the same for all PDAs. The network perspective instead is accounted for by
constraint (4.7), which states that sum of the transmission rates of the PDAs cannot
exceed the maximum available bandwidth B. Finally, constraint (4.8) simply ensures
that the decision variables take non-negative values.

Unfortunately, this initial form of the optimization problem is non-convex [128].
One of the common methods to make the problem convex, is to transform the
original problem into a Geometric Programming (GP) problem [129]. For the
transmission energy in (4.2), we can use the Taylor Series Expansion, 2ri/w =

1+ ri log(2)
w + ri

2 log2(2)
2w2 + ri

3 log3(2)
6w3 + ri

4 log4(2)
24w4 +O(ri

5). Then, the objective function
can be transformed into an equivalent convex one using a change of variables. Define
κ̂i = log(1−κi), and r̂i = log(ri). By substituting these expressions in (4.2), we
have:

Êi =
ls(1−κi)w

(
ri log(2)

w + ri
2 log2(2)

2w2 + · · ·
)

N0

ri ·gi
(4.9)

=
ls(1−κi)

(
log(2)+ ri log2(2)

2w + · · ·
)

N0

gi
(4.10)

=
lseκ̂i

(
log(2)+ er̂i log2(2)

2w + · · ·
)

N0

gi
. (4.11)

Using the same approach, we will have

D̂i = c1eeκ̂i
+ c2e−c3κ̂i + c4 ·F−c5− c6 (4.12)
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, and
Ĉi = ε · lseκ̂i. (4.13)

Then, we write the optimization problem as:

min
κ̂i,r̂i

log
Ñ

∑
i=1

Ui(κ̂i, r̂i,λ )

such that

log(ls · eκ̂i−r̂i)≤ logτ, ∀i ∈ Ñ

log

(
Ñ

∑
i=1

er̂i

)
≤ logB

κ̂i ≤ 0, ∀i ∈ Ñ

(4.14)

where
Ui(κ̂i, r̂i,λ ) = λ · (Êi +Ĉi)+(1−λ ) · D̂i (4.15)

is a sum of exponential functions, and the objective function in (4.14) is now convex
in κ̂i and r̂i. Thus, using the centralized approach, several efficient solution methods
can be applied to solve this problem. The globally optimal solution to the original
optimization problem can be obtained by solving (4.14) and then computing κi

∗ =

1− exp(κ̂∗i ), and r∗i = exp(r̂∗i ), with κ̂∗i and r̂∗i being the optimal solution for (4.14).
At last, we note that in the above problem, the number of variables grows as 2Ñ +1,
while the number of constraints grows as 3Ñ +2.

4.5 Distributed solution

In large scale networks and heterogeneous m-health systems, the above centralized
optimization becomes inefficient and quite complex. Indeed, solving the minimiza-
tion problem that we have formulated in a centralized fashion requires that global
information about the network is available at the MHC, and, in many cases, the
overhead due to such communication from the PDAs to the MHC cannot be sustained.
Thus, in the following we formulate the dual problem of (4.14) and decompose the
original problem into smaller sub-problems, which can be efficiently solved in a
distributed fashion while still achieving optimality. Note that we also provide an
iterative algorithm that allows the MHC to optimally set λ when the best tradeoff
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between energy and monetary cost on one hand and distortion on the other should be
established.

4.5.1 Dual decomposition

Convex optimization has highly-useful Lagrange duality properties, which leads to
decomposable structures. Lagrange duality theory adapts the original minimization
problem in (4.14), the so-called primal problem, into a dual problem. The basic idea
in Lagrange duality is to relax the original problem by moving the constraints into
the objective function in the form of a weighted sum. The Lagrangian of (4.14) is
defined as

L(κ̂, r̂,µ,ν) = log

(
Ñ

∑
i=1

Ui(κ̂i, r̂i,λ )

)
+

Ñ

∑
i=1

µi fi(κ̂i, r̂i)+νh(r̂i) (4.16)

where κ̂ = [κ̂1, . . . , κ̂Ñ ], r̂ = [r̂1, . . . , r̂Ñ ] and µ = [µ1, . . . ,µÑ ]. µi and ν are the
Lagrange multipliers related to the i-th inequality constraint fi(κ̂i, r̂i) ≥ 0 and the
network constraint h(r̂i)≥ 0, respectively, with

fi(κ̂i, r̂i) = logτ− log(ls · eκ̂i−r̂i) (4.17)

h(r̂i) = logB− log

(
Ñ

∑
i=1

er̂i

)
. (4.18)

The dual objective g(µ,ν) is defined as:

g(µ,ν) = inf
κ̂,r̂

L(κ̂, r̂,µ,ν). (4.19)

When the problem is convex, the difference between the optimal primal objective
U∗ and the optimal dual objective g∗ reduces to zero [128],[130]. Hence, the primal
problem (4.14) can be equivalently solved by solving the dual problem

max
µ,ν

g(µ,ν) (4.20)

s.t. ν ≥ 0, µi > 0∀i. (4.21)
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Since g(µ,ν) is differentiable, the master dual problem can be solved with the
gradient method [131], where the dual variable ν at the (t +1)-th iteration is updated
by

ν(t +1) = ν(t)+β
∂L
∂ν

(4.22)

with β > 0 being the gradient step size. The gradient method is guaranteed to
converge to the optimal value as long as the step size is sufficiently small [130].
Given the dual variables at the t-th iteration, the primal variables κ̂∗i and r̂∗i can
be computed by solving the following equations, involving the gradient of L with
respect to the Lagrange multipliers and the primal variables:

∂L
∂ κ̂i

= 0 ;
∂L
∂ r̂i

= 0 ;
∂L
∂ µi

= fi(κ̂i, r̂i) = 0 . (4.23)

4.5.2 Distributed algorithm with fixed λ

Let us assume that the value of λ is predefined by the users according to their
preferences. Looking at (4.16) and (4.23), we can see that the Lagrangian can be
divided into Ñ separate sub-problems, one for each PDA in the network. The sub-
problems can be locally and independently solved provided that ν , i.e., the Lagrange
multiplier that is related to the maximum available bandwidth in the network, is
known. Thus, we devise an iterative, distributed algorithm, named DOA, that lets
each PDA solve its corresponding sub-problem and send to the MHC its optimal
values for κ̂i and r̂i, while the MHC updates the dual variable ν according to (4.22).
The pseudocode of DOA is reported in Algorithm 2.

Initially, each PDA i assumes ν = 0 and computes the dual variable µi and the
primal variables, i.e., (i) κ̂i, hence the compression ratio κi, and (ii) r̂i, hence the
transmission rate ri. If the bandwidth constraint is satisfied (i.e., h(r̂i)≥ 0 ∀i), the
MHC instructs to the PDAs to transmit their data using the calculated compression
ratio and transmission rate. Otherwise, the MHC updates the value of ν using (4.22).
As ν increases, each PDA will have to decrease its ri so as to meet the available
bandwidth constraint. On the contrary, it will have to increase its κi, hence the signal
distortion (see Figure 4.3). When the dual variables converge, the primal variables
also converge to their optimal values in slightly more than 15 iterations, as shown in
Figure 4.4.
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Algorithm 2 Distributed Optimization Algorithm (DOA)

1: t = 0, ν(t) = 0.
2: Each PDA locally solves its problem by computing the equations in (4.23), and

then sends the solution κ̂i, r̂i, and µ to the MHC.
3: while all κi’s≤ 1 ∧ h(r̂i)< 0 ∧ t < niter do
4: The MHC updates ν as in (4.22) and broadcasts the new value ν(t +1)
5: The MHC gets the new estimated parameters κ̂i, r̂i and µi from each PDA and

computes h(r̂i)
6: t++
7: end while
8: if all κi’s≤ 1 ∧ h(r̂i)≥ 0 then
9: The MHC instructs the PDAs to use the new values for κ̂i and r̂i.

10: else
11: Break % No feasible solution reached
12: end if

4.5.3 Distributed algorithm with varying λ

Now, we focus on the impact of λ on the tradeoff between energy, cost, and signal
distortion, that is achieved when the aforementioned problem is optimally solved.
As expected, Figure 4.5(a) shows that high values of λ lead to a greater reduction
of transmission energy and cost as they are assigned a higher weight, while low λ ’s
provide little distortion at the expense of the transmission energy and cost. Here, we
aim at studying the case of great practical relevance where energy consumption, cost,
and distortion are all equally important. In this case, it has been shown [132, 133]
that the best tradeoff can be obtained by selecting the value of λ maximizing the
minimum value of the objective function (i.e., λ = 0.6 in Figure 4.5(b)).
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Fig. 4.4 The value of the primary objective function obtained through the DOA algorithm,
as the number of iterations increases. The results obtained through the DOA distributed
algorithm are compared against the optimal value derived through the centralized solution of
the primal problem.

It is easy to see that, if we let the users autonomously determine the value of λ , in
some cases the DOA algorithm cannot converge to the optimal solution. Furthermore,
even if all users agreed on the same value of λ , we would not have any guarantee
that a feasible problem solution exists. As an example, if the users care mostly about
the quality level of their reconstructed signal, then distortion will be weighted very
high by all of them, likely making the total requested bandwidth exceed the available
bandwidth B. We therefore let the MHC determine the value of the weighting factor
λ according to the following algorithm, called Algorithm λ -DOA.

We start by looking at the original problem in (4.5) and note that λ = 0 corre-
sponds to accounting for distortion only. In this case the value of compression factor
will be set to the minimum possible, given the maximum allowed data rates and
the delay constraint. As λ increases, energy and cost will be weighted more, thus
leading to an optimal solution of the problem that requires lower data rates. Based on
these observations, we can avoid using ν in the dual problem solution and exploit λ

instead. In particular, we can first search for the minimum λ for which the problem
is feasible, i.e., the bandwidth constraint is met. Then, we can increase λ so as to
find the optimal tradeoff between the term accounting for energy consumption and
monetary cost, and distortion, i.e., the optimal λ ∗ that meets the max-min principle
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Fig. 4.5 (a) Tradeoff between transmission energy and distortion and (b) value of the mini-
mized objective function, as λ varies.

[132] is found.

λ
∗ = argmax

λ

(
min
κ̂i,r̂i

log
Ñ

∑
i=1

Ui(κ̂i, r̂i,λ )

)
. (4.24)

It is important to remark that this approach leads to the same solution as the one
obtained by using ν . In addition, it allows us to limit the range of possible values
of λ to those that make the problem feasible, thus greatly reducing the number of
required iterations.

Algorithm 3 details the first step of the procedure. All PDAs start with λ = 0
and solve the sub-problems locally, thus deriving κ̂i and r̂i. If h(r̂i) < 0 and the
maximum number of iterations has not been exceeded, the MHC increases the value
of λ , i.e., it assigns more weight to the transmission energy and the monetary cost
at the expense of distortion. As a result, eventually the bandwidth constraint (i.e.,
h(r̂i) ≥ 0) will be satisfied. In order to reduce the number of iterations, the MHC
can update the value of λ as follows:

λ (t +1) = λ (t)+β

(
∑

N
i=1 er̂i−B

)
(4.25)

where β > 0 being the gradient step size [131]. We stress that, by doing so, the value
of λ computed by the MHC in the first step is the minimum value that satisfies the
h(r̂i) constraint. After that, the MHC runs Algorithm 4 to find the optimal value λ ∗,
which maximizes the minimum value of function U .
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Algorithm 3 λ -DOA - First step

1: λ = 0. At MHC:
2: Get estimated parameters κ̂i, r̂i from each PDA and compute h(r̂i)
3: j=0
4: while λ ( j)≤ 1 ∧ h(r̂i)< 0 ∧ j < niter do
5: Compute λ ( j) using (4.25) and broadcast it to PDAs
6: Get new estimated parameters κ̂i, r̂i from each PDA and compute h(r̂i)
7: j++
8: end while
9: if h(r̂i)≥ 0 then

10: Broadcast λ that ensures the bandwidth constraint is met
11: Run Algorithm 4
12: else
13: Break % No feasible solution has been reached
14: end if

———————————————————————
At PDAs:

15: Receive λ ( j) from MHC
16: Solve the equations in (4.23)
17: Send estimated κ̂i, r̂i to the MHC
18: if λ ∗ is received then
19: Use the estimated κ̂i and r̂i to transmit medical data
20: end if

Both algorithms require that at each iteration some values are exchanged between
PDAs and MHC: specifically, the MHC broadcasts the value of λ to the PDAs while
the PDAs send back their estimated optimal values for κ̂i and r̂i. The MHC checks
the value of h(r̂i), and computes λ by solving (4.25), and then feeds them back
to the PDAs. Once convergence is reached, each PDA transmits its traffic stream
of medical data to the MHC at the optimal transmission rate ri with the optimal
compression ratio κi (see Figure 4.6).

Note that our operating environment changes over time: some PDAs may join
or leave the network, or the radio propagation conditions may vary, thus the energy
consumption per transferred bit as well as the network achievable throughput may
change as well. As shown in the next section, in this case, our distributed algorithm
are able to readily adapt to the network dynamics, by letting the PDAs and the MHC
quickly update the system parameters so as to reach the optimal operational point.
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Algorithm 4 λ -DOA - Second step
1: t=0
2: Compute U(t) = ∑

Ñ
i=1Ui(κ̂i, r̂i,λ )

3: while λ (t)< 1 do
4: λ (t +1) = λ (t)+β

5: Get new estimated κ̂i, r̂i from each PDA
6: if U(t)<U(t−1) then
7: λ ∗ = λ (t−1)
8: U∗ =U(t−1)
9: Break

10: else
11: t++
12: end if
13: end while
14: Broadcast the results to PDAs

4.6 Performance Evaluation

In this section, we first present the network scenario that we used to derive our
numerical results. Then, we show the system performance in the case where only
one PDA has to transfer data toward the MHC, as well as when multiple PDAs are
involved.

PDAs MHC

Run Algorithm 3

 

Medical Data

Calculate    

Check         

Check         

Compute

Transmit data

Update

Fig. 4.6 The λ -DOA sequence diagram.
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4.6.1 Simulation setup

The generated results were obtained using the system model shown in Figure 4.1,
while considering the technical requirements of the selected BASN applications
[134]. In the case of multiple PDAs, as an example, we consider 3 PDAs, however,
the proposed scheme can be adapted easily to any change in the network topology by
adding or removing new PDAs, as will be shown later. Each PDA can capture 173.6
samples of the EEG signal per second, and we assume that samples are collected for
23.6 seconds, corresponding to 4096 samples of epileptic EEG data [51]. Each raw
sample is represented using 12 bits. The available bandwidth B is set to 4 Mbps. At
the server side, the EEG feature extraction, classification and distortion evaluation
can be performed. The target BER is set to ϑ = 10−6. Moreover, to model small
scale channel variations, flat Rayleigh fading is assumed, with Doppler frequency of
0.1 Hz. Other simulation parameters are reported in Table 4.1.

Table 4.1 Simulation Parameters

Parameter Value Parameter Value
N0 -174 dBm/Hz τ 10 ms
ε 10−6 Euro/bit w 0.5 MHz
F 2 ls 62 KB
c1 1.48 c2 4.35
c3 1.46 c4 2.4
c5 0.18 c6 9.5

4.6.2 Single-PDA scenario

Here, we investigate the performance of our scheme in the presence of a single
PDA that has to send its data to the MHC, while achieving an optimal energy-cost-
distortion tradeoff. Figure 4.7 shows the energy-distortion tradeoff, and the monetary
cost-distortion tradeoff, for λ = 0.5. The behavior depicted in the plot, although
expected, underscores how critical it is to optimally set the system parameters so
as to achieve a good operational point. Indeed, the increase of the compression
ratio leads to decreasing the number of transmitted bits, which results in decreasing
transmission energy and monetary cost at the expense of increasing signal distortion.
Thus, a decrease in the energy consumption and in the monetary cost may have
severe effects on the signal distortion.
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Fig. 4.7 Tradeoff between distortion and transmission energy in (a), and between distortion
and monetary cost in (b), for λ = 0.5.

Next, we highlight the effect of λ on the value of the energy-cost-distortion
tradeoff, i.e., on the value of the minimum U . At low λ , distortion is weighted more
than transmission energy and monetary cost. Hence, the optimization problem results
in low κi and low distortion, while the transmission energy and the monetary cost
will be high, as shown in Figure 4.8-(a). Conversely, as λ increases (i.e., when the
relevance of transmission energy and monetary cost increase) κi and the distortion
level grow, as shown in Figure 4.8-(b)-(c). In these plots, the optimization problem
is solved under the constraint that the distortion cannot exceed 30%, thus, as λ

increases, the distortion grows until it reaches the maximum value.

These results stress that, when all performance metrics are equally important, it is
paramount to adopt an algorithm, such as our proposed λ -DOA, which establishes the
best tradeoff among transmission energy, monetary cost, and distortion. Indeed, at the
optimal λ selected by the algorithm, we obtain the minimum value of transmission
energy and monetary cost that allows satisfying the constraint on the maximum level
of distortion.

4.6.3 Multiple PDA Scenario

Figure 4.9 depicts the performance of our distributed algorithm (Algorithm 3) com-
pared to the centralized approach, and illustrates its convergence behavior to the
centralized-optimal solution with varying τ . All PDAs are assumed to have the
same delay deadline τ . It can be seen that the proposed algorithm converges in 60
iterations at most, however this number highly depends on the gradient step size β in
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Fig. 4.8 Results for varying λ : (a) variation of compression ratio and distortion, (b) tradeoff
between transmission energy and distortion, (c) tradeoff between cost and distortion.

(4.25). The optimal value of the objective function obtained through the distributed
algorithm is compared to that of the centralized solution. The plot also shows the
effect of varying τ on the optimal value of the objective function: by decreasing
τ , each PDA increases its ri to meet the delay deadline constraint. As a result, its
transmission energy increases (see (4.2)). It follows that κi tends to increase so as
to reduce the amount of transmitted data and achieve an optimal tradeoff between
energy and distortion. This leads to an overall increase of the objective function.

In Figure 4.10, the performance of the proposed scheme is compared against a
baseline algorithm in which the different PDAs evenly share the available bandwidth
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and each PDA i solves the following optimization problem:

min
κi,ri

Ui(κi,ri,λ ) s.t. (4.26)

li (1−κi)

ri
≤ τ (4.27)

ri ≤
B
N

(4.28)

ri ≥ 0, 0≤ κi ≤ 1, 0≤ λ ≤ 1 . (4.29)

The problem solution at each PDA can be obtained using the same method as in
Section 4.4. We will refer to this baseline scheme as Uniform Bandwidth Allocation
(UBA). We remark that UBA imposes strict constraints on PDAs that have bad chan-
nel conditions, since it assigns equal bandwidth share to all PDAs. On the contrary,
our scheme takes channel conditions into account. Thus, PDAs can transmit their
data using variable bandwidth instead of being limited to fixed-assigned bandwidth,
i.e., PDAs with bad channel conditions are assigned more bandwidth than others
with good channel conditions, according to (4.14). This leads to a reduced energy
consumption as well as distortion under λ -DOA compared to when UBA is used.
Overall, λ -DOA offers about 15% improvement in the value of the objective function,
with respect to the UBA scheme, as shown in Figure 4.10.
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Fig. 4.10 Comparison between the value of the objective function obtained using the λ -DOA
and the UBA scheme.

Next, we investigate the system performance when the maximum value of ac-
ceptable delay, τ , varies. Figures 4.11 and 4.12 depict the results in terms of total
bandwidth usage (i.e., ∑

Ñ
i=1 er̂i) as τ and λ change. We can observe that, as τ in-

creases, the total bandwidth utilization decreases. This is due to the fact that, for
a fixed value of distortion, the PDAs should reduce their transmission rates so as
to minimize their energy consumption. When the effect of the weighting factor
λ is considered, we note that the larger the λ , the higher the weight assigned to
transmission energy and monetary cost at the expense of distortion. Consequently,
lower ri’s are used and the difference in bandwidth usage for different values of τ

results to be greatly magnified. This also illustrates the importance of λ as a tuning
parameter that helps in fulfillment of network throughput constraint.

Figure 4.13 illustrates the value of the utility function Ui of three PDAs that share
the same medium and send their data to the same MHC, as λ varies. The PDAs are
assumed to have different channel propagation conditions and different distances
from the MHC. Clearly, PDAs with bad channel conditions, such as PDA 3, are
forced to increase their transmission energy in order to not exceed the maximum
BER ϑ (see Figure 4.14). The higher energy consumption then leads to an increased
distortion so as to maintain the desired energy-cost-distortion tradeoff. As a result,
the utility function of the PDAs with harsh propagation conditions will be higher
compared to that of PDAs with good channel (e.g., PDA 1)).
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Fig. 4.11 Total bandwidth usage vs. τ , for different values of λ .
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Fig. 4.13 Minimized utility function for three PDAs with different channel conditions (best:
PDA 3, worst: PDA 1), λ varies.

Finally, in Figure 4.15 we assess the ability of our λ -DOA scheme to adapt to
network dynamics. The impact of varying network load (i.e., number of admitted
PDAs) and available bandwidth is studied. In Figure 4.15-(a), it is assumed that
initially the network includes 3 PDAs. In this case, the λ -DOA algorithm converges
to the optimal solution in around 50 iterations. After the first 100 time steps, one
PDA leaves the network. As a result, the aggregate utility initially drops since the
bandwidth that was allocated to the former PDA remains unused. However, thanks
to the λ -DOA, the network resources are redistributed to the remaining PDAs and
the network behavior converges again to the optimal solution. Note however that the
aggregated utility is lower than in the case of 3 PDAs as the network is not saturated.
At time step 200, a third PDA joins the network. The network quickly adapts to the
new situation by assigning resources to the newly added PDA, leading to an increase
in the aggregate utility.

In Figure 4.15-(b), again 3 PDAs initially participate in the network and the
available bandwidth is set to B = 4 Mbps. As before, the λ -DOA scheme converges
to the optimal solution. At time step 100, the available bandwidth is doubled
to B = 8 Mbps. The network adapts to the change in the available bandwidth
by allocating more bandwidth to the PDAs. Note that, due to the larger available
bandwidth, the PDAs increase their transmission rates and decrease their compression
ratio, thus achieving a significant reduction in the distortion level. It follows that the
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Fig. 4.15 Temporal evolution of the system performance with varying (a) number of partici-
pating PDAs and (b) available bandwidth.

new optimal solution corresponds to a lower value of the objective function. After
that, the available bandwidth drops again to B = 4 Mbps. The network dynamically
adapts to the new situation, converging to the initial solution.
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4.7 Summary

This chapter addressed the problem of optimizing the transmission of m-health
applications data from energy-constrained PDAs to the MHC, which is in charge
of reconstructing medical signals, such as EEG, with low distortion. We therefore
take transmission energy, monetary cost, and signal distortion as main performance
metrics, while accounting for the radio propagation conditions experienced by the
PDAs. We proposed a multi-objectives optimization problem that aims at establishing
the desired tradeoff among our main performance metrics, while meeting the system
constraints in terms of maximum data transfer latency and BER. The centralized
multi-objective resource optimization problem has been decomposed into a set of
sub-problems that can be solved in a distributed, efficient manner. According to the
proposed algorithm, the PDAs can separately calculate their data transfer parameters
(i.e., compression ratio and transmission rate) through the exchange of a limited
number of control messages with the MHC. Furthermore, we proposed an algorithm
that allows to achieve the optimal tradeoff among the main performance metrics when
all of them are equally relevant to the system. Simulation results demonstrate that the
proposed scheme obtains the optimal tradeoff between energy efficiency and QoS
requirements, while providing 15% savings in the objective function (i.e., energy-
cost-distortion utility function), compared to solutions based on equal bandwidth
allocation.



Chapter 5

Dynamic Networks Association with
Adaptive Data Compression for
Smart Health systems

5.1 Overview

Rapid advances in wireless access technologies and in-network processing can signif-
icantly assist in implementing smart healthcare systems through providing seamless
integration of heterogeneous wireless networks, medical devices, and ubiquitous
access to data. S-health demand for high data rates and QoS has motivated us to
leverage the development of cellular networks into dense heterogeneous networks
(HetNets) with the utilization of multi-Radio Access Technology (RAT). It is es-
sential for each user/device to leverage different RATs, hence, the available radio
resources across different spectral bands, to communicate with the network infrastruc-
ture [135]. Utilization of the spectrum across diverse radio technologies is expected
to significantly enhance network capacity and QoS for emerging applications such
as remote healthcare monitoring. However, this imposes an essential need to develop
innovative networks association mechanisms that account for energy efficiency while
meeting application quality requirements.

In accordance with the new trends foreseen for 5G systems, this chapter proposes
an efficient networks association mechanism with adaptive data compression for en-
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hancing the performance of s-health systems.1 Different performance matrices have
been considered, in addition to networks characteristics and application requirements,
in order to find an efficient solution that grasps the conflicting nature of the various
users’ objectives and addresses their inherent tradeoffs. The proposed mechanism
adopts a user-centric approach towards exploiting heterogeneous wireless networks
to optimize medical data delivery over heterogeneous s-health systems. In particular,
we focus on answering the following questions:

1. Which network(s) should be selected among multiple Radio Access Networks
(RANs)?

2. What is the optimal level of data compression to be used?

3. What is the amount of data that should be sent through each selected RAN
after compression?

While addressing the above issues, we account for both network characteristics and
application requirements, providing a solution, which achieves an optimal energy-
quality-cost tradeoff.

5.2 Related Work

With the rising tendency toward network densification, various radio technologies,
such as 3G, 4G and WiFi, could be jointly leveraged to enable seamless connection
to users with high levels of quality of experience [137]. Simultaneously utilizing of
multiple radio technologies turns to be even more serious as the user demand and
QoS requirements proliferate, while the available wireless resources remain limited.
Consequently, the upcoming 5G systems are expected to have dense and irregular
HetNets, where the user will be able to access the system through different points
of access. Thus, it is crucial to develop techniques that can efficiently leverage the
available radio resources across different spectral bands using multi-RAT [108].

The association with network infrastructure may be concurrent, exploiting the
multihoming feature of mobile devices to establish simultaneous associations with
different access networks, or switch from one point of access point to another, within

1This work has been published in [136].
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the same RAN or across different RANs. In both cases, several schemes have been
proposed in the literature for network selection and association in HetNets. The
proposed approaches can be broadly classified into four categories: cost-function
based, decision making processes using game theory, Markov decision processes
(MDPs), and optimization based. Cost function-based schemes proactively select
the network with the highest/lowest utility or cost function [127][138]. Although the
approach can achieve a near optimal solution, it is often hard to prove it. According
to the game theory approach, instead, users in different service areas compete for
the bandwidth offered by different wireless networks [139][140]. The resulting
algorithms are, in general, complexity-prohibitive, and their convergence is not
guaranteed. Even in case of convergence, they do not necessarily converge to an
optimal solution. MDPs have been used also to study network switching between
different RATs [141][142]. However, finding the optimal solutions is again cumber-
some, especially in the case of large networks [137]. Formulating network selection
problem as an optimization problem with low or moderate complexity is also not
a trivial task. Finding optimal resource allocation and user association, subject to
resources and/or power constraints, may result in an NP-hard problem [143]. One
way to make the problem tractable is by using constraints relaxation or variables
transformation, or by envisioning online adaptive methods such as Q-learning [144].

Finally, the existing work on concurrent association mainly focus on designing
a traffic scheduler over different device interfaces considering users incentives for
collaboration and bandwidth sharing [145], a transport-layer control protocol to en-
able concurrent multipath transport [146], or content-aware transport-layer protocols
[147]. Other studies have focused on the resource allocation problem for parallel
transmission considering multi-RATs [148][149]. For instance, a sub-optimal solu-
tion is presented in [148] by utilizing the intrinsic quasi-concavity of the formulated
problem. While, in [149], the authors develop a framework of multi-RAT system,
where a small cell serves a number of mobile users via IEEE 802.11 WLAN and
3GPP LTE access technologies. A scheduler at the small cell is developed in order
to minimize the total transmission power subject to QoS constraints on the users’
transmission rates. In [150], an urban deployment scenario is investigated, where
WiFi small cells are overlaid on top of the 3GPP LTE network. The authors present
user-centric network selection algorithms to minimize feedback overhead while
considering user’s preferences. A good review of the mathematical methods that
are applied to the network selection problem, including cost-function, game theory,
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multiple attribute decision making, combinatorial optimization, fuzzy logic, and
Markov chain, can be found in [151].

To the best of our knowledge, none of the aforementioned work advocates a
user-centric approach for efficient networks association taking into consideration
context-aware in-network processing to optimize the delivery, cost, and latency of
the medical data. Thus, our main contributions are summed up as follows:

1. A multi-objective optimization problem is formulated that enables each PDA
to optimally set its data compression ratio and select the RAN(s) for data
transmission, in an energy-efficient and cost-aware manner while ensuring an
acceptable signal distortion.

2. We propose an analytical solution for the formulated optimization problem, by
decomposing it into two sub-optimizations. The two sub-problems turn out to
be solvable with low complexity, and they are analytically proved to lead to
the same optimal solution as the original problem.

3. We design a distributed, iterative, PDA-centric algorithm considering the case
where initially PDAs have just a rough estimate of their resource share on the
available RANs. Then, the convergence behavior of the proposed algorithm to
the optimal solution is analyzed and proved analytically.

4. Finally, the performance of the proposed approach is evaluated and compared
against that of state-of-the-art techniques. Our results demonstrate that the
proposed solution allows for high-quality healthcare monitoring of patients,
it significantly outperforms other solutions, and swiftly adapts to varying
network dynamics.

5.3 System Model and Performance Metrics

Implementing s-health systems in heterogeneous multi-radio environment is chal-
lenging. We consider the s-health architecture shown in Figure 5.1, which is divided
into three main sectors: data acquisition and pre-processing, wireless multi-RAT
network, and health monitoring services and applications. The first sector represents
patients equipped with BASN, pre-attached to their PDAs. Herein, the smartphones
can act as PDAs, i.e., they collect the medical data from the sensors/medical devises
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Fig. 5.1 Multi-RAT m-Health system scenario.

and execute in-network processing tasks to optimize the data transfer based on the
context and the network conditions. More specifically, the PDA may compress the
gathered data at the cost of a certain degree of signal distortion, and transfer it to the
MHC over the multi-RAT wireless network. Importantly, the available multi-RAT
environment enables the PDA to be connected anytime and anywhere, given that
innovative networks selection schemes are implemented. Furthermore, it is of promi-
nent importance that the data transfer from the PDAs to the MHC takes place in an
energy-efficient manner, in order to ensure a long lifetime of the battery-operated
PDAs.

Although the proposed framework considers the encoding model of EEG signals
[120], it can be easily extended to diverse biosignals and multimedia data. In the
following, we consider a time period T assuming that each PDA i (i = 1, . . .N) has
to transfer Bi bits of data toward the MHC. As mentioned, each PDA compresses
the gathered data so that the actual amount of bits to be transferred is given by:
bi = Bi(1−κi) with κi being the data compression ratio used by PDA i. As a result,
a signal distortion is introduced due to the data compression, which is expressed in
(4.1).

Now, assume that RAN j operates on a bandwidth Wj and that the generic PDA i
has a data rate ri j on RAN j. Clearly, ri j relies on the access technology (e.g., its
maximum value is 54Mbps in IEEE 802.11a/g) and on channel radio propagation
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conditions. As noted in [120], the estimated energy consumption for PDA i to
transfer bi bits over RAN j is:

Ẽi j = ψ j

(
biN0Wj

ri jgi j
(2

ri j
Wj −1)

)
+ c j . (5.1)

In the above expression, N0 is the noise spectral density, while the channel gain gi j

is defined as
gi j = K ·σ · |hi j|2

where K =−1.5/(log(5BER)), σ is the path loss attenuation, and |hi j| is the fading
channel magnitude for PDA i over RAN j. All related parameters for this model are
defined as in [120]. In (5.1), ψ j and c j are specific parameters that differ for each
network interface [122]. They can be acquired from the radio interface specifications,
or calculated through power consumption measurements [127].

Next, looking at the expected latency provided by each RAN, we define:

L̃i j =
bi

ri j
+ξ j, (5.2)

where bi
ri j

and ξ j are, respectively, the air time and the access channel delay that PDA
i expects to experience when transmitting bi bits through RAN j. In other words, it
represents the estimated end-to-end delay when using a given technology [152].

Finally, the monetary cost (hereinafter referred to as cost for brevity) resulting
from using RAN j by PDA i to send bi bits is expressed in Euro and defined as:

C̃i j = biε j (5.3)

where ε j is the monetary cost per bit for RAN j. This cost can be obtained through
the use of, e.g., the IEEE 802.21 standard [153], which allows a user device to collect
information about the available wireless networks [127]. Such value can also be
stored on the PDAs in advance and updated if there are any changes in pricing.
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5.4 Joint Network Selection and Compression Opti-
mization: Problem Formulation and Solution

Looking at the system model and the performance provided by each RAN (5.1)–
(5.3), it can be seen that there is a tradeoff between distortion on one side and
energy consumption, latency and cost on the other. First, the higher the compression
ratio (κi), the greater the distortion, but the smaller the amount of data to transmit
(bi). Secondly, as the data rate over RAN j (ri j) increases, the energy consumption
increases, while the latency decreases. Also, it is often the case that RANs providing
higher data rates and lower latency have a higher monetary cost.

In a system supporting healthcare applications, it is of paramount importance
to provide an acceptable distortion level and to ensure a swift transfer of medical
data towards the MHC. Then, from a practical point of view, it is crucial that PDAs
do not have to be recharged too often and that services have an acceptable cost.
Thus, in light of such requirements, in Section 5.4.1 we formulate a Multi-objective
Optimization Problem (MOP) that each PDA should solve and whose aim is to
find the optimal tradeoff between the above conflicting objectives. The proposed
problem is then analytically solved in Section 5.4.2, where the proposed problem is
decomposed into two sub-optimization problems: network selection optimization,
and compression optimization. In Section 5.4.3, we present an iterative algorithm
to solve the network selection problem, while in Section 5.4.4, we derive a closed-
form solution for the compression optimization. Finally, a practical algorithm is
introduced in Section 5.5 for adaptive network selection and compression, which
applies to the case where only an initial estimate of the RANs’ resources is available
at the PDAs.

5.4.1 Problem Formulation

The objective of the proposed MOP is threefold: (i) minimizing transmission energy
consumption, (ii) minimizing monetary cost, and (iii) meeting the medical data QoS
requirements in terms of signal distortion and data delivery latency. We therefore
define a single aggregate objective function which turns the above multiple objectives
into a single objective function. However, each objective presents different ranges
and units of measurement, hence we first normalize these quantities with respect
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to their maximum value, in order to make them adimensional and comparable. We
will denote the normalized energy, monetary cost, and latency by Ei j, Ci j and Li j,
respectively.

Given a generic PDA i with M available RANs, the objective of our optimization
problem is to obtain the optimal compression ratio and assign the PDA to the optimal
RAN(s) minimizing the transmission energy consumption Ei j, monetary cost Ci j,
latency Li j, and distortion Di:

P: min
Pi j,κi

M

∑
j=1

Pi jUi j +δiDi (5.4)

s.t.
Pi j ·bi

ri j
≤ Ti j, ∀ j ∈M (5.5)

M

∑
j=1

Pi j ≥ 1, (5.6)

0≤ Pi j ≤ 1, ∀ j ∈M (5.7)

0≤ κi ≤ 1. (5.8)

where Ui j = αiEi j +βiCi j + γiLi j is the utility function of PDA i over RAN j. The
weighting coefficients represent the relative importance of the four objective func-
tions in the problem; it is assumed that αi +βi + γi +δi = 1.2 Moreover, in (5.4) we
consider a network utilization indicator Pi j that represents the fraction of data that
should be transmitted through RAN j by PDA i. Note that PDAs have all information
to compute the expected energy consumption and cost. Additionally, we assume that
the RAN notifies the PDA about the physical data rate ri j. The network also notifies
PDAs about the expected channel access delay (ξ j) the PDA may experience.

The network capacity constraint is represented by (5.5), where Ti j is the maximum
fraction of the time period T that can be used by PDA i over RAN j (resource share).
Ti j depends on the number of PDAs accessing the RAN, and we assume that it is
notified by the RAN. Constraint (5.6) instead ensures that all the data that PDA i has
to transfer to the MHC is actually sent through the wireless medium.

2 In [154], a dynamic weights update mechanism is proposed in order to achieve the fairness
among different user’s objectives (i.e., energy saving, monetary cost and service latency), while
enhancing the devices operating time.
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The unknowns in this problem are the Pi j’s and κi, i.e., each PDA needs to
determine its compression ratio and the amount of data that the PDA should transfer
through the different RANs. Looking at problem formulation in (5.4), one can see
that it is not a linear programming (LP) problem [128], due to the terms involving the
product of Pi j by κi (or functions of κi). Also, a simple approach, like transforming
the problem into a Geometric Program (GP), would not work in this case due to the
existence of the constraint in (5.6) with the non-linearity of the distortion objective.
Thus, below we envision a methodology to decompose the problem into two sub-
optimization problems, for which an optimal, analytical solution can be obtained.

5.4.2 Optimization Decomposition

In order to analytically solve (5.4), one would like to break the original problem into
two sub-problems such that each of them is a function of one decision variable only
and, hence, can be solved independently of the other. The difficult point in our case
is that the optimization variables (i.e., Pi j’s and κi) are coupled. To overcome this
issue, we proceed as follows.

We first look at the optimization variables in (5.4) as network selection variables
Pi j’s and adaptive compression variables κi. Network selection variables can be
considered as global variables that are relevant to the overall system, while adaptive
compression variables are local variables at each PDA. We therefore decompose the
problem into the network selection and adaptive compression sub-problems, and we
prove that solving the new problem formulation still leads to the optimal solution of
the original problem in (5.4).

Theorem 1: The optimization problem in (5.4) can be decomposed into two
sub-optimization problems while maintaining the optimal solution, as follows:

SP1: min
Pi j

M

∑
j=1

Pi jÛi j (5.9)

s.t.
Pi jbi

ri j
≤ Ti j, ∀ j ∈M (5.10)

M

∑
j=1

Pi j ≥ 1, (5.11)

0≤ Pi j ≤ 1, ∀ j ∈M (5.12)
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and

SP2: min
κi

(
δiDi−

M

∑
j=1

Pi jκiŪi j

)
(5.13)

0≤ κi ≤ 1 (5.14)

where Ūi j and Ûi j have a similar expression as Ui j but for some constant terms and
the fact that bi is replaced by Bi, i.e., they are independent of κi.

Proof. The distortion term Di (see Eq. (4.1)) is not a function of Pi j. Thus, the
objective function in (5.4) can be written as

min
Pi j,κi

M

∑
j=1

Pi jUi j +min
κi

δiDi . (5.15)

By denoting with EM, CM and LM, the maximum energy expenditure, cost, and
latency, respectively, we can rewrite Eqs. (5.1), (5.2), and (5.3), as:

Ei j =

[
(1−κi)ψ j

(
BiN0w j

ri jgii
(2ri j/w j −1)

)
+ c j

]
EM

= (1−κi)Ēi j

Ci j =
(1−κi)Biε j)

CM
= (1−κi)C̄i j

Li j =
(1−κi)Bi

ri jLM
+

ξ j

LM
= (1−κi)L̄i j + L̂i j (5.16)

where Ēi j, C̄i j, L̄i j, and L̂i j are independent of κi (as well as Pi j). By substituting
(5.16) in (5.15), we get:
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Z = min
Pi j,κi

M

∑
j=1

Pi j
(
αiĒi j +βiC̄i j + γi(L̄i j + L̂i j)

)
−

M

∑
j=1

Pi jκi(αiĒi j +βiC̄i j + γiL̄i j)

(a)
= min

Pi j

M

∑
j=1

Pi jÛi j−min
Pi j,κi

M

∑
j=1

Pi jκiŪi j

= min
Pi j

M

∑
j=1

Pi jÛi j +max
Pi j,κi

M

∑
j=1

Pi jκiŪi j (5.17)

where in (a) Ûi j = Ēi j +C̄i j +(L̄i j + L̂i j) and Ūi j = Ēi j +C̄i j + L̄i j.

Now, to minimize Z, we need to minimize ∑
M
j=1 Pi jÛi j and at the same time

maximize ∑
M
j=1 Pi jκiŪi j. However, to maximize ∑

M
j=1 Pi jκiŪi j, we need to maximize

Pi jŪi j, where Ûi j differs from Ūi j by an additive positive constant. Thus, this is
conflict with the minimization of ∑

M
j=1 Pi jŪi j. Thus, the only possible solution is to

minimize ∑
M
j=1 Pi jÛi j with respect to Pi j and maximize ∑

M
j=1 Pi jκiŪi j with respect to

κi. Accordingly, we will have:

Z = min
Pi j

M

∑
j=1

Pi jÛi j +max
κi

M

∑
j=1

Pi jκiŪi j

= min
Pi j

M

∑
j=1

Pi jÛi j−min
κi

M

∑
j=1

Pi jκiŪi j. (5.18)

This proves that the original optimization problem in (5.4) can be decomposed into
two sub-optimization problems, (5.9) and (5.13), which still lead to the optimal
solution.

It is worth mentioning that decoupling the overall optimization problem into two
sub-problems, greatly simplifies the problem, thus allowing the study of different
adaptive compression techniques with different distortion models. Similarly, the
usage of various video coding schemes for medical video content delivery could be
investigated, in the presence of different network types and network conditions.
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5.4.3 Network Selection Optimization

In the following, we present an analytical solution for the network selection opti-
mization problem in (5.9). The problem is a LP problem. Thus, we can reduce the
objective function by increasing Pi j’s with minimum Ûi j. Since these variables have
non-negative coefficients, there would be no other way to decrease the objective
function. We conclude that in the following proposition.

Proposition 1: The optimal solution of (5.9) can be obtained by maximizing the
values of Pi j’s for which the corresponding Ûi j’s are minimum.

Proof. Initially, assume that P∗ = 0 is the optimal feasible solution, where P∗ is a
vector of the variables Pi j’s, with corresponding objective value Z∗= 0. However, the
values of Pi j’s have to be increased in order to satisfy the constraint in (5.5), i.e., the
optimal solution must be P∗ > 0. Next, recall that Ûi j depends on the characteristics
of RAN j (e.g., data rate, bandwidth, cost per bit, etc.). By contradiction, we can
show that the optimum solution P∗ is the one for which the values Ûi j’s are minimum,
i.e., P∗ = P̃ such that Ũi j = minÛi j ∀ j. Indeed, consider that P∗ = P̃+∆ instead. In
this case, Û(P∗)> Û(P̃) with Û(P) being the vector of the values Ûi j’s obtained for
P, and P∗Û(P∗)> P̃Û(P̃). This contradicts the assumption that P̃+∆ is the optimal
solution, hence the only optimal solution is P∗ = P̃; any other feasible solution will
have a strictly larger objective value.

According to the above proposition, we can solve the network selection optimiza-
tion problem in (5.9) using Algorithm 5, while maintaining the optimal solution. The
algorithm sorts the available RANs in ascending order, according to the values Ûi j’s,
then the network with the lowest Ûi j is selected, and Pi j is calculated as:

Pi j = max
(

1,
Ti jri j

bi

)
. (5.19)

Note, indeed, that Pi j cannot exceed 1, according to the constraint in (5.7). If the
available resource share on this RAN does not satisfy the requirement of the PDA
(i.e., ∑

M
j=1 Pi j < 1), the second RAN in the list is selected, and so on till the constraint

in (5.6) is satisfied. The algorithm complexity is closely related to the number of
available RANs M; the worst-case complexity is O(M log(M)).
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Algorithm 5 Network Selection Optimization at PDA i

Require: αi, βi, γi, Ti j, ri j, ε j
1: p = 1.
2: Sort the available RANs according to the Ûi j values in ascending order
3: for j = 1→M do
4: Compute Pi j according to (5.19)
5: if Pi j ≥ p then
6: Set Pi j = p, and Pik = 0, ∀k s.t. j < k ≥M.
7: Break % Constraint (5.6) is met
8: else
9: p = p−Pi j

10: end if
11: end for
12: return Selected RAN(s) and corresponding optimal Pi j’s

5.4.4 Adaptive Compression Optimization

As far as the problem in (5.13) is concerned, a closed-form expression for the solution
can be obtained by imposing that the derivative with respect to κi of the objective
function is equal to 0. I.e.,

∂/∂κi = ∂/∂κi

[
δiDi−

M

∑
j=1

Pi jκiŪi j

]

= δi
∂Di

∂κi
−

M

∑
j=1

Pi jŪi j = 0. (5.20)

The distortion in (4.1) can be approximated3 as,

Di ≈
c2(1−κi)

−c3 + c4F−c5−6.5
100

. (5.21)

3This simplified expression is still extremely accurate with a mean square error that equals 0.1%,
while enabling us to maintain a closed-form expression of the solution (see Figure 5.2).
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Fig. 5.2 Comparison between exact distortion obtained through the expression in (4.1) and
the approximated value computed through (5.21).

By substituting (5.21) in (5.20), we obtain:

∂Di

∂κi
=

∑
M
j=1 Pi jŪi j

δi

c2c3(1−κi)
−c3−1

100
=

∑
M
j=1 Pi j ·Ūi j

δi

(1−κi)
−c3−1 =

100∑
M
j=1 Pi j ·Ūi j

δi · c2 · c3

log(1−κi) = − logζ

(1+ c3)
(5.22)

where

ζ =
100∑

M
j=1 Pi j ·Ūi j

δic2c3
.

Thus, according to (5.22), the optimal κi is given by:

κi = 1−ζ
− 1

1+c3 . (5.23)
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5.5 Adaptive Network Selection and Compression

In this section, we propose a distributed, iterative algorithm for optimal Adaptive
Network Selection and Compression, named ANSC for short. ANSC leverages the
problem decomposition introduced in the previous section, and it aims at finding the
optimal solution of (5.4) in practical scenarios where PDAs may have just an initial
estimate of their resource share on a given RAN j.

According to ANSC, once obtained the list of the available RANs, each PDA i
initially assumes that no compression is performed (i.e., κi = 0) and runs Algorithm
5 locally, in order to find the optimal values of Pi j that determine which network(s) i
should use and the amount of data that i should transfer on each RAN. Recall that
in Algorithm 5 the weights αi, βi and γi are assumed to be pre-defined according
to application requirements and/or PDAs’ preferences. Importantly, the value Ti j is
initially set to Ti j = Tj/N j,∀ j, where N j is the number of PDAs using RAN j, i.e.,
all PDAs assume to receive the same resource share on RAN j.4 As foreseen by
several standards, the RAN can notify users about the value of N j.

Next, the generic PDA obtains the optimal κi using Eq. (5.23). It then broadcasts
the corresponding value of T̃i j’s, i.e., the amount of resources it intends to “consume”
over RAN j, which is given by:

T̃i j =
Pi jbi

ri j
. (5.24)

At the RAN point of access, the actual demand from all PDAs is calculated, and
each RAN j can use whatever mechanism to allocate the remaining resources
among competing users (e.g., using proportional fairness, round robin, etc.) [155].
Each RAN can then return to the PDAs the values of their actual resource share.
Accordingly, the PDAs run network selection optimization (Algorithm 5) again,
obtaining the updated optimal values of Pi j’s. The procedure can be repeated until
the convergence or a maximum number of iterations have been reached. The main
steps of the ANSC algorithm are illustrated in Algorithm 6.

Below, we prove that the convergence of ANSC scheme is guaranteed.

4Note that the value of Ti j can be initially set to any arbitrary value.
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Algorithm 6 Adaptive Network Selection and Compression (ANSC) algorithm at
PDA i

1: Initialization: κi = 0, t = 0
2: S(t) = 0
3: do
4: Get optimal Pi j’s through Algorithm 5
5: Compute κi using (5.23)
6: Broadcast requested T̃i j’s computed through (5.24)
7: Get updated Ti j(t +1) from RAN j
8: t ++
9: S(t)← Value of objective function in (5.4)

10: while |S(t)−S(t−1)|> ε ∧ t < niter
11: return Selected RAN(s); optimal Pi j’s and κi

Theorem 2: Regardless of the scheduling mechanisms implemented at the avail-
able RANs, the ANSC scheme converges to the optimal solution of the optimization
problem in (5.4).

Proof. The ANSC algorithm initially starts assuming an equal resource share among
PDAs and no compression κi = 0. Since instead compression can be used, the actual
resource share consumed by any PDA will be less than or equal to this initial arbitrary
value, as long as no new users join the RANs (i.e., N j is fixed). In other words, after
obtaining the optimal κi using (5.23), the length of the transmitted data, hence the
actual amount of radio resources consumed by the PDAs, decreases. As a result,
there will be some extra share of resources on certain RANs that were not available
at the previous iteration. No matter the scheduling mechanism used at the RANs to
reallocate the free resources, for any arbitrary PDA i, we will have:

Ti j(t +1)≥ Ti j(t), ∀t, j. (5.25)

As a result, at each iteration the constraint in (5.5) becomes looser and looser, and the
objective function can be decreased by increasing the value of the Pi j’s corresponding
to the lowest Ui j’s. Thus, from (5.25) we can conclude that the objective function
will always decay as the number of iterations increases until convergence is reached,
and this will happen regardless of the scheduling mechanism implemented at the
available RANs.
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We remark that the algorithm naturally converges when T̃i j(t +1) = T̃i j(t), i.e.,
when the PDAs are not willing to give away any fraction of their resource share on
the RANs. However, due to network dynamics, the available resource shares on the
RANs as well as the PDAs traffic demand may vary: this may trigger the PDAs to
run the ANSC algorithm again and update their resource allocation.

5.6 Performance Evaluation

This section presents first the investigated network scenario that we used to derive
our numerical results. Then, it evaluates the system performance and show the
convergence behavior of the proposed scheme. In this context, we also compare the
performance of the proposed ANSC scheme against two baseline algorithms: the
Ranked Network Selection (RNS) algorithm, which implements the same idea as
that proposed for network selection in [127], and the Autonomous Access Network
Selection (AANS) algorithm presented in [156].

5.6.1 Simulation Environment

For concreteness, we consider a practical scenario of an s-health application: we
consider a wireless brain monitoring system, where the PDA (i.e., smartphone)
gathers EEG data from the patient using EEG Headset, then it forwards the collected
data to the MHC through multi-RAN network. In this context, we exploit the
EEG dataset in [51], where a PDA can capture 4096 samples of epileptic EEG
data. Each raw sample is represented using 12 bits. We then consider the network
topology shown in Figure 5.1, where each PDA can connect to four RANs with
different characteristics. Specifically, RAN1 with a monetary cost per bit ε1 = 610−6

Euro/bit and data rate r1 = 4 Mbps; RAN2 with ε2 = 310−6 Euro/bit and r2 = 2.5
Mbps, RAN3 with ε3 = 0 Euro/bit, r3 = 1.5 Mbps; RAN4 with ε4 = 110−6 Euro/bit
and r4 = 2 Mbps. Moreover, to emphasize the tradeoff between distortion, energy
consumption, latency and cost, it is assumed that ξ j = 0,∀ j ∈ M. As far as the
channel dynamics are concerned, flat Rayleigh fading is assumed, with Doppler
frequency of 0.1 Hz. The other physical layer parameters over the available RANs
are set to: noise spectrum density N0 =−174 dBm, bandwidth W = 0.5 MHz, and
path loss attenuation σ = 3.6∗10−6.
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5.6.2 Simulation Results

First, in order to assess the importance of optimizing both network selection and the
compression ratio, Figure 5.3 depicts the value of the objective function in (5.4) as
the compression ratio κi varies, when αi = βi = γi = δi = 0.25. One can clearly see
that with increasing κi, the length of the transmitted data decreases; hence, initially
the value of the objective function decreases as well. However, beyond a certain
value, distortion becomes dominant and the value of the objective function starts
increasing. Using a high compression ratio enables PDAs to decrease their load on
costly networks and stick to low-cost networks, as shown by Figure 5.3-(b). This
further confirms that, in order to optimize performance, it is important to jointly
consider network selection and adaptive compression.

Next, we compare the performance of the proposed ANSC scheme against the
two baseline algorithms. The RNS algorithm computes a score for each of the
candidate RANs, using the same utility function as Ui j. It then selects the network
with the lowest score as a target network [127]. For the sake of fairness, here we
enhance RNS with the adaptive compression optimization in (5.13) to obtain the
optimal value of compression ratio κi. In the AANS algorithm, instead, we fix κi

to a certain value, and determine the optimal RAN(s) by solving the optimization
problem in (5.9) [156]. Furthermore, we assess the ability of the tested schemes
to adapt to network dynamics, in particular, we assume that the number of PDAs
that can access the available RANs varies over time, as shown in Figure 5.4-(b).
As expected, Figure 5.4-(a) shows that, when the number of PDAs decreases, the
resource share for a generic PDA grows and the value of the aggregate objective
functions drops for all schemes. The opposite occurs when new PDAs join the
network. Interestingly, the network quickly adapts to any change in the scenario by
assigning more or less resources to the PDAs and swiftly reaching convergence to
the optimum. In all cases, however, ANSC provides the best performance.

Figure 5.5 presents the value of different performance metrics when ANSC,
AANS and RNS are adopted, and the values of the corresponding network indicators
Pi j’s over the different RANs. Here, we fixed the resource share available to each
PDA to be Ti j = Tj/N j ∀ j. We remark that RNS selects only one network (the
one with the lowest score), thus in this case Pi j takes a value equal to either 0 or
1 (see Figure 5.5-(H)). Our scheme and AANS instead take different candidate
networks into account and select the optimal RAN(s) that minimize the PDA’s



5.6 Performance Evaluation 119

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Compression Ratio %

N
e

tw
o

rk
 I
n

d
ic

a
to

r

 

 

P
12

  

P
11

P
14

P
13

(a)

(b)

0 10 20 30 40 50 60 70 80 90 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Compression Ratio %

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n

Fig. 5.3 Value of the objective function (a), and of Pi j (network indicators), as the compression
ratio, hence distortion, varies.
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Fig. 5.5 A comparison of different performance metrics and network indicators under ANSC,
AANS and RNS, with varying number of PDAs/users at each RAN.

aggregate objective, i.e., Pi j can take any value between 0 and 1. It follows that
PDAs can transmit using different RANs simultaneously instead of being limited
to one RAN only (see Figure 5.5-(E)). This enables PDAs to decrease their load on
costly networks and distribute it on low-cost networks, which results in a reduced
energy consumption and monetary cost (see Figure 5.5-(a),(b)).

Importantly, unlike AANS that uses a fixed compression ratio, our scheme
finds the compression ratio corresponding to the optimal tradeoff between different
performance metrics. Herein, we consider two possible values of compression
ratio for AANS: a low κi, namely 30%, and a high κi, namely 60%. The former
results to be lower than the optimal compression ratio obtained with ANSC, thus
it leads to more transmitted bits. As a consequence, AANS gives a higher energy
consumption and monetary cost (see Figure 5.5-(a),(b)), as it increases the amount of
data transmitted on costly networks (see Figure 5.5-(F)). On the contrary, the latter
value (κi = 60%) is higher than the optimum. Despite the decrease in transmission
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Fig. 5.6 Convergence behavior of the proposed ANSC scheme and of AANS with exhaustive
search.

energy, monetary cost, and latency due to the smaller amount of transmitted data
(see Figure 5.5-(a),(b),(C)), AANS leads to a higher objective function because
of the large distortion (see Figure 5.5-(d)). Thus, from Figure 5.4 and Figure 5.5,
we can conclude that our ANSC scheme leads to the optimal tradeoff among the
target performance metrics, while other presented algorithms focus on one or more
performance metric at the expense of the others.

Finally, Figure 5.6 depicts the convergence behavior of the ANSC scheme,
compared to AANS. In this case, we combine AANS with exhaustive search (AANS-
ES) so as to iteratively solve the optimization problem in (5.4) and find the optimal
Pi j’s for each κi. Specifically, in AANS-ES, initially κi = 0, then it is incremented
by a small quantity at every iteration. On the contrary, recall that ANSC leverages
the problem decomposition into two sub-optimization problems. Although the
mechanism exploited by ANSC is iterative, we observe that only three iterations are
needed in order to reach convergence, compared to AANS-ES.
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5.7 Summary

In this chapter, we considered a heterogeneous s-health system, where multiple radio
access technologies can be simultaneously used by PDAs, in order to enhance the
performance of data transfer over the wireless medium. We proposed a dynamic
networks association mechanism that enables energy-efficient and high quality
patient health monitoring by targeting jointly RANs selection and data compression.
In the proposed scheme, the energy consumption, application QoS requirements,
and monetary cost are considered as main performance metrics and integrated into
a multi-objective optimization problem. We proved that the optimal solution to
the problem can be obtained analytically by decomposing the problem into two
sub-problems. The two sub-problems have low complexity and allow for a swift
solution at the PDAs (only three iterations are needed in order to reach convergence).
Our simulation results depict the efficiency of the proposed scheme and its ability to
grasp the conflicting nature of users’ objectives while achieving an excellent balance
between them.



Chapter 6

Conclusion and Future Work

In this thesis, we presented our vision of an s-health system leveraging the multi-
access edge computing paradigm. Such an approach can indeed boost the system
performance by efficiently handling the enormous amount of data generated by
sensors as well as medical devices at the edge of the network, and addressing the
limited energy capabilities of such devices. Edge-based processing like compression
and event detection can greatly reduce the amount of data transferred toward the
cloud, thus removing one of the major bottlenecks in s-health systems. In this context,
we presented effective approaches that can be implemented at the edge, so as to
ensure short response time, efficient processing, and minimal energy and bandwidth
consumption. These approaches include:

• Proposing a MEC-based architecture for satisfying s-health requirements
leveraging the benefits of edge computing and context-aware optimization
approaches.

• Introducing a smart health monitoring system for detecting a patient’s state that
exploits feature extraction and fuzzy classification to provide high accuracy,
while being suitable for implementation using mobile user devices. Then,
depending on the patient’s state, the proposed system can exploit different data
reduction techniques, in order to reduce the amount of transmitted data. In
particular, under normal patient’s conditions, a significant amount of energy
can be saved by transmitting properly compressed data, or by sending only
the most representative EEG features that are pertinent to seizures detection.
Our experimental results show that, the proposed s-health system has proven
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its scalability and efficiency in handling large volumes of acquired data, ex-
tending battery lifetime by 60%, and decreasing average transmission delay
by 90% with respect to conventional remote monitoring systems that ignore
data processing at the edge.

• Proposing an efficient EEG-based transceiver design that decreases amount of
transmitted data taking into consideration the characteristics of the acquired
data, while maintaining application’s QoS requirements. The advantages of
the proposed transceiver design are: (i) it’s compatibility with the current and
future standards, by leveraging well-known OFDM transceiver architecture
with slight modifications and without adding significant overhead, (ii) high
compression efficiency, with the remarkable result of 50% compression ratio
at zero distortion and sample error rate.

• Proposing an Energy-Cost-Distortion solution, which leverages the advan-
tages of in-network processing and medical data adaptation to optimize the
transmission energy consumption and the cost of using network services. Fur-
thermore, we present a distributed multi-objectives solution, which is suitable
for heterogeneous s-health systems with variable network size. Our solution
leverages Lagrangian duality theory to obtain the best tradeoff among energy
consumption, network cost, and signals distortion, for delay sensitive trans-
mission of medical data. Simulation results demonstrated the efficiency of
our decentralized solution, as well as its ability to adapt to varying network
conditions.

• Adopting a user-centric strategy that enables each user to independently select
one or more RANs to use simultaneously. The selection depends on the user’s
objectives (i.e., energy saving, monetary cost, service latency, and encoding
distortion), and the characteristics of the available RANs (i.e., throughput,
channel quality, and data rate). Indeed, we address multi-RAN selection by
formulating a multi-objective optimization problem that accounts for (i) QoS
(in particular, data latency and encoding distortion) requirements, (ii) monetary
cost, and (ii) energy consumption. Then, the problem is analytically solved
using optimization decomposition. Finally, the convergence behavior of the
proposed algorithm to the optimal solution is analyzed and proved analytically.
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In short, we argue that utilization of the spectrum across diverse radio technolo-
gies is highly recommended for enhancing network capacity and quality of service
for emerging applications such as remote health monitoring. Furthermore, it is
also recommended to integrate wireless network components, characteristics of the
acquired data, and high level requirements of the considered application, in order
to provide sustainable, energy-efficient and high-quality services for smart health
systems.

In what follows, we discuss three main directions that represent interesting lines
for future research.

1. Privacy and security: Great potential of s-health system can only be achieved
if individuals are confident about the privacy of their health-related information,
and providers are confident about the security of gathered data. However,
ensuring privacy and security is not straightforward. Wireless medical devices
are typically susceptible to various types of threats, such as patient tracking and
relaying, as well as denial of service attacks, which violate confidentiality and
integrity of the devices. Data processing algorithms and data storage may also
be subject to attacks. Below, we discuss some challenges and opportunities
that MEC poses in this respect.

First is the ownership of the collected data from the patients. Storing the data
at the patients’ proximity, where it is collected, and enabling the patients to
fully own the data is a better solution for privacy protection. Also, the patient
will be able to control if the data should be stored at the edge or transmitted to
the cloud after removing or hiding some of the private information from the
data.

Second is the tradeoff between increasing security level and QoS. Increased
security through strong cryptographic algorithms or effective key management
schemes [157][158], adds more processing and additional overhead at the
edge, which may have a significantly adverse impact on QoS, especially for
real-time applications with strict delay and throughput requirements. This
imposes an essential need to design joint QoS and security mechanisms for
s-health applications that maximize QoS, while meeting applications’ security
requirements.
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2. Collaborative edge: Healthcare requires data sharing and collaboration among
different stakeholders in multiple domains. However, sharing of data owned by
a stakeholder rarely happens due to privacy concerns and the high cost of data
transfer. In this context, collaborative edge, which connects the edges of mul-
tiple stakeholders that are geographically distributed (such as hospitals, centers
for disease control and prevention, pharmacies, and insurance companies),
is beneficial in threefold. First, it provides distributed data sharing among
different stakeholders at low cost, thanks to computation and processing at the
participant edges. Second, in the case of remote monitoring, it enables patients
to forward their medical data to the cloud through other users/edge nodes. This
also improves spectrum and energy efficiency and allows data transferring
even in geographically remote areas by exploiting Device-to-Device (D2D)
data transfer [159][160]. Third, it enables a patient’s edge node to directly con-
nect to the nearest hospital’s edge in the proximity for continuous monitoring,
without the need of going through the cloud. This helps to increase monitoring
efficiency, reduce energy consumption and operational cost, as well as provide
high-quality services.

3. Combining heterogeneous sources of information: Various sources of infor-
mation are used in s-health systems for efficient monitoring, hence, leveraging
advanced multimodal data processing techniques for combining these sources
of information at the edge is a promising trend toward automating supervision
and remote monitoring tasks. Multi-radio and multi-technology Edge gateway
can be considered to locally process data coming from various data sources.
However, several challenges remain open when it comes to the s-health systems
with hybrid sensing sources. First, in terms of multiple modalities, it is not
straightforward to incorporate and transmit multiple data streams in s-health
systems, where power consumption is a limiting factor; indeed, transmission
of highly informative biosignals (e.g., EEG, EMG, and electrocardiogram)
is an energy hungry process for battery-operated devices. Second, signals
artifacts arise from internal sources, e.g., muscle activities and movements, as
well as from external sources related to noise, interference, and signals offset,
which have critical implications on data quality [161].

In this context, adopting a MEC-based s-health system architecture would
be beneficial in two ways. First, it permits to address system complexity
associated with such heterogeneous and variable data-stream inputs. This is
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done through implementing multimodal in-network processing techniques that
yield the correlation between different modalities, in addition to the temporal
correlation within each modality [162]. Moreover, a MEC-based architecture
enables extracting high level application-based features at the edge rather than
the cloud. By doing so, a MEN can send a limited number of the extracted
features, or the obtained correlations, instead of transmitting either the original
or the compressed data. Second, advanced signal processing for artifact
removal can be incorporated at the edge, in order to improve signals quality
before transmission.
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