1,165 research outputs found

    Decidability of quantified propositional intuitionistic logic and S4 on trees

    Full text link
    Quantified propositional intuitionistic logic is obtained from propositional intuitionistic logic by adding quantifiers \forall p, \exists p over propositions. In the context of Kripke semantics, a proposition is a subset of the worlds in a model structure which is upward closed. Kremer (1997) has shown that the quantified propositional intuitionistic logic H\pi+ based on the class of all partial orders is recursively isomorphic to full second-order logic. He raised the question of whether the logic resulting from restriction to trees is axiomatizable. It is shown that it is, in fact, decidable. The methods used can also be used to establish the decidability of modal S4 with propositional quantification on similar types of Kripke structures.Comment: v2, 9 pages, corrections and additions; v1 8 page

    Variable types for meaning assembly: a logical syntax for generic noun phrases introduced by most

    Get PDF
    This paper proposes a way to compute the meanings associated with sentences with generic noun phrases corresponding to the generalized quantifier most. We call these generics specimens and they resemble stereotypes or prototypes in lexical semantics. The meanings are viewed as logical formulae that can thereafter be interpreted in your favourite models. To do so, we depart significantly from the dominant Fregean view with a single untyped universe. Indeed, our proposal adopts type theory with some hints from Hilbert \epsilon-calculus (Hilbert, 1922; Avigad and Zach, 2008) and from medieval philosophy, see e.g. de Libera (1993, 1996). Our type theoretic analysis bears some resemblance with ongoing work in lexical semantics (Asher 2011; Bassac et al. 2010; Moot, Pr\'evot and Retor\'e 2011). Our model also applies to classical examples involving a class, or a generic element of this class, which is not uttered but provided by the context. An outcome of this study is that, in the minimalism-contextualism debate, see Conrad (2011), if one adopts a type theoretical view, terms encode the purely semantic meaning component while their typing is pragmatically determined

    Undecidability of first-order modal and intuitionistic logics with two variables and one monadic predicate letter

    Full text link
    We prove that the positive fragment of first-order intuitionistic logic in the language with two variables and a single monadic predicate letter, without constants and equality, is undecidable. This holds true regardless of whether we consider semantics with expanding or constant domains. We then generalise this result to intervals [QBL, QKC] and [QBL, QFL], where QKC is the logic of the weak law of the excluded middle and QBL and QFL are first-order counterparts of Visser's basic and formal logics, respectively. We also show that, for most "natural" first-order modal logics, the two-variable fragment with a single monadic predicate letter, without constants and equality, is undecidable, regardless of whether we consider semantics with expanding or constant domains. These include all sublogics of QKTB, QGL, and QGrz -- among them, QK, QT, QKB, QD, QK4, and QS4.Comment: Pre-final version of the paper published in Studia Logica,doi:10.1007/s11225-018-9815-

    Fixed-point elimination in the intuitionistic propositional calculus

    Full text link
    It is a consequence of existing literature that least and greatest fixed-points of monotone polynomials on Heyting algebras-that is, the algebraic models of the Intuitionistic Propositional Calculus-always exist, even when these algebras are not complete as lattices. The reason is that these extremal fixed-points are definable by formulas of the IPC. Consequently, the μ\mu-calculus based on intuitionistic logic is trivial, every μ\mu-formula being equivalent to a fixed-point free formula. We give in this paper an axiomatization of least and greatest fixed-points of formulas, and an algorithm to compute a fixed-point free formula equivalent to a given μ\mu-formula. The axiomatization of the greatest fixed-point is simple. The axiomatization of the least fixed-point is more complex, in particular every monotone formula converges to its least fixed-point by Kleene's iteration in a finite number of steps, but there is no uniform upper bound on the number of iterations. We extract, out of the algorithm, upper bounds for such n, depending on the size of the formula. For some formulas, we show that these upper bounds are polynomial and optimal

    First-order Goedel logics

    Full text link
    First-order Goedel logics are a family of infinite-valued logics where the sets of truth values V are closed subsets of [0, 1] containing both 0 and 1. Different such sets V in general determine different Goedel logics G_V (sets of those formulas which evaluate to 1 in every interpretation into V). It is shown that G_V is axiomatizable iff V is finite, V is uncountable with 0 isolated in V, or every neighborhood of 0 in V is uncountable. Complete axiomatizations for each of these cases are given. The r.e. prenex, negation-free, and existential fragments of all first-order Goedel logics are also characterized.Comment: 37 page

    η-conversions of IPC implemented in atomic F

    Get PDF
    It is known that the β-conversions of the full intuitionistic propositional calculus (IPC) translate into βη-conversions of the atomic polymorphic calculus Fat. Since Fat enjoys the property of strong normalization for βη-conversions, an alternative proof of strong normalization for IPC considering β-conversions can be derived. In the present article, we improve the previous result by analysing the translation of the η-conversions of the latter calculus into a technical variant of the former system (the atomic polymorphic calculus Fat^∧_at). In fact, from the strong normalization of Fat^∧_at we can derive the strong normalization of the full intuitionistic propositional calculus considering all the standard (β and η) conversions.info:eu-repo/semantics/publishedVersio

    Provability Logic and the Completeness Principle

    Full text link
    In this paper, we study the provability logic of intuitionistic theories of arithmetic that prove their own completeness. We prove a completeness theorem for theories equipped with two provability predicates □\Box and △\triangle that prove the schemes A→△AA\to\triangle A and □△S→□S\Box\triangle S\to\Box S for S∈Σ1S\in\Sigma_1. Using this theorem, we determine the logic of fast provability for a number of intuitionistic theories. Furthermore, we reprove a theorem previously obtained by M. Ardeshir and S. Mojtaba Mojtahedi determining the Σ1\Sigma_1-provability logic of Heyting Arithmetic

    Quantified Propositional Gödel Logics

    Get PDF
    It is shown that Gqp↑, the quantified propositional Gödel logic based on the truth-value set V↑ = {1 - 1/n : n≥1}∪{1}, is decidable. This result is obtained by reduction to Büchi's theory S1S. An alternative proof based on elimination of quantifiers is also given, which yields both an axiomatization and a characterization of Gqp↑ as the intersection of all finite-valued quantified propositional Gödel logics
    • …
    corecore