We prove that the positive fragment of first-order intuitionistic logic in
the language with two variables and a single monadic predicate letter, without
constants and equality, is undecidable. This holds true regardless of whether
we consider semantics with expanding or constant domains. We then generalise
this result to intervals [QBL, QKC] and [QBL, QFL], where QKC is the logic of
the weak law of the excluded middle and QBL and QFL are first-order
counterparts of Visser's basic and formal logics, respectively. We also show
that, for most "natural" first-order modal logics, the two-variable fragment
with a single monadic predicate letter, without constants and equality, is
undecidable, regardless of whether we consider semantics with expanding or
constant domains. These include all sublogics of QKTB, QGL, and QGrz -- among
them, QK, QT, QKB, QD, QK4, and QS4.Comment: Pre-final version of the paper published in Studia
Logica,doi:10.1007/s11225-018-9815-