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AXIOMATIZABILITY OF PROPOSITIONALLY QUANTIFIED MODAL
LOGICS ON RELATIONAL FRAMES

PETER FRITZ

Abstract. Propositional modal logic over relational frames is naturally extended with propositional
quantifiers by letting them range over arbitrary sets of worlds of the relevant frame. This is also known as
second-order propositional modal logic. The propositionally quantified modal logic of a class of relational
frames is often not axiomatizable, although there are known exceptions, most notably the case of frames
validating the strong modal logic S5. Here, we develop new general methods with which many of the
open questions in this area can be answered. We illustrate the usefulness of these methods by applying
them to a range of examples, which provide a detailed picture of which normal modal logics define classes
of relational frames whose propositionally quantified modal logic is axiomatizable. We also apply these
methods to establish new results in the multimodal case.

§1. Introduction. The possible world structures of Kripke [32, 33] provide a very
useful model theory for modal logics. Many propositional modal logics which arise
naturally in alethic, temporal, epistemic, and deontic contexts can be shown to be
sound and complete with respect to a class of relational (Kripke) frames. In many
cases, this extends to multimodal logics, which include several modal operators,
each of which is interpreted using its own accessibility relation on the set of worlds
(points) of the frame. (The notions mentioned informally in this introductory section
will be defined properly in Section 2.) While propositional logics allow the expression
of many general intensional principles, these principles are in a sense all universal
conditions. For example, it is possible to postulate axiomatically that generally, �p
only if p. Depending on the interpretation, this principle might say, e.g., that what
is necessary is true, or that what is known is true. But it is impossible to postulate
that this implication cannot be reversed, i.e., that there are cases in which p is true
without �p being true. Yet, it is equally natural to postulate that not every truth is
known or necessary.

A simple extension of a given propositional modal language allows for a
straightforward regimentation of the example just given. This is the extension by
quantifiers ∀ and ∃ binding the atomic proposition letters p, q, r, ... , which may
then be conceived of as propositional variables. With these quantifiers, the relevant
claim can be formulated as ∃p(p ∧ ¬�p). Such extensions of modal logic were
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2 PETER FRITZ

already considered in the earliest works on symbolic modal logic, by Lewis and
Langford [36], and their versatility in philosophical applications is evidenced in the
work of Prior [43–47]. Propositional quantifiers are also straightforward to interpret
on relational frames: when interpreting propositional formulas on such frames, each
proposition letter is assigned a set of worlds—the set of worlds in which it is true.
Thinking of propositional quantifiers as ranging over all possible interpretations
of the variable which they bind, they are therefore straightforwardly interpreted as
ranging over all sets of worlds. Such an interpretation of propositional quantifiers
was already proposed by Kripke [32].

It is natural to ask whether well-known completeness results of propositional
modal logics with respect to classes of relational frames are preserved under the
addition of propositional quantifiers. Many important results on this question were
established around 1970, in particular by Bull [7], Kaplan [27], and Fine [12]. To
state their results, let Λ�+, for any normal modal logic Λ, be the propositionally
quantified modal logic of Λ-frames, i.e., the set of formulas in the propositionally
quantified modal language which are valid on the class of frames on which every
theorem of Λ is valid. The results of Bull, Kaplan, and Fine show that S5�+ is
axiomatizable; indeed, they show that S5�+ is decidable, and provide a natural and
independent axiomatization. Fine shows that this cannot be extended to a number
of common modal logics which are weaker than S5, as K�+, T�+, K4�+, S4�+,
S4.2�+, and B�+ are all not axiomatizable.

A few further results on the axiomatizability of propositionally quantified modal
logics interpreted over relational frames have been obtained since then. Kremer [30]
notes that Fine’s unaxiomatizability results can be strengthened to show that the
relevant logics are not just not axiomatizable, but in fact recursively isomorphic to
second-order logic (understood as the validities of a second-order predicate language
on standard models). A proof of this result for S4.2 was presented by Kaminski and
Tiomkin [26], which extends to any modal logic Λ weaker than S4.2. More recently,
Ding [10] has extended the decidability result from the class of frames validating
S5 to those validating KD4E (aka KD45). Multimodal logics have been considered
as well: Antonelli and Thomason [1], Kuhn [34], and Belardinelli et al. [2] all show
that the propositionally quantified bimodal logic on relational frames in which both
modalities obey the principles of S5 is recursively isomorphic to second-order logic,
and Fritz [16] extends this to the corresponding class of product frames, which
validate certain interaction principles between the two modalities.

While these existing axiomatizability results cover many of the most well-known
modal logics, the findings are at present somewhat unsystematic. This paper aims
to improve this situation, by developing general methods by which a more complete
picture can be obtained. First, as Ding [10, p. 1148] notes, it appears from the known
results as if there is an “axiomatizability boundary” which divides normal modal
logics according to strength, with a normal modal logic Λ being above the boundary
if and only if Λ�+ is axiomatizable. We show that such a boundary does indeed exist
among a wide class of normal modal logics, as in these cases, the complexity of Λ�+
decreases monotonically with the strength of Λ. We note that the result does not
extend to all normal modal logics.

The current understanding is especially limited when it comes to axiomatizable
logics: only two non-trivial normal modal logics—KD4E and S5—have been
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AXIOMATIZABILITY OF PROPOSITIONALLY QUANTIFIED MODAL LOGICS 3

Figure 1. The axiomatizability boundary (dotted) among some finitely
axiomatized normal modal logics.

identified as defining classes of frames whose propositionally quantified modal
logics are axiomatizable (indeed, decidable). We will develop a new technique
for showing the decidability of Λ�+ which can be applied to many more strong
normal modal logics Λ. Most notably, this includes KE and every one of its normal
modal extension. We also simplify the construction presented in Kaminski and
Tiomkin [26] which makes it applicable to a wider range of normal modal logics.
With these two general methods, we are able to trace the axiomatizability boundary
in fine detail both from above and from below. Figure 1 summarizes many of the
central results: It presents a number of normal modal logics, ordered according
to strength (inclusion). The figure indicates the axiomatizability boundary using
a dotted line: for any logic Λ included in the diagram above this line, Λ�+ is
axiomatizable (indeed, decidable), and for any logic Λ included in the diagram
below this line, Λ�+ is not axiomatizable (and in most cases recursively isomorphic
to second-order logic). The various modal logics included in Figure 1 will be defined
below; see Figure 2. For reasons of uniformity, we follow the notational conventions
for modal axioms and logics of Hughes and Cresswell [25, pp. 359–368] throughout,
from which the arrangement of logics in Figure 1 is adapted as well. (The definition
of K3 is missing from Hughes and Cresswell [25], but it can be found in Hughes and
Cresswell [23, Appendix 3]. We have also changed some inclusion relations from the
diagram of Hughes and Cresswell [25] to correct what appear to be oversights.)
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4 PETER FRITZ

Figure 2. Propositional unimodal axioms and logics.

Figure 1 only summarizes the results of this paper for a selection of unimodal
logics discussed in the literature. The techniques developed and improved here are
applicable more widely, and we establish results which are in several ways stronger
than what is conveyed in the figure. For example, in many cases, establishing the
unaxiomatizability of a given logic extends to all of its weakenings, and in some cases
establishing the axiomatizability of a given logic extends to all of its strengthenings.
The techniques used to establish these results are also applicable to multimodal
logics. This is especially interesting in the case of the decidability results, as there are
at present no decidability results for propositionally quantified multimodal logics.
As an example, we will show the decidability of the propositionally quantified
modal logic of bimodal relational frames in which both accessibility relations are
equivalence relations, one of which is a refinement of the other.

The paper is organized as follows: Section 2 defines the basic concepts of
propositionally quantified modal logics and relational frames. Section 3 develops a
new method for establishing the decidability of Λ�+, and applies it to a range of
unimodal examples. Section 4 presents the simplified construction for establishing
that Λ�+ is recursively isomorphic to second-order logic, and applies it to a range
of unimodal examples. Section 5 considers the special case of extensions of K4.3,
which requires different methods. Section 6 considers multimodal logics. The final
Section 7 concludes with some open problems.

§2. Basic concepts. This section sets up more rigorously the questions to be
answered below and some common logical concepts to be used in developing the
answers. We recall only briefly standard definitions of normal modal logics and
relational frames; for fuller developments, see a standard textbook such as [25]. For
the required recursion-theoretic notions, see [4, Appendix C].

https://doi.org/10.1017/jsl.2022.79 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.79


AXIOMATIZABILITY OF PROPOSITIONALLY QUANTIFIED MODAL LOGICS 5

2.1. Normal modal logics and relational frames. We start with the syntax of the
propositionally quantified languages. In order to accommodate multimodal system,
we define the language relative to a finite or countably infinite set of operators O.
The relativity to this set of operators will mostly be assumed tacitly.

Definition 2.1. For any finite or countably infinite set O, LO is the language
whose formulas are specified in Backus–Naur form (BNF) as follows:

ϕ ::= p | ⊥ | (ϕ → ϕ) |�ϕ | ∀pϕ,
where p indicates any member of a countably infinite set of propositional variables
Φ, and � indicates any member of O. LOqf is the set of quantifier-free formulas of LO.

As usual, we treat other Boolean operators like ¬, ∧, ∨, ↔, and 	 as syntactic
abbreviations; e.g., we use ¬ϕ to abbreviate ϕ → ⊥, and 	 to abbreviate ¬⊥.
Similarly, � and ∃p abbreviate the duals of � and ∀p, respectively. We use

∧
and

∨
for finite conjunctions and disjunctions, writing, e.g.,

∧n
i=1 pi for p1 ∧ ··· ∧ pn. We

also introduce some less familiar abbreviations: For any formula ϕ, ∀̄ϕ abbreviates
∀p1 ... ∀pnϕ, where p1, ... , pn are the free variables in ϕ. Further, if O is finite,
then for any n ∈ N and formula ϕ, we define Onϕ and O≤nϕ using the following
induction:

O0ϕ := ϕ, O≤0ϕ := ϕ,
On+1ϕ :=

∧
�∈O �O

nϕ, O≤n+1ϕ := ϕ ∧
∧

�∈O �O
≤nϕ.

We further shorten {�}nϕ and {�}≤nϕ to �nϕ and �≤nϕ, respectively.
Normal modal logics can be understood as sets of quantifier-free formulas

containing certain axioms and closed under certain rules. In order to state one of
these rules, letϕ[�/p] be the result of replacing every occurrence of the propositional
variable p in the formulaϕ by the formula�. In cases in whichϕ contains quantifiers,
this is only defined if� is free for p inϕ, i.e., if every free occurrence of every variable
q in � remains free in ϕ[�/p].

Definition 2.2. A normal modal logic is a subset of LOqf which, for every
modality � ∈ O, contains every classical tautology and the distributivity axiom K�:
�(p → q) → (�p → �q), and is closed under the rules of modus MP:ϕ,ϕ → �/�,
necessitation Nec: ϕ/�ϕ, and uniform substitution US: ϕ/ϕ[�/p].

K is the smallest normal modal logic. If Λ is a normal modal logic and Γ ⊆ LOqf ,
then Λ + Γ is the smallest normal modal logic including both Λ and Γ. If Γ =
{�1, ... , �n}, we also write this logic as Λ + �1 + ··· + �n.

This definition presupposes that there is always a unique smallest normal modal
logic including a given set. This claim is easily seen to be witnessed by the intersection
of all normal modal logics including the relevant set. Having defined the general
notion of a normal modal logic, we can now define the various unimodal logics
included in Figure 1. They will be discussed in more detail below, but for ease of
reference, we present them all together in Figure 2. To forestall a likely source of
confusion, note that whereas K4 is the extension of K by the axiom 4, the names for
K1.1/2, K2(.1), and K3.1, which go back to Sobociński [55], have no such origin.
Instead, they appear to derive merely from an enumeration of certain extensions of
S4M, which Sobociński labels K1.
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6 PETER FRITZ

We say that a normal modal logic is axiomatizable if it is a recursively enumerable
set. In fact, we will call any set of formulas of any of the languages considered here
axiomatizable just in case it is recursively enumerable.

Turning from the syntactic to the model-theoretic side, we define the well-known
concept of a relational frame, and the evaluation of a formula relative to a world
of the frame and an assignment function mapping each propositional variable to
the set of worlds in which it is to be evaluated as true. The usual concept of a
relational (Kripke) model can be understood as consisting of a relational frame and
an assignment function. We make use of two items of notation to state the clauses
for modal operators and quantifiers, respectively: First, we write R[w] for the set
of elements R-accessible from w, i.e., {v : wRv}. For later uses, we also extend this
notation to any set x, writingR[x] for {v : wRv & w ∈ x}. Second, we write a[x/p]
for the function mapping p to x and every other q ∈ Φ to a(q).

Definition 2.3. A relational frame (for O) is a structure F = 〈W,R�〉�∈O such
that W is a set, and for every � ∈ O, R� is a binary relation on W. For every
w ∈W and assignment function a : Φ → P(W ), ϕ being true relative to w and a is
recursively defined as follows:

F, w, a � p iff w ∈ a(p);
F, w, a � ⊥;
F, w, a � ϕ → � iff F, w, a � ϕ only if F, w, a � �;
F, w, a � �ϕ iff F, v, a � ϕ for all v ∈ R�[w];
F, w, a � ∀pϕ iff F, w, a[x/p] � ϕ for all x ⊆W ;

ϕ is valid in w, written F, w � ϕ, if F, w, a � ϕ for every assignment function a. ϕ
is valid in F, written F � ϕ, if F, w � ϕ for every w ∈W . ϕ is valid on a class of
relational frames C, written C � ϕ, if F � ϕ for every F in C.

In the unimodal case, we omit the index �, and write 〈W,R〉 for a frame. The
different notions of validity are extended to sets of formulas: a set of formulas is
valid just in case all of its members are valid in the relevant sense. Satisfiability is
dual to validity: a formula is satisfiable (in a world, in a frame, or on a class) if its
negation is not valid (in the same sense). We consider the size of a frame 〈W,R�〉�∈O
to be |W |, the cardinality of the set of worlds.

The notion of being valid in a relational frame gives rise to two crucial notions
connecting sets of formulas and classes of relational frames: for any set of formulas Γ,
there is the class of relational frames defined by Γ, written R(Γ), and for any class of
relational frames C, there is the propositionally quantified modal logic of C, written
L(C). With this, the propositionally quantified extension Λ�+ of a given normal
modal logic Λ can be defined:

Definition 2.4. Let Γ ⊆ LO, C a class of relational frames, and Λ a normal
modal logic. Then:

R(Γ) is the class of relational frames F such that F � � for all � ∈ Γ.
L(C) := {ϕ ∈ LO : C � ϕ}.
Λ�+ := L(R(Λ)).
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AXIOMATIZABILITY OF PROPOSITIONALLY QUANTIFIED MODAL LOGICS 7

The validities on any relational frame contain the axioms used in the definition
of normal modal logics, and are closed under the rules used in this definition.
Consequently, for any Γ ⊆ LOqf , R(KΓ) is R(Γ), and L(R(Γ)) is KΓ�+. It is also
worth noting that Λ�+ is consistent just in case Λ is consistent; this follows from
Makinson’s [38] result that every consistent normal modal logic is valid in some
one-element frame.

2.2. Generated subframes. The addition of propositional quantifiers preserves an
important feature of modal languages interpreted on relational frames: the truth of a
formulaϕ in a world w is dependent only on the subframe consisting of those worlds
which are accessible from w by a finite sequence of steps along the accessibility
relations. More carefully, if ϕ contains at most n nested modal operators, only
those worlds accessible by n steps along the accessibility relations are relevant. This
fact will be appealed to repeatedly in the following, so we introduce the necessary
definitions and results, even though they are essentially unchanged from the familiar
quantifier-free setting; compare Blackburn et al. [4, p. 140].

First, we introduce the notion of the modal depth of a formula ϕ as the
maximal number of nested modal operators in ϕ. Alongside this, we introduce
the corresponding notion of quantifier depth for quantifiers.

Definition 2.5. md and qd are the functions from LO to N defined using the
recursive clauses specified by the following table:

ϕ md(ϕ) qd(ϕ)

p 0 0
⊥ 0 0
ϕ → � max(md(ϕ),md(�)) max(qd(ϕ),qd(�))
∀pϕ md(ϕ) qd(ϕ) + 1
�ϕ md(ϕ) + 1 qd(ϕ)

md(ϕ) is the modal depth of ϕ; qd(ϕ) is the quantifier depth of ϕ.

Next, we define the notion of an ((n-step) generated) subframe. To do so, we
restrict any binary relation R to a set x by writingR|x for {〈w, v〉 : wRv & w, v ∈ x}.
Later on, we similarly write f|x for the restriction of a function f to a subset x of
its domain.

Definition 2.6. Let F = 〈W,R�〉�∈O be a relational frame. F′ = 〈W ′, R′
�〉�∈O

is a subframe of F ifW ′ ⊆W andR′
� = R�|W ′ for all � ∈ O. For any x ⊆W and

n ∈ N,

W 0
x := x,
W n+1
x :=Wn

x ∪
⋃

�∈O R�[Wn
x ], Fnx := 〈Wn

x ,R�|Wn
x 〉�∈O,

Wx :=
⋃
n∈N
Wn
x , Fx := 〈Wx,R�|Wx〉�∈O.

F
(n)
x is the (n-step) subframe of F generated by x. If x is a singleton {w}, we call the

subframes point-generated, and omit set brackets, writing F
(n)
w for F(n)

{w}.
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8 PETER FRITZ

We can now show that a formula ϕ is valid in a world w of a frame just in case
it is valid in w in a subframe generated by a set containing w, as well as in the
corresponding n-step generated subframes, as long as n is at least as great as the
modal depth of ϕ.

Proposition 2.7. Let F be a relational frame, x a set of worlds, w ∈ x, ϕ ∈ LO,
and n ≥ md(ϕ). Then,

F, w � ϕ iff Fx, w � ϕ iff Fnx, w � ϕ.

Proof. Routine, by an induction on the complexity ofϕ relative to corresponding
assignment functions. �

2.3. The axiomatizability boundary. Using generated subframes, we can now
establish the (partial) axiomatizability boundary mentioned above. The crucial
observation is that among certain sets of formulas Γ ⊆ LO, the complexity of
L(R(Γ)) decreases monotonically with the strength of Γ. That is, if Γ ⊆ Δ, then
L(R(Δ)) is reducible to L(R(Γ)) in the sense that there is a computable function
f : LO → LO such that ϕ ∈ L(R(Δ)) iff f(ϕ) ∈ L(R(Γ)). We will establish such
monotonicity for sets which satisfy two requirements: First, both O and Δ\Γ are
finite. Second, O≤np → On+1p ∈ Δ for some natural number n.

Proposition 2.8. If Γ ⊆ Δ ⊆ LO, both O and Δ\Γ are finite, and O≤np →
On+1p ∈ Δ for some n ∈ N, then L(R(Δ)) is reducible to L(R(Γ)).

Proof. The required reduction can be defined as mapping every ϕ ∈ LO to

ϕ∗ := ∀̄(O≤n
∧

Δ\Γ) → ϕ.

We show that ϕ ∈ L(R(Δ)) iff ϕ∗ ∈ L(R(Γ)).
The “if” direction is immediate. So assume that ϕ∗ /∈ L(R(Γ)). Then there is

a frame F in R(Γ) and w such that F, w � ϕ∗. Letting Fw = 〈W,R〉, note that
Fw = FW . Thus by Proposition 2.7, Fw is in R(Γ) as well. By Proposition 2.7, it
also follows that Fw,w � ϕ∗. So, first, Fw,w � O≤n∧

Δ\Γ, whence with O≤np →
On+1p ∈ Δ, it follows that Fw �

∧
Δ\Γ, and so that Fw ∈ R(Δ). Second, Fw,w � ϕ,

whence ϕ /∈ L(R(Δ)). �

From this proposition, we obtain the partial axiomatizability boundary among
unimodal logics mentioned above: If Λ is a normal unimodal logic and Γ is a finite
set of L�

qf -formulas such that �≤np → �n+1p ∈ Λ + Γ, then Λ�+ is recursively
enumerable (decidable) only if (Λ + Γ)�+ is recursively enumerable (decidable) as
well. This includes the majority of logics included in Figure 1; note in particular that
every extension of K4 contains �p → ��p, and every extension of KE contains
��p → ���p, as is easy to see using the completeness of KE with respect to
relational frames with a Euclidean accessibility relation.

It is natural to ask whether the two constraints on sets of formulas in
Proposition 2.8 are essential. We will later see that the requirement of finiteness
of Δ\Γ cannot be dropped completely, or weakened to recursively enumerable sets
of axioms, even among sets of quantifier-free formulas; see Proposition 5.9. We
leave open the question whether the requirement of finiteness can be weakened
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AXIOMATIZABILITY OF PROPOSITIONALLY QUANTIFIED MODAL LOGICS 9

to decidability, as well as the question whether the assumption of containing
O≤np → On+1p ∈ Δ for some n ∈ N can be dropped or weakened.

2.4. Second-order logic. Most of the complexity results to be established proceed
by finding a reduction between LO over a class of relational frames and a suitable
form of second-order logic over such frames. We assume familiarity with second-
order logic and its standard semantics; for a detailed exposition, see [53].

The most basic case is that of monadic second-order logic. Given a countably
infinite set of first-order variables Ψ and a disjoint set of second-order variables Ω,
the language MO of monadic second-order logic (over O) is defined in BNF as
follows:

ϕ ::= Xx |R�xx | ⊥ | (ϕ → ϕ) | ∀xϕ | ∀Xϕ,

where x ∈ Ψ and X ∈ Ω. Formulas of ϕ can straightforwardly be interpreted over
a relational frame F, with individual quantifiers ranging over worlds, and monadic
second-order quantifiers ranging over sets of worlds. We adapt the notation used
above for LO, writing F, a � ϕ for the truth of ϕ in F relative to an assignment
function a (on Ψ ∪ Ω), and F � ϕ for ϕ being valid on F, i.e., true relative to
every assignment function. Similarly, for a set Γ ⊆ MO, we write R(Γ) for the
class of relational frames validating every member of Γ, and M(C) for the set of
MO-formulas valid on every frame in C. The analogous conventions will be adopted
for the other versions of second-order logic discussed below; we won’t remark on
this separately.

Monadic second-order logic arises naturally when one extends the well-known
standard translation of propositional modal logic to propositional quantifiers.
For a discussion of the standard translation in the quantifier-free setting, see
[4, Section 2.4]. The standard translation maps every propositional modal formula
ϕ to a corresponding first-order formula ϕx in which no first-order variable other
than x is free. This is can be extended to propositional quantifiers by translating
them as monadic second-order quantifiers. Assuming that for every propositional
variable p, there is a distinct monadic second-order variable Xp, this leads to the
recursive mapping from LO to MO whose only non-trivial clauses are the following:

px := Xpx,

(∀pϕ)x := ∀Xp(ϕx),

(�ϕ)x := ∀y(R�xy → ϕy).

As in the case without propositional quantifiers, a formula ϕ ∈ LO is true in a
world of a frame, relative to an assignment function, just in case ϕx is true in that
frame relative to a corresponding assignment function which interprets the first-
order variable x as w. We can then state the fundamental result on the standard
translation as follows:

Proposition 2.9. Let F be a relational frame, w a world, a an assignment function
on propositional variables, and b an assignment function on first- and monadic second-
order variables such that b(Xp) = a(p) for all i ∈ N. Then,

F, w, a � ϕ iff F, b[w/x] � ϕx.
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10 PETER FRITZ

Proof. By a routine induction on the complexity of ϕ. �

The standard translation brings out that propositionally quantified modal logic
interpreted over relational frames can be thought of as a fragment of monadic
second-order logic with binary relational constants. This is why it is sometimes called
second-order propositional modal logic, e.g., by Kaminski and Tiomkin [26]. In fact,
already the study of propositional modal logic without propositional quantifiers over
classes of relational frames involves a monadic second-order element: A quantifier-
free formulaϕ is valid in a world of a frame just in case its universal closure ∀̄ϕ is true
in that world (independently of the assignment function). Because of this implicit
second-order aspect, various sets Γ ⊆ L�

qf , such as the singletons of M and W, define
classes of relational frames R(Γ) which are not first-order definable. This aspect of
propositional modal logic is further discussed by Hughes and Cresswell [25, pp.
188–189] and Blackburn et al. [4, Section 3.2].

An immediate consequence of Proposition 2.9 is that for any class of relational
frames C, L(C) is reducible to M(C). Thus, the decidability of the former follows
from the decidability of the latter. This connection will form the basis of many of
the decidability results to be presented. (This is a common approach to decidability
results in modal logic; see [4, Section 6.3] for examples in the quantifier-free setting,
and [58] for an example including propositional quantifiers.) In some cases, we can
simply appeal to known results on the decidability of monadic second-order logic
over classes of relational frames (see [19] for an overview of results in this area).
In other cases, we will establish some new limitative results concerning monadic
second-order logic.

The new limitative results can be simplified by using an obvious notational variant
of monadic second-order logic which dispenses with first-order quantifiers. First-
order quantifiers can be simulated using monadic second-order quantification over
singleton sets if we admit two new kinds of atomic formulas. (See, e.g., [19, p. 482]
for a similar variant; the present version is chosen so as to harmonize with LO, but
the differences are immaterial.) The variant monadic second-order language NO is
defined in BNF as follows:

ϕ ::= X ⊆ X |R�XX | ⊥ | (ϕ → ϕ) | ∀Xϕ,

whereX ∈ Ω. The truth-conditions for the new (non-standard) atomic formulas are
as follows:

F, a � X ⊆ Y iff a(X ) ⊆ a(Y ),
F, a � R�XY iff for all x ∈ a(X ) there is some y ∈ a(Y ) such that xR�y.

MO and NO are intertranslatable: Assume that for every variable � ∈ Ψ ∪ Ω, X�
is a distinct variable of Ω, and consider the recursive mappings � : MO → NO and
� : NO → MO whose only non-trivial clauses are the following:

�(Xx) := Xx ⊆ XX , �(X ⊆ Y ) := ∀x(Xx → Yx),
�(R�xy) := R�XxXy, �(R�XY ) := ∀x(Xx → ∃y(Yy ∧R�xy)),
�(∀xϕ) := ∀Xx(sing(Xx) → �(ϕ)),
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where sing(X ) states that X is a singleton, which can be defined as follows:

empty(X ) := ∀Y (X ⊆ Y ),
sing(X ) := ¬empty(X ) ∧ ∀Y (Y ⊆ X → empty(Y ) ∨ X ⊆ Y ).

It is easy to see that along a result analogous to Proposition 2.9, M(C) is recursively
isomorphic to N (C), for any class of relational frames. For present purposes, we can
therefore treat MO and NO as notational variants of monadic second-order logic,
and so interchangeable.

Monadic second-order logic will also play a role in establishing unaxiomatizability
results. For this, we now note that on certain classes of relational frames, the standard
translation can be reversed, and monadic second-order logic can conversely be
thought of as a fragment of propositionally quantified modal logic. We establish
this for point-generated unimodal frames with a transitive accessibility relation. The
observation will be especially easy to show using the variant monadic second-order
language N�. We call the relevant function the “backwards translation.” Assuming
that for every propositional variable p ∈ Φ, there is a distinct second-order variable
Xp ∈ Ω, it is the recursive mapping ·← : N� → L� whose only non-trivial clauses
are the following:

(X ⊆ Y )← := �(pX → pY ),

(RXY )← := �(pX → �pY ),

(∀Xϕ)← := ∀pX (ϕ←).

Analogous to Proposition 2.9, we can show:

Proposition 2.10. Let F = 〈W,R〉 be a relational frame, R be transitive, w ∈W ,
and ϕ ∈ N�. For every second-order assignment function a on Fw ,

Fw, a � ϕ iff Fw,w, b � ϕ←,

where b(pX ) = a(X ) for all X ∈ Ω.

Proof. By induction on the complexity of ϕ. �

Thus, if C is a class of point-generated unimodal frames with a transitive
accessibility relation, then N (C), and so also M(C), is reducible to L(C). We
can therefore show that L(C) is not axiomatizable by showing that M(C) is not
axiomatizable. We will employ this method for certain classes of frames. For other
classes of frames, we devise a more ad hoc translation from L(C), not to monadic
second-order logic over C, but to full second-order logic (which we also simply call
second-order logic). In its usual presentation, (full) second-order logic provides n-ary
variables for all n ∈ N, which are interpreted using n-ary relations. However, similar
to the case of M and N , second-order logic can be shown to be intertranslatable
with a seemingly more restricted language, and it will greatly simplify some of the
following exposition to work with this latter language. The language, which we call
S, employs only binary second-order variables, and no non-logical constants; its
syntax is specified in BNF as follows:

ϕ ::= Xxx | ⊥ | (ϕ → ϕ) | ∀xϕ | ∀Xϕ,
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12 PETER FRITZ

where x ∈ Ψ and X ∈ Ω. (While elements of Ω serve as monadic second-order
variables in M and N , they serve as binary second-order variables in S. Below, it
will always be clear which of these languages is used, and so it will always be clear
whether a given member of Ω is used as a monadic or as a binary variable.)

Crucially, the variant second-order language S is not only syntactically restricted,
but also interprets binary second-order quantifiers as restricted to symmetric
relations. To emphasize this, we state the truth-conditions of such quantifiers
explicitly, for any set D (since S has no non-logical constants, its models are simply
sets):

D, a � ∀Xϕ iff D, a[S/X ] � ϕ for all symmetric relations S ⊆ D2.

The more general quantifiers of second-order logic as standardly defined can be
simulated using this more restricted form of binary second-order quantification,
as shown by Rabin and Scott in work presented by Nerode and Shore [41]. For
present purposes, we can therefore treat S as a notational variant of second-order
logic. To emphasize the restricted interpretation of second-order quantifiers, we call
it symmetric second-order logic, and write ssol for the set of its validities, i.e., the
formulas of S valid on all sets.

§3. Decidability. The main existing decidability result for propositionally
quantified modal logics is the decidability of S5�+, which was established by
Kaplan [27] and Fine [12]. Fine notes two ways of obtaining this result: The first
uses a quantifier-elimination result for S5�+, a version of which is also established
by Kaplan. This technique also plays a role in the proof of the decidability of
KD4E�+ by Ding [10]. The other way of establishing the decidability of S5�+,
discussed by both Kaplan [27] and Fine [12], proceeds by reducing S5�+ to monadic
second-order logic (without non-logical constants), which is known to be decidable.
The more general technique developed in this section is inspired by this second
method.

3.1. Frames of finitely bounded size. With the basic concepts introduced in the
previous section, the decidability of S5�+ is straightforward: R(S5) is the class
of unimodal frames whose accessibility relation is an equivalence relation. The
accessibility relation of any point-generated subframe of such a frame is universal, so
by Proposition 2.7, S5�+ is the propositionally quantified modal logic of relational
frames with a universal accessibility relation. Using the standard translation and
Proposition 2.9, we can think of this logic as a fragment of monadic second-order
logic over such frames. But on such frames, atomic formulas of the form Rxy are
trivially true. Monadic second-order logic over such frames is therefore recursively
isomorphic to monadic second-order logic without non-logical constants, models
of which are simply sets. And the latter logic is well-known to be decidable; in fact,
its decidability follows from results already obtained by Löwenheim [37].

It will suffice to give just a sketch of a proof of this result: For simplicity, we work
with the variant monadic second-order language N . First, we note that it suffices
to show that every satisfiable monadic second-order formula without non-logical
constants is satisfiable on a model whose size is bounded by some finite number which
is computable in terms of the complexity of the formula: with this, the validity of a
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formula ϕ can be determined by a finite computation, considering just the models
of such bounded size, which are finite in number up to isomorphism. This finite
bound on models is obtained in terms of the quantifier depth qd(ϕ) of ϕ, where
the definition of quantifier depth for formulas of NO is straightforwardly adapted
from Definition 2.5. The crucial insight is the following: As noted, a model for
monadic second-order logic without non-logical constants is simply a set; therefore,
in assigning values to variables, it only matters how these values are related by the
subset relation. And given n variables, any such constellation of subset relationships
can be exhibited in a set of size 2n. (Related considerations were also used by Parry
[42] to show the decidability of S5.)

This idea can be turned into a more rigorous proof using the technique of
Ehrenfeucht–Fraı̈ssé games, as noted by Väänänen [56, Section 8], or their variant
presentation as back and forth systems. These techniques allow us to show that a
formula up to certain quantifier depth n is true in one model if and only if it is true
in another model, connected to the first by a back-and-forth system; in the present
case, a model (i.e., set) of size greater than 2n and a model (set) of size 2n. Below,
we therefore adapt back and forth systems to the variant monadic second-order
language NO.

In the relational frames we will be interested in, two worlds will not in general be
interchangeable. But using back and forth systems, we will at least be able to reduce
any cluster of duplicate worlds to a finite number determined by the quantifier
depth of the formula under consideration. Combined with taking point-generated
subframes, this gives us a flexible method for reducing the size of relational frames
in a given class without changing the satisfiability of any propositionally quantified
modal formula of a given complexity. In many interesting cases, we will be able to
impose a finite bound on the size of the resulting frame which is computable in
terms of this complexity, and this allows us to prove decidability of the relevant
propositionally quantified modal logic.

We first make precise how such a bound on the size of relational frames entails
decidability. To start, we introduce the notion of two frames validating the same
closed monadic second-order formulas up to quantifier depth n, which we call being
n-equivalent. We will be interested in classes of frames which contain, for every
point-generated subframe of one of their frames, an n-equivalent frame of a size
that is computably finitely bounded in terms of n; we call these computably reducible.

Definition 3.1. For any n ∈ N, relational frames F and F′ are n-equivalent,
written F ≡n F′, if for all closed formulas ϕ ∈ NO of quantifier depth ≤ n, F � ϕ
iff F′ � ϕ.

Let C be a class of relational frames.

• For any r : N → N, C is r-reducible if for every n ∈ N, every point-generated
subframe of a frame in C is n-equivalent to some frame in C of size ≤ r(n).

• C is computably reducible if C is r-reducible for some computable function
r : N → N.

We can now show that computably reducible classes of frames defined by finite sets
of formulas give rise to decidable propositionally quantified modal logics. The proof
is an instance of a standard type of decidability argument; for further details on this
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type of argument in the quantifier-free case, see [4, Section 6.2, esp. Theorem 6.7 on
p. 342].

Lemma 3.2. If Γ ⊆ LO is finite and R(Γ) is computably reducible, then L(R(Γ)) is
decidable.

Proof. Assume R(Γ) is r-reducible for some computable function r : N → N. If
ϕ ∈ LO is satisfiable in a frame in R(Γ), then by Proposition 2.7, it is satisfiable in
one of its point-generated subframes F. Let n be the quantifier depth of �(ϕx), the
translation of ϕ in NO. Then there is a frame F′ in R(Γ) of size ≤ r(n) which is
n-equivalent to F, whence ϕ is satisfiable on F′.

Consequently, the satisfiability (or, correspondingly, validity) of any formula
ϕ can be determined by considering only frames in R(Γ) up to the finite size
r(qd(�(ϕx))). Since r is a computable function, this bound is computable in terms
of ϕ. Up to isomorphism, there are only finitely many such frames. Since Γ is finite,
and the validity of a formula on a finite frame is decidable, the finite frames in R(Γ)
are recursively enumerable. It follows that L(R(Γ)) is decidable. �

3.2. Diversity. In this section, we make precise the notion of worlds of a relational
frame being duplicates: worlds w and v are duplicates if the structure of the
frame is invariant under interchanging w and v, i.e., if the transposition (wv) (the
permutation of worlds mapping w and v to each other, and every other world to
itself) is an automorphism of the frame (i.e., an isomorphism from the frame to
itself). The relation of being a duplicate is an equivalence relation, dividing the
frame into classes of interchangeable worlds. Without changing the validity of a
given formula of a given syntactic complexity, each of these classes can be reduced
to a certain finite number of worlds. Therefore, the number of these classes will play
an important role; we call it the frame’s diversity.

Definition 3.3. Let F = 〈W,R�〉�∈O be a relational frame.w ∈W is a duplicate
of v ∈W if (wv) is an automorphism of F. �F is the relation of being a duplicate
on F, i.e.,

w�Fv iff (wv) ∈ aut(F).

A duplicate class of F is an equivalence class of �F. The diversity of F, written Δ(F)
is the number of duplicate classes of F:

Δ(F) := |W/�F|.
The diversity of a class of relational frames C, written Δ(C), is the supremum of
diversities of point-generated subframes of frames in C, if there is such a cardinal,
and undefined otherwise.

Below, we will show that for any class C of frames which is defined by a finite set
of propositionally quantified modal formulas and which has finite diversity, L(C) is
decidable; see Theorem 3.13. From this, many new results about the decidability of
propositionally quantified modal logics can be derived, and we present a number of
examples in Section 3.5.

In the following, we will introduce a generalization of the notion of a duplicate,
and consider equivalence relations which are refinements of the duplicate relation,
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i.e., which only relate duplicates. While not strictly necessary, it is worth noting that
for the simple notion of duplicates stated in Definition 3.3, there is a very natural
alternative characterization of such equivalence relations. We discuss this in the
remainder of this section; readers may skip ahead to Section 3.3 without loss of
continuity.

Below, we will limit the number of worlds in a frame by reducing the number of
duplicates of any world to a certain finite number. This is most straightforwardly
done by choosing a suitable subframe, simply omitting any extraneous duplicates.
But in the present simple case, an alternative approach is possible: instead of
identifying a subset of the set of worlds, and considering the relevant subframe,
we can also identify a suitable equivalence relation which is a refinement (subset)
of the relation of being a duplicate, and consider the corresponding quotient frame,
whose worlds are the equivalence relations of the original frame. The accessibility
relations are lifted from the individual worlds to the equivalence classes. For it
to be possible to define this lift in a suitable way, one might suppose that the
equivalence relation must be a congruence with respect to the accessibility relations.
But a weaker requirement suffices. Consider the case of an equivalence relation on a
unimodal frame in which all worlds can access themselves but no other worlds. If the
equivalence relation is not identity, it is not a congruence. But it is still clear how to
define the quotient frame: every equivalence class should be able to access itself, and
nothing else. What is needed for it to be possible to define the quotient frame is what
we will call a weak congruence, which imposes the usual congruence constraint
only on two pairs of equivalent worlds if their first coordinates are identical iff
their second coordinates are identical. For such weak congruences, the accessibility
relation of the quotient frame is defined as usual, except that an equivalence class
can access itself just in case each/one of its members can access itself.

Definition 3.4. Let F = 〈W,R�〉�∈O be a relational frame and ∼ an equivalence
relation on W.∼ is a weak congruence onF if for allw ∼ w′, v ∼ v′ ∈W and� ∈ O,

if w = v iff w ′ = v′, then wR�v iff w ′R�v
′.

In this case, F/∼ is the relational frame 〈W/∼, R�/∼〉�∈O where

[w]∼R�/∼[v]∼ iff w � v and wR�v, or w ∼ v and wR�w.

It is routine to show that the constraints on weak congruences suffice to ensure
that F/∼ is well-defined. It is also easy to verify that an equivalence relation is a
weak congruence just in case it relates only duplicates; i.e., ∼ is a weak congruence
on F just in case it is a refinement of �F. Finally, it can be shown that the result of
reducing the worlds of any duplicate class in F to n members, which we will define in
Definition 3.10 as Fnid, is isomorphic to the quotient frame F/∼, where ∼ is any weak
congruence which divides every duplicate class d of F into min(|d |, n) equivalence
classes.

3.3. Back and forth systems. This section introduces back and forth systems
for NO. Such systems have been developed for a wide range of logics, including
propositional modal logic (see the notion of bisimulation in [4, Section 2.2]), first-
order logic ([29] and [22, Section 3.2]), second-order logic [56, Section 3.1], and
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various quantified modal logics [3, p. 123] and [14] including higher-order and/or
infinitary quantified modal logics [15, 17].

Definition 3.5. Let F = 〈W,R�〉�∈O and F′ = 〈W ′, R′
�〉�∈O be relational

frames.
A partial isomorphism from F to F′ is a partial injection i from P(W ) to P(W ′)

such that for all x, y ∈ dom(i) and � ∈ O:

• x ⊆ y iff i(x) ⊆ i(y), and
• for all w ∈ x there is a v ∈ y such that wR�v iff for all w ′ ∈ i(x) there is a
v′ ∈ i(y) such that w ′R′

�v
′.

A back and forth system from F to F′ is a function I mapping every n ∈ N to a set
of partial isomorphisms, such that for all n ∈ N and i ∈ In+1:

• for all x ⊆W , there is a j ⊇ i in In such that x ∈ dom(j), and
• for all x′ ⊆W ′, there is a j ⊇ i in In such that x′ ∈ im(j).

In is the nth stage of I.

This definition is set up just to allow for the following result, which shows that
worlds of two frames connected by a partial isomorphism in the nth stage of a back
and forth system validate the same formulas up to quantifier depth n, relative to
suitable assignment functions:

Proposition 3.6. Let F and F′ be relational frames, I a back and forth system from
F to F′, ϕ ∈ NO, n ≥ qd(ϕ), i ∈ In, and a an assignment function for F such that
im(a) ⊆ dom(i). Then,

F, a � ϕ iff F′, i ◦ a � ϕ.
Proof. By induction on the complexity of ϕ. �

Using the notion of n-equivalence, we can sum up to the consequences of this
lemma for closed formulas more concisely as follows:

Corollary 3.7. If F and F′ are relational frames, I is a back and forth system from
F to F′, n ≥ qd(ϕ), and In is non-empty, then F and F′ are n-equivalent.

3.4. Reducing frames. We will now use back and forth systems to show that for any
relational frame, an n-equivalent subframe can be obtained by limiting the number
of duplicates of any given world to 2n. However, for applications in the multimodal
case in Section 6.2, it will be useful to develop this idea in a more general form.

The simplest multimodal application which motivates this generalization is
the case of bimodal frames in which both accessibility relations are equivalence
relations, one of which is a refinement (subset) of the other. Let these relations be
R� ⊆ R�. In a point-generated subframe of such a frame, R� is the universal
relation. Any members of an R�-equivalence class are therefore duplicates. By
reducing the number of duplicate worlds, these equivalence classes can therefore
be shrunk to a size no greater than 2n, while retaining an n-equivalent subframe.
The resulting subframe may still be infinite, since there may still be infinitely many
R�-equivalence classes. However, the size of these equivalence classes is bounded by
2n, and there is no way of distinguishing two equivalence classes structurally other

https://doi.org/10.1017/jsl.2022.79 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.79


AXIOMATIZABILITY OF PROPOSITIONALLY QUANTIFIED MODAL LOGICS 17

than in terms of their size. We can therefore apply the idea of reducing numbers
of duplicates again, but on the level of equivalence classes of worlds instead of the
worlds themselves, by reducing the duplicates of anyR�-equivalence class to a finite
number. It turns out that we can obtain an n-equivalent subframe by limiting the
number of duplicates of R�-equivalence classes to 22nn.

In anticipation of this generalization, we first generalize the notion of a duplicate
from worlds to equivalence classes of worlds, relative to an arbitrary equivalence
relation. It will also be useful to relativize the notion of a duplicate in a frame to
a finite sequence of sets of worlds, which are understood as imposing additional
structure on the frame under consideration. These sets of worlds will later be used to
account for free variables, when considering open formulas. We therefore introduce
the notion of an augmented frame, which adds to a relational frameF an equivalence
relation ∼ and a finite sequence of sets of worlds α, and define what it takes for
equivalence classes x and y to be duplicates in such an augmented frame: there must
be an isomorphism between the subframes based on x and y, and this isomorphism
must constitute an automorphism of the whole frame. Here, the notion of a subframe
of an augmented frame is defined in the obvious way: 〈F,∼, α〉|x is 〈F|x,∼ ∩ x2, α′〉,
where α′(m) = α(m) ∩ x for all m ∈ dom(α).

Definition 3.8. An augmented frame is a structure A = 〈F,∼, α〉, where
F = 〈W,R�〉�∈O is a relational frame, ∼ is an equivalence relation on W, and α
is a sequence of pairwise distinct elements of P(W ) of some finite length k ∈ N.
x, y ∈W/∼ are duplicates in A if there is an isomorphism f from A|x to A|y, and

f̂ is an automorphism of A, where f̂ is the function on W such that for all w ∈W ,

f̂(w) =

⎧⎪⎨
⎪⎩

f(w), if w ∈ x,
f–1(w), if w ∈ y,
w, otherwise.

�A is the relation of being a duplicate in A. A duplicate congruence on A is an
equivalence relation onW/∼ which relates only duplicates in A.

Since�A is an equivalence relation onW/∼, it is the coarsest duplicate congruence
on A. It is also easy to see that the original notion of duplicate worlds in a relational
frame F can be recovered from the notion of duplicate equivalence classes by
augmenting F with the equivalence relation id of identity and the empty sequence 〈〉,
and considering any world to be represented by its singleton set:w�Fv is equivalent
to {w}�〈F,id,〈〉〉{v}.

We can now define the notion of a subframe obtained by reducing the number
of duplicate equivalence classes to n: We first index duplicate equivalence classes by
ordinals, and then take the subframe based on those worlds which are in equivalence
classes with index < n. Strictly speaking, the resulting subframe will be depended
on the choice of the indexing function, but as such subframes are unique up to
isomorphism, we can ignore this dependence.

Definition 3.9. Assume F = 〈W,R�〉�∈O is a relational frame, ∼ an equivalence
relation on W, and n > 0. LetA = 〈F,∼, 〈〉〉. Consider any function 
mapping every
x ∈W/∼ to an ordinal 
(x) such that for every duplicate classD ∈W/∼/�A, 
|D
is a bijection from D to |D|.
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Fn∼ is the subframe of F based on the setW ′ such that w ∈W ′ iff 
([w]∼) < n,
for all w ∈W .

As the next step, we will connect F and Fn∼ by a back and forth system. We do
so by first defining a way of connecting any two relational frames, with associated
equivalence relations, by a generic back and forth system. Of course, if the underlying
relational frames are insufficiently similar, then this generic back and forth system
will not be very useful, since most of its stages will be empty. The central idea
behind the construction of the generic back and forth system is that a partial
isomorphism between the relational frames is determined by any bijection f between
the equivalence classes of duplicate congruences of the augmented frames satisfying
certain additional conditions. Most importantly, if f maps equivalence class x to x′,
then the subframes based on x and x′ must be isomorphic. Further, if f also maps
y to y′, then corresponding worlds in x and x′ must relate to corresponding worlds
in y and y′ in corresponding ways in terms of the accessibility relations. Effectively,
such a bijection f divides the equivalence classes of worlds of the two frames into
clusters of duplicates, with the two frames being alike except that the relevant clusters
may contain different numbers of duplicates. These numbers of duplicates will be
important, and we call f an n-correspondence if it only connects clusters whose size
is either both at least n, or identical. The generic back and forth system can now
be defined, by including in its nth stage the partial isomorphisms determined by
2ln-correspondences, where l bounds the sizes of equivalence classes in the
augmented frames. Given such a correspondence f, the relevant partial isomorphism
can be read off just from the augmented frames connected by f, in particular their
third components α and α′: the relevant partial isomorphism maps α(m) to α′(m),
whenever these are defined. We therefore also require these sequences to have the
same length, as part of the definition of an n-correspondence.

Definition 3.10. Let A = 〈F,∼, α〉 and A′ = 〈F′,∼′, α′〉 be augmented frames,
with F = 〈W,R�〉�∈O and F′ = 〈W ′, R′

�〉�∈O.
For any n > 1, an n-correspondence from A to A′ is a function f satisfying all of

the following conditions:

(i) f is a bijection fromW/∼/≈ toW ′/∼′/≈′, where≈ is a duplicate congruence
on A and ≈′ is a duplicate congruence on A′.

(ii) α and α′ have the same length k.
(iii) For any x ∈W/∼ and x′ ∈ f([x]≈), there is an isomorphism g from A|x to

A′|x′.
(iv) For any x, y ∈W/∼, x′ ∈ f([x]≈), y′ ∈ f([y]≈), isomorphisms g from A|x

to A′|x′ and h from A|y to A′|y′, w ∈ x, v ∈ y, and � ∈ O:

wR�v iff g(w)R′
�h(v).

(v) For all X ∈ dom(f), either |X | ≥ n and |f(X )| ≥ n, or |X | = |f(X )|.

Assuming α and α′ have the same length k, iA
′

A
is the partial function from P(W )

to P(W ′) such that

iA
′

A
(x) = x′ whenever x = α(m) and x′ = α′(m), for some m ≤ k.
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Given relational frames F and F′, equivalence relations ∼ and ∼′, and n ∈ N, let
In be the set of functions iA

′
A

for A an augmented frame based on F and ∼ and A′

an augmented frame based on F′ and ∼′ such that there exists a 2ln-correspondence
from A to A′, where l = sup{|x| : x ∈W/∼}. I F

′,∼′
F,∼ is the function mapping any

n ∈ N to In.

The next lemma shows that this construction succeeds, at least insofar as I F
′,∼′

F,∼
is indeed a back and forth system. Note that it is immediate by construction that if
m ≤ n, then Im ⊇ In. In the proof, we write α�x for the result of appending x to
the end of a sequence α.

Lemma 3.11. For any relational frames F = 〈W,R�〉�∈O and F′ = 〈W ′, R′
�〉�∈O

and equivalence relations ∼ and ∼′ on W and W ′, respectively, I F
′,∼′

F,∼ is a back and
forth system from F to F′.

Proof. It is routine to show that for every n ∈ N, In is a set of partial
isomorphisms. So consider any n ∈ N and i ∈ In+1. By symmetry, it suffices to
consider only the first condition. So, let x ⊆W . If x ∈ dom(i), the claim is
immediate, so assume otherwise.

Let A = 〈F,∼, α〉 and A′ = 〈F′,∼′, α′〉 be augmented frames determining i,
and f be the required 2l(n+1)-correspondence, where l = sup{|s | : s ∈W/∼}.
Consequently, f is a bijection from W/∼/≈ to W ′/∼′/≈′, where ≈ is a duplicate
congruence on A and ≈′ is duplicate congruence on A′. Let A = 〈F,∼, α�x〉, and ≈
the refinement of ≈ which relates y ≈ z just in case y and z are duplicates in A. Note
that ≈ divides every equivalence class of ≈ into at most 2l classes. So, for cardinality
reasons, there is a refinement ≈′ of ≈′ and bijection g fromW/∼/≈ toW ′/∼′/≈′

which refines f in the sense that if g([y]≈) = [y′]≈′ thenf([y]≈) = [y′]≈′ , such that
for every X ∈W/∼/≈, either |X | ≥ 2ln and |g(X )| ≥ 2ln, or |X | = |g(X )|.

For every X ′ ∈W/∼′/≈′, choose some representative rX ′ ∈ X ′, yX ′ ∈ g–1(X ′),
and isomorphism hX ′ from A′|rX ′ to A|yX ′ . For every y′ ∈W/∼′, choose some
isomorphism hy′ witnessing that y′ and r[y′]≈′ are duplicates in A′. Define

y′x = {w′ ∈ y′ : h[y′]≈′ ◦ hy′(w′) ∈ x}. Let x′ =
⋃
{y′x : y′ ∈W ′/∼′} and A

′
=

〈F′,∼′, α′�x′〉. Since x is not among the sets indexed by α, it follows by the
construction that x′ is not among the sets indexed by α′, so A

′
is an augmented

frame. It is routine to verify that g is a 2ln-correspondence from A to A
′
. From

this, it follows that j := iA
′

A
∈ In. It is also clear that j ⊇ i and x ∈ dom(j), as

required. �

We are now ready to put together the pieces developed in this section: Fm∼ is
obtained from F by reducing the number of duplicate equivalence classes to at
most m. Letting ≈ be the duplicate relation, and ≈′ its restriction for Fm∼, there is a
straightforward m-correspondence, mapping every duplicate cluster to its reduction.
We have seen that the corresponding partial isomorphism is contained in a stage of
the generic back and forth system, the index of which is determined by m and the
limit of the sizes of ∼-equivalence classes. From this, it follows that F and Fm∼ satisfy
the same closed formulas up to a certain complexity.
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Proposition 3.12. AssumeF = 〈W,R�〉�∈O is a relational frame,∼ an equivalence
relation on W, and n ∈ N. Let l = sup{|x| : x ∈W/∼}. Then F and F2ln

∼ are
n-equivalent.

Proof. Let F′ = F2ln
∼ , W ′ the set of worlds of F′, and ∼′ = ∼|W ′. Let A =

〈F,∼, 〈〉〉, A′ = 〈F′,∼′, 〈〉〉, ≈ = �A, and ≈′ = ≈|(W ′/∼′). Let f be the function
from W/∼/≈ to W ′/∼′/≈′ such that f : X �→ X |(W ′/∼′). Then f is a 2ln-
correspondence from A to A′. So iA

′
A

is a member of the nth stage of I F
′,∼′

F,∼ . By
Lemma 3.11 and Corollary 3.7, it follows that F and F′ are n-equivalent. �

3.5. Decidability via finite diversity. In this section, we turn to the first application
of reducing frames, and prove the decidability of several unimodal logics. First, we
show generally that any class of relational frames defined by a finite set of formulas
which has finite diversity gives rise to a decidable propositionally quantified modal
logic. For this relatively simple result, much of the complexity involved above can
be ignored, as we may work just with reductions in which the equivalence relation
on worlds is identity. Using Proposition 3.12, we can thus note that any frame of
diversity n can be reduced to one whose size is bounded in terms of n and the
syntactic complexity of the formulas whose truth we wish to remain invariant. This
allows us to show that any finitely defined class of frames with finite diversity is
computably reducible, from which decidability follows by Lemma 3.2.

Theorem 3.13. If Γ ⊆ LO is finite and R(Γ) has finite diversity, then L(R(Γ)) is
decidable.

Proof. Assume Γ ⊆ LO is finite and R(Γ) has diversity n ∈ N. Let
l := max{qd(�(�x)) : � ∈ Γ}. Let r : N → N such that r : m �→ n · 2max(m,l). We
show that R(Γ) is r-reducible; the claim follows by Lemma 3.2. So consider any

m ∈ N and point-generated subframe F of a frame in R(Γ). Let F′ be F2max(m,l)

id . By
Proposition 3.12, F and F′ are max(m, l)-equivalent (and so also m-equivalent).
Thus F′ validates Γ, whence F′ is in R(Γ). By construction, the size of F′ is limited
by r(m). �

As a first illustration of how Theorem 3.13 can be applied, we note that Fine and
Kaplan’s result on the decidability of S5�+ follows immediately:

Example 3.14. R(S5) has diversity 1, and so S5�+ is decidable.

Proof. R(S5) is the class of unimodal frames with an equivalence relation. Point-
generated subframes of such frames have a universal relation, and so diversity 1.
The claim follows by Theorem 3.13. �

More interestingly, the theorem can also be applied to the weaker logic KE
(aka K5), which establishes our first new decidability result:

Example 3.15. R(KE) has diversity 3, and so KE�+ is decidable.

Proof. R(KE) is the class of relational frames with a Euclidean relation. Let F
be such a frame, w one of its worlds, and Fw = 〈W,R〉. It is routine to show that
then, either R is universal on W, or there is a set x ⊆W \{w} such that vRu iff
either v = w and u ∈ x, or v �= w and u �= w. Thus, the diversity of Fw is bounded
by 3. The claim follows by Theorem 3.13. �
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With Proposition 2.8 and the fact that ��p → ���p ∈ KE, it follows that
Λ�+ is decidable, for any finite axiomatic extension Λ of KE. We therefore obtain
Example 3.14 as a corollary, as well as the result of Ding [10] on the decidability of
KD4E�+. In fact, every normal extension of KE is finitely axiomatizable, as shown
by Nagle and Thomason [40]. We conclude:

Corollary 3.16. If Λ is a normal extension of KE, then Λ�+ is decidable.

To illustrate the versatility of our decidability argument, and to delineate the
axiomatizability boundary further from above, we consider another, more exotic,
example of a unimodal logic.

Example 3.17. R(K1.2) has diversity 2, and so K1.2�+ is decidable.

Proof. The argument is analogous to the above cases, using the following
observation: If F validates K1.2, then in any point-generated subframe Fw , w can
access only itself and worlds which can access only themselves. So the diversity of
Fw is bounded by 2. �

So far, we have considered finitely axiomatized normal modal logics and the
classes of relational frames they define. But the method developed here applies as
well to finite sets of formulas involving propositional quantifiers and the classes
of relational frames they define. By way of illustration, we consider the logic of
“elsewhere” discussed by von Wright [57], which is the propositional modal logic of
the class of frames in which every world can access every other world, but not itself.
Segerberg [52] shows that this is the normal modal logic axiomatized by the axioms
B and p → (�p → ��p). Since these axioms are valid on frames with a universal
relations, it follows that they fail to impose the requirement of irreflexivity on
the class of relational frames they define. However, using propositional quantifiers,
irreflexivity is easily captured by the negation of the universal closure of the axiom T.
Adding this to the other two axioms, we define the class of frames whose point-
generated subframes are in the intended class of frames. By Proposition 2.7, these
two classes of frames have the same propositionally quantified modal logic. We can
thus reason as follows:

Example 3.18. Let E be the class of unimodal frames in which every world can
access every other world, but not itself. L(E) is decidable.

Proof. Let Γ = {p → ��p, p → (�p → ��p),¬∀p(�p → p)}. The frames of
E are exactly the point-generated subframes of frames in R(Γ). Since the frames
of E have diversity 1, R(Γ) has diversity 1. It follows by Theorem 3.13 that
L(R(Γ)) = L(E) is decidable. �

We postpone the discussion of decidability results for extensions of K4.3 and
multimodal logics; they will be discussed in Sections 5.2 and 6, respectively. Instead,
the next section turns to the main unaxiomatizability results.

§4. Recursive isomorphism to second-order logic. Fine [12] already noted that for
several well-known normal modal logics Λ, Λ�+ is not axiomatizable, by sketching a
reduction of second-order arithmetic to these logics. The relevant logics consisted of
a few logics included in S4.2, as well as B. A more detailed exposition of the relevant
reduction was eventually presented by Garson [18]. Kremer [30] notes that these
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results can be strengthened to showing that the relevant logics Λ�+ are recursively
isomorphic to second-order logic, using the techniques applied to propositionally
quantified relevant logic in his paper. According to Kremer [31, p. 530], Fine
and Kripke had already proved the stronger claim of recursive isomorphism to
second-order logic in unpublished work “shortly after the publication of” Fine [12].
Kaminski and Tiomkin [26] present a more detailed construction showing that for
every normal modal logic Λ included in S4.2, second-order logic is reducible to
Λ�+.

In this section, we will present a variation on the construction of Kaminski and
Tiomkin [26]. By making use of the result of Rabin and Scott and the symmetric
second-order language S discussed in Section 2.4, we will be able to provide a
construction which is both simpler and more versatile. Aside from providing a more
accessible presentation, we show that we easily obtain, as corollaries, analogous
results for a number of further logics, including B and K4.2W. We work with
unimodal logics throughout this section.

4.1. Fully representing class of frames. Key to showing the recursive isomorphism
of the relevant logic Λ�+ is proving that ssol, the set of validities of symmetric
second-order logic, can be reduced to it. We proceed as follows: First, we define a
formula P(i) of L� with a free propositional variable i. Then, we show that if P(i) is
true in a world w of a relational frame, relative to an assignment function a, we can
simulate first- and (symmetric) second-order quantification over D = R[w] ∩ a(i)
using L�. First-order quantification is easily simulated, since we can represent an
element d ∈ D using any proposition which is true in d and no other element
of D. To simulate symmetric second-order quantification, P(i) will be formulated
to guarantee that for any d, e ∈ D, there is a world v which serves to represent the
unordered pair {d, e}. This is easily effected by requiring that any f ∈ D can access
v if and only if f is one of d and e. With this, it is easy to simulate quantification
over symmetric relations on D, since any such relation corresponds to a set of
representations of pairs, and so at least one proposition. This allows us to reduce
second-order logic to any logic Λ�+ such that for each cardinal κ, there is a world
w of a frame validating Λ in which P(i) is true relative to some assignment function
a such that |R[w] ∩ a(i)| = κ.

We start making this outline precise by introducing abbreviations for formulas
of L� expressing the relevant concepts. First, as Fine [12] observed, propositional
quantifiers allow us to state that p is true in just one of the accessible worlds, as
follows:

Q(p) := �p ∧ ∀q(�(p → q) ∨�(p → ¬q)).

We use Ind(p) to state that p represents an individual (an element of the domain D);
we use PotP(p) to state that p is true in a single world ofR[R[w]], and so potentially
serves to represent an unordered pair of individuals; and we use Pair(p, q, r) to state
that, assuming p and q represent individuals, r represents their unordered pair:

Ind(p) := Q(p) ∧�(p ∧ i),
PotP(p) := ��p ∧ ∀q(��(p → q) ∨��(p → ¬q)),
Pair(p, q, r) := PotP(r) ∧ ∀s(Ind(s) → (�(s ∧�r) ↔ �(s ∧ (p ∨ q)))).
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With these, we can define the formula P(i), stating that for any p and q representing
individuals, there is some r representing their unordered pair:

P(i) := ∀p∀q(Ind(p) ∧ Ind(q) → ∃rPair(p, q, r)).

Before turning to the simulation of second-order logic, it will be useful to record
what it takes for P(i) to be true.

Definition 4.1. Let F = 〈W,R〉 be a relational frame, w ∈W , and I ⊆W . w
and I provide pairing if for all d, e ∈ R[w] ∩ I , there is some v ∈ R[R[w]] such that
for all f ∈ R[w] ∩ I , fRv iff f ∈ {d, e}.

Lemma 4.2. Let F = 〈W,R〉 be a relational frame, w ∈W , and a an assignment
function. Then F, w, a � P(i) iff w and a(i) provide pairing.

Proof. Note that F, w, a � Ind(p) iff R[w] ∩ a(p) is a singleton subset of
a(i), and F, w, a � PotP(p) iff R[R[w]] ∩ a(p) is a singleton. Further, if R[w] ∩
a(p) = {d} ⊆ a(i) and R[w] ∩ a(q) = {e} ⊆ a(i), then F, w, a � Pair(p, q, r) iff
R[R[w]] ∩ a(r) is a singleton {v} such that for all f ∈ R[w] ∩ a(i), fRv iff
f ∈ {d, e}. With these observations, it is routine to establish the claim. �

The next step requires us to simulateS usingL�. We assume that for every variable
� of S (first- or second-order), there is a distinct propositional variable p� . With
this, we define the recursive mapping ·∗ from S to L� whose only non-trivial clauses
are the following:

(Xyz)∗ := ∃r(Pair(py, pz , r) ∧��(r ∧ pX )),
(∀xϕ)∗ := ∀px(Ind(px) → ϕ∗),
(∀Xϕ)∗ := ∀pX (ϕ∗).

The next lemma observes that this mapping works as intended.

Lemma 4.3. Let ϕ ∈ S. If F = 〈W,R〉 is a relational frame, w ∈W , I ⊆W , a an
assignment function for S on D = R[w] ∩ I , and w and I provide pairing, then

D, a � ϕ iff F, w, b � ϕ∗,

where b is the assignment function such that b(i) = I , b(px) = {a(x)}, and b(pX ) is
the set of v ∈ R[R[w]] for which there are d and e related by a(X ) such that for every
f ∈ D, fRv iff f ∈ {d, e}.

Proof. By induction on the complexity of ϕ. (The proof requires showing that
formulas in the image of ϕ∗ are insensitive to the truth of px outside of R[w], but
this is straightforward from the syntactic positions in which px occurs in any such
formula. A similar observation is required for pX .) �

With this lemma, we can simulate S on R[w] ∩ I whenever w and I provide
pairing. Thus, we can reduce ssol to L(C) whenever C is a class of frames in which
for every cardinality, we can find corresponding w and I which provide pairing.
Formally, this condition on classes of frames is defined as follows:

Definition 4.4. Let a class of relational frames C fully represent if for every
cardinality κ, there is a frame F = 〈W,R〉 in C, w ∈W and I ⊆W such that w and
I provide pairing, and |R[w] ∩ I | = κ.
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Due to the parameter I, a single frame may be a witness of full representation
for many cardinalities. Nonetheless, since there is a proper class of cardinals, any
class of relational frames which fully represents must be proper as well. We can now
show that whenever C fully represents, ssol can be reduced to L(C), from which
it follows that if L(C) is finitely definable, then it is recursively isomorphic to ssol

(and so second-order logic as usually defined). In fact, the reduction generalizes to
any set Π ⊆ L(C), as long as Π includes K�+.

Theorem 4.5. Let C be a class of relational frames which fully represents, and let
Π ⊆ L� such that K�+ ⊆ Π ⊆ L(C). Then second-order logic is reducible to Π. If
C is also defined by a finite set of formulas, then L(C) is recursively isomorphic to
second-order logic.

Proof. As discussed in Section 2.4, it suffices to reduce second-order logic in the
guise of ssol to Π. (The conclusion of recursive isomorphism for a class of frames
defined by a finite set from such a reduction is routine; for further details, see the
corresponding discussion by Kremer [30].) We may focus just on sentences (closed
formulas) of S. The required reduction is then provided by the function mapping
any sentence ϕ of S to

ϕ† := ∀i(P(i) → ϕ∗).

We show that ϕ ∈ ssol iff ϕ† ∈ Π.
Assume first that ϕ† /∈ Π. Then ϕ† /∈ K�+. So there is a relational frame

F = 〈W,R〉, w ∈W and assignment function a such that F, w, a � P(i) ∧ ¬ϕ∗. By
Lemma 4.2, w and a(i) provide pairing. Since ϕ is closed, it follows by Lemma 4.3
that ϕ is falsified by R[w] ∩ a(i). So ϕ /∈ ssol.

Assume now that ϕ† ∈ Π. Then ϕ† ∈ L(C). Assume for contradiction that
ϕ /∈ ssol. Then for some cardinality κ, the sentence ϕ is falsified by any set of size
κ. Since C fully represents, there is a frame F = 〈W,R〉 in C,w ∈W and assignment
function a such that w and a(i) provide pairing, and |R[w] ∩ a(i)| = κ. By
Lemma 4.2, F, w, a � P(i). Since ϕ is closed and falsified by R[w] ∩ a(i), it follows
with Lemma 4.3 that F, w, a � ϕ∗. Thus F, w � ϕ†, contradicting ϕ† ∈ L(C). So
ϕ ∈ ssol. �

4.2. Examples. From Theorem 4.5, we can conclude for any finitely axiomatized
normal modal logic Λ that Λ�+ is recursively isomorphic to second-order logic by
showing that R(Λ) fully represents. The details depend on Λ, but in many cases, the
frames witnessing full representation can be derived from a relatively simple class of
frames, which we now introduce. In the following, we assume that every cardinal κ
is a set of size κ, and writeU (κ) for the set of unordered pairs of elements of κ, i.e.,
{{d, e} : d, e ∈ κ}. We assume that κ, U (κ), and {κ+} are pairwise disjoint. This is
not guaranteed by the usual von Neumann definition of ordinals, as {0, 1} = 2 ∈ 3,
but the problem is easily overcome by considering the disjoint union of the relevant
sets—we omit the details for simplicity.

Definition 4.6. If κ is a cardinal, Fκ is the relational frame 〈W,R〉 such that:

W = {κ+} ∪ κ ∪U (κ),
R = {〈κ+, w〉 : w ∈ κ} ∪ {〈w, v〉 : w ∈ κ, v ∈ U (κ), and w ∈ v}.
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Fκ is constructed just so that κ+ and κ provide pairing, and |R[κ+] ∩ κ| = κ,
which can easily be verified. Therefore the class of relational frames fully represents,
from which we can draw the following conclusion:

Example 4.7. K�+ is recursively isomorphic to second-order logic.

Proof. Since the class of relational frames fully represents, the claim follows by
Theorem 4.5. �

More interestingly, Fκ is easily adapted to meet a number of additional
requirements, while κ+ and κ still provide pairing. For example, we can take the
transitive closure of R, and so obtain frames validating the 4 axiom. Adding also
a “final” world, seen by every world, we obtain a simple proof of the result of
Kaminski and Tiomkin [26] that S4.2�+ is recursively isomorphic to second-order
logic. In fact, we note that the result can be strengthened in two ways: First, S4.2
can be strengthened to K2.1. Second, the result extends to Λ�+ for every finitely
axiomatized normal modal logic Λ ⊆ K2.1, and the resulting unaxiomatizability
extends to every subset of formulas which includes K�+.

Example 4.8. Second-order logic is reducible to every set of formulas Π such that
K�+ ⊆ Π ⊆ K2.1�+. For every finitely axiomatized normal modal logic Λ ⊆ K2.1,
Λ�+ is recursively isomorphic to second-order logic.

Proof. Consider a frame Fκ, and add a new “final” world f, which every other
world can access. Take the reflexive and transitive closure of the accessibility relation
of this extended frame. In the resulting frame, κ+ and κ still provide pairing,
while K2.1 is valid. So C(K2.1) fully represents, whence the claim follows by
Theorem 4.5. �

Analogously, we can cover the case of B, which is mentioned by Fine [12] and
Kremer [30], but not discussed by Kaminski and Tiomkin [26].

Example 4.9. Second-order logic is reducible to every set of formulas Π such
that K�+ ⊆ Π ⊆ B�+. For every finitely axiomatized normal modal logic Λ ⊆ B,
Λ�+ is recursively isomorphic to second-order logic.

Proof. Consider a frame Fκ, and take the reflexive and symmetric closure of the
accessibility relation. In the resulting frame, κ+ and κ still provide pairing, while B
is valid. So C(B) fully represents, whence the claim follows by Theorem 4.5. �

We can also cover the case of K4.2W, which appears not to have been considered
in the literature so far. This subsumes the case of KW, which is better known in the
context of provability logic as GL; see [5].

Example 4.10. Second-order logic is reducible to every set of formulas Π such
that K�+ ⊆ Π ⊆ K4.2W�+. For every finitely axiomatized normal modal logic
Λ ⊆ K4.2W, Λ�+ is recursively isomorphic to second-order logic.

Proof. Analogous to Example 4.8, using the transitive closure instead of the
transitive and reflexive closure of the accessibility relation. �

Inspecting the structure of the frames used in these proofs, it is easy to see that
these results can be strengthened further in various ways to some less commonly
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considered modal logics. For example, the frames used in the proof of Example 4.10
all do not admit any path along the accessibility relation with more than three
steps. Thus, K4.2W can be strengthened by adding ����⊥ as an axiom. These
strengthened logics also need not be finitely axiomatizable for the reduction of
second-order logic to be possible. An example is the logic BSeg, which Hughes and
Cresswell [24] show not to be finitely axiomatizable. This normal modal logic is
obtained by adding to B every instance of the following axiom schema for n ≥ 1:

Segn :=
∧n
i=1 ��pi → �

∧n
i=1 �pi .

The reduction of second-order logic in Example 4.9 can be extended to BSeg by
enriching the accessibility relation of any frame Fκ, letting κ+ access every world
and every world access κ+.

§5. Extensions of K4.3. The extensions of the unimodal logic K4.3 constitute a
special case, requiring special treatment for both decidability and unaxiomatizability
results. We therefore treat them separately in this section. The classes of frames they
define are somewhat more complicated to describe, so we start by introducing the
relevant notions. We then consider decidable and unaxiomatizable logics in turn.

5.1. Linear orders and balloons. We first recall the standard order-theoretic notion
of a linear order.

Definition 5.1. Let W be a set and R a binary relation on W.
• R is connected if for all w and v in W, wRv, w = v, or vRw.
• R is a linear order if R is a connected partial order (i.e., if R is connected,

reflexive, transitive, and antisymmetric).

When no confusion is likely to arise, we identify an ordered set with its ordering
relation. Note that a binary relation on a finite set is a linear order just in case it is
isomorphic to a finite initial segment {0, ... , n} of the natural numbers under their
natural order ≤.

Next, we introduce the notion of a balloon, which we take from [9, pp. 103–104].
Note that the sets H and T in this definitions may be empty.

Definition 5.2. Let W be a set and R a binary relation on W. R is a reflexive
(irreflexive) balloon if W is the disjoint union of two sets T = {t1, ... , tn} and H
such that wRv iff either w = ti and v = tj , for i ≤ j (i < j), or v ∈ H .

With these notions, many classes of frames defined by extensions of K4.3 can be
described. For example, K4.3 itself is valid on just those relational frames whose
point-generated subframes have an accessibility relation which is transitive and
connected. With this, it is easy to see that K3 is valid on every linear order with an
endpoint (a world which is accessible from every world). Aside from this, we will
also need an account of the classes of relational frames defined by S4.3.1 and K4.3Z.
This is provided by the following lemma:

Lemma 5.3. Let F = 〈W,R〉 be a point-generated relational frame.
(a) S4.3.1 is valid on F just in case one of the following two conditions obtains:

(i) R is a reflexive balloon.
(ii) F is isomorphic to 〈N,≤〉.
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(b) K4.3Z is valid on F just in case one of the following two conditions obtains:
(i) R is an irreflexive balloon.

(ii) F is isomorphic to 〈N, <〉.
Proof. The arguments are routine. A statement equivalent to (a) is also given

by Reynolds and Zakharyaschev [49, p. 912]. �

5.2. Decidable logics. In this section, we will show that the two logics just con-
sidered, S4.3.1 and K4.3Z, define classes of relational frames whose propositionally
quantified modal logic is decidable. We do so by showing that the propositionally
quantified modal logics of the various kinds of frames mentioned in Lemma 5.3 are
decidable.

The case of the natural numbers under their natural order is already discussed by
Fine [12, p. 344]. As Fine notes, the decidability of the propositionally quantified
modal logic of the single frame consisting of the natural numbers and their natural
ordering follows from the decidability of monadic second-order logic over this frame,
and the decidability of this monadic second-order theory was shown by Büchi [6].
This monadic second-order theory is known in the literature as S1S. Fine does
not specify whether the intended natural order is ≤ or <, but the difference is
immaterial: it is easy to see that the monadic second-order theories of the two
orders are recursively isomorphic. Thus:

Lemma 5.4. If C is the singleton of 〈N,≤〉 or the singleton of 〈N, <〉, then L(C) is
decidable.

Proof. Using the standard translation, this is immediate by Proposition 2.9 and
the decidability of S1S. �

The remaining case of balloons requires a bit more thought. The most immediate
difficulty is the fact that in a balloon, the cluster of worlds H among which the
accessibility relation is universal may be of arbitrary size. It is initially not obvious
that it is possible to suitably represent such an arbitrarily large set H using a finite or
countably infinite set of natural numbers, in a reduction to S1S. However, using the
techniques developed in Section 3, it is easy to see that H may always be assumed
to be finite. With this, the reduction is straightforward.

Lemma 5.5. If C is the class of reflexive balloons or the class of irreflexive balloons,
then L(C) is decidable.

Proof. We consider the irreflexive case; the reflexive case follows similarly. Along
the lines of Lemma 5.4, it suffices to reduce M(C) to S1S, which we take to be the
monadic second-order theory of the single frame 〈N, <〉. First, note that if ϕ ∈ N�

is satisfiable on some reflexive balloon F in C, then by Proposition 3.12, ϕ is also
satisfiable on F2n

id , where n = qd(ϕ), and so on a frame in the class of finite reflexive
balloons F. Thus M(C) is M(F), so we may reduce M(F) to S1S.

The required reduction is provided by the recursive mapping with the following
non-trivial clauses (with t and h bound by initial existential quantifiers):

(Rxy)th := Rxy ∨ ¬Ryt,
(∀x�)th := ∀x(Rxh → �th).
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This reduction simulates finite balloons using two numbers t and h as parameters:
the numbers less than t and h represent T, and the remaining numbers less than h
represent H. It is routine to show that ϕ is valid over F iff ϕ∗ ∈ S1S, as required. �

With these results, it is straightforward to establish our first example, which further
delimits the axiomatizability boundary of Figure 1:

Example 5.6. S4.3.1�+ is decidable.

Proof. Let B be the class of reflexive balloons, and N the singleton of 〈N,≤〉. By
Lemma 5.3(a), S4.3.1�+ is L(B) ∩ L(N). The decidability of this logic follows from
Lemmas 5.4 and 5.5. �

Moreover, Fine [13] has shown that all normal extensions of S4.3 are finitely
axiomatizable. As in the case of KE, we can therefore conclude:

Corollary 5.7. If Λ is a normal extension of S4.3.1, then Λ�+ is decidable.

It is worth noting that Segerberg [51] showed in the standard quantifier-free
setting that S4.3.1 is the modal logic of the single frame 〈N,≤〉; a fortiori, it is also
the modal logic of the class of frames it defines. Although these classes of frames have
the same quantifier-free modal logic, and both give rise to decidable propositionally
quantified modal logics (by Lemma 5.4 and Example 5.6), these propositionally
quantified modal logics are not the same: with the additional expressive power of
propositional quantifiers, balloons can be distinguished from 〈N,≤〉, for example
using the sentence �∀̄5.

Our second example is established in just the same way as the first:

Example 5.8. K4.3Z�+ is decidable.

Proof. Analogous to Example 5.6. �

We can use this example to justify the earlier assertion that the requirement of
finiteness in Proposition 2.8 cannot be weakened to recursive enumerability, even
among quantifier-free sets of formulas: there is a normal modal logic Λ obtained by
strengthening K4.3Z using a recursively enumerable set of axioms such that Λ�+ is
undecidable. This follows from the following result:

Proposition 5.9. Any set x ⊆ N is reducible to (K4.3Z + Γx)�+, where Γx =
{�n�	 : n ∈ x}.

Proof. We show that n ∈ x iff �n�	 ∈ (K4.3Z + Γx)�+. The left to right
direction is immediate. For the right to left direction, assume n /∈ x, and let F

be a finite irreflexive linear order of length n + 1. F validates K4.3Z + Γx but not
�n�	, whence �n�	 /∈ (K4.3Z + Γx)�+. �

If x ⊆ N is recursively enumerable but not decidable, it follows that (K4.3Z +
Γx)�+ is not decidable either, even though K4.3Z + Γx extends K4.3Z using a
recursively enumerable set Γx , and K4.3Z�+ is decidable. Similarly, if x ⊆ N is not
recursively enumerable, then neither is (K4.3Z + Γx)�+, so the axiomatizability
boundary cannot be extended to all normal modal logics.
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5.3. Unaxiomatizable logics. After noting that the decidability of L({〈N,≤〉})
follows from Büchi’s result (see the previous section), Fine [12, p. 344] asserts
that the decidability of S4.3�+ follows from a generalization of Büchi’s result by
Rabin [48]. This, however, is a mistake: Rabin’s result applies to SkS, for any k ∈
N ∪ {�}, which is the monadic second-order theory of the infinite tree in which every
node has exactly k successors. But S4.3 imposes substantially weaker constraints
on frames. For example, any linear order is a relational frame validating S4.3.
According to Kaminski and Tiomkin [26, p. 41], it follows from this that S4.3�+ is
not axiomatizable.

Kaminski and Tiomkin outline the following argument: Using results of
Shelah [54] and Gurevich and Shelah [21], second-order arithmetic can be reduced
to the monadic second-order theory of linear orders. The monadic second-order
theory of linear orders can in turn be reduced to S4.3�+. (Kaminski and Tiomkin
note that under a “weak” set-theoretic assumption, results of Gurevich and Shelah
[20] show that second-order logic can be reduced to the monadic second-order
theory of linear orders. Under these assumptions, we therefore obtain that S4.3�+
is not just not axiomatizable, but recursively isomorphic to second-order logic.) In
this section, we fill in some details of this observation, and note certain ways in
which it can be strengthened.

The reduction of monadic second-order logic over linear orders to S4.3�+ can be
effected using the backwards translation, introduced in Section 2.4. The crucial
feature of S4.3 which makes this possible is the fact that every linear order is
a subframe of a transitive point-generated subframe of a frame in R(S4.3). We
therefore present the result in a more general form, applicable to any class of
relational frames with this property. Analogous to the results in Section 4, the failure
of axiomatizability extends to any smaller set of formulas which includes K�+.

Proposition 5.10. Let C be a class of relational frames such that every linear order
is a subframe of a transitive point-generated subframe of a frame in C. No set of
formulas Π ⊆ L� such that K�+ ⊆ Π ⊆ L(C) is axiomatizable.

Proof. By the results of Shelah and Gurevich mentioned above, it suffices to
reduce monadic second-order logic over linear orders to Π. We do so by the function
mapping any monadic second-order sentence ϕ to

ϕ∗ := ∀̄4 → (∀X (Lin → ϕ)X )←,

where Lin is the (first-order) sentence stating that R is a linear order, and �X is the
restriction of first-order quantifiers in � to X. We show that ϕ is valid over linear
orders if and only if ϕ∗ ∈ Π.

Assume ϕ is false in some linear order. By assumption, the order is a subframe L
of a transitive point-generated subframe Fw of a frame F in C. Then ∀X (Lin → ϕ)X

is false in Fw . Since Fw is transitive, it follows by Proposition 2.10 that Fw,w �

(∀X (Lin → ϕ)X )←, and so that Fw,w � ϕ∗. With Proposition 2.7, ϕ∗ /∈ L(C), and
so ϕ∗ /∈ Π.

Assume ϕ∗ /∈ Π. Then ϕ∗ /∈ K�+, so there is a relational frame F and world
w in which ∀̄4 is true but (∀X (Lin → ϕ)X )← is false (relative to any assignment
function). Then Fw has a transitive accessibility relation, and so by Propositions 2.7
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and 2.10, ∀X (Lin → ϕ)X is false in Fw . So there is a (subframe of Fw which is a)
linear order in which ϕ is false. Therefore ϕ is not valid over linear orders. �

From this result, we can conclude that S4.3�+ is not axiomatizable. This extends
to every normal modal logic included in K3:

Example 5.11. For every normal modal logic Λ ⊆ K3, Λ�+ is not axiomatizable.

Proof. Let L be a reflexive linear order, and F the result of adding to L an initial
element i and a final element f. Then F is a member of R(K3), while L is a subframe
of Fi . So, R(K3) satisfies the condition of Proposition 5.10, from which the claim
follows. �

§6. Multimodal logics. So far, we have considered only examples of unimodal
logics. But, as urged already by Scott [50, p. 161], applications of modal logics
very often require multiple modalities. We therefore turn to the multimodal case.
This opens up a vast field of new complexity questions, and we will not attempt as
systematic an investigation as we aimed to provide for the unimodal case.

6.1. Fusions. Many interesting multimodal logics can be obtained using general
methods for combining unimodal logics. There are different ways of combining
modal logics; see [35] for an introduction. The simplest way of combining two
normal modal logics Λ and Λ′ is the formation of their fusion, which is the normal
bimodal logic axiomatized by the theorems of Λ for one modality, and those of Λ′

for the other modality. This definition straightforwardly generalizes to fusions of
arbitrary countable sets of normal modal logics. For the following definition, recall
that we use K for the smallest normal modal logic in whatever modal language is
contextually salient, which need not be unimodal.

Definition 6.1. Let I be a countable set, and for each i ∈ I , let Λi ⊆ L�i be
a normal unimodal logic. Then the fusion of Λi (for i ∈ I ), written

⊗
i∈I Λi , is

K +
⋃
i∈I Λi , the smallest normal modal logic in L{�i :i∈I} including

⋃
i∈I Λi .

In the case of combining two logics, we write their fusion as Λ1 ⊗ Λ2. When
combining unimodal logics, we assume tacitly that they employ distinct modal
operators. For example, we simply write S5 ⊗ S5 for the fusion of S5 in a
unimodal language using different modal operators. We leave the choice of these
modal operators unspecified, and choose them according to the relevant context.

For our purposes, fusions involving unimodal logics below the axiomatizability
boundary in Figure 1 are uninteresting, since the resulting propositionally quantified
modal logics will only be axiomatizable in the trivial case in which one of the
fused logics is inconsistent (i.e., identical to L�). This follows from the following
observation.

Proposition 6.2. Let
⊗
i∈I Λi be a fusion of consistent normal unimodal logics.

Then for all i ∈ I , (
⊗
i∈I Λi)�+ is a conservative extension of Λi �+, in the sense that

for all ϕ ∈ L�i , ϕ ∈ (
⊗
i∈I Λi)�+ iff ϕ ∈ Λi �+.

Proof. Consider any i ∈ I , and L�i -formula ϕ /∈ Λi �+. Then there is a
relational frame 〈W,R〉 validating Λi but not ϕ. As shown by Makinson [38],
any consistent normal unimodal logic is included in either Triv or Ver. Let
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J = {j ∈ I : Λj ⊆ Triv}. Let F be the relational frame 〈W,R�j 〉j∈I such that
Ri = R,Rj = id for j ∈ J , andRj = ∅ in all other cases. Then F validates

⊗
i∈I Λi

but not ϕ. �
We therefore consider fusions of normal modal logics above the axiomatizability

boundary in Figure 1. One such logic has already been considered in the literature
on propositionally quantified modal logics: Antonelli and Thomason [1] show that
(S5 ⊗ S5)�+ is recursively isomorphic to second-order logic. Proofs of this result
can also be found in Kuhn [34] and Belardinelli et al. [2]. Since S5 is already a highly
restrictive logic, this indicates that only very rare fusions of unimodal logics define
classes of frames whose propositionally quantified modal logics are axiomatizable.

One example for such a rare fusion is the finite fusion of normal modal logics of the
form KAltn. For any n ∈ N, the unimodal logic KAltn is valid on just those relational
frames in which every world can access at most n worlds. Since the satisfiability of
a formula with modal depth m is invariant under taking m-step point-generated
subframes, the size of frames which need to be considered to determine satisfiability
is finitely bounded in terms of m and the indices n of the fused logics.

Example 6.3. Let I be a finite set and, ni ∈ N for all i ∈ I . Then
(
⊗
i∈I KAltni )�+ is decidable.

Proof. Let ϕ be a formula of modal depth m which is satisfiable on a frame
validating (

⊗
i∈I Λi)�+. By Proposition 2.7, ϕ is satisfiable on an m-step-generated

subframe, which is bounded in size by Σmj=0(Σi∈I ni)j . Decidability follows, since
such subframes are recursively enumerable. �

The decidability of KAltn�+ follows as a special case; this establishes the last
outstanding claim presented in Figure 1. This decidability result in the unimodal
case was already noted by ten Cate [8, p. 222]. ten Cate also observes that the
corresponding monadic second-order theory M�(KAltn) is undecidable as long
as n ≥ 2. Indeed, it is easy to see that accessibility relations of such frames may
serve to encode a pairing function, so that these monadic second-order theories
are recursively isomorphic to second-order logic. This highlights that despite the
existence of the backwards translation on transitive frames, LO is in general less
expressive than MO. For more on questions of expressivity, see [8].

6.2. Products and linear fusions. Many applications of multimodal logics require
non-trivial interaction axioms between the modalities. For example, consider a
combined modal-temporal logic with two modal operators, � for necessary and A
for always. One might plausibly think that what is necessarily always the case is
always necessary, and vice versa. That is, one might include in this modal-temporal
logic the principle:

�Ap ↔ A�p.

The particular interaction principles to include in a given multimodal logic will of
course depend on the application, but there are some general ways of combining
modal logics which lead to non-trivial interaction axioms, and which arise naturally
in many contexts.

Continuing with the example of a modal-temporal logic, consider the following
simple way of constructing relational frames for such a language: We take a set
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of alethically possible worlds W as given, as well as a set of times T. The worlds
of our frame are pairs of alethically possible worlds and times, i.e., the members of
W × T . The accessibility relations for the two modalities operate on the respective
components of these pairs:R� relates pairs with the same time, andRA relates pairs
with the same alethically possible world. Such a class of frames for a combined
modal-temporal logic was influentially developed by Kaplan [28]. It is an instance
of a very general way of combining unimodal frames into a multimodal frame, and
by extension combining normal unimodal logics to a normal multimodal logic. This
is known as taking products.

Given the results established above, the most natural question concerning the
axiomatizability of propositionally quantified modal logic over product frames is
whether L(PE) is axiomatizable, where PE is the class of products of unimodal
relational frames in which the accessibility relation is an equivalence relation. The
resulting logic is a strengthening of (S5 ⊗ S5)�+ which adds various interaction
axioms, including the one stated above for � and A. This question is answered by
Fritz [16], who shows that this extension is also recursively isomorphic to second-
order logic.

In the case of modal-temporal logics, Montague [39] took a slightly different
approach: like Kaplan, he started from a Cartesian productW × T , with the same
relation for the temporal modality A. However, Montague’s accessibility relation
for the alethic modality � is universal. More generally, Dorr and Goodman [11]
argue that the correct logic of � and A includes the principle �p → Ap: what is
necessary is always the case. On relational frames, this principle is valid just in case
RA is a subset ofR�. Abstracting from Montague’s particular models, this suggests
a natural class of frames for our modal-temporal language L�A, namely the class of
bimodal frames in which both accessibility relations are equivalence relations, with
RA being a refinement of R�. This class is defined by S5 ⊗ S5 + �p → Ap.

This example suggest a simple general way of combining any two normal unimodal
logics Λ1 and Λ2 (in this order), the result of which we call their linear fusion. It is
obtained by adding to the fusion of Λ1 and Λ2 the axiom �1p → �2p, where �1 and
�2 are the modalities of Λ1 and Λ2, respectively. This straightforwardly generalizes
to any finite sequence of normal modal logics:

Definition 6.4. Let Λ0, ... ,Λn be normal unimodal logics in languages
L�0 , ... ,L�n , respectively. Then the linear fusion of Λ0, ... ,Λn is defined as follows:

Λ0 �⊗ ··· �⊗ Λn := Λ0 ⊗ ··· ⊗ Λn + �0p → �1p + ··· + �n–1p → �np.

We show that in contrast to Kaplan’s product frames, the Montague-inspired
approach to modal-temporal logic via linear fusions leads to a decidable proposi-
tionally quantified modal logic, as (S5 �⊗ S5)�+ is decidable. Indeed, this extends to
the linear fusion of any finite number of copies of S5.

Example 6.5. (S5 �⊗ ··· �⊗ S5)�+ is decidable.

Proof. We discuss the case of (S5 �⊗ S5)�+; it is clear that the argument can
be iterated for longer linear fusions. Our main task is to show that R(S5 �⊗ S5) is
computably reducible. We do so by showing that it is r-reducible, for r : n �→ 2(2n+1n).
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So let n ∈ N, and consider any point-generated subframe F = 〈W,R�, R�〉 of a
frame validating S5 �⊗ S5. We useL�� as the bimodal language of S5 �⊗ S5, assuming
that the latter contains �p → �p. F will be reduced to a finite frame in two stages.
First, let F′ = 〈W ′, R′

�, R
′
�〉 be the frame F2n

id . By Proposition 3.12, F and F′ are

n-equivalent. Second, let F′′ be the frame F′2(2nn)

R′�
. Since the equivalence classes of

R′
� are bounded in size by 2n, it follows with Proposition 3.12 that F′ and F′′ are

n-equivalent as well.
Since equivalence classes of R′

� are bounded in size by 2n, and both R′
� and

R′
� are universal within such an equivalence relation, there are only up to 2n

duplicate classes of such equivalence classes inF′. Therefore,F′′ is bounded in size by
2n · 2(2nn) = r(n). By construction, it is easy to see that F′′ also validates S5 �⊗ S5.
Thus R(S5 �⊗ S5) is r-reducible. Since S5 �⊗ S5 is finitely axiomatizable, it follows
with Lemma 3.2 that (S5 �⊗ S5)�+ is decidable. �

Along the lines of Example 6.3, it is easy to see that for any linear fusion
Λ = Λ0 �⊗ ··· �⊗ Λn, if Λ0 is KAltm for some m ∈ N and every other Λi is KΓi
for some finite set of axioms Γi , then Λ�+ is decidable. However, already
(S5 �⊗ KAlt2)�+ is recursively isomorphic to second-order logic. This follows by
a straightforward pairing argument, similar to the case of M�(KAltn) for n ≥ 2,
discussed above.

§7. Conclusion. In this paper, we have developed general methods to answer
questions concerning the axiomatizability of propositionally quantified modal logics
on classes of relational frames. Central among these methods is the technique of
reducing the number of duplicates of equivalence classes of worlds in relational
frames. This led directly to several new decidability results, including the decidability
of KE�+ (Example 3.15). The technique can also fruitfully be combined with
standard decidability arguments, such as reductions to S1S, as we did in order
to show that S4.3.1�+ is decidable (Example 5.6). Finally, we showed how the
reductions of duplicates can be iterated, which allowed us to prove that the
multimodal logic (S5 �⊗ S5)�+ is decidable (Example 6.5). We also improved an
existing construction for showing propositionally quantified modal logics of classes
of relational frames to be recursively isomorphic to second-order logic. This allowed
us to simplify proofs for known cases, and to cover new cases such as K4.2W�+
(Example 4.10).

The various examples used to illustrate these new and improved methods amount
to a detailed picture of which normal unimodal logics define classes of relational
frames whose propositionally quantified modal logics are axiomatizable, which is
presented in Figure 1. For many of the commonly considered normal modal logics Λ,
the complexity of Λ�+ decreases (weakly) monotonically with the strength of Λ.
Among these logics, the question of the axiomatizability of Λ�+ therefore introduces
what Ding [10, p. 1148] calls the “axiomatizability boundary,” which is indicated
in Figure 1. This boundary, as well as a corresponding decidability boundary, gives
rise to further problems which are left open here.

First, even though we have developed general methods, our approach to locating
the axiomatizability boundary has for the most part still been driven by considering
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particular examples. In some cases, we were able to obtain more general results,
such as the observation that Λ�+ is decidable for every normal extension Λ of KE
(Corollary 3.16), but much of the lattice of normal modal logics is not covered by
any such general result established here.

Second, one might also take a more abstract perspective on the issue, and
ask whether the property of having an axiomatizable propositionally quantified
extension Λ�+, for axiomatizable normal modal logics Λ, is itself decidable. For
an overview of similar complexity questions concerning metalogical properties of
modal logics, see [9, Chapter 17].

Third, it is not yet clear exactly how much of the lattice of normal modal
logics divides neatly along the kind of axiomatizability boundary discussed here.
Proposition 2.8 describes a relatively rich space of normal modal logics which does
provide such a boundary. However, it follows from Proposition 5.9 that this cannot
be extended to all normal modal logics. This limits, but does not pin down exactly, the
spaces of normal modal logics to which we may be able to extend the axiomatizability
boundary.

Finally, our discussion has been especially unsystematic in the multimodal case.
This is partly due to the fact that this case has not been considered in the literature,
with the exception of the particular matter of normal bimodal logics in which
both unimodal fragments obey the principles of S5: It is known that in the case
of S5, the two most common methods of combining modal logics, namely fusions
and products, both lead to a propositionally quantified bimodal logic which is
recursively isomorphic to second-order logic. To this we have added a decidability
result, showing that taking the linear fusion of S5 with itself leads to a decidable
propositionally quantified bimodal logic (Example 6.5). However, many further
complexity questions are left open in this area, including many questions on systems
with interaction axioms between the modalities motivated by particular applications.
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