374 research outputs found

    QPTAS and Subexponential Algorithm for Maximum Clique on Disk Graphs

    Get PDF
    A (unit) disk graph is the intersection graph of closed (unit) disks in the plane. Almost three decades ago, an elegant polynomial-time algorithm was found for Maximum Clique on unit disk graphs [Clark, Colbourn, Johnson; Discrete Mathematics '90]. Since then, it has been an intriguing open question whether or not tractability can be extended to general disk graphs. We show the rather surprising structural result that a disjoint union of cycles is the complement of a disk graph if and only if at most one of those cycles is of odd length. From that, we derive the first QPTAS and subexponential algorithm running in time 2^{O~(n^{2/3})} for Maximum Clique on disk graphs. In stark contrast, Maximum Clique on intersection graphs of filled ellipses or filled triangles is unlikely to have such algorithms, even when the ellipses are close to unit disks. Indeed, we show that there is a constant ratio of approximation which cannot be attained even in time 2^{n^{1-epsilon}}, unless the Exponential Time Hypothesis fails

    The Clique Problem in Ray Intersection Graphs

    Full text link
    Ray intersection graphs are intersection graphs of rays, or halflines, in the plane. We show that any planar graph has an even subdivision whose complement is a ray intersection graph. The construction can be done in polynomial time and implies that finding a maximum clique in a segment intersection graph is NP-hard. This solves a 21-year old open problem posed by Kratochv\'il and Ne\v{s}et\v{r}il.Comment: 12 pages, 7 figure

    The Clique Problem in Intersection Graphs of Ellipses and Triangles

    Get PDF
    Intersection graphs of disks and of line segments, respectively, have been well studied, because of both practical applications and theoretically interesting properties of these graphs. Despite partial results, the complexity status of the Clique problem for these two graph classes is still open. Here, we consider the Clique problem for intersection graphs of ellipses, which, in a sense, interpolate between disks and line segments, and show that the problem is APX-hard in that case. Moreover, this holds even if for all ellipses, the ratio of the larger over the smaller radius is some prescribed number. Furthermore, the reduction immediately carries over to intersection graphs of triangles. To our knowledge, this is the first hardness result for the Clique problem in intersection graphs of convex objects with finite description complexity. We also describe a simple approximation algorithm for the case of ellipses for which the ratio of radii is bounde

    QPTAS and subexponential algorithm for maximum clique on disk graphs

    Get PDF
    A (unit) disk graph is the intersection graph of closed (unit) disks in the plane. Almost three decades ago, an elegant polynomial-time algorithm was found for \textsc{Maximum Clique} on unit disk graphs [Clark, Colbourn, Johnson; Discrete Mathematics '90]. Since then, it has been an intriguing open question whether or not tractability can be extended to general disk graphs. We show the rather surprising structural result that a disjoint union of cycles is the complement of a disk graph if and only if at most one of those cycles is of odd length. From that, we derive the first QPTAS and subexponential algorithm running in time 2O~(n2/3)2^{\tilde{O}(n^{2/3})} for \textsc{Maximum Clique} on disk graphs. In stark contrast, \textsc{Maximum Clique} on intersection graphs of filled ellipses or filled triangles is unlikely to have such algorithms, even when the ellipses are close to unit disks. Indeed, we show that there is a constant ratio of approximation which cannot be attained even in time 2n1−Δ2^{n^{1-\varepsilon}}, unless the Exponential Time Hypothesis fails

    Triangle-free geometric intersection graphs with large chromatic number

    Get PDF
    Several classical constructions illustrate the fact that the chromatic number of a graph can be arbitrarily large compared to its clique number. However, until very recently, no such construction was known for intersection graphs of geometric objects in the plane. We provide a general construction that for any arc-connected compact set XX in R2\mathbb{R}^2 that is not an axis-aligned rectangle and for any positive integer kk produces a family F\mathcal{F} of sets, each obtained by an independent horizontal and vertical scaling and translation of XX, such that no three sets in F\mathcal{F} pairwise intersect and χ(F)>k\chi(\mathcal{F})>k. This provides a negative answer to a question of Gyarfas and Lehel for L-shapes. With extra conditions, we also show how to construct a triangle-free family of homothetic (uniformly scaled) copies of a set with arbitrarily large chromatic number. This applies to many common shapes, like circles, square boundaries, and equilateral L-shapes. Additionally, we reveal a surprising connection between coloring geometric objects in the plane and on-line coloring of intervals on the line.Comment: Small corrections, bibliography updat

    On max-clique for intersection graphs of sets and the hadwiger-debrunner numbers

    Get PDF
    Let HDd(p, q) denote the minimal size of a transversal that can always be guaranteed for a family of compact convex sets in Rd which satisfy the (p, q)-property (p ≄ q ≄ d + 1). In a celebrated proof of the Hadwiger-Debrunner conjecture, Alon and Kleitman proved that HDd(p, q) exists for all p ≄ q ≄ d + 1. Specifically, they prove that HDd(p, d + 1) is O(pd2+d). This paper has two parts. In the first part we present several improved bounds on HDd(p, q). In particular, we obtain the first near tight estimate of HDd(p, q) for an extended range of values of (p, q) since the 1957 Hadwiger-Debrunner theorem. In the second part we prove a (p, 2)-theorem for families in R2 with union complexity below a specific quadratic bound. Based on this, we introduce a polynomial time constant factor approximation algorithm for MAX-CLIQUE of intersection graphs of convex sets satisfying this property. It is not likely that our constant factor approximation can be improved to a PTAS as MAX-CLIQUE for intersection graphs of fat ellipses is known to be APX-HARD and fat ellipses have sub-quadratic union complexity. Copyright © by SIAM

    On Reverse Shortest Paths in Geometric Proximity Graphs

    Get PDF
    • 

    corecore