374 research outputs found

    Massive MIMO for Next Generation Wireless Systems

    Full text link
    Multi-user Multiple-Input Multiple-Output (MIMO) offers big advantages over conventional point-to-point MIMO: it works with cheap single-antenna terminals, a rich scattering environment is not required, and resource allocation is simplified because every active terminal utilizes all of the time-frequency bins. However, multi-user MIMO, as originally envisioned with roughly equal numbers of service-antennas and terminals and frequency division duplex operation, is not a scalable technology. Massive MIMO (also known as "Large-Scale Antenna Systems", "Very Large MIMO", "Hyper MIMO", "Full-Dimension MIMO" & "ARGOS") makes a clean break with current practice through the use of a large excess of service-antennas over active terminals and time division duplex operation. Extra antennas help by focusing energy into ever-smaller regions of space to bring huge improvements in throughput and radiated energy efficiency. Other benefits of massive MIMO include the extensive use of inexpensive low-power components, reduced latency, simplification of the media access control (MAC) layer, and robustness to intentional jamming. The anticipated throughput depend on the propagation environment providing asymptotically orthogonal channels to the terminals, but so far experiments have not disclosed any limitations in this regard. While massive MIMO renders many traditional research problems irrelevant, it uncovers entirely new problems that urgently need attention: the challenge of making many low-cost low-precision components that work effectively together, acquisition and synchronization for newly-joined terminals, the exploitation of extra degrees of freedom provided by the excess of service-antennas, reducing internal power consumption to achieve total energy efficiency reductions, and finding new deployment scenarios. This paper presents an overview of the massive MIMO concept and contemporary research.Comment: Final manuscript, to appear in IEEE Communications Magazin

    Assessment of MU-MIMO schemes with cylindrical arrays under 3GPP 3D channel model for B5G networks

    Get PDF
    Beyond 5G technologies promise groundbreaking advances on the performance of cellular networks, by taking advantage of Massive MIMO in mmWave scenarios. The aim of this study is to analyze and test the performance of a 5G cell site equipped with large antenna arrays. It is of particular interest the comparison between the typical trisector cell design with a planar array for each sector, and the less investigated cylindrical array, able to maintain a constant pattern through the whole azimuthal range. To validate our analysis, we adopt the latest 3GPP-compliant 3D channel model and we evaluate the performance of multi-user and multi-layer precoding and combining schemes. Several MIMO configurations are taken into account, and we show that cylindrical arrays can improve the overall system performance, both in terms of achievable per-user rate and outage probability

    Massive MIMO for Dependable Communication

    Get PDF
    Cellular communication is constantly evolving; currently 5G systems are being deployed and research towards 6G is ongoing. Three use cases have been discussed as enhanced mobile broadband (eMBB), massive machine-type communication (mMTC), and ultra-reliable low-latency communication (URLLC). To fulfill the requirements of these use cases, new technologies are needed and one enabler is massive multiple-input multiple-output (MIMO). By increasing the number of antennas at the base station side, data rates can be increased, more users can be served simultaneously, and there is a potential to improve reliability. In addition, it is possible to achieve better coverage, improved energy efficiency, and low-complex user devices. The performance of any wireless system is limited by the underlying channels. Massive MIMO channels have shown several beneficial properties: the array gain stemming from the combining of the signals from the many antennas, improved user separation due to favourable propagation -- where the user channels become pair-wise orthogonal -- and the channel hardening effect, where the variations of channel gain decreases as the number of antennas increases. Previous theoretical works have commonly assumed independent and identically distributed (i.i.d.) complex Gaussian channels. However, in the first studies on massive MIMO channels, it was shown that common outdoor and indoor environments are not that rich in scattering, but that the channels are rather spatially correlated. To enable the above use cases, investigations are needed for the targeted environments. This thesis focuses on the benefits of deploying massive MIMO systems to achieve dependable communication in a number of scenarios related to the use cases. The first main area is the study of an industrial environment and aims at characterizing and modeling massive MIMO channels to assess the possibility of achieving the requirements of URLLC in a factory context. For example, a unique fully distributed array is deployed with the aim to further exploit spatial diversity. The other main area concerns massive MIMO at sub-GHz, a previously unexplored area. The channel characteristics when deploying a physically very large array for IoT networks are explored. To conclude, massive MIMO can indeed bring great advantages when trying to achieve dependable communication. Although channels in regular indoor environments are not i.i.d. complex Gaussian, the model can be justified in rich scattering industrial environments. Due to massive MIMO, the small-scale fading effects are reduced and when deploying a distributed array also the large-scale fading effects are reduced. In the Internet-of-Things (IoT) scenario, the channel is not as rich scattering. In this use case one can benefit from the array gain to extend coverage and improved energy efficiency, and diversity is gained due to the physically large array

    Hybrid Beamforming via the Kronecker Decomposition for the Millimeter-Wave Massive MIMO Systems

    Get PDF
    Despite its promising performance gain, the realization of mmWave massive MIMO still faces several practical challenges. In particular, implementing massive MIMO in the digital domain requires hundreds of RF chains matching the number of antennas. Furthermore, designing these components to operate at the mmWave frequencies is challenging and costly. These motivated the recent development of hybrid-beamforming where MIMO processing is divided for separate implementation in the analog and digital domains, called the analog and digital beamforming, respectively. Analog beamforming using a phase array introduces uni-modulus constraints on the beamforming coefficients, rendering the conventional MIMO techniques unsuitable and call for new designs. In this paper, we present a systematic design framework for hybrid beamforming for multi-cell multiuser massive MIMO systems over mmWave channels characterized by sparse propagation paths. The framework relies on the decomposition of analog beamforming vectors and path observation vectors into Kronecker products of factors being uni-modulus vectors. Exploiting properties of Kronecker mixed products, different factors of the analog beamformer are designed for either nulling interference paths or coherently combining data paths. Furthermore, a channel estimation scheme is designed for enabling the proposed hybrid beamforming. The scheme estimates the AoA of data and interference paths by analog beam scanning and data-path gains by analog beam steering. The performance of the channel estimation scheme is analyzed. In particular, the AoA spectrum resulting from beam scanning, which displays the magnitude distribution of paths over the AoA range, is derived in closed-form. It is shown that the inter-cell interference level diminishes inversely with the array size, the square root of pilot sequence length and the spatial separation between paths.Comment: Submitted to IEEE JSAC Special Issue on Millimeter Wave Communications for Future Mobile Networks, minor revisio

    Massive MIMO Extensions to the COST 2100 Channel Model: Modeling and Validation

    Full text link
    To enable realistic studies of massive multiple-input multiple-output systems, the COST 2100 channel model is extended based on measurements. First, the concept of a base station-side visibility region (BS-VR) is proposed to model the appearance and disappearance of clusters when using a physically-large array. We find that BS-VR lifetimes are exponentially distributed, and that the number of BS-VRs is Poisson distributed with intensity proportional to the sum of the array length and the mean lifetime. Simulations suggest that under certain conditions longer lifetimes can help decorrelating closely-located users. Second, the concept of a multipath component visibility region (MPC-VR) is proposed to model birth-death processes of individual MPCs at the mobile station side. We find that both MPC lifetimes and MPC-VR radii are lognormally distributed. Simulations suggest that unless MPC-VRs are applied the channel condition number is overestimated. Key statistical properties of the proposed extensions, e.g., autocorrelation functions, maximum likelihood estimators, and Cramer-Rao bounds, are derived and analyzed.Comment: Submitted to IEEE Transactions of Wireless Communication

    Interference in Multi-beam Antenna System of 5G Network

    Get PDF
    Massive multiple-input-multiple-output (MIMO) and beamforming are key technologies, which significantly influence on increasing effectiveness of emerging fifth-generation (5G) wireless communication systems, especially mobile-cellular networks. In this case, the increasing effectiveness is understood mainly as the growth of network capacity resulting from better diversification of radio resources due to their spatial multiplexing in macro- and micro-cells. However, using the narrow beams in lieu of the hitherto used cell-sector brings occurring interference between the neighboring beams in the massive-MIMO antenna system, especially, when they utilize the same frequency channel. An analysis of this effect is the aim of this paper. In this case, it is based on simulation studies, where a multi-elliptical propagation model and standard 3GPP model are used. We present the impact of direction and width of the neighboring beams of 5G new radio gNodeB base station equipped with the multi-beam antenna system on the interference level between these beams. The simulations are carried out for line-of-sight (LOS) and non-LOS conditions of a typical urban environment

    Efficient DSP and Circuit Architectures for Massive MIMO: State-of-the-Art and Future Directions

    Full text link
    Massive MIMO is a compelling wireless access concept that relies on the use of an excess number of base-station antennas, relative to the number of active terminals. This technology is a main component of 5G New Radio (NR) and addresses all important requirements of future wireless standards: a great capacity increase, the support of many simultaneous users, and improvement in energy efficiency. Massive MIMO requires the simultaneous processing of signals from many antenna chains, and computational operations on large matrices. The complexity of the digital processing has been viewed as a fundamental obstacle to the feasibility of Massive MIMO in the past. Recent advances on system-algorithm-hardware co-design have led to extremely energy-efficient implementations. These exploit opportunities in deeply-scaled silicon technologies and perform partly distributed processing to cope with the bottlenecks encountered in the interconnection of many signals. For example, prototype ASIC implementations have demonstrated zero-forcing precoding in real time at a 55 mW power consumption (20 MHz bandwidth, 128 antennas, multiplexing of 8 terminals). Coarse and even error-prone digital processing in the antenna paths permits a reduction of consumption with a factor of 2 to 5. This article summarizes the fundamental technical contributions to efficient digital signal processing for Massive MIMO. The opportunities and constraints on operating on low-complexity RF and analog hardware chains are clarified. It illustrates how terminals can benefit from improved energy efficiency. The status of technology and real-life prototypes discussed. Open challenges and directions for future research are suggested.Comment: submitted to IEEE transactions on signal processin

    A Survey: Massive MIMO for next Generation Cellular Wireless Technologies

    Get PDF
    The rapid development of MIMO technology in the area of wireless communications is to setting up of base stations with large number of antennas to improvements in energy and spectral efficiency. In this paper a detailed survey on massive technology, its advantages and comparison with existing method are proposed. The Long Term Evolution (LTE) has been designed to support only packet-switched services and is aimed to provide IP connectivity between UE and eNodeB. As we move forward to5G becoming more promising next generation technology with increase in capacity, reduced latencies, support of very high frequencies (mmWave) with a smaller size single antenna, smaller the aperture for receiving energy. To overcome this small aperture on receiver side at high frequency, we need to use a large number of transmission antenna. This would be the main reason to use the Massive Multiple Input Multiple Outputs (MIMO).This paper focused on the massive MIMO performance, the gain, and return losses of different antennas operating at different frequencies
    corecore