239,908 research outputs found

    Magnetic forces and localized resonances in electron transfer through quantum rings

    Full text link
    We study the current flow through semiconductor quantum rings. In high magnetic field the current is usually injected to the arm of the ring preferred by classical magnetic forces. However, for narrow magnetic field intervals that appear periodically on the magnetic field scale the current is injected to the other arm of the ring. We indicate that the appearance of the anomalous -- non-classical -- current circulation results from Fano interference involving localized resonant states. The identification of the Fano interference is based on the comparison of the solution of the scattering problem with the results of the stabilization method. The latter employs the bound-state type calculations and allows to extract both the energy of metastable states localized within the ring and the width of resonances by analysis of the energy spectrum of a finite size system in function of its length. The Fano resonances involving states of anomalous current circulation become extremely narrow on both magnetic field and energy scales. This is consistent with the orientation of the Lorentz force that tends to keep the electron within the ring and thus increases the lifetime of the electron localization within the ring. Absence of periodic Fano resonances in electron transfer probability through a quantum ring containing an elastic scatterer is also explained.Comment: This paper explains the origins of anomalous (non-classical) current circulation reported in http://arxiv.org/abs/1004.219

    A statistical study of the global structure of the ring current

    Get PDF
    [1] In this paper we derive the average configuration of the ring current as a function of the state of the magnetosphere as indicated by the Dst index. We sort magnetic field data from the Combined Release and Radiation Effects Satellite (CRRES) by spatial location and by the Dst index in order to produce magnetic field maps. From these maps we calculate local current systems by taking the curl of the magnetic field. We find both the westward (outer) and the eastward (inner) components of the ring current. We find that the ring current intensity varies linearly with Dst as expected and that the ring current is asymmetric for all Dst values. The azimuthal peak of the ring current is located in the afternoon sector for quiet conditions and near midnight for disturbed conditions. The ring current also moves closer to the Earth during disturbed conditions. We attempt to recreate the Dst index by integrating the magnetic perturbations caused by the ring current. We find that we need to multiply our computed disturbance by a factor of 1.88 ± 0.27 and add an offset of 3.84 ± 4.33 nT in order to get optimal agreement with Dst. When taking into account a tail current contribution of roughly 25%, this agrees well with our expectation of a factor of 1.3 to 1.5 based on a partially conducting Earth. The offset that we have to add does not agree well with an expected offset of approximately 20 nT based on solar wind pressure

    Persistent spin current and entanglement in the anisotropic spin ring i

    Full text link
    We investigate the ground state persistent spin current and the pair entanglement in one-dimensional antiferromagnetic anisotropic Heisenberg ring with twisted boundary conditions. Solving Bethe ansatz equations numerically, we calculate the dependence of the ground state energy on the total magnetic flux through the ring, and the resulting persistent current. Motivated by recent development of quantum entanglement theory, we study the properties of the ground state concurrence under the influence of the flux through the anisotropic Heisenberg ring. We also include an external magnetic field and discuss the properties of the persistent current and the concurrence in the presence of the magnetic field.Comment: 5 pages, 8 figure

    A review of the Jovian magnetosphere based upon Pioneer 10 and 11

    Get PDF
    Data derived from the plasma, magnetic field, and energetic particle experiments on the December, 1973 and December, 1974 Jupiter encounters are reviewed. A bow shock was discovered on the solar side of the planet, as predicted. However, a smaller magnetic field and larger fluxes of energetic electrons were found than anticipated. A ring current and current sheet in the Jovian plasmasphere are inferred from magnetic field measurements

    Aharonov-Casher oscillations of spin current through a multichannel mesoscopic ring

    Full text link
    The Aharonov-Casher (AC) oscillations of spin current through a 2D ballistic ring in the presence of Rashba spin-orbit interaction and external magnetic field has been calculated using the semiclassical path integral method. For classically chaotic trajectories the Fokker-Planck equation determining dynamics of the particle spin polarization has been derived. On the basis of this equation an analytic expression for the spin conductance has been obtained taking into account a finite width of the ring arms carrying large number of conducting channels. It was shown that the finite width results in a broadening and damping of spin current AC oscillations. We found that an external magnetic field leads to appearance of new nondiagonal components of the spin conductance, allowing thus by applying a rather weak magnetic field to change a direction of the transmitted spin current polarization.Comment: 16 pages, 6 figure

    CURRENT MAGNIFICATION AND CIRCULATING CURRENTS IN MESOSCOPIC RINGS

    Full text link
    We show that several novel effects related to persistent currents can arise in open systems, which have no analogue in closed or isolated systems. We have considered a system of a metallic ring coupled to two electron reservoirs. We show that in the presence of a transport current, persistent currents can flow in a ring even in the absence of magnetic field. This is related to the current magnification effect in the ring. In the presence of magnetic field we show that the amplitude of persistent currents is sensitive to the direction of current flow from one reservoir to another. Finally we briefly discuss the persistent currents arising due to two nonclassical effects namely, Aharonov-Bohm effect and quantum tunneling.Comment: On the basis of talk given by A. M. Jayannavar at "International Workshop on Novel Physics in Low Dimensional Systems" in Madras(India). Four figures available on reques

    Simulations of inner magnetosphere dynamics with an expanded RAM-SCB model and comparisons with Van Allen Probes observations

    Get PDF
    Abstract Simulations from our newly expanded ring current-atmosphere interactions model with self-consistent magnetic field (RAM-SCB), now valid out to 9 R E, are compared for the first time with Van Allen Probes observations. The expanded model reproduces the storm time ring current buildup due to the increased convection and inflow of plasma from the magnetotail. It matches Magnetic Electron Ion Spectrometer (MagEIS) observations of the trapped high-energy (\u3e50 keV) ion flux; however, it underestimates the low-energy (\u3c10 keV) Helium, Oxygen, Proton, and Electron (HOPE) observations. The dispersed injections of ring current ions observed with the Energetic particle, Composition, and Thermal plasma (ECT) suite at high (\u3e20 keV) energy are better reproduced using a high-resolution convection model. In agreement with Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) observations, RAM-SCB indicates that the large-scale magnetic field is depressed as close as ∼4.5 RE during even a moderate storm. Regions of electromagnetic ion cyclotron instability are predicted on the duskside from ∼6 to ∼9 RE, indicating that previous studies confined to geosynchronous orbit may have underestimated their scattering effect on the energetic particles. Key Points Expanded RAM-SCB model reproduces well high-energy (\u3e50 keV) MagEIS observations The magnetic field is depressed as close as ∼4.5 RE during even a moderate storm EMIC wave growth extends on duskside from ∼6 to ∼9 RE during storm main phase

    Currents and pseudomagnetic fields in strained graphene rings

    Get PDF
    We study the effects of strain on the electronic properties and persistent current characteristics of a graphene ring using the Dirac representation. For a slightly deformed graphene ring flake, one obtains sizable pseudomagnetic (gauge) fields that may effectively reduce or enhance locally the applied magnetic flux through the ring. Flux-induced persistent currents in a flat ring have full rotational symmetry throughout the structure; in contrast, we show that currents in the presence of a circularly symmetric deformation are strongly inhomogeneous, due to the underlying symmetries of graphene. This result illustrates the inherent competition between the `real' magnetic field and the `pseudo' field arising from strains, and suggest an alternative way to probe the strength and symmetries of pseudomagnetic fields on graphene systems
    • …
    corecore