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Abstract Simulations from our newly expanded ring current-atmosphere interactions model with
self-consistent magnetic field (RAM-SCB), now valid out to 9 RE , are compared for the first time with Van
Allen Probes observations. The expanded model reproduces the storm time ring current buildup due to
the increased convection and inflow of plasma from the magnetotail. It matches Magnetic Electron Ion
Spectrometer (MagEIS) observations of the trapped high-energy (>50 keV) ion flux; however, it
underestimates the low-energy (<10 keV) Helium, Oxygen, Proton, and Electron (HOPE) observations. The
dispersed injections of ring current ions observed with the Energetic particle, Composition, and Thermal
plasma (ECT) suite at high (>20 keV) energy are better reproduced using a high-resolution convection
model. In agreement with Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS)
observations, RAM-SCB indicates that the large-scale magnetic field is depressed as close as ∼4.5 RE during
even a moderate storm. Regions of electromagnetic ion cyclotron instability are predicted on the duskside
from ∼6 to ∼9 RE , indicating that previous studies confined to geosynchronous orbit may have
underestimated their scattering effect on the energetic particles.

1. Introduction
Numerical models are important tools to enhance our understanding and ability to predict highly dynamic
and coupled space systems such as Earth’s magnetosphere. During active conditions, the solar wind and
the ionosphere provide rich sources of plasma to the geomagnetic tail [Chappell et al., 1987]. Plasma sheet
particles are transported earthward, energized, and trapped by the magnetic field of the Earth to form
the ring current, whose electron component represents a seed population for the radiation belts [e.g.,
Jordanova, 2012]. The anisotropic ring current ion and electron distributions generate diverse wave modes
(electromagnetic ion cyclotron (EMIC), whistler, and magnetosonic), which may cause further particle accel-
eration and loss through energy and pitch angle scattering [e.g., Summers et al., 1998; Thorne et al., 2006].
An outstanding question is to determine the temporal evolution and spatial extent of these waves during
geomagnetic storms in order to quantify their role in (1) the acceleration of particles forming the hazardous
radiation belts and (2) particle precipitation and loss to the atmosphere. Major computational challenges
are to develop models that couple self-consistently the plasma and the fields across various regions of the
magnetosphere and which include both large-scale and microscale physics.

The majority of the plasma pressure in the Earth’s inner magnetosphere is carried by ring current ions in the
energy range ∼1–200 keV [Daglis et al., 1993]. The westward drifting high-energy ions, and eastward drifting
electrons, generate a ring current which intensifies significantly as the geomagnetic activity increases [Le et
al., 2004]. The spatial and temporal development of the ring current considerably affects the magnetic field
topology in the inner magnetosphere. During the storm main phase when the convection is strong and the
ring current particles penetrate close to Earth, the intensified westward ring current weakens the magnetic
field especially across the nightside. The distorted magnetic field modifies the ion and electron trajectories
in the near-Earth region, leading to adiabatic redistribution and nonadiabatic losses of the energetic parti-
cles [Kim and Chan, 1997]. To differentiate between real (nonadiabatic) loss and changes due to adiabatic
motion, knowledge of the magnetic field over the entire drift orbit of the particle is needed; this can be
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provided by numerical models that specify the magnetic field on a global scale. Previous research
efforts have led to the development of empirical magnetic field models [e.g., Tsyganenko, 1989], global
MHD models [e.g., Powell et al., 1999], or inner magnetosphere models [e.g., Lemon et al., 2004; Zaharia
et al., 2006].

The recent launch of the Van Allen Probes (formerly known as the Radiation Belt Storm Probes, RBSP) mis-
sion [Mauk et al., 2012] provides an excellent opportunity for further validation of models that simulate the
dynamics of the inner magnetosphere. This mission was launched on 30 August 2012 into a near-equatorial,
elliptical orbit around Earth with apogee at ∼6 RE , with a complement of unprecedented high-resolution
instruments to provide the best possible quality measurements in the inner magnetosphere. Its primary
goal is to identify dominant mechanisms for the transport, acceleration, and loss of radiation belt particles
which, as explained above, is intrinsically related to understanding ring current dynamics. This study inves-
tigates the injection and trapping of ring current ions, as well as the distortion of the large-scale magnetic
field, during a moderate storm with Dst ≈−60 nT that occurred on 1 November 2012. Simulation results
from our magnetically self-consistent model [e.g., Jordanova et al., 2010] newly expanded to 9 RE and driven
for the first time by the Weimer [2005] electric field model and a plasma sheet source model from Tsyganenko
and Mukai [2003] are compared with in situ observations from the Van Allen Probes. The generation of EMIC
waves and the possible consequences for energetic particle precipitation and radiation belt dynamics are
also discussed.

2. Data-Model Comparisons

We present first results from our ring current model with self-consistent magnetic field (RAM-SCB), where
its outer boundary is expanded from 6.5 to 9 RE . The RAM-SCB model includes alternating steps between
two modules: (1) the ring current-atmosphere interactions model (RAM), which simulates the spatial and
temporal evolution of ring current H+, O+, and He+ ions and electrons in dynamic electric and magnetic
fields [Jordanova et al., 1998, 2010] and (2) a three-dimensional (3-D) Euler potential-based plasma equilib-
rium code (SCB) [Zaharia et al., 2006], which calculates the magnetic field in force balance with the plasma
pressure from the ring current particles. The expanded model includes all magnetic local times (MLT), inner
boundary at radial distance Ro = 2 RE , energies from ∼1 keV to 400 keV, and pitch angles from 0◦ to 90◦.
As the RAM-SCB outer boundary is moved from 6.5 to 9 RE , in this first study we specify the plasma bound-
ary conditions after the empirical TM03 [Tsyganenko and Mukai, 2003] plasma sheet model based on Geotail
data, and the magnetic field boundary conditions after the Kp-dependent empirical model of Tsyganenko
[1989]. Another development of RAM-SCB is its coupling with the improved electric field model of Weimer
[2005] which has more accurate field values and a better reproduction of nonlinear saturation effects in the
solar wind-magnetosphere coupling.

We investigate the dynamics of the ring current during the moderate storm of 1 November 2012, one of the
first storms observed by the Van Allen Probes. Figure 1 shows the interplanetary observations and geomag-
netic indices during the investigated period, taken from the OMNIWeb 5 min database. An interplanetary
shock is observed at ∼15:30 UT 31 October followed by an increase of solar wind density and solar wind
speed (Figures 1a–1b). The north-south component of the interplanetary magnetic field (IMF) is fluctuat-
ing around Bz = 0 until ∼02:00 UT 1 November when it begins a southward excursion to about −12 nT at
∼10:00 UT, followed by a northward rotation thereafter. These interplanetary conditions triggered a mod-
erate geomagnetic storm with minima Dst ≈ −60 nT at 14:00 UT and 21:00 UT and maximum Kp = 5− at
16:00 UT (not shown). The minimum AL ≈ −1500 nT was reached at ∼15:00 UT, when the polar cap index
based on data from Thule station near the North Pole [Troshichev et al., 1988] reached maximum PCN ≈5.
The cross polar cap potential (CPCP) drop obtained with the W05 [Weimer, 2005] ionospheric electric poten-
tial remained elevated between ∼08:00 UT and 14:00 UT with a peak of ∼85 kV at ∼10:00 UT, while the CPCP
drop from the Kp-dependent V-S model [Volland, 1973; Stern, 1975] had a peak of ∼75 kV at 16:30 UT.

The plasma sheet ion density and temperature calculated with the TM03 empirical model [Tsyganenko and
Mukai, 2003] are plotted in Figures 1c and 1d, respectively. This statistical model is based on particle data
taken by Geotail spacecraft between 1994 and 1998 and concurrent solar wind and IMF data provided by
Wind and IMP 8 spacecraft. The ion density is mostly controlled by the solar wind proton density and there-
fore increases abruptly at ∼16:00 UT on 31 October. The ion temperature is controlled both by the solar
wind speed and the IMF Bz , and it reaches maximum at ∼12:00 UT on 1 November. The similarity between
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Figure 1. Interplanetary and magnetospheric data during 31 October to 2 November 2012. (a) Solar wind proton den-
sity, (b) solar wind speed, (c) TM03 plasma sheet ion density, (d) TM03 plasma sheet ion temperature, and (e) the Bz
(GSM) component of the magnetic field. (f ) The measured Dst (solid line), AL (dashed line), and pressure-corrected
SYM-H (dash-dotted line) indices. (g) The PCN index (solid line), and the W05 (dash-dotted line) and V-S (dotted line)
cross polar cap potential drop. The RAM-SCB simulation is run for the time period indicated with vertical dashed lines in
Figures 1a–1g.

the model results at MLT = 0 (solid line) and MLT = 3 (dotted) indicates that there is no significant azimuthal
asymmetry in the TM03 model. These data are used to set up the boundary conditions of RAM-SCB at 9 RE

during the investigated period indicated with vertical dashed lines in Figure 1.

We start the RAM-SCB simulation at quiet time (09:00 UT 31 October) specifying the ring current H+, O+, and
He+ initial conditions after measurements from the Helium, Oxygen, Proton, and Electron (HOPE) mass spec-
trometer [Funsten et al., 2013] and the Magnetic Electron Ion Spectrometer (MagEIS) [Blake et al., 2013], both
of which are part of the Energetic particle, Composition, and Thermal plasma (ECT) suite [Spence et al., 2013]
on the Van Allen Probes. This NASA mission consists of two Sun-pointing, spin-stabilized spacecraft (RBSP-A
and RBSP-B) with a nominal spin period of ∼11 s equipped with identical instrumentation. During the inves-
tigated period the HOPE instrument measured the charged particles, with composition information, from
∼20 eV to 50 keV, while the MagEIS spectrometer provided total ion measurements over the energy range
∼50 keV to 1 MeV. To set up the initial conditions we use spin-averaged differential fluxes obtained as a
function of radial distance from Earth during the prestorm satellite orbit, assuming azimuthal symmetry (a
reasonable approximation for the high-energy population on closed drift paths) and isotropy in pitch angle.

JORDANOVA ET AL. ©2014. American Geophysical Union. All Rights Reserved. 2689
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Figure 2. Observed differential H+ flux with (a) MagEIS and (b) HOPE instruments on RBSP-B spacecraft, compared with
RAM-SCB simulations driven by (c) W05 and TM03 models, (d) W05 and fixed boundary conditions, and (e) V-S and TM03
models. The horizontal black lines show the energy transition between MagEIS and HOPE. The vertical white bands
indicate when the satellite is outside of the computational domain at perigee. The RBSP-B satellite orbit is plotted on top
of Figure 2a for reference.

To establish prestorm conditions characteristic for the investigated period for the low-energy population on
open drift paths, the simulation is run for ∼8 h of quiet time before the storm commencement at ∼17:00 UT
(the average drift time from the nightside plasma sheet to the dayside magnetopause is ∼6 h). The bound-
ary conditions are updated every 5 min according to the MLT-dependent TM03 plasma sheet model of ion
density and temperature (Figures 1c and 1d), representing the ion distribution function at 9 RE either as
Maxwellian or Kappa distribution. In this study we present results only from simulations using Kappa bound-
ary conditions (with index 𝜅 = 3) since they showed best agreement with observations. The recent study of
Mouikis et al. [2010] is used to correlate the ion composition at the nightside boundary with geomagnetic
and solar activity.

To investigate the role of magnetospheric convection during this storm, we compare results from RAM-SCB
simulations using either the solar wind-dependent W05 or the Kp-dependent V-S convection electric field
model with observations from the Van Allen Probes. The flux at a particular spacecraft location is obtained
by flying the spacecraft inside the 3-D SCB computational domain, mapping the location along the mag-
netic field line down to the equatorial plane, and interpolating the flux from RAM neighboring grids [Yu et
al., 2012]; conservation of the first and second adiabatic invariants is assumed. Comprehensive energy-time
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spectrograms are thus obtained for easy comparison with Van Allen Probes data. Figure 2 shows proton
fluxes for 45◦ pitch angle, representative of the trapped ring current population, measured on 1 November
2012, along RBSP-B orbit with MagEIS (from 50 keV to 350 keV energy) and HOPE (from 1 keV to 50 keV)
instruments, compared with modeled RAM-SCB fluxes in the same energy range (note that MagEIS ion data
are not available from RBSP-A for this time period). Figures 2a and 2b illustrate the high resolution, as well
as excellent agreement within the continuous energy range of the ion fluxes measured with the MagEIS and
HOPE instruments of the comprehensive ECT suite. The vertical white bands in the spectrograms indicate
three successive perigee passes when the satellite is outside the model domain (Ro < 2 RE). The apogee
traversals appear as deep reductions in the proton fluxes at high (E > 200 keV) energies (e.g., at ∼00:00 UT,
∼09:00 UT, and ∼18:00 UT) since the ring current is confined closer to Earth (Ro ≤ 4.5 RE).

The trapped high-energy (E >50 keV) ring current population observed at radial distance Ro< 5 RE with
MagEIS is reproduced well with RAM-SCB simulations driven by either W05 or V-S models. Several dispersed
ion injections (high energies appearing first due to westward drifting higher-energy ions arriving first at the
spacecraft location) are observed with MagEIS (from ∼100 keV) and then HOPE (down to ∼20 keV) when the
satellite is on the dawnside near apogee around 01:00–03:00 UT, 10:00–12:00 UT, and 16:00–18:00 UT. Simi-
lar injections are also seen in RAM-SCB simulation using W05 electric field (although not exactly at the same
time); note that they are not reproduced in the simulation using the smoothly varying Kp-dependent V-S
model (Figure 2e), which indicates that the sudden rises in the W05 field cause these particle injections.

The HOPE observations of the lower-energy (E <50 keV) ring current population demonstrate the process
of ring current buildup during the investigated storm period. The observed proton flux at intermediate
energies from ∼10 to ∼40 keV remains depleted until ∼11:00 UT (with the exception of some transient
enhancements at large Ro at 00:00–01:00 UT) due to the loss of the preexisting trapped population and lack
of fresh injections. The ring current ions in this energy range have the smallest drift velocities due to the
competition of the eastward and sunward electric field drift with the westward gradient and curvature drifts
and are susceptible to various loss processes (mostly charge exchange, but Coulomb collisions and plasma
wave scattering could play a role). The proton flux simulated with RAM-SCB is larger than the observed flux
during this time period due to either an overestimation of the initial conditions in this energy range or an
underestimation of the particle losses in the expanded model (only charge exchange is considered in this
first study).

The energy of the dip in the observed spectra decreases with MLT from ∼12 keV at MLT = 4 at ∼07:00 UT
to ∼6 keV at MLT = 7 at ∼10:00 UT; it indicates the highest energy of the eastward drifting ions. Similar
MLT dependence of the energy dip has been observed previously in dayside storm spectra [e.g., Kistler and
Larson, 2000]. This dip refills at ∼11:00 UT with newly injected ions as the convection strength increases
during the storm main phase and provides easier access for these particles to the dawnside; the dip is not
seen on the next satellite pass when further ion injections occur. In RAM-SCB results the stagnation dip at
MLT = 6 is at ∼9 keV in the simulation using W05 field in agreement with observations but at ∼13 keV in the
one using V-S field. These differences in the energy of the flux minima are due to the different temporal and
spatial resolution of the two electric field models (Figure 1g), providing at a given time access of different
energy populations to the satellite [e.g., Kistler and Larson, 2000]. For example, particle tracings using a V-S
model with different symmetry line offsets show that a 10 keV ion with initial position at Ro =6.5 RE may drift
eastward or westward depending on the electric field offset, thus shifting the east-west transition energy
above/below 10 keV [Jordanova et al., 1998]. The present study uses a standard V-S electric field with no
offset. In addition, the dip does not fully refill in the simulations, indicating that the model electric field is
weaker and cannot inject particles as deep as observed (Ro ≈ 4 RE).

The low-energy (E < 10 keV) proton flux calculated with RAM-SCB intensifies during the storm main phase
from ∼00:00 UT to ∼13:00 UT in agreement with observations. This is caused by the increased convection
strength (as shown by the CPCP drop in Figure 1g) providing better access for this population and by the
enhanced plasma sheet density during the first ∼6 h of this period (Figure 1c). The low-energy proton flux
decreases at later UT because of the simultaneous reduction of the electric field strength and the plasma
sheet density. The simulations using either W05 (Figure 2c) or V-S (Figure 2e) models, however, underesti-
mate the magnitude of the observed low-energy (E < 10 keV) flux after ∼06 UT, the underestimation being
smaller using V-S field. To highlight the importance of the plasma inflow from the magnetotail, we per-
formed test simulations using boundary conditions with fixed ion density (n = 0.5 cm−3) and temperature

JORDANOVA ET AL. ©2014. American Geophysical Union. All Rights Reserved. 2691
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Figure 3. (a) The Bx , By , and Bz magnetic field components (4 s averages) in the SM coordinate system measured with
EMFISIS (black line) on RBSP-B, compared with RAM-SCB simulations (dotted line) using W05 model, and with the Earth
dipolar field (green line). (b) The relative difference between the intensity of the Earth dipolar field and the magnetic
field calculated with RAM-SCB, and (c) the EMIC convective growth rate in the SM equatorial plane at four representative
times during the storm period under investigation.

(T = 6 keV), as shown with dashed lines in Figures 1c and 1d. The low-energy flux in this case (Figure 2d) is
significantly enhanced and in better agreement with HOPE observations, indicating that the statistical TM03
model predicted too low-density and too high temperature plasma sheet population during this storm main
phase. The simulated ring current O+ and He+ populations (not shown) exhibited similar dynamics to the
ring current H+ population and indicated that H+ is the dominant species during this moderate storm in
agreement with observations.

A distinct feature of our magnetically self-consistent ring current model is that it calculates the 3-D mag-
netic field in force balance with the evolving anisotropic plasma pressure of the ring current particles.
RAM-SCB magnetic field calculations are compared in Figure 3 with measurements from the Electric and
Magnetic Field Instrument Suite and Integrated Science (EMFISIS) investigation [Kletzing et al., 2013] aboard
RBSP-B. Figure 3a shows 4 s averages of the DC magnetic field vector components measured with the
high-performance triaxial fluxgate EMFISIS magnetometer in the Solar Magnetic (SM) coordinate system.
As discussed above, the satellite is orbiting on the dawnside with apogee at ∼6 RE and MLT≈ 6 during this
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storm period. The RAM-SCB magnetic field at a given satellite location is obtained by flying the RBSP-B
satellite inside the 3-D computational domain and interpolating magnetic field values from nearby grids.
Simulations using W05 model reproduce reasonably well all three components of the global magnetic field.
The model predicts a significant decrease of the Bz component compared to the Earth dipolar field near
apogee (Ro > 4.5 RE); however, it does not completely capture the absolute magnitude of the measured Bz .
Simulation results using V-S field (not shown) are not significantly different due to the calculated similar
total ion pressure.

The relative difference between the intensity of the Earth dipolar field and the self-consistently calculated
RAM-SCB magnetic field in the SM equatorial plane at selected UT during the investigated period is shown in
Figure 3b. Initially (15:00 UT 31 October), the magnetic field is dipolar inside of ∼5 RE . At larger distances, the
magnetic field is compressed on the dayside and stronger than the dipolar field due to the magnetopause
current, while it is depressed on the nightside and weaker than the dipolar field due to the tail current. As
the storm develops, the decrease of the RAM-SCB field on the nightside due to the ion pressure buildup
reaches ∼4 RE , indicating the need of realistic magnetic field models for accurate prediction of radiation belt
dynamics during even such moderate storms. The depression becomes larger than 60% at Ro ≥ 8 RE .

Figure 3c shows the generation of He+ band EMIC waves as the storm evolves, caused by the anisotropic
proton distributions obtained from RAM-SCB simulations driven with W05 model; for details on the wave
growth calculations [see Jordanova et al., 2010]. The convective growth rate maximizes during the storm
main phase (06:00 UT 1 November) on the duskside at Ro > 6 RE , extending to ∼9 RE . This is in agreement
with a recent statistical study on the global characteristics of EMIC waves from Active Magnetospheric
Particle Tracer Explorers/CCE observations [Keika et al., 2013]. The Van Allen Probes did not observe EMIC
waves during this time as they had a dawnside orbit that did not cross the unstable region. These results
demonstrate the importance of expanding the simulation domain since previous studies limited to regions
inside geosynchronous orbit may have underestimated the effect of EMIC waves on the energetic particle
populations. Simulated ion precipitation patterns have thus shown smaller spatial extent, confined closer to
Earth, compared to Imager for Magnetopause-to-Aurora Global Exploration/FUV observations of proton arc
emissions [e.g., Jordanova et al., 2007].

3. Conclusions

We studied the role of convective transport and inflow of plasma from the magnetotail in the develop-
ment of the ring current during the moderate storm of 1 November 2012, with our RAM-SCB model newly
expanded to 9 RE . An accurate ring current model is needed for a realistic forecast of radiation belt dynamics
since the ring current population (a) represents a source population for the relativistic electrons, (b) con-
trols the morphology of the global near-Earth magnetic field, and (c) generates plasma waves that transfer
energy to the relativistic particles. Comparing simulation results with high-resolution observations from the
particle and field instruments on the Van Allen Probes we found the following:

1. The expanded RAM-SCB model reproduced the initial ring current buildup caused by the simultaneous
increase of the plasma sheet source population and the convective electric field. The dispersed ion injec-
tions observed with MagEIS and HOPE instruments from ∼100 to ∼20 keV were reproduced when the
model was driven with the high-resolution W05 electric field but not with the V-S field. The observed
low-energy (E<10 keV) flux was underestimated by the expanded RAM-SCB during this storm main phase
probably due to an underestimation of the plasma sheet density by the statistical TM03 model.

2. All three components of the large-scale magnetic field measured with EMFISIS magnetometer were
reasonably well reproduced by the expanded RAM-SCB model. In agreement with observations, the cal-
culated Bz component showed significant depression compared to the Earth dipolar field near apogee
(Ro >4.5 RE) during even this moderate storm, although it did not completely capture the magnitude of
the observed depression.

3. The expanded RAM-SCB model revealed a larger region on the duskside (from ∼6 to ∼9 RE) where the
growth rate of He+ band EMIC waves intensified during the storm main phase, suggesting that previous
models having geosynchronous orbit as an outer boundary have underestimated the scattering effect
from these waves on the ring current ions and radiation belt electrons.
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