84,038 research outputs found

    On instantaneous amplitude and phase of signals

    Full text link

    FPGA based Identification of Frequency and Phase Modulated Signals by Time Domain Digital Techniques for ELINT Systems

    Get PDF
    In this paper, a decision tree algorithm based on time-domain digital technique is developed for the identification and classification of diverse radar intra-pulse modulated signals for the electronic intelligence system in real-time. This includes linear frequency modulation, non-linear frequency modulation, stepped frequency modulation and bi-phase modulation. The received signal is digitised and the instantaneous phase and high accuracy instantaneous frequency are estimated. The instantaneous amplitude is also estimated to get the start and stop of the pulse. Instantaneous parameters are estimated using a moving autocorrelation technique. The proposed algorithm is employed on the instantaneous frequency and the modulation is identified. The modulation type and modulation parameter are important for unique radar identification when similar radars are operating in a dense environment. Simulations are carried out at various SNR conditions and results are presented. The model for algorithm is developed using a system generator and implemented in FPGA. These results are compared when the proposed algorithm is used with the existing digital in-phase and quadrature-phase (DIQ) technique of instantaneous frequency and amplitude estimation

    SAR-Based Vibration Estimation Using the Discrete Fractional Fourier Transform

    Get PDF
    A vibration estimation method for synthetic aperture radar (SAR) is presented based on a novel application of the discrete fractional Fourier transform (DFRFT). Small vibrations of ground targets introduce phase modulation in the SAR returned signals. With standard preprocessing of the returned signals, followed by the application of the DFRFT, the time-varying accelerations, frequencies, and displacements associated with vibrating objects can be extracted by successively estimating the quasi-instantaneous chirp rate in the phase-modulated signal in each subaperture. The performance of the proposed method is investigated quantitatively, and the measurable vibration frequencies and displacements are determined. Simulation results show that the proposed method can successfully estimate a two-component vibration at practical signal-to-noise levels. Two airborne experiments were also conducted using the Lynx SAR system in conjunction with vibrating ground test targets. The experiments demonstrated the correct estimation of a 1-Hz vibration with an amplitude of 1.5 cm and a 5-Hz vibration with an amplitude of 1.5 mm

    Extended Method of Digital Modulation Recognition and Its Testing

    Get PDF
    The paper describes a new method for the classification of digital modulations. ASK, 2FSK, 4FSK, MSK, BPSK, QPSK, 8PSK and 16QAM were chosen for recognition as best known digital modulations used in modern communication technologies. The maximum value of the spectral power density of the normalized-centered instantaneous amplitude of the received signal is used to discriminate between frequency modulations (2FSK, 4FSK and MSK) on one hand and amplitude and phase modulations (ASK, BPSK, QPSK, 8PSK and 16QAM) on the other hand. Then the 2FSK, 4FSK and MSK modulations are classified by means of spectrums. The histograms of the instantaneous phase are used to discriminate between ASK, BPSK, QPSK, 8PSK and 16QAM. The method designed was tested with simulated and measured signals corrupted by white Gaussian noise

    Mapping atmospheric waves and unveiling phase coherent structures in a global surface air temperature reanalysis dataset

    Get PDF
    In the analysis of empirical signals, detecting correlations that capture genuine interactions between the elements of a complex system is a challenging task with applications across disciplines. Here, we analyze a global dataset of surface air temperature (SAT) with daily resolution. Hilbert analysis is used to obtain phase, instantaneous frequency, and amplitude information of SAT seasonal cycles in different geographical zones. The analysis of the phase dynamics reveals large regions with coherent seasonality. The analysis of the instantaneous frequencies uncovers clean wave patterns formed by alternating regions of negative and positive correlations. In contrast, the analysis of the amplitude dynamics uncovers wave patterns with additional large-scale structures. These structures are interpreted as due to the fact that the amplitude dynamics is affected by processes that act in long and short time scales, while the dynamics of the instantaneous frequency is mainly governed by fast processes. Therefore, Hilbert analysis allows us to disentangle climatic processes and to track planetary atmospheric waves. Our results are relevant for the analysis of complex oscillatory signals because they offer a general strategy for uncovering interactions that act at different time scales. In our “big data” times, extracting useful information from complex signals is an important challenge with applications across disciplines. Due to the presence of multiple time scales, climatological signals are particularly challenging to analyze. Here, we present a technique based on the Hilbert transform (HT) that, when applied to time series of surface air temperature (SAT) (with daily resolution, covering the last 30 years), unveils clear wave patterns that are interpreted as due to Rossby waves (these are atmospheric waves that propagate across our planet and have a major influence on weather). We also show that the patterns uncovered by analyzing anomaly times series include additional structures which likely appear due to climatic phenomena that have long time scales.Postprint (published version

    Instantaneous frequency and amplitude of complex signals based on quaternion Fourier transform

    Get PDF
    The ideas of instantaneous amplitude and phase are well understood for signals with real-valued samples, based on the analytic signal which is a complex signal with one-sided Fourier transform. We extend these ideas to signals with complex-valued samples, using a quaternion-valued equivalent of the analytic signal obtained from a one-sided quaternion Fourier transform which we refer to as the hypercomplex representation of the complex signal. We present the necessary properties of the quaternion Fourier transform, particularly its symmetries in the frequency domain and formulae for convolution and the quaternion Fourier transform of the Hilbert transform. The hypercomplex representation may be interpreted as an ordered pair of complex signals or as a quaternion signal. We discuss its derivation and properties and show that its quaternion Fourier transform is one-sided. It is shown how to derive from the hypercomplex representation a complex envelope and a phase. A classical result in the case of real signals is that an amplitude modulated signal may be analysed into its envelope and carrier using the analytic signal provided that the modulating signal has frequency content not overlapping with that of the carrier. We show that this idea extends to the complex case, provided that the complex signal modulates an orthonormal complex exponential. Orthonormal complex modulation can be represented mathematically by a polar representation of quaternions previously derived by the authors. As in the classical case, there is a restriction of non-overlapping frequency content between the modulating complex signal and the orthonormal complex exponential. We show that, under these conditions, modulation in the time domain is equivalent to a frequency shift in the quaternion Fourier domain. Examples are presented to demonstrate these concepts

    Estimation of amplitude, phase and unbalance parameters in three phase systems: analytical solutions, efficient implementation and performance analysis

    No full text
    International audienceThis paper focuses on the estimation of the instantaneous amplitude, phase and unbalance parameters in three-phase power systems. Due to the particular structure of three-phase systems, we demonstrate that the Maximum Likelihood Estimates (MLEs) of the unknown parameters have simple closed form expressions and can be easily implemented without matrix algebra libraries. We also derive and analyse the Cram'er-Rao Bounds (CRBs) for the considered estimation problem. The performance of the proposed approach is evaluated using synthetic signals compliant with the IEEE Standard C37.118. Simulation results show that the proposed estimators outperform other techniques and reach the CRB under certain condition
    • …
    corecore