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Abstract: 
A vibration estimation method for synthetic aperture radar (SAR) is presented based on a novel application of 
the discrete fractional Fourier transform (DFRFT). Small vibrations of ground targets introduce phase modulation 
in the SAR returned signals. With standard preprocessing of the returned signals, followed by the application of 
the DFRFT, the time-varying accelerations, frequencies, and displacements associated with vibrating objects can 
be extracted by successively estimating the quasi-instantaneous chirp rate in the phase-modulated signal in each 
subaperture. The performance of the proposed method is investigated quantitatively, and the measurable 
vibration frequencies and displacements are determined. Simulation results show that the proposed method 
can successfully estimate a two-component vibration at practical signal-to-noise levels. Two airborne 
experiments were also conducted using the Lynx SAR system in conjunction with vibrating ground test targets. 
The experiments demonstrated the correct estimation of a 1-Hz vibration with an amplitude of 1.5 cm and a 5-
Hz vibration with an amplitude of 1.5 mm. 
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SECTION I. Introduction 
Vibration signatures associated with objects such as active structures (e.g., bridges and buildings) and vehicles 
can bear vital information about the type and integrity of these objects. The ability to remotely sense minute 
structural vibrations persistently and with high accuracy is extremely important for a number of reasons. First, it 
avoids the cost of acquiring and installing accelerometers on remote structures. Second, it alleviates the high 
cost of maintaining these sensors, and third, it enables sensing vibrations of structures that are not easily 
accessible to engineers and maintenance personnel (e.g., pedestrian and train bridges over canyons, structures 
and vehicles in a hostile land, etc.). While light detection and ranging (LIDAR) technology has been proposed and 
used for remote sensing of vibrations, it has failed to overcome a number of persisting challenges. First, due to 
the short wavelength of the standard illumination in LIDAR, loss and aberration due to laser propagation 
through air and vapor make LIDAR vibration sensing highly dependent on weather conditions. This makes it 
particularly problematic when it is desirable to probe vibrating object at a large distance (tens of kilometers or 
more). Second, LIDAR systems are not typically easily mounted on small moving platforms due to the complexity 
of the system. 

Synthetic aperture radar (SAR) is a well-established technique for high-resolution imaging of the Earth's surface 
through measurement of its electromagnetic reflectivity [1]–[2][3]. The relatively long wavelengths, compared 
with those of optical sensors, make SAR systems capable of remote imaging over thousands of kilometers 



regardless of weather conditions. In addition, small vibrations in the imaged surfaces introduce phase 
modulation in the reflected SAR signals, a phenomenon often referred to as the micro-Doppler effect [4]–
[5][6][7][8][9]. As such, in addition to imaging, SAR can also have the added benefit of enabling us to remotely 
measure surface vibrations by estimating the corresponding micro-Doppler effect. 

In standard SAR imaging, vibrations from strong scatterers result in “ghost targets” around the scatterers in the 
SAR image (in the azimuth direction) that are generally difficult to distinguish from images of static 
scatterers [10]. This ghosting is due to the fact that the returned SAR signals, even after they are preprocessed 
(range compressed and autofocused), still bear the vibration-induced time-varying phase, and the standard 
Fourier-transform-based analysis used in SAR processing is inadequate to resolve such nonstationary signals. 
Indeed, the SAR returned echo from a vibrating scatterer after preprocessing is a nonstationary signal whose 
instantaneous frequency (IF) is linearly proportional to the vibration velocity [11]. To address this limitation of 
standard SAR, joint time–frequency analysis (JTFA) has been proposed to analyze the micro-Doppler effect [4]. 
Different time–frequency transforms have been used, including the short-time Fourier transform [12], Cohen's 
class transform [13], and the adaptive time–frequency transform [14]. More comprehensive reviews on time–
frequency methods are available in the literature; see, for example, [4]. Nonetheless, the JTFA merely provides a 
qualitative illustration of the vibration-induced frequency modulation in the time–frequency representation, and 
it does not provide an estimation of the vibration amplitude and frequency. Additional estimation procedures, 
such as retrieving the IF track from the time–frequency representation, are needed in order to estimate the 
vibration. This step is not trivial when the signal-to-noise ratio (SNR) is low. Moreover, because the existing JTFA 
stops at the analysis stage, the capability and performance of the SAR-based vibration estimation are left 
uninvestigated. 

In this paper, a vibration estimation method using SAR is presented based on a novel application of the discrete 
fractional Fourier transform (DFRFT). The proposed method provides a complete estimation of the vibration 
signature by offering the history of the instantaneous acceleration and the spectrum of the vibrating object. In 
this method, the conventional SAR processing procedure is performed to obtain a nonstationary signal from the 
vibrating target. First, the returned SAR signals are demodulated, and the polar-to-rectangular resampling is 
applied to the SAR phase history to correct the range cell migration. Second, “autofocus” is performed, and 
range compression is applied to the reformatted SAR phase history. Next, the signal from a vibrating target is 
focused on a range line, and it is the aforementioned nonstationary signal. After the preprocessing, the 
nonstationary signal is approximated by a chirp signal in a small time window, called the subaperture. The DFRFT 
is then applied to estimate the vibration acceleration in sliding subapertures. The performance of the proposed 
method is quantified in terms of the measurable frequencies and displacements, and the efficacy of the 
approach is demonstrated by experiments using the Lynx SAR system built by General Atomics Aeronautical 
Systems, Inc. (GA-ASI) [15]. 

The remainder of this paper is organized as follows. In Section II, we provide a theoretical analysis of the 
vibration-induced frequency modulation. In Section III, the DFRFT-based vibration estimation method is 
introduced, follow by performance analysis in Section IV. Simulations and experiments are provided in Sections 
V and VI, respectively. Section VII contains our conclusions. 

SECTION II. Model 
A. Motion Model 
Fig. 1 shows a 3-D SAR flight geometry, with a vibrating target located at the origin. The nominal line-of-sight 
distance from the target to the radar sensor is 𝑟𝑟0, with the radar sensor located at polar angles 𝜓𝜓 and 𝜃𝜃 to the 



target. Let 𝑟𝑟𝑑𝑑(𝑡𝑡) denote the projection of the vibration displacement onto the line of sight from the target to the 
SAR sensor; the range of the vibrating target becomes 

𝑟𝑟(𝑡𝑡) ≈ 𝑟𝑟0 − 𝑟𝑟𝑑𝑑(𝑡𝑡). (1) 

Due to the change of aspect angle of the target during the SAR data-collection process, the range 𝑟𝑟0 changes a 
little. However, modern SAR compensates for the change via proper modeling and post-signal-processing 
technique [1]–[2][3]. The projection 𝑟𝑟𝑑𝑑(𝑡𝑡) is also modulated by the change of aspect angle. For broadside SAR, 
the project can be approximated by 

𝑟𝑟𝑑𝑑(𝑡𝑡) ≈ 𝑟𝑟𝑑𝑑0cos 𝜃𝜃(𝑡𝑡) (2) 

where 𝑟𝑟𝑑𝑑0 represents the projection of the vibration displacement for 𝜃𝜃 = 0. The change of aspect 
angle 𝜃𝜃(𝑡𝑡) due to the SAR geometry is known; therefore, we can estimate 𝑟𝑟𝑑𝑑0(𝑡𝑡) from 𝑟𝑟𝑑𝑑(𝑡𝑡). For spotlight-mode 
SAR, the change of aspect angle is usually small [3]. In this case, we have 𝑟𝑟𝑑𝑑(𝑡𝑡) ≈ 𝑟𝑟𝑑𝑑0(𝑡𝑡). In this paper, we 
consider the case of broadside spotlight-mode SAR for which the aforementioned approximation is valid. 

 
Fig. 1. Three-Dimensional SAR Flight Geometry. the Vibrating Target is Located at the Origin, and the Radar 
Sensor is Located at (𝑟𝑟0,𝜓𝜓,𝜃𝜃). 

B. Signal Model 
The small range perturbation of the vibrating target modulates the collected SAR phase history. Consider a 
spotlight-mode SAR whose sent pulse is a chirp signal, with carrier frequency 𝑓𝑓𝑐𝑐 and chirp rate 𝐾𝐾. Each returned 
SAR pulse is demodulated by the sent pulse delayed appropriately by the round-trip time to the center of the 
illuminated patch. A demodulated pulse can be written as [3, Ch. 1] 

𝑟𝑟(𝑡𝑡) = ∑  𝑖𝑖 𝜎𝜎𝑖𝑖exp [−𝑗𝑗 4𝜋𝜋(𝑟𝑟𝑖𝑖−𝑟𝑟𝑐𝑐)
𝑐𝑐

(𝑓𝑓𝑐𝑐 + 𝐾𝐾(𝑡𝑡 − 2𝑟𝑟𝑐𝑐
𝑐𝑐

))] (3) 

where 𝜎𝜎𝑖𝑖 is the reflectivity of the 𝑖𝑖th scatterer, 𝑐𝑐 is the propagation speed of the pulse, and 𝑟𝑟𝑐𝑐 is the distance 
from the patch center to the antenna. The polar-to-rectangular resampling is then applied to the SAR phase 
history [3, Sec. 3.5] to correct for range cell migration. The autofocus is also performed at this stage. For small 
vibrations, the vibration-induced phase modulation in range direction is very small [4], [5], [16]; therefore, it is 
ignored. Range compression is applied to the phase history to separate the scatterers in range. Fig. 2 shows the 
magnitude of the range-compressed SAR phase history containing one static point target and one vibrating point 
target. Assuming that all scatterers at a specific range are static, the range-compressed phase history at this 
specific range can be written as 

𝑥𝑥[𝑛𝑛] = ∑  𝑖𝑖 𝜎𝜎𝑖𝑖[𝑛𝑛]exp [𝑗𝑗(𝑓𝑓𝑦𝑦𝑦𝑦𝑖𝑖𝑛𝑛 −
4𝜋𝜋𝑓𝑓𝑐𝑐
𝑐𝑐
𝑟𝑟𝑖𝑖 + 𝜙𝜙𝑖𝑖)] + 𝑤𝑤[𝑛𝑛] (4) 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/36/6310104/6185663/6185663-fig-1-source-large.gif
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for 0 ≤ 𝑛𝑛 < 𝑁𝑁𝐼𝐼, where 𝑛𝑛 is the index of the collected returned pulses, 𝑁𝑁𝐼𝐼 represents the total number of 
collected returned pulses, 𝑦𝑦𝑖𝑖  is the cross-range position of the 𝑖𝑖th target, and 𝜙𝜙𝑖𝑖 represents all additional 
(constant) phase terms. The imaging factor 𝑓𝑓𝑦𝑦 is known and used to estimate the cross-range of the target. For 
spotlight-mode SAR, 𝑓𝑓𝑦𝑦  can be written as [2], [3] 

𝑓𝑓𝑦𝑦 = 4𝜋𝜋𝑓𝑓𝑐𝑐
𝑐𝑐

𝑉𝑉
𝑅𝑅0𝑓𝑓prf

 (5) 

where 𝑉𝑉 is the nominal speed of the SAR antenna, 𝑅𝑅0 is the distance from the patch center to the midaperture, 
and 𝑓𝑓prf is the pulse-repetition frequency (PRF). The SAR integration time is given by 𝑇𝑇𝐼𝐼 = 𝑓𝑓prf𝑁𝑁𝐼𝐼, and 𝑤𝑤[𝑛𝑛] is 
additive noise. 

 
Fig. 2. Magnitude of the Range-Compressed SAR Phase History Containing one Static point Target and one 
Vibrating Point Target. the Two Point Targets are Separated in Range after Range Compression. 

The signal 𝑥𝑥[𝑛𝑛] in (4) is a stationary signal if all scatterers are static. The azimuth compression, accomplished by 
applying the discrete Fourier transform (DFT) to 𝑥𝑥[𝑛𝑛], will focus the static scatterers on the correct cross-range 
positions. However, when a vibrating scatterer is present, 𝑥𝑥[𝑛𝑛] has a nonstationary component because 𝑟𝑟𝑖𝑖 is 
now a function of n for the vibrating scatterer. The cross-range 𝑦𝑦𝑖𝑖  is also changing for the vibrating scatterer. 
However, because 𝑅𝑅0 is very large (tens of kilometers), 𝑓𝑓𝑦𝑦 is usually much smaller than 4𝜋𝜋𝑓𝑓𝑐𝑐/𝑐𝑐; therefore, the 
phase modulation induced by time-varying 𝑦𝑦𝑖𝑖  is ignored [4], [5]. As such, we use 𝑦𝑦𝑖𝑖  to denote the average cross-
range position of the vibrating scatterer. For the same reason, a small change in 𝑟𝑟𝑖𝑖 causes a relatively large 
fluctuation to the Doppler frequency 𝑓𝑓𝑦𝑦𝑦𝑦𝑖𝑖. We would like to emphasize that azimuth compression cannot focus 
the vibrating scatterer on the correct cross-range position because the DFT spectrum of the nonstationary 
component usually has significant sidelobes [10]. Fig. 3 shows the reconstructed SAR image by applying azimuth 
compression to the phase history as shown in Fig. 2. The sidelobes near the vibration target are commonly 
referred to as the ghost targets [10]. The vibration-induced phase modulation is referred to as the micro-
Doppler effect [4]. Analysis tools other than the DFT are required to estimate vibrations and nonstationary 
targets in general. 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/36/6310104/6185663/6185663-fig-2-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/36/6310104/6185663/6185663-fig-2-source-large.gif
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Fig. 3. Reconstructed SAR Image Using the SAR Phase History in Fig. 2. Target Vibration Introduces Ghost Targets 
Along the Azimuth Direction. 

We define the signal of interest (SoI) as the range line in the range-compressed phase history containing 
vibrating targets. An example is shown in Fig. 2. In this paper, we consider cases for which the vibrating scatterer 
is well separated from other scatterers in range (e.g., this may be possible by choosing a proper data-collection 
orientation). In this case, the SoI can be written as 

𝑥𝑥[𝑛𝑛] = 𝜎𝜎[𝑛𝑛] exp �𝑗𝑗 �𝑓𝑓𝑦𝑦𝑦𝑦𝑛𝑛 −
4𝜋𝜋𝑓𝑓𝑐𝑐
𝑐𝑐
𝑟𝑟𝑑𝑑[𝑛𝑛] + 𝜙𝜙�� + 𝑤𝑤[𝑛𝑛] (6) 

for 0 ≤ 𝑛𝑛 < 𝑁𝑁. In the next section, the DFRFT-based method is described and used to estimate the 
vibration 𝑟𝑟𝑑𝑑[𝑛𝑛] from 𝑥𝑥[𝑛𝑛]. 

SECTION III. Algorithm Development 
For its key role in our estimation process, we will first review germane aspects of the DFRFT drawing freely from 
the literature [17], [18]. The vibration estimation method is then developed. 

A. Review of the DFRFT 
The continuous-time fractional Fourier transform, first introduced by Namias in 1980 [19], is a powerful time–
frequency analysis tool for nonstationary signals and has been found to have several applications in optics and 
signal processing [20]. Santhanam and McClellan [21] were the first to introduce a formulation of the DFRFT. 
Other formulations of the DFRFT are described in the excellent review paper by Pei and Ding [22]. The DFRFT 
formation used in this paper is specifically referred to as the multiangle centered DFRFT (MA-CDFRFT) in the 
literature [17]. More details can be found in [17] and [18]. Without ambiguity, we refer to the MA-CDFRFT as the 
DFRFT throughout the remainder of this paper. 

Let 𝐖𝐖 denote the transformation matrix of the centered DFT. The fractional power of 𝐖𝐖 is defined as 𝐖𝐖𝛼𝛼 =
𝐕𝐕𝐺𝐺𝚲𝚲2𝛼𝛼/𝜋𝜋𝐕𝐕𝐺𝐺T, where 𝐕𝐕𝐺𝐺  is the matrix of Grünbaum eigenvectors of 𝐖𝐖 and 𝚲𝚲2𝛼𝛼/𝜋𝜋 is a diagonal matrix with the 
fractional powers of the eigenvalues of 𝐖𝐖. Assume that 𝑥𝑥[𝑛𝑛] is a sequence of 𝑁𝑁 samples. The DFRFT of 𝑥𝑥[𝑛𝑛] is 

the DFT of an intermediate signal 𝑥𝑥
^
𝑘𝑘[𝑝𝑝] for each index 𝑘𝑘, i.e., 

𝑋𝑋𝑘𝑘[𝑟𝑟] = � 𝑥𝑥
^
𝑘𝑘[𝑝𝑝]exp �−𝑗𝑗 2𝜋𝜋

𝑁𝑁
𝑝𝑝𝑝𝑝�

𝑁𝑁−1

𝑝𝑝=0
 (7) 

where 𝑟𝑟 = 0,1, … ,𝑁𝑁 − 1 is the angular index and the corresponding 𝛼𝛼 is equal to 2𝜋𝜋𝜋𝜋/𝑁𝑁. The intermediate 

signal 𝑥𝑥
^
𝑘𝑘[𝑝𝑝] is calculated by 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/36/6310104/6185663/6185663-fig-3-source-large.gif
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𝑥𝑥
^
𝑘𝑘[𝑝𝑝] = 𝑣𝑣𝑝𝑝

(𝑘𝑘) � 𝑥𝑥[𝑛𝑛]𝑣𝑣𝑝𝑝
(𝑛𝑛)

𝑁𝑁−1

𝑛𝑛=0
  (8) 

where 𝑣𝑣𝑝𝑝
(𝑘𝑘)is the kth element of 𝑣𝑣𝑝𝑝 and 𝑣𝑣𝑝𝑝 is the 𝑝𝑝th column vector of 𝐕𝐕𝐺𝐺 . 

It has been shown [17], [18], [23] that the DFRFT has the ability to concentrate a linear chirp into a few 
coefficients and that we obtain an impulselike transform analogous to what the DFT produces for a sinusoid. Fig. 
4 shows the DFRFT of a complex signal containing two components: a pure 150-Hz sinusoid and a chirp signal 
with a center frequency of 200 Hz and a chirp rate of 400 Hz/s. The frequency axis is the same as the one of the 
DFT. The DFRFT introduces a new angular parameter α to describe the linear time–frequency relation of the 
signal. For 𝛼𝛼 = 𝜋𝜋/2, the result of the DFRFT is the same as that of the DFT. The two peaks that corresponded to 
the sinusoid and the chirp are well separated, which indicates that the two components have different center 
frequencies and chirp rates. Fig. 5 shows the 2-D view of the angle–frequency spectrum generated by the DFRFT. 

 
Fig. 4. Three-Dimensional Angle–Frequency Spectrum of the Signal Using the Dfrft. the Chirp Component and the 
Sinusoidal Component are Corresponding to Different Peaks in the Spectrum. No Cross-Term is Introduced Due 
to Linearity of the Dfrft. 

 
Fig. 5. Vertical View of the Angle–Frequency Spectrum Shown in Fig. 4. Black and White Correspond to the 
Highest and Lowest Amplitudes, Respectively. 

B. Vibration Estimation Method 
The SoI described in Section II-B is an example of nonstationary signals. They can be analyzed by means of using 
sliding short-time windows. In a short-time window starting at 𝑚𝑚, a second-order approximation can be applied 
to the vibration displacement 𝑟𝑟𝑑𝑑, and the SoI in (6) becomes 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/36/6310104/6185663/6185663-fig-4-source-large.gif
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𝑥𝑥[𝑛𝑛] ≈ 𝜎𝜎exp [𝑗𝑗(𝜙𝜙 − 4𝜋𝜋𝑓𝑓𝑐𝑐
𝑐𝑐
𝑟𝑟𝑑𝑑[𝑚𝑚] + �𝑓𝑓𝑦𝑦𝑦𝑦 −

4𝜋𝜋𝑓𝑓𝑐𝑐𝑣𝑣𝑑𝑑[𝑚𝑚]
𝑐𝑐𝑓𝑓prf

� 𝑛𝑛

− 2𝜋𝜋𝑓𝑓𝑐𝑐𝑎𝑎𝑑𝑑[𝑚𝑚]
𝑐𝑐𝑓𝑓prf

2 𝑛𝑛2)] + 𝑤𝑤[𝑛𝑛],𝑚𝑚 ≤ 𝑛𝑛 < 𝑚𝑚 + 𝑁𝑁𝑤𝑤
 (9) 

where 𝑁𝑁𝑤𝑤 is the size of the window. We assume that the reflectivity of the target 𝜎𝜎 does not change within the 
time window. The length of the time window is 𝑇𝑇𝑤𝑤 = 𝑓𝑓prf𝑁𝑁𝑤𝑤. When 𝑇𝑇𝑤𝑤 is much less than the duration of the 
vibration, the second-order approximation in (9) is fairly accurate. According to (9), 𝑥𝑥[𝑛𝑛] in a short-time window 
is approximately a chirp signal, and its chirp rate is linearly proportional to the instantaneous vibration 
acceleration 𝑎𝑎𝑑𝑑[𝑚𝑚]. By estimating the chirp rates of 𝑥𝑥[𝑛𝑛] in successive sliding short-time windows, the vibration-
acceleration history is estimated. The DFRFT is used to estimate the chirp rates, and the details are shown as 
follows. 

1. Incorporating the CZT 
Because the vibration-induced chirp rates are usually very small, a resolution enhancement algorithm, called the 
the chirp z-transform (CZT) algorithm, is incorporated into the DFRFT. With the CZT, a more finely spaced 
interpolation of the spectrum of interest can be obtained than that offered by the DFT [12], [24]. As shown 

in Section III-A, the final step of the DFRFT can be interpreted as the DFT of 𝑥𝑥
^
𝑘𝑘[𝑝𝑝] in (8) for each frequency 

index 𝑘𝑘 in (7). Therefore, we can implement the CZT algorithm in the final step of the DFRFT in order to obtain 
more exact peak locations with respect to angle 𝛼𝛼 [25]. Fig. 6 shows the CZT-incorporated DFRFT of the signal 
with a zoom-in factor of two. The resolution of the peak position with respect to the angle α is improved. 

 
Fig. 6. CZT-Incorporated DFRFT of the Signal with a Zoom-in Factor of two. by Incorporating the CZT, the 
Resolution of the Peak Position with Respect to Angle α is Improved. 

2. Estimating Chirp Rates 
There is a one-to-one mapping from the angular position of the peak in the DFRFT plane to the chirp rate of the 
signal [17]. This mapping is dependent on the size of the DFRFT and the zoom-in factor of the CZT. Currently, 
there is no analytic form to describe the mapping. Fig. 7 shows a mapping from the peak location to the chirp 
rate where the DFRFT size is 160 and the zoom-in factor is 10. The mapping is generated by first using the DFRFT 
to estimate signals with different chirp rates and then interpolating the estimation results with 
the spline function. In practice, the mapping is generated with a parameter set that works best for the particular 
application and is stored for later use in estimating chirp rates. Once the chirp rate is estimated by the DFRFT, 
the estimated vibration acceleration is calculated via 

https://ieeexplore.ieee.org/abstract/document/#deqn9
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𝑎𝑎
^
𝑑𝑑[𝑚𝑚] = −

𝑐𝑐𝑓𝑓prf
2

2𝜋𝜋𝑓𝑓𝑐𝑐
𝑐𝑐
^
𝑟𝑟[𝑚𝑚] (10) 

where 𝑐𝑐
^
𝑟𝑟[𝑚𝑚] is the estimated chirp rate. By estimating the acceleration in sliding short-time windows, the 

history of the vibration acceleration is estimated. The estimated vibration spectrum can be obtained by applying 
the DFT to the estimated-vibration-acceleration history. The DFRFT-based vibration estimation method is 
summarized in Algorithm 1. Usually, the DFRFT-based method is applied to the SoI with several different window 
sizes to achieve the best performance. 

Algorithm 1 Procedure for the proposed vibration-estimation method 

1. demodulate and reformat the SAR phase history, perform autofocus; 
2. apply range compression to the SAR phase history, identify the SoI; 
3. choose a proper window size 𝑁𝑁𝑤𝑤 
4. for all 𝑚𝑚 = 0 to 𝑚𝑚 = 𝑁𝑁 −𝑁𝑁𝑤𝑤 + 1 do 

5. apply the DFRFT to the SoI in each time window and estimate the chirp rate 𝑐𝑐
^
𝑟𝑟[𝑚𝑚]; 

6. end for 

7. calculate the estimated instantaneous vibration acceleration via 𝑎𝑎
^
𝑑𝑑[𝑚𝑚] = −(𝑐𝑐𝑓𝑓prf2 /2𝜋𝜋𝑓𝑓𝑐𝑐)𝑐𝑐

^
𝑟𝑟[𝑚𝑚]; 

8. reconstruct the history of the vibration acceleration and calculate its DFT 
9. spectrum; 
10. repeat steps 2–8 for different window sizes. 

 
Fig. 7. One-to-One Mapping from the Peak Location in the Angle–Frequency Spectrum to the Chirp Rate Using 
the Dfrft. the Dfrft Size is 160, and the Zoom-in Factor is 10. 

SECTION IV. Performance Analysis 
In real-world applications, the performance of the proposed method is affected by the presence of noise. In the 
extreme case, when the SoI is highly corrupted by noise, the estimated vibration acceleration would not be 
reliable. Thus, we are interested in knowing the SNR threshold above which the estimation error is acceptable. 
To this end, we have used Monte Carlo simulations to evaluate the performance of the proposed method in 
estimating the chirp rate under different SNR levels. The SoI in the presence of noise in a given time window 
starting at 𝑚𝑚 can be written as 

𝑠𝑠[𝑛𝑛] = 𝜎𝜎exp [𝑗𝑗(𝜙𝜙 + 𝜔𝜔𝑐𝑐𝑛𝑛 + 𝑐𝑐𝑟𝑟𝑛𝑛2)] + 𝑤𝑤[𝑛𝑛] (11) 
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for 𝑚𝑚 ≤ 𝑛𝑛 < 𝑚𝑚 +𝑁𝑁𝑤𝑤. The noise term 𝑤𝑤[𝑛𝑛] is modeled as a zero-mean complex-valued white Gaussian noise. 
The SNR is define as 

𝑆𝑆𝑆𝑆𝑆𝑆 = 10log 𝜎𝜎
𝜎𝜎𝑤𝑤

 (12) 

where σ2w is the variance of the additive noise. Because the DFRFT is evaluated on discrete angular values, the 
step size in angle α is limited to 

𝜌𝜌 = 2𝜋𝜋
𝜂𝜂𝑁𝑁𝐷𝐷

 (13) 

where 𝑁𝑁𝐷𝐷 is the size of the DFRFT and 𝜂𝜂 is the zoom-in factor. This also yields a finite resolution for chirp rate 
estimates. 

A. SNR Requirements 
We have evaluated the performance of the estimator shown in Fig. 7. The estimator is used to estimate chirp 
rates within the range from −0.002 to 0.002 rad/samples2. This estimator roughly yields a resolution 
of 7.85 × 10−5rad/samples2 in estimating the chirp rate. The normalized root mean square errors (NRMSEs) for 
five chirp rates are plotted in Fig. 8. The five chirp rates are 0.00011, 0.00021, 0.00031, 0.00041, and 0.00051. 
When the SNR increases to 20 dB, the NRMSEs of most of the chirp rates (except for 𝑐𝑐𝑟𝑟 = 0.00011) drop to an 
acceptable level (roughly 0.05). However, the errors plateau as the SNR increases. The residual errors are mainly 
from the quantization error due to the limited resolution. When the estimated chirp rate is on the same order of 
the resolution limit, a small estimation error causes large NRMSE. This is seen by observing the NRMSE of the 
chirp rate of 0.00011. When the SNR is 30 dB, the NRMSE in estimating the chirp rate of 0.00011 is still about 
10%. 

 
Fig. 8. Normalized Mean-Squared Error in Estimating Five Different Chirp Rates Using the Dfrft-Based Estimator 
Shown in Fig. 7. 

Note that it is important to choose a proper setting for the estimator in terms of the DRFT size 𝑁𝑁𝐷𝐷 and the 
zoom-in factor 𝜂𝜂. The size of the DFRFT 𝑁𝑁𝐷𝐷 is usually determined by other factors that will be explained later in 
this section, and it can be larger than 𝑁𝑁𝑤𝑤 in some cases. By using a large zoom-in factor, the resolution of the 
estimator is enhanced, and the residual error is reduced. Based on the prior information of the SAR system in 
use, a DFRFT size and a relatively small zoom-in factor are chosen to build the first estimator. If the estimator 
does not fit with the chirp rates induced by the vibration, then the zoom-in factor is increased accordingly. We 
avoid using a very high resolution estimator (by choosing a large zoom-in factor) in the very beginning due to the 
following two reasons. First, if the estimator becomes too sensitive, then high-frequency noise will be 
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introduced to the estimated vibration frequency. Second, the vibration-induced chirp rates may be beyond the 
range of the estimator. 

In the remainder of this section, we assume that we work under acceptable SNRs and discuss other aspects of 
the performance of the proposed method. 

B. Resolution and Range of Estimated Vibration Frequencies 
Let us assume that the SNR requirement of the SoI is met in 𝑁𝑁 samples. We have 𝑁𝑁 ≤ 𝑁𝑁𝐼𝐼, where 𝑁𝑁𝐼𝐼 is the total 
number of the returned pulses in the SAR phase history. We define the effective observation time as 𝑇𝑇 = 𝑓𝑓prf𝑁𝑁. 
The vibration is estimated over the effective observation time. Therefore, the resolution with respect to 
vibration frequency is given by 1/(𝑓𝑓prf𝑁𝑁) that is lower bounded by 1/(𝑓𝑓prf𝑁𝑁). 

Next, the maximum measurable vibration frequency (MMVF) is defined to be the maximum frequency that a 
SAR system can estimate without any aliasing. Theoretically, the Nyquist–Shannon sampling theorem dictates 
that the MMVF is upper bounded by 𝑓𝑓prf/2. However, such an upper bound cannot be reached using the 
proposed method. The length of the time window should be much less than the period of the vibration in order 
to reduce the error introduced by the second-order approximation. On the other hand, a certain number of 
samples in the time window are required to estimate the chirp rate robustly. Although it is expensive or 
sometimes impractical to increase the PRF, the SoI can be up sampled in order to estimate high vibration 
frequencies. As a remedy, we can up sample the SoI prior to applying the DFRFT to it. With up-sampling the SoI, 
the DFRFT size 𝑁𝑁𝐷𝐷 is enlarged larger than the window size 𝑁𝑁𝑤𝑤. According to our experience, the length of the 
time window has to be at least half the period of the vibration, and 𝑁𝑁𝑤𝑤 is at least 20. This yields a practical 
MMVF that is approximately equal to 𝑓𝑓prf/40. 

C. MMVA and MMVD 
The minimum measurable vibration acceleration (MMVA) can be calculated from the specified parameters. 
When the chirp rate is small, the chirp rate can be obtained via [18] 

𝑐𝑐𝑟𝑟 = 𝜋𝜋
𝑁𝑁𝐷𝐷
�𝛼𝛼𝑝𝑝 − 𝜋𝜋/2� (14) 

where αp is the angular position of the peak in the DFRFT spectrum. The minimum angular difference in α that 
can be differentiated by the DFRFT is 2𝜋𝜋/(𝜂𝜂𝑁𝑁𝐷𝐷). Therefore, the MMVA is given by 

𝑎𝑎𝑑𝑑
(𝑚𝑚𝑚𝑚𝑚𝑚) =

𝜋𝜋𝜋𝜋𝑓𝑓prf
2

𝜂𝜂𝑁𝑁𝐷𝐷
2𝑓𝑓𝑐𝑐

. (15) 

In the special case when the vibration is a single-component harmonic oscillation, the minimum measurable 
vibration displacement (MMVD) can be derived in a straightforward fashion. In this case, we know that 𝑎𝑎𝑑𝑑 =
−4𝜋𝜋2𝑓𝑓𝑣𝑣2𝑟𝑟𝑑𝑑, where 𝑟𝑟𝑑𝑑 is the vibration displacement. The vibration frequency can be estimated from the 

calculated DFT spectrum of the estimated vibration acceleration, and it is denoted by 𝑓𝑓
^
𝑣𝑣. Therefore, the MMVD 

in this case is given by 

𝑟𝑟𝑑𝑑
(𝑚𝑚𝑚𝑚𝑚𝑚) =

𝑐𝑐𝑓𝑓prf
2

2𝜋𝜋𝜋𝜋𝑁𝑁𝐷𝐷
2𝑓𝑓

^
𝑣𝑣
2𝑓𝑓𝑐𝑐

. (16) 

Finally, the performance limits of the proposed method are summarized in Table I. 

TABLE I Performance Limits of the Dfrft-Based Sar Vibration Estimation Method 

Parameter  



Required SNR Roughly 20 dB 
Frequency resolution 1

𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑁𝑁
; Lower-bounded by 1

𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑁𝑁𝐼𝐼
 

MMVF Theoretically 𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝/2; practically 𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝/40 
MMVA 𝜋𝜋𝜋𝜋𝑓𝑓prf2

𝜂𝜂𝑁𝑁𝐷𝐷2𝑓𝑓𝑐𝑐
 

 

 

TABLE II Sar System Parameters Used in the Simulation 

Parameter Quantity 
Pixel dimension 0.25 × 0.25 m2 
Patch size 200 × 200 
Patch center location (0, 9920,−2113) m 
Nominal resolution 0.3 × 0.3 m2 
Carrier frequency 𝑓𝑓𝑐𝑐 = 15 GHz 
Sent pulse bandwidth 𝑓𝑓0 = 503 MHz 
Pulse duration 𝑡𝑡𝑐𝑐 = 50 × 10−3 𝑠𝑠 
Length of the synthetic aperture 𝐿𝐿 = 333 m 
Plane velocity 𝑉𝑉𝑎𝑎 = 78 m/s 
Sampling frequency 3.216 MHz 
Pulse repetition frequency 377Hz 
SNR 20 dB 
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Fig. 9. Reconstructed Image from Simulated SAR Data. the Vibrating Scatterer is at the Center of the Image. note 
that Vibrations Introduce Many Ghost Targets in the Azimuth Direction near the Vibrating Scatterer. One Static 
Scatterer is Above the Vibrating Scatterer, and the Other is Below the Vibrating Scatterer. 

SECTION V. Simulation-Based Case Study 
A simulated example is provided to demonstrate the capability of the proposed method in estimating a 
multicomponent harmonic vibration under realistic SNRs (e.g., 20 dB). The simulated SAR is a spotlight-mode 
SAR working in the 𝐾𝐾𝑢𝑢-band. Table II lists all the key system parameters associated with the simulation. Fig. 
9 shows the reconstructed SAR image generated by using the algorithm described in [3]. There are three 
scatterers in the images: The one in the middle is the vibrating scatterer, and the rest are static scatterers. The 
vibration has two components: a 1.0-Hz oscillation with an amplitude of 1 cm and a 3.0-Hz oscillation with an 
amplitude of 2 mm. Several vibration-induced ghost targets appear around the vibration scatterer. The SoI is 
identified as the range line in the range-compressed phase history where the range is corresponding to that of 
the vibrating target. The real part of the SoI is plotted in Fig. 10. When the proposed method was applied to the 
simulated data, the method produced the best result when the window size 𝑁𝑁𝑤𝑤 was set to 20 with an up-
sampling factor of four. The CZT was incorporated in the DFRFT, and a zoom-in factor of eight was used. Fig. 
11 shows the DFRFT of the SoI in four different time windows. Note that the positions of the peaks are slightly 
different from window to window, which confirms a time-varying vibration acceleration. The estimated vibration 
acceleration in the sliding time windows and its spectrum are shown in Figs. 12 and 13, respectively. The 
proposed method successfully estimated the two vibrating components with a frequency resolution of roughly 
0.3 Hz. 
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Fig. 10. Real Part of the SoI from Simulated Data. the SoI is a Nonstationary Signal, and its if is Modulated by the 
Vibration. 

 
Fig. 11. DFRFT Spectra of the SoI, from Simulated Data, in Four Different Time Windows. the Peak Locations are 
Measured and Used to Estimate the Vibration Accelerations. 

 
Fig. 12. Estimated Acceleration History of the Vibration from Simulated Data and by Using the DFRFT-Based 
Method. 
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Fig. 13. Estimated Spectrum of the Vibration Using the Dfrft-Based Method Using Simulated Data. the Proposed 
Method Successfully Estimates Two Vibration Components: 1.0 and 3.0 Hz. 

A. Comparison to a JTFA Method 
As described in Section I, the JTFA methods use time–frequency distributions to provide an analysis of the micro-
Doppler effect. For its well-accepted performance [4], we use the smoothed pseudo Wigner–Ville distribution 
(SPWVD) as a representative JTFA method in the simulated example described before. To this end, we 
implemented the SPWVD by utilizing the widely used time–frequency toolbox [26]. The SPWVD of the SoI is 
shown in Fig. 14. The time–frequency representation in Fig. 14 roughly reveals 1- and 3-Hz vibration 
components. However, this is only a qualitatively deduced observation. To obtain precise estimates of the 
instantaneous acceleration from the time–frequency representation, further estimation procedures are 
required. On the other hand, the proposed method provides direct quantitative estimates of the history of the 
vibration acceleration and the vibration frequency, and no further procedure is required. 

 
Fig. 14. Time–Frequency Representation of the SoI Using the SPWVD Approach. 
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Fig. 15. Experiment I: Vibrating Target on the Test Ground near Julian, CA. the Target is an Aluminum Triangular 
Trihedral with a Lateral Length of 21 in. the Vibration Frequency and Amplitude were 1.0 Hz and 1.5 cm, 
Respectively. 

SECTION VI. Experimental Case Studies 
Through an ongoing collaboration with GA-ASI, we conducted two experiments with the Lynx airborne 𝐾𝐾𝑢𝑢-band 
SAR system. The system parameters of the Lynx match those used in our simulations in Section V. Using flight 
test data from the Lynx system, the proposed method successfully estimated two vibrations from two different 
targets: a 1.5-cm 1.0-Hz vibration and a 1.5-mm 5.0-Hz vibration. The details of these case studies are provided 
next. 

A. Experiment I 
In the first experiment, the vibrating target was an aluminum triangular trihedral with a lateral length of 21 in, as 
shown in Fig. 15. The motion of the target was a single-frequency harmonic motion, driven by a dc motor 
attached to a crank and a piston. The vibration amplitude was 1.5 cm, and the frequency was 1.0 Hz. The target 
was positioned such that the harmonic motion is in the range direction. Fig. 16 shows the reconstructed SAR 
image that contains the vibrating target. The nominal resolution of the reconstructed SAR image is 0.3 m in each 
direction. The vibrating target is located at the bottom right portion of the image, and it appears as a horizontal 
line of the target echo and ghost targets. The vibration causes the ghost targets along the azimuth direction in 
the reconstructed image of the target. Note that there are also several well-separated static targets extending 
from the center of the image to the top right corner which are not subject to our analysis. In this experiment, 
the carrier frequency was 15 GHz, and the PRF was 306 Hz. Due to seemingly limited SNR (the exact value is 
unknown), we selected the total observation time 𝑇𝑇 of this target to be 2.6 s centered at the time closest to 
target broadside. The length of each time window was 0.26 s. Fig. 17 shows the DFRFT spectra of the SoI in four 
different time windows. The proposed method is applied to the SoI, and the estimated-vibration-acceleration 
history and the corresponding vibration spectrum are shown in Figs. 18 and 19, respectively. The estimated 
vibration frequency is 0.9 Hz, which is very close to the actual vibration frequency of 1.0 Hz. 
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Fig. 16. Experiment I: Reconstructed SAR Image Provided by the GA-ASI Lynx System. The Vibrating Test Target is 
in the Lower Right Portion of This Image. There are a Few Static Targets Extending from the Center of the Image 
to the Top Right Corner Which are not Subject to Our Analysis. 

View All 

 
Fig. 17. Experiment I: The DFRFT Spectra of the SoI in Four Different Time Windows. 

 
Fig. 18. Experiment I: Estimated-Vibration-Acceleration History Over 2.6 s Using the Proposed Method. 
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Fig. 19. Experiment I: Estimated Vibration Spectrum Using the Proposed Method. the Estimated Vibration 
Frequency is 0.9 Hz; the Actual Value of the Vibration Frequency was 1 Hz. 

 
Fig. 20. Experiment II: Vibrating Target on the Test Ground Near Julian, CA. the Target is an Aluminum Triangular 
Trihedral with a Lateral Length of 15 in. the Actual Vibration Frequency and Amplitude were 5.0 Hz and 1.5 mm, 
Respectively. 

B. Experiment II 
In the second experiment, the vibrating target was an aluminum triangular trihedral with a lateral length of 15 
in, as shown in Fig. 20. Compared to the first experiment, the size of the trihedral is reduced by 40%. 
Accordingly, the SNR was reduced substantially. In contrast to the first target that had a pure harmonic 
oscillation, the vibrations in the second were induced by the rotation of an unbalanced mass that was driven by 
a motor. The vibration's actual amplitude and frequency were 1.5 mm and 5 Hz, respectively. Fig. 21 shows the 
SAR image that contains the vibrating target. The nominal resolution of the reconstructed SAR image is 0.3 m in 
each direction. The vibrating target is at the bottom right portion of the image. The region near the vibrating 
target is magnified and displayed in the inset below the SAR image. Several ghost targets appear along the 
azimuth direction. In this experiment, the carrier frequency was 15 GHz, and the PRF was 270 Hz. Due to limited 
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SNR, we selected the total observation time of this target to be 1 s, centered at the time closest to target 
broadside. The length of each time window was chosen to be 0.1 s. 

 
Fig. 21. Experiment II: the Reconstructed SAR Image Provided by the GA-ASI Lynx System. the Vibrating Target is 
in the Lower Right Portion of This Image. 

Fig. 22 shows the DFRFT spectra of the SoI in four different time windows. The proposed method was applied to 
the SoI, and the estimated-vibration-acceleration history and the corresponding vibration spectrum are shown 
in Figs. 23 and 24, respectively. The estimated vibration frequency is 5.2 Hz, which is close to the actual vibration 
frequency of 5.0 Hz. 

 
Fig. 22. Experiment II: Dfrft Spectra of the SoI in Four Different Time Windows. 
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Fig. 23. Experiment II: Estimated-Vibration-Acceleration History Over 1 s Using the Proposed Method. 

 
Fig. 24. Experiment II: Estimated Vibration Spectrum Using the Proposed Method. the Estimated Vibration 
Frequency is 5.2 Hz; the Actual Value was 5 Hz. 

SECTION VII. Conclusion 
In this paper, a DFRFT-based method has been devised to estimate low-level vibrations of ground targets using 
the SAR platform. Unlike the JTFA, which merely provides a qualitative illustration of the micro-Doppler effect, 
the proposed method provides quantitative estimates of the vibration signature directly from the SAR phase 
history, thereby producing the history of the instantaneous acceleration and the spectrum of the vibration. The 
performance of the proposed method has been characterized quantitatively in terms of measurable vibration 
frequency and displacement, as well as the signals' SNR (in the SAR phase history) and observation window. In 
experiments utilizing the GA-ASI Lynx system, the proposed method successfully retrieved two low-level 
vibrations from two different targets (with different SNRs). 

The proposed SAR-based vibration estimation method adds a new capability to modern SAR imaging systems. As 
such, it enhances the diversity and utility of SAR in applications such as target feature extraction and object 
recognition and classification. In our future work, the effects of clutter and multiple scatterers will be carefully 
examined. Modeling of real-world vibrating objects, such as buildings and vehicles, could also enable a better 
understanding of the micro-Doppler effects in the SAR phase history and could improve the performance of the 
proposed method in specific applications. 
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