The ideas of instantaneous amplitude and phase are well understood for
signals with real-valued samples, based on the analytic signal which is a
complex signal with one-sided Fourier transform. We extend these ideas to
signals with complex-valued samples, using a quaternion-valued equivalent of
the analytic signal obtained from a one-sided quaternion Fourier transform
which we refer to as the hypercomplex representation of the complex signal. We
present the necessary properties of the quaternion Fourier transform,
particularly its symmetries in the frequency domain and formulae for
convolution and the quaternion Fourier transform of the Hilbert transform. The
hypercomplex representation may be interpreted as an ordered pair of complex
signals or as a quaternion signal. We discuss its derivation and properties and
show that its quaternion Fourier transform is one-sided. It is shown how to
derive from the hypercomplex representation a complex envelope and a phase.
A classical result in the case of real signals is that an amplitude modulated
signal may be analysed into its envelope and carrier using the analytic signal
provided that the modulating signal has frequency content not overlapping with
that of the carrier. We show that this idea extends to the complex case,
provided that the complex signal modulates an orthonormal complex exponential.
Orthonormal complex modulation can be represented mathematically by a polar
representation of quaternions previously derived by the authors. As in the
classical case, there is a restriction of non-overlapping frequency content
between the modulating complex signal and the orthonormal complex exponential.
We show that, under these conditions, modulation in the time domain is
equivalent to a frequency shift in the quaternion Fourier domain. Examples are
presented to demonstrate these concepts