5,056 research outputs found

    Incompleteness of a first-order Gödel logic and some temporal logics of programs

    Get PDF
    It is shown that the infinite-valued first-order Gödel logic G° based on the set of truth values {1/k: k ε w {0}} U {0} is not r.e. The logic G° is the same as that obtained from the Kripke semantics for first-order intuitionistic logic with constant domains and where the order structure of the model is linear. From this, the unaxiomatizability of Kröger's temporal logic of programs (even of the fragment without the nexttime operator O) and of the authors' temporal logic of linear discrete time with gaps follows

    De Jongh's Theorem for Intuitionistic Zermelo-Fraenkel Set Theory

    Get PDF
    We prove that the propositional logic of intuitionistic set theory IZF is intuitionistic propositional logic IPC. More generally, we show that IZF has the de Jongh property with respect to every intermediate logic that is complete with respect to a class of finite trees. The same results follow for CZF.Comment: 12 page

    On Role Logic

    Full text link
    We present role logic, a notation for describing properties of relational structures in shape analysis, databases, and knowledge bases. We construct role logic using the ideas of de Bruijn's notation for lambda calculus, an encoding of first-order logic in lambda calculus, and a simple rule for implicit arguments of unary and binary predicates. The unrestricted version of role logic has the expressive power of first-order logic with transitive closure. Using a syntactic restriction on role logic formulas, we identify a natural fragment RL^2 of role logic. We show that the RL^2 fragment has the same expressive power as two-variable logic with counting C^2 and is therefore decidable. We present a translation of an imperative language into the decidable fragment RL^2, which allows compositional verification of programs that manipulate relational structures. In addition, we show how RL^2 encodes boolean shape analysis constraints and an expressive description logic.Comment: 20 pages. Our later SAS 2004 result builds on this wor

    Towards Log-Linear Logics with Concrete Domains

    Full text link
    We present MEL++\mathcal{MEL}^{++} (M denotes Markov logic networks) an extension of the log-linear description logics EL++\mathcal{EL}^{++}-LL with concrete domains, nominals, and instances. We use Markov logic networks (MLNs) in order to find the most probable, classified and coherent EL++\mathcal{EL}^{++} ontology from an MEL++\mathcal{MEL}^{++} knowledge base. In particular, we develop a novel way to deal with concrete domains (also known as datatypes) by extending MLN's cutting plane inference (CPI) algorithm.Comment: StarAI201

    Inconsistency, paraconsistency and ω-inconsistency

    Get PDF
    In this paper I'll explore the relation between ω-inconsistency and plain inconsistency, in the context of theories that intend to capture semantic concepts. In particular, I'll focus on two very well known inconsistent but non-trivial theories of truth: LP and STTT. Both have the interesting feature of being able to handle semantic and arithmetic concepts, maintaining the standard model. However, it can be easily shown that both theories are ω-inconsistent. Although usually a theory of truth is generally expected to be ω-consistent, all conceptual concerns don't apply to inconsistent theories. Finally, I'll explore if it's possible to have an inconsistent, but ω-consistent theory of truth, restricting my analysis to substructural theories.Fil: Da Re, Bruno. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Investigaciones Filosóficas - Sadaf; Argentin

    First-order Goedel logics

    Full text link
    First-order Goedel logics are a family of infinite-valued logics where the sets of truth values V are closed subsets of [0, 1] containing both 0 and 1. Different such sets V in general determine different Goedel logics G_V (sets of those formulas which evaluate to 1 in every interpretation into V). It is shown that G_V is axiomatizable iff V is finite, V is uncountable with 0 isolated in V, or every neighborhood of 0 in V is uncountable. Complete axiomatizations for each of these cases are given. The r.e. prenex, negation-free, and existential fragments of all first-order Goedel logics are also characterized.Comment: 37 page

    Internal Calculi for Separation Logics

    Get PDF
    We present a general approach to axiomatise separation logics with heaplet semantics with no external features such as nominals/labels. To start with, we design the first (internal) Hilbert-style axiomatisation for the quantifier-free separation logic SL(?, -*). We instantiate the method by introducing a new separation logic with essential features: it is equipped with the separating conjunction, the predicate ls, and a natural guarded form of first-order quantification. We apply our approach for its axiomatisation. As a by-product of our method, we also establish the exact expressive power of this new logic and we show PSpace-completeness of its satisfiability problem
    • …
    corecore