18 research outputs found

    Optimal Alignments for Designing Urban Transport Systems: Application to Seville

    Get PDF
    The achievement of some of the Sustainable Development Goals (SDGs) from the recent 2030 Agenda for Sustainable Development has drawn the attention of many countries towards urban transport networks. Mathematical modeling constitutes an analytical tool for the formal description of a transportation system whereby it facilitates the introduction of variables and the definition of objectives to be optimized. One of the stages of the methodology followed in the design of urban transit systems starts with the determination of corridors to optimize the population covered by the system whilst taking into account the mobility patterns of potential users and the time saved when the public network is used instead of private means of transport. Since the capture of users occurs at stations, it seems reasonable to consider an extensive and homogeneous set of candidate sites evaluated according to the parameters considered (such as pedestrian population captured and destination preferences) and to select subsets of stations so that alignments can take place. The application of optimization procedures that decide the sequence of nodes composing the alignment can produce zigzagging corridors, which are less appropriate for the design of a single line. The main aim of this work is to include a new criterion to avoid the zigzag effect when the alignment is about to be determined. For this purpose, a curvature concept for polygonal lines is introduced, and its performance is analyzed when criteria of maximizing coverage and minimizing curvature are combined in the same design algorithm. The results show the application of the mathematical model presented for a real case in the city of Seville in Spain.Ministerio de Econom铆a y Competitividad MTM2015-67706-

    Risk based, multi objective vehicle routing problem for hazardous materials: a test case in downstream fuel logistics

    Get PDF
    Abstract The paper analyses a practical case of study related to the distribution of fuels for the Total Erg Oil Company to the service stations located in the Province of Rome (Italy). The problem is formulated as a capacitated vehicle routing problem with time windows, where several heuristic procedures have been tested, considering both static and dynamic travel times. With respect to the standard operational costs used typically, a multivariable objective function has been proposed which takes into account also a new risk index. The risk index proposed is function of the population density of the zones covered by each path and of the estimated number of road accidents on each road link. In such a way, we take into account the population's exposure to the risk associated with an incidental event involving a fuel tank. The obtained output is the set of planned routes with minimum service cost and minimum risk. Results demonstrate how an accurate planning of the service saves up to 3 hours and 30 km on a daily basis compared to a benchmark. Moreover, the distribution company can parameterize the configuration of the service, by varying the weight adopted in order to include the risk index. Including the risk index may bring to a higher safety route planning, with an increase of the operating costs of only 2%

    Vehicle routing with arrival time diversification

    Get PDF
    Unpredictable routes may be generated by varying the arrival time at each customer over successive visits. Inspired by a real-life case in cash distribution, this study presents an efficient solution approach for the vehicle routing problem with arrival time diversification by formulating it as a vehicle routing problem with multiple time windows in a rolling horizon framework. Because waiting times are not allowed, a novel algorithm is developed to efficiently determine whether routes or local search operations are time window feasible. To allow infeasible solutions during the heuristic search, four different penalty methods are proposed. The proposed algorithm and penalty methods are evaluated in a simple iterated granular tabu search that obtains new best-known solutions for all benchmark instances from the literature, decreasing average distance by 29% and reducing computation time by 93%. A case study is conducted to illustrate the practical relevance of the proposed model and to examine the trade-off between arrival time diversification and transportation cost

    Hazardous Materials Transportation: a Literature Review and an Annotated Bibliography

    Get PDF
    The hazardous materials transportation poses risks to life, health, property, and the environment due to the possibility of an unintentional release. We present a bibliographic survey on this argument paying particular attention to the road transportation. We attempt to encompass both theoretical and application oriented works. Research on this topic is spread over the broad spectrum of computer science and the literature has an operations research and quantitative risk assessment focus. The models present in the literature vary from simple risk equations to set of differential equations. In discussing the literature, we present and compare the underlying assumptions, the model specifications and the derived results. We use the previous perspectives to critically cluster the papers in the literature into a classification scheme

    Implications of Motion Planning: Optimality and k-survivability

    Get PDF
    We study motion planning problems, finding trajectories that connect two configurations of a system, from two different perspectives: optimality and survivability. For the problem of finding optimal trajectories, we provide a model in which the existence of optimal trajectories is guaranteed, and design an algorithm to find approximately optimal trajectories for a kinematic planar robot within this model. We also design an algorithm to build data structures to represent the configuration space, supporting optimal trajectory queries for any given pair of configurations in an obstructed environment. We are also interested in planning paths for expendable robots moving in a threat environment. Since robots are expendable, our goal is to ensure a certain number of robots reaching the goal. We consider a new motion planning problem, maximum k-survivability: given two points in a stochastic threat environment, find n paths connecting two given points while maximizing the probability that at least k paths reach the goal. Intuitively, a good solution should be diverse to avoid several paths being blocked simultaneously, and paths should be short so that robots can quickly pass through dangerous areas. Finding sets of paths with maximum k-survivability is NP-hard. We design two algorithms: an algorithm that is guaranteed to find an optimal list of paths, and a set of heuristic methods that finds paths with high k-survivability

    OPTIMIZATION OF RAILWAY TRANSPORTATION HAZMATS AND REGULAR COMMODITIES

    Get PDF
    Transportation of dangerous goods has been receiving more attention in the realm of academic and scientific research during the last few decades as countries have been increasingly becoming industrialized throughout the world, thereby making Hazmats an integral part of our life style. However, the number of scholarly articles in this field is not as many as those of other areas in SCM. Considering the low-probability-and-high-consequence (LPHC) essence of transportation of Hazmats, on the one hand, and immense volume of shipments accounting for more than hundred tons in North America and Europe, on the other, we can safely state that the number of scholarly articles and dissertations have not been proportional to the significance of the subject of interest. On this ground, we conducted our research to contribute towards further developing the domain of Hazmats transportation, and sustainable supply chain management (SSCM), in general terms. Transportation of Hazmats, from logistical standpoint, may include all modes of transport via air, marine, road and rail, as well as intermodal transportation systems. Although road shipment is predominant in most of the literature, railway transportation of Hazmats has proven to be a potentially significant means of transporting dangerous goods with respect to both economies of scale and risk of transportation; these factors, have not just given rise to more thoroughly investigation of intermodal transportation of Hazmats using road and rail networks, but has encouraged the competition between rail and road companies which may indeed have some inherent advantages compared to the other medium due to their infrastructural and technological backgrounds. Truck shipment has ostensibly proven to be providing more flexibility; trains, per contra, provide more reliability in terms of transport risk for conveying Hazmats in bulks. In this thesis, in consonance with the aforementioned motivation, we provide an introduction into the hazardous commodities shipment through rail network in the first chapter of the thesis. Providing relevant statistics on the volume of Hazmat goods, number of accidents, rate of incidents, and rate of fatalities and injuries due to the incidents involving Hazmats, will shed light onto the significance of the topic under study. As well, we review the most pertinent articles while putting more emphasis on the state-of-the-art papers, in chapter two. Following the discussion in chapter 3 and looking at the problem from carrier company鈥檚 perspective, a mixed integer quadratically constraint problem (MIQCP) is developed which seeks for the minimization of transportation cost under a set of constraints including those associating with Hazmats. Due to the complexity of the problem, the risk function has been piecewise linearized using a set of auxiliary variables, thereby resulting in an MIP problem. Further, considering the interests of both carrier companies and regulatory agencies, which are minimization of cost and risk, respectively, a multiobjective MINLP model is developed, which has been reduced to an MILP through piecewise linearization of the risk term in the objective function. For both single-objective and multiobjective formulations, model variants with bifurcated and nonbifurcated flows have been presented. Then, in chapter 4, we carry out experiments considering two main cases where the first case presents smaller instances of the problem and the second case focuses on a larger instance of the problem. Eventually, in chapter five, we conclude the dissertation with a summary of the overall discussion as well as presenting some comments on avenues of future work
    corecore