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1. Introduction 

Logistics is defined as the science that allows to determine and manage a complex of elements and their activities 
by managing processes efficacy and efficiently. In the oil sector, logistics provides and coordinates the necessary 
infrastructure for stockpiling, inventory management and transport of goods, from storage to the consumer, in the 
timing and in the prescribed manner, efficiently and at the lowest possible cost. Within the general framework of 
distribution logistics, fuel distributions belong to the so-called hazmat transportation, as fuels are classified as 
dangerous goods (Accord Dangereuse Routiers, ADR 2017) and are subject to particular restrictions, calling for 
special applications of quantitative modelling (see e.g. Batta and Kwon, 2013, for a general overview).  

We focus on the optimization of the distribution of fuels by road from the depot to the petrol service stations, in 
terms of trip generation (routing in what follows). Several heuristic procedures have been tested for the solution of 
the problem in both static and dynamic environment.  

The problem is very interesting and characterized by a specific and extensive literature highlighting its 
complexity (Cornillier et al, 2008-2009, Vidal et al., 2012, Triki, 2013, Carotenuto et al., 2017).  

Differently from other papers also dealing with vehicle routing problem (VRP) for hazmat routing, we both 
include time-dependent setup and a risk based assessment, which have been so far mostly treated separately in the 
literature (with regard to risk assessment: Erkut and Verter, 1988, Dell’Olmo et al., 2005, Carotenuto et al., 2007). In 
the comprehensive terminology of Hamdi et al. (2014), we consider routing and scheduling, minimizing in a multi-
objective fashion a composite function of population exposure and incident  probability, within a time dependent 
setting with time windows. In fact, considering the problem within a time dependent setup (similar to Toumazis and 
Kwon, 2013) complicates further the setting compared to a-priori, offline routing as seen for instance in Bula et al. 
(2017). Thus, a multivariable objective function has been defined which takes into account standard service costs 
and a risk index to include the population exposure to possible accidents involving the tank-truck along the route. 
Considering a composite risk-based measure in the optimization leads to an inherent multi-objective problem where 
a risk-based measured is to be minimized, with a tradeoff regarding costs, distance travelled, time spent, or a 
combination of them (similar to Alexiou and Katsavounis, 2015). 

One final practical contribution of our works is the integration and usability within the process of a company. In 
fact, we consider a practical context related to the Total Erg Oil Company, seeking for support in planning the 
distribution phase downstream of the refining process, i.e. Downstream Logistic, for the whole territory of the 
Province of Rome in Italy. The output is the actual route planning to perform the service.  

The paper is organized as follows. The next section describes the practical case of study, the input database and 
the methodological process. Then, the objective function is formulated together with the definition of the risk index. 
Adopted solution algorithms and performance indicators for the evaluation of the service are presented. Finally, the 
computational results and the assessment of the costs of the service are reported. Some conclusions follow.   

2. Case study and methodology 

The case study presented in this paper is a real-life scenario, with the main stakeholders being the Total Erg Oil 
Company and “Raffineria di Roma”. Currently, “Raffineria di Roma” operates as a depot for refined petroleum 
products located in the West side of Rome, Italy, outside the main ring road of the city. The geographical area 
analyzed covers the whole Province of Rome (5,363.28 km²), where Total Erg owns about 199 petrol stations. 

The fuel replenishment is carried out with tank-trucks, equipped with liter counters and 3 compartments, with a 
total load capacity of 22,000 liters. This kind of vehicles are both usable for urban and extra-urban fuel 
transportation services. 

The company has been looking for optimizing the set of routes, by the minimization of the operational costs 
related to the service time and composed by travel times and fuel load/unload times. Moreover, considering the 
importance of security of road freight transport at both national and European level (Carrese et al., 2014) and that the 
utilization of the road network exposes the trucks to car accidents, we proposed an innovative Risk Index inside the 
objective function in order to consider also minimization of risks in the optimization. 

The information sources we used to setup and solve the downstream logistics optimization (Figure 1) is composed 
by data (TDSPP in Figure)  related to time dependent travel times between all pairs of nodes (stations and depot). 
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These data are computed and validated by the Mobility Agency of Rome, and consist in travel times and distances 
travelled on shortest paths for the specified time interval, as well as in estimated annual car accidents.  

The Mobility Agency of Rome using ad hoc calibrated Safety Performance Functions, linking the annual car 
accidents on a path with the annual average daily traffic and road characteristics (Basile and Persia, 2012), carries 
out car accidents evaluation. 

 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                              

Fig. 1. Workflow of the methodological procedure adopted 

Several routing algorithms derived by literature have been adopted and the results have been evaluated adopting 
specific Key Performance Indicators (KPIs, Figure 1). We first evaluated the best algorithm with regards to a 
benchmark, representing a static condition, with fixed travel time matrices having no variations during the day, 
based on a constant flow representing the morning peak hours (off-line static data). We could not use the current 
routes adopted for the service as benchmark due to industrial secret. The best VRP algorithm found this way has 
been then adopted in a route planning based on variable travel times (off-line time dependent data - dynamic method, 
Figure 1).  

In this last case, the vehicles routes are optimized in relation with the actual traffic conditions experience along 
the day on the network. In fact, it is well known that a detailed representation of road network congestion is required 
to assure reliable logistic costs, while the static assumption may often lead to no optimal solutions (Figliozzi, 2010). 
The fuel demand varies in the range 5,000-10,000 liters per customer, while, due to the lack of data, the time 
windows are randomly generated within either a morning delivery round (7:00-12:00) or an afternoon round (15:00-
20:00), thus respecting the opening and closing times of the petrol stations. 

In the following sub-sections, the problem is formulated in terms of service cost minimization for both the 
dynamic case and the off-line static benchmark; then, the multi-variable optimization including the Risk Index is 
presented only for the dynamic case; we also review all the KPIs adopted for the evaluations. 
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3. Problem formulation and solution methods 

The off-line distribution problem is formulated as a capacitated vehicle routing problem with time windows 
(VRPTW) of [earliest, latest] delivery times (Kumar	 and	 Panneerselvam	 2015). Using a VRPTW, one can 
reproduce in the easiest way the operational condition of the fuel distribution, where vehicle’s capacity and opening 
times of the petrol stations heavily influence the service planning. 

The depot D must distribute the fuels to a given set S of petrol service stations by using a given set V of vehicles 
of given capacity. An unlimited number of vehicles is available at the depot D with a capacity of 22,000 litres.  

The maximum load factor reachable for each vehicle is no more than 95% for safety reason (i.e. gas emission 
during the unloading fuel process). Each station s requests a certain quantity of fuel ds to be delivered within a given 
time window [tr, Tr].  

A feasible solution of the problem consists of a route for each vehicle starting and ending in D such that (i) the 
demand of each station is satisfied, (ii) each station is served by exactly one vehicle, and (iii) the maximum load 
factor of each vehicle is not exceeded.  

Let r be the set of routes in a solution, each associated to the vehicle v(rm) used for the m-th route. The cost of 
route rm is considered as the variable cost cm associated to the travel time of route rm.  

If static travel times are adopted for the computation of the variable cost, a matrix containing the average travel 
times (over a relevant interval, we considered 7-11 am) between each pairs of nodes 𝑡𝑡#̅$is the input of the problem; 
the objective function of the static VRPTW will be: 

                   (1) 

 
If dynamic travel times are adopted for the computation of the variable cost, a 3-D matrix containing the travel 

times between each pairs of nodes 𝑡𝑡̅%#$ for each time interval h is the input of the problem; the objective function of 
the dynamic VRPTW will be: 

                   (2) 

 
In both cases, the goal is to serve all the service stations with the available fleet at the minimum cost. 
The literature on VRPTW is rich of contributions both for the static version (Solomon,	 1987,	 Russell,	 1995,	

Bramel	and	Simchi-Levi,	1996,	Potvin	et	al.,	1996,	Taniguchi	et	al.,	1998,	Cordeau	et	al.,	2002)	and	 for	 the	
time-dependent	version	(Ichoua	et	al.,	2000,	Flamini	et	al.,	2011,	Kritzinger	et	al.,	2011,	Ehmke	et	al,	2012,	
Flamini	et	al.,	2017).  

In this paper, several heuristic procedures have been adopted to compute the initial solution for the static 
VRPTW. Specifically: 

• Savings Heuristic by Clarke	and	Wright	(1964): it is a constructive method based on the computation of 
the savings derived by the join of two or more routes; 

• Sweep Method by Gillett	 and	 Miller	 (1974): it is a cluster first – route second procedure, where the 
routing phase is approached as a Travelling Salesman Problem (TSP) for each cluster; 

• Insertion Method (Solomon,	1987,	Kay,	2017): the procedure is based on the savings method joined with 
the insertion of the farthest node at the initialization step of the routes. 

Once the initial static solution is computed, it is improved following several intra-route and inter-route node’s 
exchange as the 2-opt Neighborhood, the 2-opt* Neighborhood (2 Vertex Exchange) and the Crossover Exchange 
Neighborhood (Lin	and	Kernighan,	1973,	Savelsbergh,	1988,	Vigo,	1996,	Toth	and	Vigo,	2014,	Popovic	et	al.,	
2012).  

The static solutions derived are then evaluated in terms of KPIs and the best one, together with the corresponding 
solving procedure, has been adopted as the benchmark for the dynamic case.  
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3.1. Multi-variable objective function: the Risk Index 

A multi-variable objective function is proposed for the construction of the routes, extending (2) with an 
innovative Risk Index. Thus, the multi-variable objective function assumes the following expression: 

         (3) 

where the Risk Index  for each route rm is computed as the sum of the risk index between each pair of nodes 

(i,j) of the route: . 

The risk index between each pair of nodes RIij depends by the average daily value of accidents 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶#$	along 
(i,j) and by the average value of the population density of the census zones encountered along (i,j) weighted for the 
percentage of the length L of the path (i,j) inside each zone: 
RIij = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶#$	 ∙ -∑ 𝜌𝜌0123		%𝐿𝐿0123

#$
0123 6         (4) 

 
In order to compute the Risk Index, the path traces between each couple of nodes have been extracted using the 

Google Direction API platform on a sub-problem of the initial instance. Then, the path traces have been matched 
with Census Data of the Province of Rome (2016) to retrieve the associated population density. 

The proposed multi-variable objective function allows getting a set of routes at minimal operational cost and 
minimum risk. Minimizing the two components makes it possible to obtain efficient and cost-effective service while 
at the same time limiting the population's exposure to the risk associated with an incidental event involving a fuel 
tank. RIij values have been normalized within a range of [0,1]. This standardization process allows obtaining values 
comparable with the timescale of the operational costs expressed in hours, thus making the Risk Index as a time 
penalty. The parameter α inside (3) is a tuning parameter given by the route planner in order to give more or less 
importance to the risk index with respect to the operational costs. 

3.2. Key Performance Indicators (KPIs) 

The KPIs adopted for the evaluation of the service have been divided into 4 groups: Route Structure; Transport; 
Load capacity; Under-utilization of the service. 

In order to make possible the comparison between the different outputs of the optimization, each KPI has been 
normalized in the range [1,10], where the best condition refers to 10. Then, for each KPI of each group, a weight wi 
has been defined such that wi > 0 and ∑i wi =1. Also each KPI group has a weight cKPIg such that cKPIg > 0 and ∑KPIg 
cKPIg =1. 

The weight wi of each indicator belonging to each group was set as a project parameter with the purpose of 
highlighting the most significant magnitudes affecting the quality of the organized service as the group and the KPI 
change.  

The KPIs for "Route Structure" (N. Route: number of generated routes; N. Nodes: average number of nodes 
visited on the route) group have a homogeneous coefficient of 0.5, as it has been assumed that the number of 
constructed routes and the average number of visited nodes are likewise within the performance of the service. 

The group "Transport" includes 5 indicators (Avg Time: Average travel time of the route; Total time: Total time 
spent; Avg Distance: Average distance travelled of the route; Total distance: Total kilometres travelled; Speed: 
Operating speed), each of which has its own coefficient: the indicators for the service operating times, i.e. average 
travel time of the route and total time spent, have higher weights with respect to the other indicators (0.2 and 0.35 
respectively), since minimizing operating times is considered a major goal of the problem. 

With regard to the "Load capacity" group (Liters: Average number of liters of fuel transported; Tons: Average 
number of tons transported; Ton-km: Total number of tons per kilometre; Load factor: Average load factor), the 
largest weight (0.6) was attributed to the "Load Factor", as the maximum load factor allows for a good quality 
service, reducing the unit production costs of the service and at the same time maximizing the use of the vehicle. 
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the objective function of the static VRPTW will be: 

                   (1) 

 
If dynamic travel times are adopted for the computation of the variable cost, a 3-D matrix containing the travel 

times between each pairs of nodes 𝑡𝑡̅%#$ for each time interval h is the input of the problem; the objective function of 
the dynamic VRPTW will be: 

                   (2) 

 
In both cases, the goal is to serve all the service stations with the available fleet at the minimum cost. 
The literature on VRPTW is rich of contributions both for the static version (Solomon,	 1987,	 Russell,	 1995,	

Bramel	and	Simchi-Levi,	1996,	Potvin	et	al.,	1996,	Taniguchi	et	al.,	1998,	Cordeau	et	al.,	2002)	and	 for	 the	
time-dependent	version	(Ichoua	et	al.,	2000,	Flamini	et	al.,	2011,	Kritzinger	et	al.,	2011,	Ehmke	et	al,	2012,	
Flamini	et	al.,	2017).  

In this paper, several heuristic procedures have been adopted to compute the initial solution for the static 
VRPTW. Specifically: 

• Savings Heuristic by Clarke	and	Wright	(1964): it is a constructive method based on the computation of 
the savings derived by the join of two or more routes; 

• Sweep Method by Gillett	 and	 Miller	 (1974): it is a cluster first – route second procedure, where the 
routing phase is approached as a Travelling Salesman Problem (TSP) for each cluster; 

• Insertion Method (Solomon,	1987,	Kay,	2017): the procedure is based on the savings method joined with 
the insertion of the farthest node at the initialization step of the routes. 

Once the initial static solution is computed, it is improved following several intra-route and inter-route node’s 
exchange as the 2-opt Neighborhood, the 2-opt* Neighborhood (2 Vertex Exchange) and the Crossover Exchange 
Neighborhood (Lin	and	Kernighan,	1973,	Savelsbergh,	1988,	Vigo,	1996,	Toth	and	Vigo,	2014,	Popovic	et	al.,	
2012).  

The static solutions derived are then evaluated in terms of KPIs and the best one, together with the corresponding 
solving procedure, has been adopted as the benchmark for the dynamic case.  
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3.1. Multi-variable objective function: the Risk Index 

A multi-variable objective function is proposed for the construction of the routes, extending (2) with an 
innovative Risk Index. Thus, the multi-variable objective function assumes the following expression: 

         (3) 

where the Risk Index  for each route rm is computed as the sum of the risk index between each pair of nodes 

(i,j) of the route: . 

The risk index between each pair of nodes RIij depends by the average daily value of accidents 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶#$	along 
(i,j) and by the average value of the population density of the census zones encountered along (i,j) weighted for the 
percentage of the length L of the path (i,j) inside each zone: 
RIij = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶#$	 ∙ -∑ 𝜌𝜌0123		%𝐿𝐿0123

#$
0123 6         (4) 

 
In order to compute the Risk Index, the path traces between each couple of nodes have been extracted using the 

Google Direction API platform on a sub-problem of the initial instance. Then, the path traces have been matched 
with Census Data of the Province of Rome (2016) to retrieve the associated population density. 

The proposed multi-variable objective function allows getting a set of routes at minimal operational cost and 
minimum risk. Minimizing the two components makes it possible to obtain efficient and cost-effective service while 
at the same time limiting the population's exposure to the risk associated with an incidental event involving a fuel 
tank. RIij values have been normalized within a range of [0,1]. This standardization process allows obtaining values 
comparable with the timescale of the operational costs expressed in hours, thus making the Risk Index as a time 
penalty. The parameter α inside (3) is a tuning parameter given by the route planner in order to give more or less 
importance to the risk index with respect to the operational costs. 

3.2. Key Performance Indicators (KPIs) 

The KPIs adopted for the evaluation of the service have been divided into 4 groups: Route Structure; Transport; 
Load capacity; Under-utilization of the service. 

In order to make possible the comparison between the different outputs of the optimization, each KPI has been 
normalized in the range [1,10], where the best condition refers to 10. Then, for each KPI of each group, a weight wi 
has been defined such that wi > 0 and ∑i wi =1. Also each KPI group has a weight cKPIg such that cKPIg > 0 and ∑KPIg 
cKPIg =1. 

The weight wi of each indicator belonging to each group was set as a project parameter with the purpose of 
highlighting the most significant magnitudes affecting the quality of the organized service as the group and the KPI 
change.  

The KPIs for "Route Structure" (N. Route: number of generated routes; N. Nodes: average number of nodes 
visited on the route) group have a homogeneous coefficient of 0.5, as it has been assumed that the number of 
constructed routes and the average number of visited nodes are likewise within the performance of the service. 

The group "Transport" includes 5 indicators (Avg Time: Average travel time of the route; Total time: Total time 
spent; Avg Distance: Average distance travelled of the route; Total distance: Total kilometres travelled; Speed: 
Operating speed), each of which has its own coefficient: the indicators for the service operating times, i.e. average 
travel time of the route and total time spent, have higher weights with respect to the other indicators (0.2 and 0.35 
respectively), since minimizing operating times is considered a major goal of the problem. 

With regard to the "Load capacity" group (Liters: Average number of liters of fuel transported; Tons: Average 
number of tons transported; Ton-km: Total number of tons per kilometre; Load factor: Average load factor), the 
largest weight (0.6) was attributed to the "Load Factor", as the maximum load factor allows for a good quality 
service, reducing the unit production costs of the service and at the same time maximizing the use of the vehicle. 
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The liters and tonnes transported have an equivalent weight of 10%, while the productivity of the service, 
expressed in tons-km, is 20%.  

Indicators of the category "Underutilization of the service" (% Empty km: Percentage of kilometres travelled 
with empty vehicle; % Empty Time: Percentage of time travelled with empty vehicle; % Load Time: Percentage of 
time spent for loading/unloading operations), respectively, account for weights of 15% in terms of kilometres and 
travel times, and equal to 70% with regard to the loading / unloading time at the customer node. 

Considering the weight cKPIg of each group, a greater value was assigned to the "Transport" group, as the 
economic cost of service production is determined based on the indicators contained therein. KPIs of "Load 
Capacity" and "Under-utilization" were assigned a coefficient of 0.2 and 0.3 respectively, while the "Structure" 
category was assigned a weight less than 0.1. 

The performance values of individual groups, normalized with respect to the minimum-maximum value, were 
compared to determine the solution method that returns the best overall performance. 

4. Computational results 

We report the solution performances of the distribution planning firstly considering the three heuristic methods 
adopted to compute the initial solution for the static case (Table 1): 

• The routes generated by the Insertion Method showed a better structure of the service and load capacity 
performances when compared with the other methods;  

• The transportation service is approximately the same in case of Insertion and Savings methods; 
• The underutilization of the service is better in case of adopting the Sweep method; however, the difference 

in terms of single KPIs of the group is negligible;  
• Insertion Method reaches the highest performances, and it is adopted as the algorithm for the dynamic case. 

When the Insertion method is adopted in the dynamic case (Table 1, TD Insertion Method), the dynamic insertion 
method is able to work better than the static one in terms of transport indicators with a saving of about 3 hours (total 
time) and 30 km in the service (total distance). 

 
Finally, the Risk Index has been added in the objective function of the dynamic case together with the service 

costs and solved by the Insertion Method, for different values of the tuning parameter α (Table 2).  In this case, the 
test instance considers a subset of service stations (43 nodes), due to the computational expensive phase of matching 
the effective path with the census zones.  

When the Risk Index is considered, also the possible reduction of the population exposure to the accidents is 
evaluated as a KPI. The cKPIg value of the Risk Index is assumed equal to 0.3 and equal to the cKPIg of the transport 
KPIs group. If α is equal to zero, the solution obtained is the one with the minimum service cost. Increasing α means 
to give higher importance to the minimization of the risk: in this case, also solutions with higher service cost can be 
obtained. The increase of α might result in a completely different choice of the paths, especially to reach service 
stations located inside the city of Rome, avoiding road links closest to the downtown or to the highest populated 
zones of the city (where possible), see Figure 2 for an example. The solution found with an α value equal to 1 seems 
to be the best compromise between service times and risk.  

 
All the procedures have been implemented in MATLAB and in case of adoption of the Risk Index an interaction 

is required with Google Direction API platform and QGIS. Computational times are 122.44 sec for the static 
insertion method [199 nodes]; 4,913.62 sec for the dynamic insertion method [199 nodes]; 45.33 sec for the dynamic 
insertion method with Risk Index [43 nodes] on an Intel Core i7-6700HQ, 2.60GHz, 8.00 GB RAM. 

4.1. Economic evaluation 

We quantify the impact of the adoption of the risk index from an economic point of view, referring to the unitary 
costs adopted by the Italian Ministry of Transport for the evaluation of the minimum production cost in the case of a 
transportation service of fuel products (with a maximum length of 150 km for each route).  
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The total unit cost is composed by several terms (namely: Truck cost: 0.250; Tanker cost: 0.216; Maintenance 
cost: 0.100; Crew cost: 1.043; Insurance Cost: 0.238; Tires cost: 0.010; Tolls cost: 0.035; Fuel cost: 0.375; 
Management cost: 0.270, respectively in EUR/km), leading to a total unitary cost, equal to 2.54€/km. In Table 3, we 
report the total cost of production, given the total kilometres travelled by all vehicles on all the planned routes for 
the different scenarios as a function of α. 

Table 1. Evaluation of best algorithm 

Group Route Structure Transport 

cKPIg 10% 40% 

KPIs N°Route N°Nodes Time 
 [h] 

Total Time  
[h] 

Distance 
[Km] 

Total Dist.  
[km] 

Speed [Km/h] 

wi 50% 50% 20% 35% 15% 20% 10% 

Insertion Method 84 2.37 3.12 262.44 80.78 6785.70 57.89 
Savings Method 87 2.29 3.07 267.27 79.53 6919.40 57.63 
Sweep Method 87 2.29 3.09 268.92 81.03 7049.90 57.92 
TD Insertion Method 84 2.37 3.08 259.13 80.41 6754.50 59.39 

Family Load Capacity Underutilization of the service 

cKPIg 20% 30% 

KPIs Liters [Liters] Tons 
[Ton] 

Ton-Km 
[Ton-Km] 

Load Factor % Empty Km % Empty Time % Load Time 

wi 10% 10% 20% 60% 15% 15% 70% 

Insertion Method 17720.30 12.75 1042.15 89% 44% 43% 58% 
Savings Method 17109.25 12.32 994.10 86% 44% 43% 58% 
Sweep Method 17109.25 12.32 1010.03 86% 44% 43% 57% 
TD Insertion Method 17720.30 12.76 1037.76 89% 45% 46% 59% 

a. Statics Methods - Normalized and weighted KPIs  
Family Route 

Structure 
Transport Load 

Capacity 
Underutilization of the service  Total 

Insertion Method 1.00 2.79 2.00 1.11 6.90 
Savings Method 0.10 2.34 0.20 1.11 3.75 
Sweep Method 0.10 1.19 0.32 3.00 4.61 

b. Insertion Method vs TD Insertion Method - Normalized and weighted KPIs  
Family Route 

Structure 
Transport Load 

Capacity 
Underutilization of the service  Total 

Insertion Method 1.00 0.40 1.82 3.00 6.22 
TD Insertion Method 1.00 4.00 1.64 0.30 6.94 
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The liters and tonnes transported have an equivalent weight of 10%, while the productivity of the service, 
expressed in tons-km, is 20%.  

Indicators of the category "Underutilization of the service" (% Empty km: Percentage of kilometres travelled 
with empty vehicle; % Empty Time: Percentage of time travelled with empty vehicle; % Load Time: Percentage of 
time spent for loading/unloading operations), respectively, account for weights of 15% in terms of kilometres and 
travel times, and equal to 70% with regard to the loading / unloading time at the customer node. 

Considering the weight cKPIg of each group, a greater value was assigned to the "Transport" group, as the 
economic cost of service production is determined based on the indicators contained therein. KPIs of "Load 
Capacity" and "Under-utilization" were assigned a coefficient of 0.2 and 0.3 respectively, while the "Structure" 
category was assigned a weight less than 0.1. 

The performance values of individual groups, normalized with respect to the minimum-maximum value, were 
compared to determine the solution method that returns the best overall performance. 

4. Computational results 

We report the solution performances of the distribution planning firstly considering the three heuristic methods 
adopted to compute the initial solution for the static case (Table 1): 

• The routes generated by the Insertion Method showed a better structure of the service and load capacity 
performances when compared with the other methods;  

• The transportation service is approximately the same in case of Insertion and Savings methods; 
• The underutilization of the service is better in case of adopting the Sweep method; however, the difference 

in terms of single KPIs of the group is negligible;  
• Insertion Method reaches the highest performances, and it is adopted as the algorithm for the dynamic case. 

When the Insertion method is adopted in the dynamic case (Table 1, TD Insertion Method), the dynamic insertion 
method is able to work better than the static one in terms of transport indicators with a saving of about 3 hours (total 
time) and 30 km in the service (total distance). 

 
Finally, the Risk Index has been added in the objective function of the dynamic case together with the service 

costs and solved by the Insertion Method, for different values of the tuning parameter α (Table 2).  In this case, the 
test instance considers a subset of service stations (43 nodes), due to the computational expensive phase of matching 
the effective path with the census zones.  

When the Risk Index is considered, also the possible reduction of the population exposure to the accidents is 
evaluated as a KPI. The cKPIg value of the Risk Index is assumed equal to 0.3 and equal to the cKPIg of the transport 
KPIs group. If α is equal to zero, the solution obtained is the one with the minimum service cost. Increasing α means 
to give higher importance to the minimization of the risk: in this case, also solutions with higher service cost can be 
obtained. The increase of α might result in a completely different choice of the paths, especially to reach service 
stations located inside the city of Rome, avoiding road links closest to the downtown or to the highest populated 
zones of the city (where possible), see Figure 2 for an example. The solution found with an α value equal to 1 seems 
to be the best compromise between service times and risk.  

 
All the procedures have been implemented in MATLAB and in case of adoption of the Risk Index an interaction 

is required with Google Direction API platform and QGIS. Computational times are 122.44 sec for the static 
insertion method [199 nodes]; 4,913.62 sec for the dynamic insertion method [199 nodes]; 45.33 sec for the dynamic 
insertion method with Risk Index [43 nodes] on an Intel Core i7-6700HQ, 2.60GHz, 8.00 GB RAM. 

4.1. Economic evaluation 

We quantify the impact of the adoption of the risk index from an economic point of view, referring to the unitary 
costs adopted by the Italian Ministry of Transport for the evaluation of the minimum production cost in the case of a 
transportation service of fuel products (with a maximum length of 150 km for each route).  
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The total unit cost is composed by several terms (namely: Truck cost: 0.250; Tanker cost: 0.216; Maintenance 
cost: 0.100; Crew cost: 1.043; Insurance Cost: 0.238; Tires cost: 0.010; Tolls cost: 0.035; Fuel cost: 0.375; 
Management cost: 0.270, respectively in EUR/km), leading to a total unitary cost, equal to 2.54€/km. In Table 3, we 
report the total cost of production, given the total kilometres travelled by all vehicles on all the planned routes for 
the different scenarios as a function of α. 

Table 1. Evaluation of best algorithm 

Group Route Structure Transport 

cKPIg 10% 40% 

KPIs N°Route N°Nodes Time 
 [h] 

Total Time  
[h] 

Distance 
[Km] 

Total Dist.  
[km] 

Speed [Km/h] 

wi 50% 50% 20% 35% 15% 20% 10% 

Insertion Method 84 2.37 3.12 262.44 80.78 6785.70 57.89 
Savings Method 87 2.29 3.07 267.27 79.53 6919.40 57.63 
Sweep Method 87 2.29 3.09 268.92 81.03 7049.90 57.92 
TD Insertion Method 84 2.37 3.08 259.13 80.41 6754.50 59.39 

Family Load Capacity Underutilization of the service 

cKPIg 20% 30% 

KPIs Liters [Liters] Tons 
[Ton] 

Ton-Km 
[Ton-Km] 

Load Factor % Empty Km % Empty Time % Load Time 

wi 10% 10% 20% 60% 15% 15% 70% 

Insertion Method 17720.30 12.75 1042.15 89% 44% 43% 58% 
Savings Method 17109.25 12.32 994.10 86% 44% 43% 58% 
Sweep Method 17109.25 12.32 1010.03 86% 44% 43% 57% 
TD Insertion Method 17720.30 12.76 1037.76 89% 45% 46% 59% 

a. Statics Methods - Normalized and weighted KPIs  
Family Route 

Structure 
Transport Load 

Capacity 
Underutilization of the service  Total 

Insertion Method 1.00 2.79 2.00 1.11 6.90 
Savings Method 0.10 2.34 0.20 1.11 3.75 
Sweep Method 0.10 1.19 0.32 3.00 4.61 

b. Insertion Method vs TD Insertion Method - Normalized and weighted KPIs  
Family Route 

Structure 
Transport Load 

Capacity 
Underutilization of the service  Total 

Insertion Method 1.00 0.40 1.82 3.00 6.22 
TD Insertion Method 1.00 4.00 1.64 0.30 6.94 
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Table 2. Sensitivity to α, Dynamic Insertion Method. 

a. TD Insertion Methods Performances at the variation of 𝜶𝜶 
Family Route Structure Transport 

cKPIg 10% 30% 

KPIs N°Route N°Nodes Time 
 [h] 

Total Time  
[h] 

Distance 
[Km] 

Total Dist.  
[km] 

Speed [Km/h] 

wi 50% 50% 20% 35% 15% 20% 10% 

𝜶𝜶 = 0 19 2.26 2.70 51.27 48.91 929.26 51.91 
𝜶𝜶 = 1 19 2.26 2.72 51.62 49.90 948.08 51.23 
𝜶𝜶 = 10 20 2.15 2.69 53.74 51.74 1034.80 52.14 
𝜶𝜶 = 100 20 2.15 2.68 53.53 51.79 1035.70 52.17 

Family Load Capacity Underutilization of the service Risk 

cKPIg 20% 10% 30% 

KPIs Liters 
[Liters] 

Tons 
[Ton] 

Ton-km 
[Ton-Km] 

Load Factor % Empty 
Km 

% Empty 
Time 

% Load 
Time 

Risk 
index 

wi 10% 10% 20% 60% 15% 15% 70% 100% 

𝜶𝜶 = 0 17512.21 12.61 636.77 88% 41% 38% 66% n.a. 

𝜶𝜶 = 1 17512.21 12.61 636.43 88% 43% 41% 64% 5.72 

𝜶𝜶 = 10 16636.60 11.98 635.45 83% 41% 39% 64% 5.16 

𝜶𝜶 = 100 16636.60 11.98 634.05 83% 41% 40% 64% 4.77 

b. TD Insertion Method - Normalized and weighted KPIs  
 Route 

Structure 
Transport Load 

Capacity 
Underutilization of 

the service  
Risk Total 

𝜶𝜶 = 0 1.00 2.66 2.00 0.37 0.30 6.33 

𝜶𝜶 = 1 0.55 1.82 1.96 0.73 2.51 7.57 

𝜶𝜶 = 10 0.10 0.98 0.39 0.96 2.80 5.22 

𝜶𝜶 = 100 0.55 1.19 0.20 0.91 3.00 5.85 

 

Table 3. Economic evaluation of the service. 

Scenario Risk Total Km  
[km] 

 

Total Cost 
 [€] 

Cost Var. 
[%]  

𝜶𝜶 = 0 n.a. 929.26    2,357.53 €  n.a. 
𝜶𝜶 = 1 5.72 948.08    2,405.28 €  +2.03% 
𝜶𝜶 = 10 5.16 1034.80    2,625.29 €  +11.36% 
𝜶𝜶 = 100 4.77 1035.70    2,627.57 €  +11.45% 

 
Comparing the total cost with respect to the Risk Index it is evident how a decrease in risk (higher α) increases 

the total cost of the service: this increment is due to a higher overall travelled distance in order to search for a less 
risky path, with direct implications on the service cost. However, analysing the Scenario α = 1, i.e. the best 
compromise between the minimum service cost and the minimum risk, a low increase in the operating cost (only 
2%) guarantees an adequate distribution planning with a less overall hazard. 
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Fig. 2. Example of risk-based routes with different α (dark red: α =100, black: α = 0):  
green to yellow to red shows increasing population density of the zones 

5. Conclusions 

This paper reports on a study with the real case of downstream fuel logistics for Total Erg Oil Company and its 
respective 199 service stations located in the Province of Rome, Italy. The problem is formulated as a capacitated 
vehicle routing problem with time windows, and dynamic travel times taking into account congestion phenomena. 
Different heuristic VRP approaches available from literature have been evaluated. Compared to an optimization 
based on static travel times, which we consider a benchmark of current operations, a saving in the service of about 3 
hours and 30 km can be obtained on a daily basis. 

Since the transport of fuels is considered a transport of dangerous goods, a multi-variable objective function has 
been finally proposed, which includes a new risk index able to evaluate the population exposure to possible 
accidents involving the tank-truck. The risk index is a function of the average daily value of accidents along the road 
links and by the average value of the population density of the zones encountered along the route weighted for the 
percentage of the length of the route inside each zone. 

The multi-variable objective function has been tested on a subset of nodes with respect to the starting instance. 
With a weight parameter, more or less weight can be given within the trade-off between to the service costs or to the 
risk index, when longer travel times, distances and operational costs,  are chosen to result in lower risk routes 
(possibly longer and having detours of densely populated, high accident areas).  

The best performances of the service have been obtained given the same weight to the service costs and to the 
risk index (tuning parameter equal to 1). Moreover, the economic analysis conducted underlines as this scenario 
differs in terms of operating costs of only 2% with respect to the scenario without risk index. 

Further research will be required to analyse the effects of different values of KPI’s weights in terms of service’s 
evaluation. Finally, other interesting features as vulnerable areas (historical areas or green areas) or specific road 
infrastructure characteristics can be added inside the decision process.  
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Table 2. Sensitivity to α, Dynamic Insertion Method. 

a. TD Insertion Methods Performances at the variation of 𝜶𝜶 
Family Route Structure Transport 

cKPIg 10% 30% 

KPIs N°Route N°Nodes Time 
 [h] 

Total Time  
[h] 

Distance 
[Km] 

Total Dist.  
[km] 

Speed [Km/h] 

wi 50% 50% 20% 35% 15% 20% 10% 

𝜶𝜶 = 0 19 2.26 2.70 51.27 48.91 929.26 51.91 
𝜶𝜶 = 1 19 2.26 2.72 51.62 49.90 948.08 51.23 
𝜶𝜶 = 10 20 2.15 2.69 53.74 51.74 1034.80 52.14 
𝜶𝜶 = 100 20 2.15 2.68 53.53 51.79 1035.70 52.17 

Family Load Capacity Underutilization of the service Risk 

cKPIg 20% 10% 30% 

KPIs Liters 
[Liters] 

Tons 
[Ton] 

Ton-km 
[Ton-Km] 

Load Factor % Empty 
Km 

% Empty 
Time 

% Load 
Time 

Risk 
index 

wi 10% 10% 20% 60% 15% 15% 70% 100% 

𝜶𝜶 = 0 17512.21 12.61 636.77 88% 41% 38% 66% n.a. 

𝜶𝜶 = 1 17512.21 12.61 636.43 88% 43% 41% 64% 5.72 

𝜶𝜶 = 10 16636.60 11.98 635.45 83% 41% 39% 64% 5.16 

𝜶𝜶 = 100 16636.60 11.98 634.05 83% 41% 40% 64% 4.77 

b. TD Insertion Method - Normalized and weighted KPIs  
 Route 

Structure 
Transport Load 

Capacity 
Underutilization of 

the service  
Risk Total 

𝜶𝜶 = 0 1.00 2.66 2.00 0.37 0.30 6.33 

𝜶𝜶 = 1 0.55 1.82 1.96 0.73 2.51 7.57 

𝜶𝜶 = 10 0.10 0.98 0.39 0.96 2.80 5.22 

𝜶𝜶 = 100 0.55 1.19 0.20 0.91 3.00 5.85 

 

Table 3. Economic evaluation of the service. 

Scenario Risk Total Km  
[km] 

 

Total Cost 
 [€] 

Cost Var. 
[%]  

𝜶𝜶 = 0 n.a. 929.26    2,357.53 €  n.a. 
𝜶𝜶 = 1 5.72 948.08    2,405.28 €  +2.03% 
𝜶𝜶 = 10 5.16 1034.80    2,625.29 €  +11.36% 
𝜶𝜶 = 100 4.77 1035.70    2,627.57 €  +11.45% 

 
Comparing the total cost with respect to the Risk Index it is evident how a decrease in risk (higher α) increases 

the total cost of the service: this increment is due to a higher overall travelled distance in order to search for a less 
risky path, with direct implications on the service cost. However, analysing the Scenario α = 1, i.e. the best 
compromise between the minimum service cost and the minimum risk, a low increase in the operating cost (only 
2%) guarantees an adequate distribution planning with a less overall hazard. 
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Fig. 2. Example of risk-based routes with different α (dark red: α =100, black: α = 0):  
green to yellow to red shows increasing population density of the zones 

5. Conclusions 

This paper reports on a study with the real case of downstream fuel logistics for Total Erg Oil Company and its 
respective 199 service stations located in the Province of Rome, Italy. The problem is formulated as a capacitated 
vehicle routing problem with time windows, and dynamic travel times taking into account congestion phenomena. 
Different heuristic VRP approaches available from literature have been evaluated. Compared to an optimization 
based on static travel times, which we consider a benchmark of current operations, a saving in the service of about 3 
hours and 30 km can be obtained on a daily basis. 

Since the transport of fuels is considered a transport of dangerous goods, a multi-variable objective function has 
been finally proposed, which includes a new risk index able to evaluate the population exposure to possible 
accidents involving the tank-truck. The risk index is a function of the average daily value of accidents along the road 
links and by the average value of the population density of the zones encountered along the route weighted for the 
percentage of the length of the route inside each zone. 

The multi-variable objective function has been tested on a subset of nodes with respect to the starting instance. 
With a weight parameter, more or less weight can be given within the trade-off between to the service costs or to the 
risk index, when longer travel times, distances and operational costs,  are chosen to result in lower risk routes 
(possibly longer and having detours of densely populated, high accident areas).  

The best performances of the service have been obtained given the same weight to the service costs and to the 
risk index (tuning parameter equal to 1). Moreover, the economic analysis conducted underlines as this scenario 
differs in terms of operating costs of only 2% with respect to the scenario without risk index. 

Further research will be required to analyse the effects of different values of KPI’s weights in terms of service’s 
evaluation. Finally, other interesting features as vulnerable areas (historical areas or green areas) or specific road 
infrastructure characteristics can be added inside the decision process.  
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