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Abstract. This paper considers the Dynamic Multi-Period Vehicle Routing Problem which deals with the
distribution of orders from a depot to a set of customers over a multi-period time horizon. Customer or-
ders and their feasible service periods are dynamically revealed over time. The objectives are to minimize
total travel costs and customer waiting, and to balance the daily workload over the planning horizon.
This problem originates from a large distributor operating in Sweden. It is modeled as a mixed inte-
ger linear program, and solved by means of a three-phase heuristic that works over a rolling planning
horizon. The multi-objective aspect of the problem is handled through a scalar technique approach. Com-
putational results show that our solutions improve upon those of the Swedish distributor.
Keywords: Dynamic, Multi-Period, Multi-Objective, Vehicle Routing, Variable Neighborhood Search.

1 Introduction

The purpose of this paper is to model and solve the Dynamic Multi-Period Vehicle Routing Problem

(DMPVRP). Our study is motivated by the case of Lantmännen, a large distributor operating in

Sweden, but our contribution is of general applicability. In the DMPVRP, customers place orders

dynamically over a planning horizon consisting of several periods (or days). Each request specifies

a demand quantity, a delivery location and a set of consecutive periods during which delivery can

take place. The distributor must plan its delivery routes over several days so as to minimize the

routing cost and customer waiting, and to balance the daily workload over the planning horizon.

Lantmännen is one of the largest groups within the food, energy and agricultural industries in

the Nordic countries. The company is owned by 42,000 Swedish farmers, hires 13,000 employees,

and generates sales of SEK 36 billion per year. One of its activities is the distribution of fodder to

the farmers at their request from one of several terminals which usually operate independently of



each other, except in periods of exceptional activity. Here we consider a single terminal, Västerås,

located in southern Sweden. It is the busiest terminal in terms of number of vehicles and orders.

Figure 1 shows the locations of the customers and of the terminal. Customers place orders over

time and the distribution schedule of a given day is constructed for several vehicles at the begin-

ning of that day. It serves some of the unfulfilled orders and typically leaves some for the following

days. A fair amount of foresight is required so as not to create infeasible situations in the future

while creating efficient routes. Unfulfilled orders after the schedule has been built and new orders

accumulated during the day are considered for scheduling the following day. Because the drivers

do not interact with the customers when delivering, no time windows need to be specified.

Figure 1. Locations of customers and depot (represented by a house) in the Lantmännen case study
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The literature on the DMPVRP is rather scarce. To our knowledge, the closest work is that of

Angelelli et al. (2007, 2009) who considered a special case of the DMPVRP with a single vehicle

and a planning horizon of two days.

The DMPVRP is closely related to the Periodic Vehicle Routing Problem (PVRP) in which all infor-

mation is available at the beginning of the planning horizon. In the PVRP, customers specify a

service frequency and sets of allowable combinations of visit days. For example, if a customer

specifies a frequency of 2 and the combinations {1, 3} and {2, 4}, then the customer wishes to be

visited twice, on days 1 and 3, or on days 2 and 4. In the DMPVRP, visit frequencies are equal to 1

and visit combinations are made up of consecutive days. The PVRP is usually solved heuristically.

The best known algorithms for this problem are those of Cordeau, Gendreau and Laporte (1997)

and of Hemmelmayr, Doerner and Hartl (2009). Francis, Smilowitz and Tzur (2008) have solved a

variant of the PVRP in which service frequency is a decision variable. Mourgaya and Vanderbeck

(2007) have solved another variant that includes routing cost minimization and daily workload

balance.

Other routing problems with a dynamic component are often encountered in the context of dy-

namic pickup and delivery problems (Psaraftis, 1988; Mitrović-Minić, Krishnamurti and Laporte,

2004; Branke et al. 2005; Hvattum, Løkketangen and Laporte, 2006, 2007; Pureza and Laporte,

2008), but these papers do not consider a multi-period horizon. For recent literature reviews, see

Larsen, Madsen and Solomon (2008), and Berbeglia, Cordeau and Laporte (2009).

Another strand of literature relevant to our problem is about the Multi-Objective Vehicle Routing

Problem encountered in school bus routing (Pacheco and Marti, 2006; Alabas-Uslu, 2008), waste

collection (Lacomme, Prins and Sevaux, 2006), and hazardous products transportation (Dell’Olmo,

Gentili and Scozzari, 2005; Zografos and Androutsopoulos, 2008; Tan, Chew and Lee, 2006). The

two main solution strategies for multi-objective problems are the scalar technique, which consists

in minimizing a weighted linear combination of the objectives, and the Pareto method which iden-

tifies a set of non-dominated solutions. We refer to Jozefowiez, Semet and Talbi (2008) for a recent

survey of these methods in the context of vehicle routing.

In this paper we formulate the DMPVRP as a mixed integer linear program using the scalar tech-

nique. We then develop a three-phase heuristic for its solution, and we show that our results

outperform those of Lantmännen. The remainder of the paper is organized as follows. The math-
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ematical model is described in Section 2. The heuristic is described in Section 3, followed by com-

putational results in Section 4 and by conclusions in Section 5.

2 Mathematical Problem Description

We start with a more detailed description of the DMPVRP. To capture the problem more precisely,

we also formulate it as a mixed integer linear program.

2.1 Problem description and analysis

The DMPVRP is solved over a planning horizon divided into days. Customer orders arrive at

any time and must be fulfilled within a set of consecutive service days which can start as early

as the day after the order is placed. A set of homogeneous vehicles are available at the depot.

These vehicles depart from the depot at 00.00 and return to the depot at the latest at 23.59 on the

same day. The objectives are to minimize the total routing cost (proportional to travel time) and

customer waiting, and to balance the daily workload over the planning horizon. Each customer

must be visited exactly once by one vehicle within its feasible service period, each vehicle must

depart from and return to the depot in the same day, and the load of each vehicle cannot exceed

its capacity.

This problem is dynamic in the sense that orders are revealed incrementally over time. The daily

planning must determine which orders should be fulfilled on that day and in which sequence the

vehicles should visit the customers. These decisions are made without the knowledge of future

orders. However, even if the problem is dynamic, the routing problem at the beginning of each

particular day over the planning horizon can be viewed as a static problem since the routes for that

day are planned based on the orders known so far and the routes are fixed before their execution.

Figure 2 illustrates the planning process for a small DMPVRP example consisting of two days. For

simplicity, we assume that the demand of each order is one, the capacity of the vehicle is three, and

two vehicles are available. Before the first day, as shown in (a), six orders are already logged in the

system. Three of these, denoted by triangles, can be fulfilled either on the first day or the second

day, while the other three can only be served on the first day. At the beginning of the planning

horizon, the planner has to construct the routing plan for the first day, as shown in (b). Before the
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second day is planned, three new orders have arrived, as shown in (c). The routes for the second

day are shown in (d).

(a) orders arrived before day 1

(feasible service days:       {1}        {1, 2})


(b) routes for day 1

(      )


(c) 3 newly arrived orders

 (feasible service days:       {2})


(d) routes for day 2

(       )


Figure 2. A small instance of the DMPVRP

This example illustrates that the challenging part of the problem is to decide on the first day

whether to serve the triangle orders, or whether to postpone them until the second day without

knowing which orders will arrive during the first day. On the one hand, if the new orders are

destined for locations close to those of the triangle orders, it may be wise to postpone them so as

to minimize the total travel time. On the other hand, if too many orders are postponed, customer

waiting is prolonged and the feasibility of the next day’s solution may be jeopardized due to the

limited available vehicle capacity.
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2.2 Mathematical formulation

The planning for each particular day can be regarded as a special case of the PVRP with unit

visit frequency and consecutive allowable delivery periods. Without loss of generality, we present

the formulation for the planning problem on day t (t ∈ T , where T = {1, 2, . . . , r} denotes the

planning horizon). Denote the updated planning horizon on day t by T ′ = {t, t+1, . . . , r}, the set of

known but unvisited orders by N = {1, 2, . . . , n}, and the set of vehicles by K = {1, 2, . . . , m}. The

depot is located at 0 and the set of all locations is N0 = N ∪ {0}. The parameter cij represents the

travel time on arc (i, j) ∈ A, where A is the set of arcs between all the locations in N0. Each order

i specifies a demand qi and a service time di. We denote the original consecutive feasible service

days for order i by {ai, . . . , bi}. Note that the first feasible day has to be adjusted to a′i = max{t, ai}
when planning on day t. Each vehicle has a capacity Q and each route has a duration limit D. The

binary variables xt
ijkl denote the decisions made on day t. They are equal to 1 if and only if vehicle

k travels from i to j on day l. The constraints are defined as follows:

∑

l∈{a′i,...,bi}

∑

k∈K

∑

j:(i,j)∈A

xt
ijkl = 1 ∀i ∈ N (1)

∑

i∈N

∑

j:(i,j)∈A

qix
t
ijkl ≤ Q ∀k ∈ K, l ∈ T

′
(2)

∑

i∈N

∑

j:(i,j)∈A

(cij + di)xt
ijkl ≤ D ∀k ∈ K, l ∈ T

′
(3)

∑

j∈N

xt
0jkl = 1 ∀k ∈ K, l ∈ T

′
(4)

∑

i:(i,h)∈A

xt
ihkl −

∑

j:(h,j)∈A

xt
hjkl = 0 ∀h ∈ N, k ∈ K, l ∈ T

′
(5)

∑

i∈N

xt
i0kl = 1 ∀k ∈ K, l ∈ T

′
(6)

xt
ijkl ∈ {0, 1} ∀(i, j) ∈ A, k ∈ K, l ∈ T

′
. (7)

Constraints (1) ensure that each customer is visited once by exactly one vehicle within its feasible

service days. Constraints (2) guarantee the vehicle capacity limit is not exceeded. The duration

limit on each route is ensured by constraints (3). Constraints (4)–(6) state that each vehicle must
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Figure 3. Penalty curve

start and end its route at the depot and that flow is conserved at each customer location. Con-

straints (7) define the binary variables.

The first objective, minimizing the total travel time of visiting the orders in N , can be formulated

as

f t
1 =

∑

l∈T ′

∑

k∈K

∑

(i,j)∈A

cijx
t
ijkl. (8)

To minimize the total customer waiting, for each customer having multiple feasible service days,

we assign a penalty for not visiting it on the first of its feasible service days. This penalty increases

quadratically with customer waiting time, and goes up to 1 if the customer is visited at the end of

its feasible service days, as shown in Figure 3. This penalty function favors short waiting times for

several customers, as opposed to long waiting times for a few. For example, letting three customers

wait for one day is preferable to letting one customer wait for three days. Let N ′ denote the set of

customers having multiple feasible service days, and let the integer variable yt
i be the day when

customer i is visited. The second objective can be formulated by:

f t
2 =

∑

i∈N ′

(
yt

i − a′i
bi − a′i

)2

, (9)

where

yt
i =

∑

l∈{a′i,...,bi}

∑

k∈K

∑

j:(i,j)∈A

lxt
ijkl ∀i ∈ N ′. (10)

The third objective, balancing the daily workload over the planning horizon, is more difficult to

define since future orders are unknown. In a static problem, this objective can be achieved by mini-

mizing the total deviation of daily workload, where a single day’s workload deviation is measured
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by the absolute value of the difference between that day’s workload and the average daily work-

load over the planning horizon. However, in the dynamic case, it is unwise to allocate the known

orders evenly to all future days of the planning horizon. Instead, it seems preferable to focus on

the workload of the current day, since we have the complete knowledge of the orders accumulated

at the beginning of that day. Moreover, since the actual average daily workload cannot be obtained

until the end of the planning horizon, we use an estimate of the average daily workload, denoted

by w̃t, based on historical data. The third objective is hence formulated as:

f t
3 =

∣∣∣∣∣∣
∑

k∈K

∑

(i,j)∈A

cijx
t
ijkt − w̃t

∣∣∣∣∣∣
. (11)

As mentioned, scalar techniques and the Pareto method are the two most used strategies for multi-

objective optimization. However, in a dynamic context, the Pareto method is inappropriate be-

cause even if it were possible to determine a set of Pareto optimal solutions, it would be necessary

to implement one of these before the next day’s planning, without guidelines on how to make this

selection. We have therefore opted to implement the scalar method with weights, 1, w2 and w3, for

objective f t
1, f t

2 and f t
3, respectively, and we work with the aggregate objective

f t = f t
1 + w2f

t
2 + w3f

t
3. (12)

3 A Three-Phase Rolling Horizon Heuristic

We propose a three-phase rolling horizon heuristic to handle the dynamic aspect of the problem.

Planning on day t starts with adjusting the set of feasible service days for the yet unvisited cus-

tomers, including those revealed on day t − 1. A three-phase heuristic (TPH) is then applied to

construct the delivery plan for that day. In order to minimize the total travel time over the plan-

ning horizon, instead of only planning the routes for day t, the TPH also optimizes the routes for

τ days in the future. Let Tt = {t, . . . , t + τ} be the planning horizon considered on day t. Phase I

selects the customers to be visited within Tt. The selection is necessary because the feasible service

days of the customers may not be entirely included in Tt. To this end, we perform a time-space

correlation analysis on the known customers. In Phase II, given the customers selected for period

Tt, routes are constructed by treating the planning problem as a PVRP with a service frequency

equal to 1 over the planning horizon Tt. This routing problem is solved by means of a variable

8



neighborhood search heuristic. In Phase III, the routes to be executed on day t are postoptimized

by means of a tabu search algorithm, and the customers visited on day t are removed from further

consideration. This three-phase scheme is summarized in Algorithm 1.

Algorithm 1 : Rolling horizon framework

1: Input: the set N_newt of customers revealed on each day t ∈ T

2: Output:the routing plan R = {R1, . . . , R|T |} for horizon T

3: N ← ∅
4: for t = 1 to |T | do
5: AdjustVisitDays(N )
6: N ← N ∪N_newt−1

7: Nt ← SelectCustomers(N ) // Phase I
8: {Rt, . . . , Rt+τ} ← RouteCustomer(Nt, Tt) // Phase II
9: Rt ← Optimize(Rt) // Phase III

10: N ← N \ {i : i ∈ Rt}
11: R← R∪Rt

12: end for

In the TPH, τ is a user-defined parameter. A small value of τ results in a planning problem of small

size for the subsequent solution phases and hence reduces the computational burden, whereas a

large value of τ helps optimize the total routing cost over the planning horizon. A sensitivity

analysis on τ is conducted in Section 4.

3.1 Phase I: Customer selection

The customer selection phase attempts to determine a good set of customers to be visited in the

future τ days without relying on routing information. This is achieved by analyzing the time-

space correlation between the known customers, as shown in Algorithm 2. More specifically, for

each customer i we define a compatibility index qil for each of its allowable service days, where l ∈
{a′i, . . . , bi}. A larger value of qil corresponds to a higher visit preference for day l. The parameter

is determined as follows. First set qil equal to 0 for all customers and feasible service days. Now

consider two customers i and j having common allowable service days. If cij ≤ ρ then both qil and

qjl are increased by 1/(cij + δ)ε (l ∈ {a′i, . . . , bi} ∩ {a′j , . . . , bj}), where ρ, δ and ε are user-defined

parameters. A smaller cij results in a larger increment (see Figure 4). For each customer i, the day

with the highest compatibility index is selected as the best service day. The customers whose best
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service days lie within Tt are selected for visit during that horizon. This procedure is described as

Algorithm 2.

Algorithm 2 : Phase I (Customer selection)
1: Input: the set of known customers N

2: Output: the set of customers Nt to be visited within period Tt

3: for i = 1 to |N | do
4: for l = a′i to bi do
5: qil ← 0

6: end for
7: end for
8: for i = 1 to |N | − 1 do
9: for j = i + 1 to |N | do

10: if cij ≤ ρ and {a′i, . . . , bi} ∩ {a′j , . . . , bj} 6= ∅ then
11: for l ∈ {a′i, . . . , bi} ∩ {a′j , . . . , bj} do
12: qil ← qil + 1/(cij + δ)ε

13: qjl ← qjl + 1/(cij + δ)ε

14: end for
15: end if
16: end for
17: end for
18: for i = 1 to |N | do
19: vi ← arg minl∈{a′i,...,bi} qil

20: end for
21: Nt ← {i : vi ∈ Tt}

3.2 Phase II: Variable neighborhood search

The aim of the Phase II is to construct routes for customers on each day of Tt. This problem is

treated as a PVRP with frequency 1, where the planning horizon is {t, t + 1, . . . , t + τ}, and each

selected customer i must be served with frequency 1 between day max{t, ai} and day min{t +

τ, bi}. The PVRP is solved by means of a variable neighborhood search heuristic (see Algorithm

3), made up of three components: initialization, local search and shaking. An initial solution is

first constructed by means of a sweep heuristic. The local search phase is based on a tabu search

(TS) algorithm that uses simple insertion moves to transfer customers from their route to another

route. For each customer, all possible reinsertion positions are attempted and the one leading to the

10



0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

c
ij

1/(c
ij
+δ)ε                                                                             

                                                                                        

 

 

δ =2, ε =1.5
δ =5, ε =1

Figure 4. The increment value curve for different value of δ and ε

minimum objective value is selected. If TS fails to improve the solution within a preset number

θ of iterations, it restarts from another solution provided by a shaking phase, based on a ruin

and recreate approach (RRA) (Schrimpf et al., 2000; Pisinger and Ropke, 2007). This procedure is

initiated from the best known solution and attempts to iteratively improve it by removing ξ% of

the customers that have the largest removal costs, and reinserting them by means of the regret

insertion method described in Algorithm 4. If the RRA finds a better solution or fails to improve

the best solution after κ iterations, TS is reapplied to it. Phase II stops after ω iterations.

3.3 Phase III: Postoptimization

Phase III aims to minimize the total travel time on day t. This problem is a Capacitated Vehicle

Routing Problem which is solved by the TS heuristic of Cordeau, Gendreau and Laporte (1997).

In this algorithm, intermediate infeasible solutions are allowed during the search and are con-

trolled by means of a penalized objective f ′(s, t) = c(s, t) + αq(s, t) + βd(s, t), where c(s, t) is

the total travel time by all vehicles on day t, and q(s, t) =
∑

k∈K(
∑

(i,j)∈A qix
t
ijkt − Q)+ and

d(s, t) =
∑

k∈K(
∑

(i,j)∈A(cij + di)xt
ijkt −D)+ are the total violations of the capacity and duration

constraint on day t, where (x)+ = max{0, x}. The coefficients α and β are positive self-adjusting

penalties. Since we only optimize the routes on day t, the last two objectives, minimizing customer

waiting and balancing the daily workload, are not considered in this phase.
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Algorithm 3 : Phase II (Variable neighborhood search)
1: Input: the set of customers Nt to be visited within period Tt

2: Output: the solution s?

3: s ← SweepHeuristic(Nt)
4: s? ← s

5: iteration ← 0

6: while iteration < ω do
7: counter ← 0

8: while counter < θ do
9: s ← TabuSearch(s)

10: iteration ← iteration + 1

11: if s < s? then
12: counter ← 0

13: s? ← s

14: else
15: counter ← counter + 1

16: end if
17: end while
18: counter ← 0

19: s ← s?

20: while counter < κ do
21: s ← RRA(s, ξ)
22: iteration ← iteration + 1

23: if s < s? then
24: s? ← s

25: break
26: else
27: counter ← counter + 1

28: end if
29: end while
30: end while
31: return s?

4 Computational Results

The heuristic just described was implemented in C and executed on a Linux computer with lx24-

amd64 architecture and two Gbytes of RAM. The data and parameters used in our tests are first

described. Sensitivity analyses on the parameters used in the heuristic are then performed. Finally

we provide the results of our tests on the Lantmännen data.
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Algorithm 4 : Phase II (Ruin and recreate heuristic)
1: numToRemove is the number of customers to be removed and reinserted
2: Nt is the set of customers in the solution s

3: Input: current solution s
4: Output: updated solution s

5: NRem ← ∅
6: while |NRem| < numToRemove do
7: for i ∈ Nt do
8: RCi ← CalculateRemovalCost(i, s)
9: end for

10: i? ← arg mini∈Nt RCi

11: s ← RemoveCustomer(i?, s)
12: NRem ← NRem ∪ {i?}
13: Nt ← Nt \ {i?}
14: end while
15: while NRem 6= ∅ do
16: for i ∈ NRem do
17: bestICi ← CalculateBestInsertionCost(i, s)
18: secondICi ← CalculateSecondBestInsertionCost(i, s)
19: end for
20: i? ← arg maxi∈NRem(secondICi − bestICi)
21: s ← InsertCustomer(i?, s)
22: NRem ← NRem \ {i?}
23: end while

4.1 Data and parameters

Real-world data were collected from Lantmännen. There are altogether 11 data sets, five of which

involve a 10-day planning horizon and six involve a 15-day planning horizon. On average 80

orders are received every day. The number of feasible service days ranges from one to 15 and is

equal to 2.5 on average. Figure 5 shows the distribution of the number of days elapsed between

the day at which an order is placed and the first feasible service day. Most customers order two

or three days before the start of the service period. The average demand of the orders is 6,306kg,

and the vehicles have a capacity of 40,000kg. We use Euclidian distances and assume the vehicle

speed is 45km/hour.

Based on preliminary tests, parameters ρ, δ and ε in Phase I of the TPH were set to 60, 2 and 1.5,

respectively. The maximum numbers of non-improving iterations for the TS and the RRA of Phase

II, i.e., parameters θ and κ, were set to 102 and 104, respectively. In the RRA, between 25% and 35%
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Figure 5. Distribution of the number of days before the start of the service period when customers call in

of the customers are removed and reinserted in each iteration. The estimated daily workload for

objective function f t
3 in Equation (11) is obtained from the workload of the previous five days and

is updated adaptively for each planning day.

4.2 Sensitivity analyses

This section describes the sensitivity analyses that were performed to assess the behaviour of the

TPH.

Number of days to plan in TPH

As mentioned in Section 3, the TPH not only plans the routes for day t, but also for τ days in

the future. We tested the TPH with different values of τ on 11 instances. Figure 6 illustrates the

convergence of the TPH for three different values of τ . When τ equals 1 or 2, Phase I selects

approximately 33% or 50% of the customers, respectively. The results show that τ = 1 is not

sufficient but τ = 2 works very well. With a short running time (less than four minutes), τ = 2

even provides better results than τ = ∞. This is because within a given short running time, the

problem of smaller size can be better optimized due to a more thorough search, and the correlation

analysis provides good candidates for the customers that should be visited within the next two

days.
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Effectiveness of correlation analysis

To further demonstrate the effectiveness of correlation analysis, we compare the results obtained

with correlation analysis to those using a random scheme. In the random scheme, we assume each

customer is randomly and uniformly assigned to one of its feasible service days, and customers

assigned to the first τ days are selected. Figure 7 shows the comparison between the two schemes.

The horizontal axis is the instance index and the vertical axis gives the total travel time over the

planning horizon by using a random selection scheme or correlation analysis. The running time

is set at four minutes. For all 11 instances, the solutions provided by the correlation analysis are

consistently better than those obtained by the random selection scheme.

Results for the multi-objective function

In this experiment, we assess the effectiveness of the TPH to handle the multiple objectives. Table

1 shows the values of the first objective, i.e., total travel time (denoted by F1), and of the second

objective, i.e., total customer waiting (denoted by F2), with different values of w2 ranging from 0 to

20. Column ’F1’ and ’F2’ are the total travel time over the planning horizon and the total number

of waiting days for all customers over the planning horizon, respectively. The last row ’Average’

shows the average values for the 11 instances. As w2 increases from 0 to 20, the total customer

waiting is reduced by half on average, whereas the total travel time increases only slightly, by less
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Figure 7. Comparison between correlation analysis and random selection scheme

than 1 %. Figure 8 depicts the relative changes of total travel time and total customer waiting as a

function of w2.

Similar results are obtained for the total travel time and for the total workload deviations with

increasing values of w3, as shown in Table 2 and Figure 9. In Table 2, column ’F3’ is the sum

of deviations between each day’s duration and the average daily duration, over the planning

horizon. The last row shows the average values for the 11 instances. As can be seen from the

results, when w3 increases from 0 to 0.6, the average workload deviation decreases by more than

70%, whereas the total travel time only increases by approximately 0.5%. We also note that the rate

of deviation reduction decreases as w3 increases. In Figure 9, within the interval 0.4 ≤ β ≤ 0.6, the

deviation reduction curve is nearly flat and the deviation reduction is insignificant. This is because

the objective function f t
3 used in the TPH minimizes the difference between the workload on day

t and an estimation of the average daily workload instead of the actual average workload.

4.3 Comparison between TPH solutions and the company’s solutions

Lantmännen already works with high quality solutions obtained by running their vehicle routing

software 12 minutes each day on their latest platform. In order to establish a fair comparison, we

have also run our algorithm for 12 minutes on a similar computer, but the improvement obtained
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w2 0 2 4 8 12 16 20
Data set F1 F2 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2

101 52024 380 52271 317 52060 296 52295 251 52306 225 52386 203 52546 171
102 52700 391 52786 327 52919 297 52974 267 53001 236 53039 198 53222 176
103 54333 479 54322 412 54401 389 54439 332 54605 296 54802 272 54939 254
104 54328 449 54222 381 54305 343 54471 310 54798 263 54641 250 55038 241
105 56672 404 56522 343 56591 302 56607 252 57012 218 57063 203 57164 185
106 57144 414 57279 365 57346 320 57381 276 57684 254 57582 228 57872 199
151 77820 708 78103 593 78057 528 78079 477 78341 419 78377 385 78564 351
152 80669 658 80628 578 80485 516 80671 451 80825 403 81077 356 81232 328
153 80226 658 80213 587 79985 525 80373 459 80339 415 80690 362 80631 350
154 81710 620 81809 532 81879 492 82159 417 82248 379 82203 350 82431 318
155 84950 634 85015 540 85031 474 84948 422 85142 399 85420 342 85465 331

Average 66597 526 66651 452 66641 407 66763 355 66936 318 67025 286 67191 264

Table 1. Total travel time and total customer waiting with different values of the wight w2 assigned to customer waiting
time

after four minutes is insignificant. Comparative results are presented in Table 3. Ten random runs

for each instance are performed for our algorithm to obtain the average value of the total driving

time, total customer waiting, and daily workload deviation. These statistics are provided in the

columns ’Average total duration’, ’Average total customer waiting’ and ’Average total workload

deviation’, respectively. The best value of the total travel time within the 10 random runs are also

presented in column ’Best total duration’. The results provided by the company are for a single

run. The average values for all the instances are given in the last row. Regarding the total dura-

tion, our average value for 10 runs is slightly better (by 0.2%) than that of Lantmännen, probably

because their solutions and ours are both very close to optimality. However, the TPH significantly

improves customer waiting and workload deviation by up to 24% and 35%, compared with the

company’s solutions. We also found the best solutions for all instances. This is a clear sign of the

effectiveness of our heuristic. One should bear in mind, however, that customer waiting and daily

workload balance may not have been optimized by the company.

5 Conclusion

We have considered a real-life dynamic multi-period and multi-objective routing problem encoun-

tered by a large distributor operating in Sweden. The planning horizon consists of several periods
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Figure 8. Relative changes in total travel time and total customer waiting as a function of the weight w2 assigned to
customer waiting time

and the problem considers three objectives, including minimization of the total travel time, mini-

mization of customer waiting, and daily workload balancing over the planning horizon. We have

presented a mixed integer linear programming formulation for the problem, and we have pro-

posed a three-phase heuristic embedded within a rolling horizon scheme. The main idea of the

heuristic is to wisely select the customers to be visited in the near future, and to route these cus-

tomers so that the overall travel time can be minimized efficiently. The choice of customers to be

routed on a given day is performed rather effectively through a time-space correlation analysis.

The multiple objectives are handled by the scalar technique. The method was implemented and

tested on real-life data. Results show that the proposed TPH provides very high quality solutions

within a reasonable running time. It improves upon the company’s solutions in terms of travel

time, customer waiting and daily workload balance, with gains of 0.2%, 24% and 35%, respec-

tively. Our method is general and applies to other contexts.
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w3 0 0.1 0.2 0.3 0.4 0.5 0.6
Data set F1 F3 F1 F3 F1 F3 F1 F3 F1 F3 F1 F3 F1 F3

101 52024 1221 51972 597 52284 344 52174 169 52303 131 52447 139 52247 123
102 52700 1146 52791 664 52676 340 52878 214 52863 154 52876 87 52786 123
103 54333 1285 54183 572 54274 430 54157 266 54107 239 54248 207 54207 190
104 54328 1603 54463 835 54566 494 54851 491 54812 399 54877 411 55063 369
105 56672 1430 56711 1043 56888 599 57045 527 56994 461 56908 405 57211 488
106 57144 1372 57310 1009 57396 752 57496 631 57522 610 57576 673 57682 645
151 77820 1218 77946 808 78022 638 78264 603 78357 552 78466 555 78400 500
152 80669 1032 80718 654 80832 499 80596 416 80747 363 80603 373 80701 336
153 80226 1170 80128 605 80199 404 80336 305 80503 276 80401 245 80483 267
154 81710 1526 81945 848 81826 726 82021 551 82318 510 82253 512 82447 494
155 84950 1460 84848 989 84971 723 84921 693 85378 631 85393 697 85386 683

Average 66597 1314 66637 784 66721 540 66794 442 66900 393 66913 391 66964 383

Table 2. Total travel time and total workload deviation for the tests with different values of the weight w3 assigned to
balance daily workload
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Figure 9. Relative changes in total travel time and total workload deviation as a function of the weight w3 assigned to
daily workload deviation
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Lantmännen solution TPH solution
Average Average

Total Total Average Best total total
Total customer workload total total customer workload

Data set |T | duration waiting deviation duration duration waiting deviation

101 10 51958 382 729 52064 51679 330 588
102 10 52702 369 844 52663 52163 312 693
103 10 53727 560 1231 54128 53711 408 530
104 10 54299 444 1117 54439 54089 372 721
105 10 56476 440 535 56429 56009 344 812
106 10 57729 411 606 57211 56740 352 716
151 15 77362 759 1170 77706 77320 632 710
152 15 81135 828 978 80303 79963 618 627
153 15 79600 767 312 79730 79342 604 518
154 15 82164 713 1315 81711 81321 526 756
155 15 85270 685 1060 84540 83992 552 740

Average 66584 578 900 66447 66029 459 673

Table 3. Comparison between the Lantmännen solutions and the TPH solutions
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This paper considers the Dynamic Multi-Period Vehicle Routing Problem which deals with the 
distribution of orders from a depot to a set of customers over a multi-period time horizon. Customer 
orders and their feasible service periods are dynamically revealed over time. The objectives are to 
minimize total travel costs and customer waiting, and to balance the daily workload over the plan-
ning horizon.

This problem originates from a large distributor operating in Sweden. It is modeled as a mixed integer 
linear program, and solved by means of a three-phase heuristic that works over a rolling planning 
horizon. The multi-objective aspect of the problem is handled through a scalar technique approach. 
Computational results show that our solutions improve upon those of the Swedish distributor.
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