190 research outputs found

    Matchings on infinite graphs

    Full text link
    Elek and Lippner (2010) showed that the convergence of a sequence of bounded-degree graphs implies the existence of a limit for the proportion of vertices covered by a maximum matching. We provide a characterization of the limiting parameter via a local recursion defined directly on the limit of the graph sequence. Interestingly, the recursion may admit multiple solutions, implying non-trivial long-range dependencies between the covered vertices. We overcome this lack of correlation decay by introducing a perturbative parameter (temperature), which we let progressively go to zero. This allows us to uniquely identify the correct solution. In the important case where the graph limit is a unimodular Galton-Watson tree, the recursion simplifies into a distributional equation that can be solved explicitly, leading to a new asymptotic formula that considerably extends the well-known one by Karp and Sipser for Erd\"os-R\'enyi random graphs.Comment: 23 page

    NCUWM Talk Abstracts 2015

    Get PDF

    Efficiently Realizing Interval Sequences

    Get PDF
    We consider the problem of realizable interval-sequences. An interval sequence comprises of nn integer intervals [ai,bi][a_i,b_i] such that 0aibin10\leq a_i \leq b_i \leq n-1, and is said to be graphic/realizable if there exists a graph with degree sequence, say, D=(d1,,dn)D=(d_1,\ldots,d_n) satisfying the condition aidibia_i \leq d_i \leq b_i, for each i[1,n]i \in [1,n]. There is a characterisation (also implying an O(n)O(n) verifying algorithm) known for realizability of interval-sequences, which is a generalization of the Erdos-Gallai characterisation for graphic sequences. However, given any realizable interval-sequence, there is no known algorithm for computing a corresponding graphic certificate in o(n2)o(n^2) time. In this paper, we provide an O(nlogn)O(n \log n) time algorithm for computing a graphic sequence for any realizable interval sequence. In addition, when the interval sequence is non-realizable, we show how to find a graphic sequence having minimum deviation with respect to the given interval sequence, in the same time. Finally, we consider variants of the problem such as computing the most regular graphic sequence, and computing a minimum extension of a length pp non-graphic sequence to a graphic one.Comment: 19 pages, 1 figur

    Coloring linear hypergraphs: the Erdos-Faber-Lovasz conjecture and the Combinatorial Nullstellensatz

    Get PDF
    The long-standing Erdos-Faber-Lovasz conjecture states that every n-uniform linear hypergaph with n edges has a proper vertex-coloring using n colors. In this paper we propose an algebraic framework to the problem and formulate a corresponding stronger conjecture. Using the Combinatorial Nullstellensatz, we reduce the Erdos-Faber-Lovasz conjecture to the existence of non-zero coefficients in certain polynomials. These coefficients are in turn related to the number of orientations with prescribed in-degree sequences of some auxiliary graphs. We prove the existence of certain orientations, which verifies a necessary condition for our algebraic approach to work
    corecore