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Coloring linear hypergraphs: the Erdős–Faber–Lovász

conjecture and the Combinatorial Nullstellensatz

Oliver Janzer∗ Zoltán Lóránt Nagy†

Abstract

The long-standing Erdős–Faber–Lovász conjecture states that every n-uniform linear hy-

pergaph with n edges has a proper vertex-coloring using n colors. In this paper we propose

an algebraic framework to the problem and formulate a corresponding stronger conjecture.

Using the Combinatorial Nullstellensatz, we reduce the Erdős–Faber–Lovász conjecture to the

existence of non-zero coefficients in certain polynomials. These coefficients are in turn related

to the number of orientations with prescribed in-degree sequences of some auxiliary graphs.

We prove the existence of certain orientations, which verifies a necessary condition for our

algebraic approach to work.

Keywords: coloring, hypergraphs, Erdős–Faber–Lovász, Combinatorial Nullstellensatz,

graph orientations

1 Introduction

A hypergraph H = (V, E) consists of a nonempty vertex set V , and an edge set E . A hypergraph is
called linear if the intersection of each pair of edges contains at most one vertex. A proper vertex
coloring with a color set C of the hypergraph is a function c : V → C such that each edge consists
of vertices of different colors. A well known conjecture of Erdős, Faber and Lovász, dating back to
1972, asserts an upper bound on the minimum number of colors.

Conjecture 1.1 (Erdős–Faber–Lovász). If a linear hypergraph H = (V, E) has n edges, each of
size at most n, then H can be colored properly by n colors.

Note that the statement follows if one considers only linear hypergraphs such that every vertex is
incident to at least 2 hyperedges, according to the observation below.

Observation 1.2. Consider a hypergraph H = (V, E) in which every edge has size at most n. If
one deletes the vertices of degree 1, any proper coloring of the obtained derived hypergraph with
at least n colors can be extended to a proper coloring of H = (V, E) with the same color set.
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Erdős himself considered this one of his three favourite combinatorial problems, and offered one
of his highest prizes ever for a proof or disproof [5]. By dualizing the problem, its connection
to Vizing’s theorem becomes clear. To this end, one may assign vertices to the edges of H and
introduce the dual hypergraph Ĥ with hyperedges Hv assigned to each vertex v ∈ V (H) such that
Hv consists of the vertices corresponding to hyperedges incident to v in H. If H is linear with
n edges, then the resulting hypergraph Ĥ on n vertices is linear as well. Thus this way we get
another variant of the conjecture.

Conjecture 1.3 (Erdős–Faber–Lovász, 2nd (dual) variant). Any linear hypergraph on n vertices
has chromatic index at most n.

The conjecture is confirmed for certain hypergraph families, but the problem is still widely open,
even though asymptotic and fractional versions were established by Kahn and Seymour [10, 11, 25].
Some notable hypergraph families for which the conjecture is confirmed are the dense derived
hypergraphs for which the minimum degree δ(H) is greater than

√
n [23], the uniform derived

hypergraphs [6] or the cases n ≤ 12 [8, 22] and some other families [3, 7, 9, 17, 20]. These results
mostly apply algorithmic and graph theoretic arguments some with computer-based search. For
further results on the topic, we refer to [21].

In this paper we propose an algebraic approach, in connection with the celebrated Combinatorial
Nullstellensatz of Alon [1]. We point out that the existence of a suitable proper coloring of a
hypergraph H is strongly connected to the existence of a particular degree-bounded orientation
of certain auxiliary graphs obtained from H. In Section 2 we introduce the algebraic tool and
present two types of auxiliary graphs assigned to the linear hypergraphs. The application of the
algebraic tool will imply that if the total sum of certain signed bounded-degree orientations of the
auxiliary graph is nonzero, then there exists a proper coloring with at most n colors. We formulate
a conjecture that in fact, this related stronger variant of the Erdős–Faber–Lovász conjecture also
holds. In Section 3 we study the strengthened variant of Conjecture 1.1 and confirm it in a weak
sense by showing that a special, so-called Vandermonde-type, orientation exists for both families
of auxiliary graphs assigned to arbitrary n-uniform hypergraphs H with n edges. This verifies
a necessary condition for our algebraic approach to work. Finally, in Section 4 we give some
concluding remarks.

2 The algebraic tool and the strengthening of the E–F–L

conjecture

Our starting point is Alon’s celebrated Combinatorial Nullstellensatz [1], more precisely the Non-
vanishing lemma, described below. This tool turned out to be very powerful in several areas of
combinatorics; in particular, in graph coloring problems [1, 14, 18, 26]. The connection of graph
orientations and this lemma appeared first in the influential paper of Alon and Tarsi [2]. Here we
recall the form of the Combinatorial Nullstellensatz that we will apply.

Theorem 2.1 (Combinatorial Nullstellensatz, Non-vanishing lemma [1]). Let F be an arbitrary
field and let P = P (x1, . . . , xk) be a polynomial of k variables over F. Suppose that there exists a

monomial
∏k

i=1 x
di

i , such that the sum
∑k

i=1 di equals the total degree of P , and the coefficient of
∏k

i=1 x
di

i in P is nonzero. Then for any set of subsets A1, . . . , Ak of F such that |Ai| > di, there
exists a k-tuple (s1, s2, . . . , sk) ∈×Ai for which P (s1, s2, . . . , sk) 6= 0.
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In most applications of the Combinatorial Nullstellensatz, the polynomial can be directly derived
from the combinatorial setting, and the choice of the maximal monomial with which Theorem 2.1
is applied is also natural. The main step to make the argument work is to check that the coefficient
of this monomial is not zero. In fact, one usually knows or conjectures in advance the extremal
structure, which can be helpful in setting up the corresponding polynomials and verifying that
the coefficient in view is nonzero. Unlike in those cases, here we have large freedom to consider a
suitable polynomial, and we have to pick the polynomial and its maximal monomial carefully so
that the coefficient is surely nonzero. This provides a rather novel application of the main tool.

Let us continue by setting the main notations. For a graph or hypergraph H, d(v) denotes the
degree of the vertex v. A monomial

∏

j y
αj

j of a multivariate polynomial Q(y) is a t-bounded degree
monomial if the degree of each variable yj is bounded from above by t, i.e. αj ≤ t. The total
degree of a polynomial Q is denoted by deg(Q).

Our aim is to set up a multivariate polynomial where the variables correspond to vertices of H
and the values taken by the variables correspond to colors. The polynomial encodes the coloring
constraints of the hypergraph H. In order to do this, we assign an auxiliary graph G(H) first to
the linear hypergraph H. We note that we shall propose two different kinds of polynomial that
can be used to encode the colouring constraints.

2.1 Setting up polynomials corresponding to proper colorings

From now on, speaking about a linear hypergraph H we always assume that it has n hyperedges
E = {F1, F2, . . . , Fn} of size n, unless specified otherwise.

We start with introducing two kinds of auxiliary graph, G1(H) and G2(H) assigned to the hyper-
graph H. They correspond to two separate approaches to Conjecture 1.1. Both graphs consist of
n vertex-disjoint cliques of size n, together with a set of so-called identifier edges joining vertices
from different cliques. We remark in advance that the identifier edges are not uniquely determined
by the hypergraph H; we have some freedom how to choose them.

Definition 2.2. The auxiliary graph of first kind G1(H) assigned to H is defined as follows. We

take n copies K
(i)
n (i = 1, . . . , n) of the complete graph Kn, where the vertices of K

(i)
n are labelled

by the vertices of Fi, see Figure 1. We call them the base cliques. Here each vertex v ∈ V (H)
appears d(v) times, and for each v ∈ V (H) we choose an arbitrary spanning tree on the set of
those d(v) vertices in G1(H) which are labelled by v. We call these identifier spanning trees. For
each edge of these spanning trees, we define an edge of multiplicity n− 1 in G1(H), see Figure 2.
We call these new edges identifier edges. The edge set of G1(H) consists of the edges of the base
cliques and the identifier edges.

Definition 2.3. The auxiliary graph of second kind G2(H) assigned to H is defined as follows. We

take n copies K
(i)
n (i = 1, . . . , n) of the complete graph Kn, where the vertices of K

(i)
n are labelled

by the vertices of Fi, see Figure 1. We call them the base cliques. Here each vertex v ∈ V (H)
appears d(v) times, and for each v ∈ V (H) we choose an arbitrary identifier spanning tree on the
set of those d(v) vertices in G2(H) which are labelled by v. For each edge vi,jvk,l of the spanning
tree, we either take the set {vi,jvk,t : t 6= l} or the set {vi,tvk,l : t 6= j} to be edges of G2(H). We
call these new edges identifier edges and they have multiplicity 1, see Figure 2. The edge set of
the auxiliary graph consists of the edges of the base cliques and the identifier edges.
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Remark 2.4. In what follows, when vi,jvk,l is an edge in an identifier spanning tree and i < k,
then we shall always take the set {vi,jvk,t : t 6= l} to be the corresponding edges of G2(H).

Figure 1: H and the base cliques of Gi(H), (i ∈ {1, 2})

Figure 2: Identifier edges in auxiliary graphs G1(H) and G2(H)

Remark 2.5. Informally, the identifier edges are defined as follows. For a pair of intersecting
hyperedges in H, their common vertex v has a copy corresponding to each of the two edges. These
two copies are either joined in the corresponding identifier spanning tree or not. If they are, then
in G1(H) we put an identifier edge with multiplicity n− 1 between them, while in G2(H) we put
a set of identifier edges forming a star with n− 1 leaves whose centre is one of the two copies of v
and whose leaves are all vertices in the other base clique, apart from the copy of v.

A suitable coloring for H with n distinct elements of a field F possesses the following properties:

(P1) Every clique Fi contains all of the colors (once).

(P2) Vertices from different cliques which correspond to the same vertex in H are assigned the
same color.

4



In terms of the auxiliary graphs, a suitable vertex-colouring of H corresponds to a vertex-coloring
of Gi(H) (i ∈ {1, 2}) in which any two vertices in the same base clique have different colors, while
any two vertices joined by an edge in an identifier spanning tree have the same color.

In order to determine whether a given coloring is suitable or not, we assign a variable xi,j to each

vertex vi,j (j = 1, . . . , n) of the base cliques K
(i)
n . These variables will take one of n possible values

from F corresponding to the n colors we can use on the vertices. Moreover, we define the following
three families of polynomials.

For any 1 ≤ i ≤ n, let

Qi(x) =
∏

1≤j<j′≤n

(xi,j − xi,j′ ).

For any 1 ≤ i < k ≤ n, if there exist some vi,j ∈ K
(i)
n and vk,l ∈ K

(k)
n which form an edge in an

identifier spanning tree, then let

Ri,k(x) = (xi,j − xk,l)
n−1 − 1.

(Note that, as H is linear, there is at most one such pair of vertices.) Otherwise, let Ri,k(x) = 1.

Similarly, if there exist some vi,j ∈ K
(i)
n and vk,l ∈ K

(k)
n which form an edge in an identifier

spanning tree, then let

Φi,k(x) =

∏

m(xi,j − xk,m)

xi,j − xk,l

,

and otherwise let Φi,k(x)=1.

Define P1(x) and P2(x) as follows:

P1(x) =
n
∏

i=1

Qi(x) ·
∏

1≤i<k≤n

Ri,k(x),

P2(x) =

n
∏

i=1

Qi(x) ·
∏

1≤i<k≤n

Φi,k(x).

Observe that Pj(x) is not uniquely determined yet (it depends on the choice of the identifier
spanning trees), but its total degree can be expressed by the degree profile of the hypergraph as

degPj(x) = n

(

n

2

)

+
∑

v∈V (H)

(d(v)− 1)(n− 1).

In order to apply the Non-vanishing lemma (Theorem 2.1), we have to set the field F. When n = p

is a prime, let P1(x) be viewed as a polynomial over F = Fp. For arbitrary n, let P2(x) be viewed
as a polynomial over F = R.
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Now we can formulate our first contribution which provides an algebraic framework to the main
problem.

Conjecture 2.6. Let H be an n-uniform linear hypergraph with n edges.

(a) One can choose the identifier spanning trees in a way that P2(x) has an (n − 1)-bounded
degree maximal monomial with nonzero coefficient.

(b) When n is a prime, one can choose the identifier spanning trees in a way that P1(x) has an
(n− 1)-bounded degree maximal monomial with nonzero coefficient.

Observe that this conjecture would imply the Conjecture 1.1 of Erdős, Faber and Lovász. Indeed,
if one evaluates the polynomial P1 or P2 on the Cartesian product {0, 1, . . . , n− 1}n, it will vanish
except when the values of the variables correspond to a proper coloring, although one has to suppose
that n is a prime in the case of P1. To see this, note that Qi(x) = 0 holds if and only if there exist
two vertices in some hyperedge Fi with the same color. Moreover, when n is a prime, Fermat’s
little theorem implies that Ri,k(x) = 0 for some i, k if and only if not all identified vertices received
the same color. Finally, if Qi(x) 6= 0 for every i, then we have Φi,k(x) = 0 for some i, k if and only
if not all identified vertices were colored with the same color. Hence, Pj(x) 6= 0 (j ∈ {1, 2}) holds
if and only if both properties (P1) and (P2) are satisfied.

2.2 Searching for a nonzero coefficient and the connection to orienta-

tions

Alon and Tarsi made a connection between a certain coloring problem and the number of Eulerian
orientations via the Non-vanishing Lemma [2]. In our case, the situation is somewhat similar.

Define the sign of an orientation of the graph Ga(H) (a ∈ {1, 2}) to be (−1)t, where t is the
number of edges which point from xi,j to xi,j′ with j < j′ or from xi,j to xk,l with i < k. Now,
using the correspondence between Ga(H) and Pa(x), it is not hard to see that the coefficient of
any maximum-degree monomial

∏

i,j x
αi,j

i,j in Pa(x) is the sum of the signs of those orientations of
Ga(H) in which the in-degree of every vertex vi,j is precisely αi,j .

To make the Non-vanishing lemma applicable, we clearly need that the exponent of each variable
is less than n. We will also rely on the following basic fact.

Fact 2.7. (−1)(
n

2
) ·Qi(x) =

∏

j<j′ (xi,j′ − xi,j) equals the Vandermonde determinant















1 xi,1 x2
i,1 . . . xn−1

i,1

1 xi,2 x2
i,2 . . . xn−1

i,2

1 xi,3 x2
i,3 . . . xn−1

i,3
...

...
...

. . .
...

1 xi,n x2
i,n . . . xn−1

i,n















.

Using Fact 2.7, the product
∏

iQi(x) ·
∏

i,j x
βi,j

i,j is a linear combination of monomials of the form
∏

i,j x
βi,j+σi(j)
i,j , where {σi(j) : 1 ≤ j ≤ n} = {0, 1, . . . , n − 1} for every i. Thus, to determine

the coefficients of the (n− 1)-degree bounded monomials with maximal degree in P1(x), it suffices
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to consider those monomials
∏

i,j x
βi,j

i,j in
∏

i<k Ri,k(x) which have maximal degree and for which
there exist functions σi as above such that βi,j + σi(j) ≤ n− 1 for every i, j. Call such monomials
Vandermonde-completable. Similarly, to compute the coefficients of the (n − 1)-bounded degree
polynomials in P2(x) with maximal degree, we only need to consider Vandermonde-completable
monomials in

∏

i<k Φi,k(x).

We call an orientation of the identifier edge set (in G1(H) or G2(H)) Vandermonde-completable if
one can orient the edges in the base cliques such that each clique spans a transitive tournament
and every in-degree in the whole graph is bounded by n−1 from above. Under the correspondence
between the orientations of the identifier edges in G1(H) and the monomials in

∏

i<k Ri,k(x),
Vandermonde-completable orientations correspond to Vandermonde-completable monomials and
vice versa. The same holds in the case of G2(H) and

∏

i<k Φi,k(x).

2.3 Main results

Our main result states that Vandermonde-completable orientations exist.

Theorem 2.8. Let H be an n-uniform linear hypergraph with n hyperedges. Then, for any choice
of the identifier spanning trees, there is a Vandermonde-completable orientation of the identifier
edges in G1(H).

When n is a prime, the number of Vandermonde-completable orientations corresponding to a
given Vandermonde-completable monomial in

∏

i<k Ri,k(x) is not divisible by n. Moreover these
orientations all have the same sign, so we obtain the following corollary.

Corollary 2.9. Let n be a prime and let H be an n-uniform linear hypergraph with n hyperedges.
Then, for any choice of the identifier spanning trees, there is a Vandermonde-completable monomial
(with non-zero coefficient) in

∏

i<k Ri,k(x).

We also prove the analogue of Theorem 2.8 in the case of G2(H), although in this case we make a
specific choice for the identifier spanning trees.

Theorem 2.10. Let H be an n-uniform linear hypergraph with n hyperedges. Then one can choose
the identifier spanning trees in a way that there is a Vandermonde-completable orientation of the
identifier edges in G2(H).

Unfortunately, we cannot prove an analogue of Corollary 2.9 because we cannot compute the sum
of the signs of the orientations that yield the same monomial in

∏

i<k Φi,n(x). We leave it as a
conjecture.

Conjecture 2.11. Let H be an n-uniform linear hypergraph with n hyperedges. Then one can
choose the identifier spanning trees in a way that there is a Vandermonde-completable monomial
(with non-zero coefficient) in

∏

i<k Φi,k(x).

7



3 The proofs of the main results

3.1 The case of auxiliary graph G1(H)

Proof of Theorem 2.8. We will use the following claim.

Claim 3.1. Let T be a tree with k vertices. Write T ′ for the multigraph on the same vertex set,
obtained by taking n − 1 copies of each edge of T . Suppose that for every v ∈ V (T ) there is an
integer αv such that αv ≤ n−1 and

∑

v∈V (T ) αv = (k−1)(n−1). Then there exists an orientation

of the edges of T ′ in which every v has in-degree αv.

Proof. We use induction on k. The statement is clear for k = 0, 1. Assume that k > 1. Let w

be a leaf of T . Let uw be the unique edge of T containing w. Direct αw of the (n − 1) edges
of T ′ corresponding to uw towards w and direct the rest towards u. (Note that the conditions
αv ≤ n − 1 and

∑

v∈V (T ) αv = (k − 1)(n − 1) ensure that αw ≥ 0.) Let S be the tree obtained

from T by deleting w. For every v ∈ V (S) \ {u}, let βv = αv, while let βu = αu − (n − 1 − αw).
Clearly,

∑

v∈V (S) βv = (k− 2)(n− 1). Hence, by the induction hypothesis, we can orient the edges

of S′ (which is the multigraph obtained by taking n− 1 copies of each edge of S) in a way that the
in-degree of every vertex v ∈ V (S) is βv. Together with the orientation of the edges corresponding
to uw, we get a suitable orientation of T ′, completing the induction step.

For any 1 ≤ a, b ≤ n with a 6= b, let s(a, b) =

{

a− b if a > b

n+ a− b if a < b

Let v ∈ V (H). Let the edges of H which contain v be Fi1 , . . . , Fik , where i1 < · · · < ik. Then each

base clique K
(ij)
n (1 ≤ j ≤ k) contains a vertex labelled by v, call it wj . Let T be the identifier

spanning tree on the vertex set {w1, . . . , wk}. Define i0 to be ik. Note that s(ij−1, ij) ≤ n− 1 for
every 1 ≤ j ≤ k and

∑

1≤j≤k s(ij−1, ij) = (k − 1)n ≥ (k − 1)(n− 1). Thus, by Claim 3.1, we can
orient the edges of G1(H) corresponding to the spanning tree T in a way that every vertex wj gets
in-degree at most s(ij−1, ij). Hence, the in-degree at every wj is at most max(s(iq, ij) : q 6= j).

Performing this for every v ∈ V (H), we obtain an orientation of the identifier edges in G1(H).
We claim that it is Vandermonde-completable. Indeed, for every 1 ≤ i ≤ n, using the fact that

{s(q, i) : q 6= i} = {1, . . . , n− 1} and that H is linear, the number of vertices of K
(i)
n with in-degree

at least n− j is at most j for every 1 ≤ j ≤ n.

3.2 The case of auxiliary graph G2(H)

Proof of Theorem 2.10. For any x ∈ V (H), let the identifier spanning tree corresponding to x

be the path vi1,j1vi2,j2 . . . vit,jt , where i1 < i2 < · · · < it (so the edges of H containing x are
Fi1 , . . . , Fit). We call the auxiliary graphs G2(H) obtained this way path-like. Note that if vi,j and
vk,l (i < k) are identified, then the edges between the ith and kth base clique are joining each
vertex of the kth base clique to vi,j except for vk,l.

We claim that for this choice, there is a Vandermonde-completable orientation of the identifier
edges in G2(H). The proof is by induction on n. The case n = 1 is trivial. For the inductive
step, suppose that we have proved the claim for n and let us consider a path-like auxiliary graph

8



G = G2(H) of a hypergraph H with n+1 edges F0, F1, . . . , Fn, each of size n+1. We call a vertex
vi,j a source if it forms an edge with vk,l for some i < k in an identifier spanning path.

Figure 3: Spanning paths on identified vertices in G2(H) (top) and the orientation of the identifier
edges adjacent to F0 or S.

Note that each edge Fi contains a vertex which is not contained in any other edge Fj . That is,
each base clique contains at least one vertex with no identification to other vertices. Without loss
of generality, v1,n+1 ∈ F1, . . . , vn,n+1 ∈ Fn are such vertices. Let S = {v1,n+1, . . . vn,n+1} and let
H′ be the n-uniform linear hypergraph whose edges are F ′

1 = F1 \{v1,n+1}, . . . , F ′
n = Fn \{vn,n+1}.

Note that the identifier edges of G2(H) induced by the set F ′
1 ∪ · · · ∪ F ′

n are the identifier edges
of G′ = G2(H′). Hence, by the induction hypothesis, we may orient them in a Vandermonde-
completable way. We extend this to a Vandermonde-completable orientation of the identifier edges
of G2(H) as follows.

• Orient each identifier edge with one endpoint in S towards the other endpoint of the edge
(which is necessarily the source). Clearly, the path-like property of G2(H) implies that the in-
degree of any source vertex is increased by at most one, while the in-degree of any non-source
vertex is unchanged.

• Consider all the identifier edges adjacent to the vertices of F0. Each pair of base cliques F0

and Fk spans either zero or n identifier edges, all of them incident to a single vertex v0,i of
F0. Orient these edges v0,ivk,j towards v0,i if and only if vk,j is a source or j = n+ 1. This
does not change the in-degree of the source vertices in F ′

1 ∪ · · · ∪ F ′
n, and it increases the

in-degree of any non-source vertex in F ′
1 ∪ · · · ∪ F ′

n by at most one.

It is straightforward to see that the resulting orientation is Vandermonde-completable in the base
cliques Fi, i > 0, since each in-degree is increased by at most one and we added a new vertex of
in-degree zero to each Fi. Thus, we only have to confirm that F0 is also Vandermonde-completable.

9



Since Fi has at most n − i source vertices, any vertex in F0 which is joined to an element of Fi

in an identifier spanning tree has in-degree at most n − i + 1. Moreover, any non-source vertex
in F0 has in-degree 0. Hence, for each i ≥ 1, the number of vertices in F0 with in-degree at least
n− i+ 1 is at most i, as required.

4 Concluding remarks

Theorems 2.8 and 2.10 suggest that Conjecture 2.6 (and, consequently, the Erdős–Faber–Lovász
conjecture) is likely to hold.

For some linear hypergraph families, we can find (n− 1)-bounded degree monomials which corre-
spond to an (almost) unique orientation of the auxiliary graph, hence their coefficient is non-zero.
For example, this is the case when the degree of every vertex in H is either 1 or at least

√
n, or

when we have a decent proportion of pairs of hyperedges that do not intersect each other. However,
we were unable to extend this approach to be applicable to all linear hypergraphs.

Since the polynomials P1 and P2 have a rather difficult structure and involve a huge sum of
monomials, approaches which provide a simplified sum or an exact formula for the coefficients seem
essential to resolve the problem. As we have seen, Fact 2.7 already provides some simplification. We
mention that suitable simplified formulae have been obtained in other settings of the Combinatorial
Nullstellensatz, see [12, 13, 15, 24]. In these results, the key ingredient was the following coefficient
formula, also mentioned as Quantitative Nullstellensatz.

Lemma 4.1 (Coefficient formula). Let F be an arbitrary field and P ∈ F[x1, x2, . . . , xn] a poly-
nomial of degree deg(P ) ≤ d1 + d2 + · · · + dn. For arbitrary subsets C1, C2, . . . , Cn of F with
|Ci| = di + 1, the coefficient of

∏

xdi

i in P is

∑

c1∈C1

∑

c2∈C2

· · ·
∑

cn∈Cn

P (c1, c2, . . . , cn)

φ′
1(c1)φ

′
2(c2) . . . φ

′
n(cn)

,

where φi(z) =
∏

c∈Ci
(z − c).

Once we have this coefficient formula, we may seek for a suitable Cartesian product set (or grid)
C1 × C2 × . . . × Cn on which polynomial P vanishes in most cases. This approach proved to
be successful in several different combinatorial problems, see [13]. To reach an analogous goal, one
may take a suitable describing polynomial and suitable monomial (rather than a different grid) in
order to guarantee vanishing terms in the sum for the coefficient, via Vandermonde-completability.
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