688 research outputs found

    Degradation in FPGAs: Monitoring, Modeling and Mitigation

    Get PDF
    This dissertation targets the transistor aging degradation as well as the associated thermal challenges in FPGAs (since there is an exponential relation between aging and chip temperature). The main objectives are to perform experimentation, analysis and device-level model abstraction for modeling the degradation in FPGAs, then to monitor the FPGA to keep track of aging rates and ultimately to propose an aging-aware FPGA design flow to mitigate the aging

    Identification and Rejuvenation of NBTI-Critical Logic Paths in Nanoscale Circuits

    Get PDF
    The Negative Bias Temperature Instability (NBTI) phenomenon is agreed to be one of the main reliability concerns in nanoscale circuits. It increases the threshold voltage of pMOS transistors, thus, slows down signal propagation along logic paths between flip-flops. NBTI may cause intermittent faults and, ultimately, the circuit’s permanent functional failures. In this paper, we propose an innovative NBTI mitigation approach by rejuvenating the nanoscale logic along NBTI-critical paths. The method is based on hierarchical identification of NBTI-critical paths and the generation of rejuvenation stimuli using an Evolutionary Algorithm. A new, fast, yet accurate model for computation of NBTI-induced delays at gate-level is developed. This model is based on intensive SPICE simulations of individual gates. The generated rejuvenation stimuli are used to drive those pMOS transistors to the recovery phase, which are the most critical for the NBTI-induced path delay. It is intended to apply the rejuvenation procedure to the circuit, as an execution overhead, periodically. Experimental results performed on a set of designs demonstrate reduction of NBTI-induced delays by up to two times with an execution overhead of 0.1 % or less. The proposed approach is aimed at extending the reliable lifetime of nanoelectronics

    Cross-Layer Resiliency Modeling and Optimization: A Device to Circuit Approach

    Get PDF
    The never ending demand for higher performance and lower power consumption pushes the VLSI industry to further scale the technology down. However, further downscaling of technology at nano-scale leads to major challenges. Reduced reliability is one of them, arising from multiple sources e.g. runtime variations, process variation, and transient errors. The objective of this thesis is to tackle unreliability with a cross layer approach from device up to circuit level

    Reduction of NBTI-Induced Degradation on Ring Oscillators in FPGA

    Get PDF
    Ring Oscillators are used for variety of purposes to enhance reliability on LSIs or FPGAs. This paper introduces an aging-tolerant design structure of ring oscillators that are used in FPGAs. The structure is able to reduce NBTI-induced degradation in a ring oscillator\u27s frequency by setting PMOS transistors of look-up tables in an off-state when the oscillator is not working. The evaluation of a variety of ring oscillators using Altera Cyclone IV device (60nm technology) shows that the proposed structure is capable of controlling degradation level as well as reducing more than 37% performance degradation compared to the conventional oscillators.The 20th IEEE Pacific Rim International Symposium on Dependable Computing (PRDC 2014), Nov 19-21, 2014, Singapor

    Aging-Aware Routing Algorithms for Network-on-Chips

    Get PDF
    Network-on-Chip (NoC) architectures have emerged as a better replacement of the traditional bus-based communication in the many-core era. However, continuous technology scaling has made aging mechanisms, such as Negative Bias Temperature Instability (NBTI) and electromigration, primary concerns in NoC design. In this work, a novel system-level aging model is proposed to model the effects of aging in NoCs, caused due to (a) asymmetric communication patterns between the network nodes, and (b) runtime traffic variations due to routing policies. This work observes a critical need of a holistic aging analysis, which when combined with power-performance optimization, poses a multi-objective design challenge. To solve this problem, two different aging-aware routing algorithms are proposed: (a) congestion-oblivious Mixed Integer Linear Programming (MILP)-based routing algorithm, and (b) congestion-aware adaptive routing algorithm and router micro-architecture. After extensive experimental evaluations, proposed routing algorithms reduce aging-induced power-performance overheads while also improving the system robustness

    Cross-Layer Approaches for an Aging-Aware Design of Nanoscale Microprocessors

    Get PDF
    Thanks to aggressive scaling of transistor dimensions, computers have revolutionized our life. However, the increasing unreliability of devices fabricated in nanoscale technologies emerged as a major threat for the future success of computers. In particular, accelerated transistor aging is of great importance, as it reduces the lifetime of digital systems. This thesis addresses this challenge by proposing new methods to model, analyze and mitigate aging at microarchitecture-level and above
    • 

    corecore