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Abstract

Aging-Aware Routing Algorithms for Network-on-Chips

by

Kshitij Bhardwaj, Master of Science

Utah State University, 2012

Major Professor: Dr. Koushik Chakraborty
Department: Electrical and Computer Engineering

Network-on-Chip (NoC) architectures have emerged as a better replacement of the tra-

ditional bus-based communication in the many-core era. However, continuous technology

scaling has made aging mechanisms, such as Negative Bias Temperature Instability (NBTI)

and electromigration, primary concerns in NoC design. In this work, a novel system-level

aging model is proposed to model the effects of aging in NoCs, caused due to (a) asymmetric

communication patterns between the network nodes, and (b) runtime traffic variations due

to routing policies. This work observes a critical need of a holistic aging analysis, which

when combined with power-performance optimization, poses a multi-objective design chal-

lenge. To solve this problem, two different aging-aware routing algorithms are proposed: (a)

congestion-oblivious Mixed Integer Linear Programming (MILP)-based routing algorithm,

and (b) congestion-aware adaptive routing algorithm and router micro-architecture. Af-

ter extensive experimental evaluations, proposed routing algorithms reduce aging-induced

power-performance overheads while also improving the system robustness.

(53 pages)
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Public Abstract

Aging-Aware Routing Algorithms for Network-on-Chips

by

Kshitij Bhardwaj, Master of Science

Utah State University, 2012

Major Professor: Dr. Koushik Chakraborty
Department: Electrical and Computer Engineering

Network-on-chips (NoCs) are one of the most scalable mediums to interconnect different

processors in a multi-processor system. The processors are connected to routers via network

interfaces and the routers are connected to each other through links. A routing algorithm

is implemented inside each router that decides the path that a packet must take to reach

the destination processor from the source. If a path is heavily utilized, the links and routers

comprising the path start to age, and therefore can become faulty with time. In order to

avoid this situation, the routing logic must be able to distribute the packets evenly across

the network so as to reduce the utilization of heavily stressed routers and links. In this

work, two such aging-aware routing algorithms are proposed that reduce the aging induced

power and performance overheads and also avoid stress on the network components. These

algorithms can be broadly classified as dynamic (adaptive routing) and static (oblivious

routing) solutions.
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Chapter 1

Introduction

With the proliferation of on-chip cores allowed through rapid technology scaling, Network-

on-Chips (NoCs) are becoming a critical determinant of overall system power-performance

characteristics. Consequently, the growing reliability challenges, which are continuously re-

shaping the system design considerations, must now be thoroughly analyzed in the context

of NoC designs [1]. Two primary mechanisms studied in this work that are responsible for

circuit wear-outs in an NoC design are: Negative Bias Temperature Instability (NBTI) and

Electromigration.

An NoC architecture comprises two major components: NoC router and link. A

pipelined NoC router consists of both combinational logic structures (e.g., virtual chan-

nel allocation logic) and storage-cell structures (e.g., virtual channels). Due to the presence

of these structures, NBTI is the major aging mechanism associated with NoC routers [2].

NoC links, on the other hand, are implemented using repeated copper interconnects [3].

Therefore, NBTI (repeaters) and electromigration (copper interconnects) are the two pri-

mary aging problems associated with NoC links. Unfortunately, previous works on NoCs

have completely ignored the role of links in their reliability analysis, focusing solely on

the routers [2, 4]. Experiments in this work demonstrate that such limitations can grossly

under-estimate the NoC lifetime by nearly a factor of 2.

In the context of reliability in NoCs, another critical design challenge stems from the

asymmetric usage of NoC components. Mishra et al. have shown this non-uniform pattern

of router buffer and link utilization [5]. They observed that the routers in the center of

the mesh are highly (75%) utilized, while the peripheral routers have low (35%) utilization.

Similarly, the experiments with multithreaded workloads on a 4 × 4 mesh indicate a wide

disparity in buffer utilization of different routers. Due to such asymmetric utilization, each
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router and link will also suffer from different amounts of aging degradation. Therefore,

there is a need for an aging-aware routing algorithm for NoCs that considers the aspect of

asymmetric aging while routing packets, so as to improve the system reliability.

At the system level, solely improving reliability may hurt the power-performance. For

example, to alleviate the aging degradation on a heavily utilized path, it may be necessary

to use an alternate route. However, employing such an alternate route can increase the

network latency, thereby degrading the system level power-performance. Thus, efficient

ways to improve the system robustness requires design space exploration techniques that

simultaneously optimize multiple objectives. Such an optimization problem must effectively

model several NoC design aspects in the context of the overall system: (a) routing topology,

(b) network traffic during the execution of real programs, (c) device level models capturing

the effect of NBTI and electromigration, and (d) latency and energy consumption of the

routing policies. Ad-hoc analysis and optimization of these complex objectives can lead to

sub-optimal solutions, with limited insight for future improvements.

To effectively model multiple device level aging characteristics, system level asymmetric

usage patterns and runtime traffic variations, this work introduces a specific reliability

metric for NoC components: Traffic Threshold per Epoch (TTpE). TTpE is defined as

the amount of traffic that a stressed link or router should accept in a particular epoch1

during the runtime. The purpose of this metric is two folds: (a) allow formal analysis of

reliability impact on an NoC, and (b) a means to dynamically analyze the traffic patterns

and adapt the routing algorithms. Subsequently, an adaptive aging-aware routing algorithm

is presented that (a) reduces the aging-induced power and performance overheads by routing

through paths that experience least aging effects and congestion, and (b) minimizes the

stress experienced by heavily utilized routers and links by constraining them to meet their

respective TTpEs for different epochs throughout the total running time.

The adaptive routing discussed above adds more complexity to router micro-architecture

as it adapts to find paths that are both aging and congestion-aware at runtime. This thesis

1To capture runtime traffic variations, total time taken to route the flits is divided into equal intervals
of time called epochs.
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also introduces a simplified congestion-oblivious aging-aware routing algorithm that finds

paths with least aged routers and links at the design time. This algorithm uses a design

time variant of TTpE called the Traffic Acceptance Capacity (TAC). At design time, TAC

can be derived from TTpE by considering only a single epoch with epoch length equal to

total runtime.

The work outlined in this thesis has led to two peer-reviewed conference publications: [6]

(acceptance rate: 23%) and [7] (acceptance rate: 27%). Following are the main contribu-

tions made in this thesis.

• This thesis shows the effects of NBTI and electromigration on NoC links and its

significance in reliability analysis and fault tolerance of NoCs.

• A comprehensive system-level aging model for NoC routers and links is formulated.

This model considers the effects of asymmetric aging in routers and links during the

program execution. Subsequently, the impact of NBTI and electromigration on the

performance of an NoC-based multicore system is shown. This work integrates SPICE

level process variation and aging analysis, circuit-level statistical timing analysis, and

full system architectural simulation.

• This thesis introduces a congestion and aging-aware adaptive routing algorithm and

router micro-architecture that not only mitigates the impact of aging on the NoC

power-performance characteristics, but also minimizes the stress experienced by heav-

ily utilized routers and links [6]. To the best of author’s knowledge, this is the first

work on comprehensive aging-aware routing algorithms for NoCs. An extensive exper-

imental analysis using the GARNET NoC simulator [8] and real workloads (PARSEC

benchmarks [9]) shows an average reduction of 13% and 12.17% in the network la-

tency and Energy-Delay-Product-Per-Flit (EDPPF) [10] in a typical NoC undergoing

aging stress. An average improvement of 10.4% in Instructions Per Cycle (IPC) is

also obtained using the aging-aware adaptive routing algorithm.
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• This thesis also proposes a Mixed Integer Linear Programming (MILP)-based aging-

aware oblivious routing algorithm [7]. This algorithm combines aging-aware con-

straints with other power-performance constraints at design time and optimizes them

using a multi-objective formalized approach. Using the same experimental setup as

described above, the oblivious aging-aware routing obtains an average overhead reduc-

tion of 62.7% and 46% in the network latency and EDPPF, respectively. An average

improvement of 41% in performance is also obtained using the aging-aware oblivious

routing algorithm.

Remainder of this thesis is organized as follows: Chapter 2 presents a background and

previous works related to NoC research and design issues. Chapter 3 shows the effects

of aging on fault-tolerance of NoCs. Chapter 4 introduces a novel reliability metric for

NoCs (TTpE). The proposed aging-aware adaptive routing algorithm and router micro-

architecture is presented in Chapter 5. Chapter 6 outlines the proposed MILP-based aging-

aware oblivious routing algorithm. The report is concluded in Chapter 7.
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Chapter 2

Background and Related Work

This chapter presents a short background of NoCs and a summary of a few research

works related to this thesis.

2.1 Background

NoCs are the most scalable and power-efficient solutions towards developing intercon-

nects that can connect many number of processors on chip. NoCs comprise of routers and

links as the basic building blocks. Figure 2.1 shows a simple NoC architecture connecting

two on-chip processing elements (PE1, PE2). The processing elements in the form of pro-

cessors are connected to the routers (R1, R2) through Network Interface (NI). These routers

are then connected to each other via links (L), which are repeated copper interconnects.

The routers are pipelined structures with basic stages described below.

• Buffering: During this stage a flit is stored inside the input buffers of the router.

• Route Computation: The destination of the flit is determined from the header

flit. Route computation stage then decides the best route that the flit should take

to reach its destination. This stage implements a routing algorithm that decides the

best route.

• Switch Arbitration: The flit arbitrates for the available output links during this

stage.

Fig. 2.1: A simple NoC.
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• Switch Traversal: After the output link allocation, the flit traverses the crossbar to

reach the output buffers corresponding to the output link.

• Link Traversal: The final stage of the pipeline is the link traversal where the flit

traverses the output link towards the destination router.

As this work deals with the development of aging-aware routing algorithms, the back-

ground can be divided into two sections: (a) Routing algorithms, and (b) Aging issues.

2.1.1 Routing Algorithms

Routing algorithms are used to decide the best path that a flit will take to reach its

destination router. As the performance and power consumption of a network is dependent

on the paths that flits take (shortest or longest), routing algorithms play an important role

in controlling the power-performance characteristics. Routing algorithms can be divided

into the following categories.

• Oblivious Routing: In oblivious routing, the path is completely determined by

the source and destination address. This type of routing enables simple and faster

router designs. However, oblivious routing algorithms are not able to address various

runtime issues such as congestion.

• Adaptive Routing: In adaptive routing, the path is decided dynamically based on

the runtime conditions such as network congestion. This way, they are able to achieve

better performance as compared to the oblivious routing algorithms. However, the

downside is a more complex and costly adaptive router.

2.1.2 Aging Issues

This work addresses the following aging issues.

• Process Variations: Process variations (PV) are caused due to inability to control

the fabrication process at a smaller technology node. The key process parameters

affected by PV are the threshold voltage (Vth) and the effective channel length (Leff ).
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Variation in Vth is considered to be extremely important as it directly affects the

frequency and leakage power of the device [11].

• NBTI: Negative Bias Temperature Instability (NBTI) is a phenomenon that causes

an instability of PMOS paramters (such as threshold voltage) under negative bias

and relatively high temperature. NBTI leads to formation of interface traps at the

Si/SiO2 interface by breaking the Si− H bonds, causing shifts in threshold voltage.

NBTI affects the frequency of operation of a circuit [12].

• Electromigration: With intensive technology scaling, electromigration has become

a major reliability problem for the interconnects. Reduction in wire widths due to

submicron dimensions causes very high current densities and temperature gradients.

Electromigration occurs when the current density is sufficiently high to cause the drift

of metal ions in the direction of the electron flow. These metal ions can cause voids

in the barrier layer of the wires, reducing the effective conducting area of the wire

and increasing its resistance. This can lead to an increase in the RC delay of the

interconnect [13].

2.2 Related Work

There has been considerable research in the field of routing algorithms for NoCs. Shafiee

et al. proposed an application aware deadlock free oblivious routing algorithm based on ex-

tended turn model, modeled using MILP [14]. Nikitin et al. have proposed a mathematical

formulation that simultaneously defines the topology of the system and the routes for the

traffic between routers [15].

Moreover with manufacturing defects and hardware malfunctions, contemporary re-

search is also directed towards fault-tolerant routing algorithms for NoCs. Shi et al. re-

cently proposed a scalable and distributed fault tolerant routing algorithm for NoCs that

divides the system into regions and each region gurantees fault-tolerance of its own area [16].

Fick et al. developed a highly resilient routing algorithm that reconfigures around the fault

components to improve robustness of the system [17]. Chaix et al. proposed a fault-tolerant
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adaptive routing algorithm that is able to route packets in the presence of multiple nodes

and link failures without using routing tables [18]. Akbari et al. address the issue of poor

vertical links yield in case of 3D mesh-based many core ICs by introducing AFRA, a low cost

high performance deadlock-free routing algorithm that tolerates faults on vertical links [19].

There has been some research directed towards development of process variation aware

routing algorithms for NoCs. Recently, Sharifi and Kandemir proposed a routing scheme

that selects the best path for each communication based on the process variation dictated

speeds of routers and the current traffic pattern [20]. However, to the best of the author’s

knowledge, there has not been any comprehensive work towards developing aging-aware

routing algorithms for NoCs that can mitigate the effects of aging mechanisms such as

NBTI and electromigration.
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Chapter 3

Fault-Tolerance of NoCs

This chapter presents a brief robustness analysis of an NoC that not only considers

impact of aging on routers but also considers the effects of aging mechanisms such as NBTI

and electromigration on links.

3.1 The Experiment

To show the importance of considering the aging effects on links, an experiment is

performed using an NoC architecture that comprises two routers connected by two uni-

directional links. The flexible numerical model of NBTI degradation based on reaction-

diffusion [21] and wire resistance-based electromigration stress model [13] is used to model

aging in this experiment. Network latency is analyzed under four different degradation

schemes given by Table 3.1. These schemes are evaluated under tornado synthetic traf-

fic pattern for three different injection rates: (a) low (0.1 flits/cycle), (b) medium (0.3

flits/cycle), (c) high (0.5 flits/cycle).

3.2 Analyzing Network Latency

Figures 3.1, 3.2, and 3.3 show the variation of network latency with time for different

injection rates. As is evident, D estimates the highest network latency. The consideration

of both NBTI and electromigration in scheme D degrades the link more, thereby causing

this substantial increase. Network latency is least affected in scheme A as there is no link

degradation and the small increase is only due to NBTI degradation in routers.

Table 3.1: Different degradation schemes.
Scheme Degradation in Routers Degradation in Links

A NBTI NONE
B NBTI NBTI
C NBTI Electromigration
D NBTI NBTI and Electromigration
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3.3 Effect on Fault-Tolerance of NoC

This work assumes that a network becomes faulty when the increase in network latency

exceeds a pre-defined threshold (20% in this study). Figure 3.4 shows the time taken for

the network to become faulty in the case of high injection rate traffic. For example, under

scheme D, a network can be rendered faulty in almost three years. However, using scheme A

grossly over-estimates the time to failure (almost six years). In reality, due to the combined

effects of NBTI and electromigration, the copper wires are likely to degrade beyond the

threshold by that time.
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Fig. 3.4: Time taken for the network to become faulty under various aging models (high
injection rate).



12

Chapter 4

TTpE: A New Reliability Metric for Runtime Adaptations in

NoCs

The following chapter introduces and models a novel reliability metric for NoCs called

Traffic Threshold per Epoch (TTpE), based on the disparities found in router and link

utilization. It also presents a formalized method to calculate the TTpEs for different links

and routers in a given NoC.

4.1 Disparity in Router Utilization

In an NoC, every router and link is utilized in different amounts, some more than

others. Figures 4.1 and 4.2 show the disparity in NoC router utilization. Figure 4.1 shows

the variation in buffer utilization (flits/cycle) in a 4 × 4 NoC mesh. These utilizations

were obtained using the GARNET NoC simulator when traffic is generated by the canneal

benchmark run. Similarly, the utilization of routers and links also varies at the runtime.

Another experiment was conducted using the same benchmark and NoC mesh to find the

runtime variation in buffer utilization of router R1 (marked as 1 in Figure 4.1). The total

runtime is divided into 10 different epochs of equal width. Figure 4.2 shows the different

utilizations obtained for different epochs. Two kinds of variations in utilization are obtained:

(a) every router and link has different utilization (asymmetric); and (b) every router and

link also experiences variation in utilization across different time windows (runtime).

Based on the above observations, a system-level aging model is derived to find the

relationship between router/link utilization and the amount of stress experienced from

NBTI/electromigration degradation. For this purpose, the thesis introduces a novel metric

called Traffic Threshold per Epoch (TTpE), defined as the fraction of the nominal traffic1

1Nominal traffic is the traffic across routers/links when they are unstressed.
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Fig. 4.1: Different router utilization in a 4 × 4 NoC mesh.
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that a stressed router/link should accept during a particular epoch.

The significance of using TTpE as a reliability metric for an aging-stressed NoC design

lies in the following facts.

• It determines an upper limit on the amount of traffic that a router or link should

accept so as to keep the variation in network latency below a pre-defined threshold

for a particular aging period (7 years in this work). If the limit imposed by TTpE is

exceeded in a router undergoing maximum degradation, it will be rendered faulty.

• TTpEs are derived from continuous monitoring of the traffic, and are used to adapt

the routing policies for every epoch to mitigate the long-term degradation in the NoC.

The aging model for routers and links is described next.

4.2 Modeling Aging Impact on NoC Routers and Links

This section presents the system-level aging model that models the impact of aging

mechanisms such as NBTI and electromigration on NoC routers and links. The section

also presents a derivation of the dependency of TTpE of stressed links and routers on the

aging-induced delay variation.

4.2.1 Modeling Delay Variations Due to NBTI Degradation in NoC Routers

Due to the presence of both combinational and storage circuitry in NoC routers, the

effects of NBTI on the performance of these routers cannot be ignored [2]. These effects

are modeled using the flexible numerical model of NBTI degradation based on reaction-

diffusion [21]. According to this model, Vth shift is given by

∆Vth =
qNit(t)

Cox
, (4.1)

where q is the elementary charge, Nit(t) is the number of interface traps per unit area at

time t, and Cox is the PMOS gate capacitance. This model calculates Nit(t) using the

different parameters mentioned in Table 4.1.
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Table 4.1: Parameters used in NBTI stress modeling.

Parameter Value

D0 1e8
Ea 0.49 eV
k 8.617e-5
q 1.6e-19
T Temperature
D D0 ∗ exp(−Ea/(k ∗ T ))

KH 1
Kf 1
Kr 1
tox 2.2 nm
e0 8.85e-21 F/nm
k 8.617e-5 eV/K (Boltzman constant)

eox 3.9 ∗ e0
Cox eox/tox

powerFactor 2
t stress duration

As the architectural level techniques, such as dynamic voltage scaling and activity and

power management mechanisms, are not applicable for network-on-chip design, the device

level model [22] can also be used for NBTI modeling. The reaction-diffusion model was

analyzed using the 65 nm technology parameters and obtained a similar degradation as the

device level model.

TTpE of a stressed router is derived using a similar model as given by Sun et al. [23] that

estimates the workloads across the stressed cores by considering delay variations, discussed

next.

Analyzing Delay Variation in a Stressed Router

In an NoC system, different routers can experience a wide variation in performance

degradation due to the combined effect of process variation and NBTI aging. Fundamentally,

the TTpE of a stressed router during an epoch is estimated by comparing its performance

degradation, measured as the delay variation, with that of the router experiencing the

maximum performance degradation for the same epoch.
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To estimate the delay variation in a stressed router, gate delay model given by Chang

and Sapatnekar [24] is extended to the critical path delay model. After perturbing Vth as

Vth = Vth0 + ∆Vth, the i-th critical path delay can be written as

di = di(Vth0, Leff ) +

(

δdi

δVth

)

∆Vth, (4.2)

where delay di(Vth0, Leff ) is modeled as a Gaussian distribution with Vth0 and Leff as the

nominal threshold voltage and channel length. As there can be many critical paths in a

single router, the critical path with the biggest variation is used in the calculation of TTpE.

All the routers in the system are analyzed to estimate their biggest critical path variation.

For a particular epoch, the TTpE of a given router is estimated by comparing its delay

variation with that of the router with the worst variation. However, in case the worst

router experiences more than 3σdelayr
variation, which statistically covers 99.7% of all delay

variations in the system [25], the 3σdelayr
variation is only used for the TTpE estimation.

∆dr = min(maxi((δdi/δVth)∆Vth), 3σdelayr
) (4.3)

The percentage model proposed by Sun et al. [23] is used to relate the delay variation with

TTpE. According to this model, when the delay has zero variation, the value of TTpE is

100% and when the delay variation is maximum (at 3σdelayr
), the router must not accept

any traffic (TTpE = 0). Hence, the Traffic Threshold per Epoch of the stressed router due

to delay variation is given by

TTpEr = 1 −

(

∆dr

3σdelayr

)

. (4.4)

A similar approach is used to model TTpE of NoC links next.

4.2.2 Modeling Delay Variations Due to NBTI and Electromigration Degra-

dations in NoC Links

NoC links are modeled as repeated copper interconnects and therefore suffer from two
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different types of stresses: (a) NBTI stress that increases the repeater resistance [26], and

(b) electromigration stress due to the use of barrier layers in copper interconnects that

increases the wire resistance [13].

Analyzing Delay Variation in Stressed Links

The propagation delay of a repeated interconnect in the presence of NBTI and electro-

migration stress is modeled by including the increase in wire resistance due to electromi-

gration in the NBTI-aware delay model proposed by Datta and Burleson [26]. Therefore,

the propagation delay of the link under both NBTI and electromigration is

dls = kTd + p(0.69)

(

Cd +
Cw

k
+ Cg

)

∆Ro

+p(0.69)

(

Cg

k

)

∆Rw + p(0.38)

(

Cw

k2

)

∆Rw,

(4.5)

where k is the number of repeaters, Ro is the repeater resistance, Cd is the output drain

diffusion capacitance of the repeater, Cg is the input gate capacitance of the repeater, Rw is

the wire resistance, Cw is the wire capacitance, p is the number of stressed repeaters, Td is

the original unstressed delay, ∆Ro is the increase in repeater resistance due to NBTI, and

∆Rw is the increase in wire resistance due to electromigration.

The variability of repeater resistance with the threshold voltage (∆Vth) due to NBTI

is given as [26]

δRo

δVth

= g

[

2 + (VGS − |Vth| − ∆Vth)( µ
2.vsat.L

+ θ)
1
2µCox

W
L

(VGS − |Vth| − ∆Vth)3

]

, (4.6)

where

g =
3

4
Vdd

(

1 −
7

9
λVdd

)

. (4.7)

∆Vth is given by Equation (4.1) and rest of the symbols are similar to those used by Datta

and Burleson [26].

The variability of the wire resistance due to electromigration stress is modeled as [13]
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∆Rw =
2Rw

γ‘

A0
D

1

2

0 t
1

2 e
−Qa
2RTa

1 − 2 γ‘

A0
D

1

2

0 t
1

2 e
−Qa
2RTa

, (4.8)

where different parameters are shown in Table 4.2.

The effective delay variation is calculated by comparing the delay variation with its

3σdelayl
value.

∆dl = min(dls − Td, 3σdelayl
) (4.9)

After the calculation of the effective delay variation, the percentage model is used to evaluate

the TTpEl for the stressed link.

TTpEl = 1 −

(

∆dl

3σdelayl

)

(4.10)

4.2.3 Effect of Aging on Flit Delay

The performance of a system is directly related to the delay in the system. There-

fore, it is necessary to model the effects of asymmetric aging in routers and links on the

delay experienced by the flits. This modeling is used in formulating the proposed MILP-

based aging-aware routing algorithm and in the end-to-end analysis of aging impact on the

performance of NoC-based multicore systems.

Total Delay Calculation Due to NoC Routers and Links

The delay seen by a flit, from the time when it is buffered into the input buffers of

Table 4.2: Parameters used in electromigration stress modeling.

Parameter Value

D0 6.5E-7 m2/s
R 8.31 J/mole K
A0 400E-9 m
Qa 1.64E5 J/mole
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an NoC Router till it is allocated an output link can be described as the delay due to an

unstressed NoC router or drus. Similarly the unstressed delay due to an NoC link can be

defined as the time taken by a flit to travel the link to reach the router at the other end or

dlus. Now if a router/link is under aging stress, the same flit will experience a higher delay

as signified by Equations (4.2) and (4.5). Therefore, the delay due to a stressed router and

link can be formulated as

drs = drus + ∆dr; dls = dlus + ∆dl, (4.11)

where ∆dr is given by ∆delayr in Equation (4.3) and ∆dl is given by ∆delayl in Equa-

tion (4.9). ∆dr and ∆dl for different routers and links will be different based on their

utilization.

The TTpEs vary over the runtime with different values during different epochs for each

stressed router and link. In order to calculate these thresholds, a congestion-aware routing

algorithm is first profiled to estimate the router/link utilization for every epoch during

runtime. Depending on the utilization, TTpEs are calculated for the stressed routers and

links for every epoch using the system-level aging model. TTpEs are then stored in each

router in the form of lookup tables so that the router can select the appropriate threshold

depending on the epoch during runtime. These steps are discussed in more details next.

4.3 TTpE Calculation

The calculation of TTpE involves the following stages.

• Threshold Calculation: This stage mainly involves profiling of a state-of-the-art

congestion-aware routing algorithm [27] to calculate the TTpE of different stressed

links and routers.

• Using TTpE Estimation in Routing: During this stage, the traffic threshold

tables are built, which are then stored inside each router.

These stages are discussed in more detail next.
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4.3.1 Threshold Calculation

This stage can be further divided into two steps.

• Profiling: First step involves profiling of a congestion-aware routing algorithm that

routes the flits based on both local and global congestion information. The total

time taken to route these flits is then divided into several epochs. The significance of

adding epochs lies in the fact that an application’s communication characteristics may

change during the runtime, and therefore the traffic must be monitored continuously.

This way, the link and the router utilization can be tracked at runtime and additional

measures are taken if the utilization reaches TTpE for the epoch under consideration.

• TTpE Calculation: For each epoch, n most stressed links and routers are selected

based on their utilization. The TTpEs for these routers and links are calculated as

follows.

1. Router TTpE: The aging model developed in Section 4.2.1 is used to calculate

the TTpE for routers. This aging model considers only NBTI degradation in

routers.

2. Link TTpE: To calculate the TTpEs for links, the NBTI and electromigration

degradation models are used as described in Section 4.2.2. Now the traffic across

a router can be controlled only by controlling the traffic across the links input

to the router. Therefore, the stress experienced by the router can be transfered

to the input links and than their TTpEs are calculated for the given epoch. For

example, if a stressed router R has four input links (l0...l3) then the utilization

of the router is given by

util(R) = util(l0) + util(l1) + util(l2) + util(l3), (4.12)

where util() estimates the utilization of a router or a link. The above equation

can be used to calculate the amount of traffic each link should accept (or TTpE

of each link) for the router to meet its threshold. Therefore, there are two kinds
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of stressed links: (a) links that are directly under aging stress, and (b) input

links that experience stress because of the stressed router.

4.3.2 Using TTpE Estimation in Routing

Here, the computed TTpEs for different epochs are stored in the form of lookup tables

(SLset) inside each router. The router at runtime can then select the appropriate TTpE

depending on the epoch. During this stage, the routing tables are also populated for each

router. In order to minimize network latency and communication energy, only the deadlock-

free shortest paths are selected for each flow.
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Chapter 5

Aging-Aware Adaptive Routing Algorithm

This chapter presents a robust aging-aware routing algorithm that not only reduces

the stress experienced by heavily utilized NoC components, but also minimizes the overall

aging induced power-performance overheads.

5.1 Algorithm

The algorithm involves the following two stages (Table 5.1).

• Congestion and Aging-Aware Routing: For each flow at runtime, the routing

algorithm selects the best shortest path from the routing table that (a) suffers from

least aging degradation, i.e., the path that suffers from least delay variation due to

aging (1-a); and (b) is least congested (1-b). A higher priority is given to a path that

is least degraded as compared to a path with the least congestion. For example, in

case of an arbitrary flow F , if the available number of deadlock-free shortest paths is

four (path0....path3) then the algorithm maintains congestion and aging scores (sccong

and scage) for each of these paths. These scores are calculated based on both local

and global aging and congestion information obtained from different routers and links

present in the paths. Now if the scage is least for path0 but sccong is least for path3

then the algorithm selects path0 for routing. In a different situation, if scage is same

for all paths but sccong is least for path3 then path3 is only selected for routing.

• Honoring TTpE by Employing Recovery Cycles: During the execution of the

routing algorithm, each stressed link in SLset is checked to see if it meets its respective

TTpE for every epoch (2-a). There can be two possible cases: (a) In the epoch, if

the link has already reached its TTpE, then the link must be kept idle for the rest

of the epoch so that its utilization does not exceed its TTpE; and (b) If the link
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Table 5.1: Algorithm for aging-aware adaptive routing.
ALGORITHM Aging Adaptive:
For each flow,

1. Select the best shortest path from the routing
table which:

a) suffers from least delay variation due to
aging (scage is minimum).
b) is least congested based on global and local
congestion information (sccong is minimum).

2. For each stressed link in SLset of each epoch:
a) Check if the link meets its TTpE:

- If the link has already reached
its TTpE, keep the link idle for the
rest of the epoch (insert recovery cycles).
- If link utilization is safely below its
TTpE then there is no need for
inserting recovery cycles.

operates safely inside its TTpE for that epoch, then there is no need for inserting

idle cycles. The physical significance of inserting these idle cycles is that they provide

additional time to the links and routers to recover from the aging stress. Therefore,

these additional idle cycles are called as recovery cycles. This procedure also avoids

unnecessary insertion of recovery cycles in the epoch, and thus keeps the network

latency in check.

5.2 Aging-Aware Adaptive Router Microarchitecture

In order to implement the proposed routing algorithm, a congestion-aware router is

modified such that it computes the best route that is both aging and congestion-aware.

Moreover, this aging-aware router must also ensure that the best allocated output link is

operating under its respective TTpE. Figure 5.1 shows a detailed micro-architecture of the

aging-aware adaptive router. Based on the functionality of each module of the router, the

routing unit of the aging-aware adaptive router can be divided into two different stages.

• Route Computation: This stage involves selection of the output link towards the

least stressed and least congested shortest path. During this stage both the global

and local congestion information from different routers is aggregated to calculate the
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Fig. 5.1: Aging-aware adaptive router micro-architecture: In addition to the global conges-
tion information in the form of sccong, the router also uses the aging information given by
scage to select the best output route. The additional logic circuitry for this route computa-
tion is implemented in parallel, e.g. scage and sccong are computed simultaneously.

congestion score (sccong) of the paths. Similarly, based on the number of stressed

links in SLset for each epoch, an aging score (scage) is calculated for each path. The

route computation unit then selects the output link corresponding to the shortest path

which has the least scage and sccong. Note that the additional logic-based circuitry is

introduced in parallel paths rather than in sequence, for example scage and sccong are

calculated in parallel.

• Recovery Cycles: During this stage of the routing unit, utilization of the selected

output link corresponding to the current epoch is evaluated. If the link is stressed,

its utilization is compared with the threshold for the epoch (TTpE), stored inside the

lookup tables (SLset). In case the link has reached its TTpE then this stage inserts

recovery cycles for this link during the given epoch. If the link has not reached its

TTpE, then there is no need for the recovery cycles. Also, an unstressed link can skip

this stage of the routing unit.
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5.3 Experimental Methodology

The experimental methodology combines SPICE level analysis for process variation

and NBTI aging, statistical timing analysis using synthesized verilog for NoC routers, and

full system architectural simulation. The effect of process variation and NBTI aging in

basic logic gates are performed through synopsys HSPICE, using Predictive Technology

Models (PTM), and long term degradation due to NBTI [22]. On each of these gates,

10K Monte Carlo simulation runs are used to obtain respective statistical distributions

of their performance characteristics. These gates at the 45 nm technology are then used

to synthesize the NoC router RTL obtained from Stanford University’s open-source NoC

router resources [28]. Subsequently a statistical timing analysis is performed to find various

critical paths in the router, and their delay distributions under the combined effect of process

variation and NBTI aging.

Architectural simulation is carried out using GARNET NoC simulator, embedded in-

side GEMS [29]. GARNET uses the ORION power model [30] to calculate power con-

sumptions of the routers and the links. Experimental setup consists of a system with 16

processors in a 4×4 mesh topology. Each processor has a dual issue 32 entry out-of-order is-

sue window and a private L1 cache (2-way, 32 KB, response latency: 3 cycles); and a shared

L2 cache (4-way, 2 MB, response latency: 15 cycles). For traffic generation and system-level

analysis, PARSEC benchmarks with 16 threads pinned to cores are used: Canneal (can),

Dedup (ded), Facesim (fac), Ferret (fer), Fluidanimate (flu), Freqmine (fre), and Raystone

(ray).

5.4 Experimental Results

To study the power-performance impact of aging on NoC designs, a set of experiments

are conducted on a 4 × 4 NoC mesh shown in Figure 4.1. Different schemes implemented

for comparison are discussed next.



26

5.4.1 Comparative Schemes

Three different schemes are used to show the importance of a robust aging-aware adap-

tive routing algorithm.

• RCA-1D: This scheme uses a state-of-the-art congestion-aware routing algorithm to

route the flits in an NoC system comprising aging-stressed routers and links. Without

aging awareness, this scheme continues to use heavily degraded links/routers, thereby

incurring power-performance overhead. Delay degradations in the stressed routers

and links are modeled according to Section 4.2.

• AGE-ADAP: Here the proposed congestion and aging-aware adaptive routing algo-

rithm is implemented to route flits in a stressed NoC design. This scheme employs the

step 1 of the proposed routing algorithm (Section 5.1), but does not honor the TTpE

limits and therefore does not insert any recovery cycles in the epochs during runtime.

Delay variation in the routers and links are based on the model in Section 4.2.

• AGE-ADAP-REC: This scheme extends AGE-ADAP such that it inserts recovery

cycles for stressed links/routers during an epoch if the utilization has reached TTpE.

Therefore, this scheme ensures that none of the stressed routers/links operates beyond

their calculated TTpE.

5.4.2 Robustness Evaluation

In order to show the robustness degradation in a 4×4 NoC mesh that does not consider

aging aware-routing (RCA-1D), the reliability of this scheme is compared with the AGE-

ADAP and AGE-ADAP-REC schemes that model aging-awareness.

Figure 5.2 shows the reliabilities of all three schemes for an aging period of 7 years,

calculated using the reliability’s dependence on failure rate and TTpE. As expected, RCA-

1D shows substantially higher failure rate compared to AGE-ADAP and AGE-ADAP-REC,

as its design does not adapt to the wear-out degradation of NoC components. Also the traffic

utilization per epoch of stressed routers and links is always above the TTpE for RCA-1D
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Fig. 5.2: NoC robustness degradation over time.

which further reduces its reliability. As stressed routers and links are well below their TTpE

limits in AGE-ADAP-REC, its reliability is even better than AGE-ADAP.

5.4.3 Overhead Analysis

Network Latency

Figure 5.3 shows the network latency for various schemes normalized to the RCA-1D

scheme. As RCA-1D does not employ any aging-awareness in its congestion-aware routing,

it only selects those paths which are least congested. However, frequent heavy utilization

in these paths results in large aging stress, which manifests as performance degradation

in routers and links along this path. Consequently, packets transmitted along these paths

suffer from increased latency. On the other hand, AGE-ADAP and AGE-ADAP-REC route

packets intelligently using paths that are least stressed and least congested (Section 5.1),

and therefore incur lower overheads. Among AGE-ADAP and AGE-ADAP-REC, additional

recovery cycles in case of AGE-ADAP-REC to meet TTpEs for each epoch leads to a higher

latency as compared to AGE-ADAP. On an average, AGE-ADAP-REC reduces the latency

by 13% relative to RCA-1D.
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Energy-Delay-Product-Per-Flit

To show the impact of aging stress on power-performance characteristics of NoC based

multicore system, EDPPF is also evaluated for each of the schemes. Figure 5.4 shows the

EDPPF for different benchmarks across various schemes normalized to the RCA-1D scheme.

AGE-ADAP and AGE-ADAP-REC are able to achieve reduced overhead as compared to

RCA-1D. Due to additional recovery cycles, AGE-ADAP-REC incurs a higher EDPPF as

compared to AGE-ADAP. On an average, AGE-ADAP-REC reduces EDPPF by 12.17%

relative to RCA-1D.
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Performance

Figure 5.5 shows the system performance for the schemes normalized to RCA-1D. Here

also RCA-1D shows lower performance as compared to AGE-ADAP and AGE-ADAP-REC

schemes. As RCA-1D is only congestion aware, it selects the least congested paths over the

least stressed ones, and therefore incurs higher performance overheads at the system-level.

For these multithreaded benchmarks, fair speedup is used as a metric for performance as it

provides a more accurate estimate. Across different benchmarks, AGE-ADAP-REC shows

10.4% performance improvement over RCA-1D, demonstrating its effectiveness.
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Chapter 6

MILP-Based Aging-Aware Oblivious Routing Algorithm

The following chapter outlines a routing algorithm that mitigates aging effects on NoC-

based multicore system performance with minimal overhead. Simply meeting TTpE limits

can substantially improve NoC reliability, but comes at a high cost of other design con-

straints. To effectively perform a multi-objective design space exploration, an optimization

framework based on MILP is used to formulate an aging-aware oblivious routing.

As oblivious routing algorithms statically determine deadlock-free shortest paths be-

tween given source-destination pairs, a design time variant of TTpE called as Traffic Ac-

ceptance Capacity (TAC) is used, described next.

6.1 Traffic Acceptance Capacity

In order to make sure that the stressed routers and links are not utilized above a par-

ticular threshold, the proposed MILP-based oblivious routing algorithm uses a design time

variant of TTpE metric for each router and link. Traffic Acceptance Capacity (TAC) can be

defined at the design time as the fraction of nominal traffic that a stressed link/router should

accept to avoid aging induced faults. For the purpose of TAC calculations, a single epoch

is only assumed with the epoch length equal to total runtime. The TAC limits imposed on

stressed routers and links at design time are given by TACr and TACl, respectively.

6.2 Algorithm

In this algorithm, router and link utilization are computed during the traffic profiling

stage. Various modules associated with the MILP-based routing algorithm are described

next.
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6.2.1 Traffic Threshold Calculation

In order to control traffic across a stressed router, traffic flowing through the links that

input to the router must be controlled. For example, if router R5 in Figure 4.1 is stressed,

then the traffic across the input links (L15, L21, L22, L24) must be controlled such that R5

meets its TAC limit.

Therefore, the input links to a stressed router, whether stressed or unstressed, must

have an upper bound on the traffic that they can accept. In the case of stressed input links,

this bound should be less than or equal to their TACl limits.

6.2.2 Variable Definitions

These are the various variables used in the MILP.

• Variable to indicate the flow of flits.

F k: flow between some (source, destination) pair (s, d).

• Variable to indicate the amount of flits flowing through a link due to some flow.

FLk
j : Amount of flits flowing through a link j due to flow F k, measured in flits.

P k
j : Amount of flits flowing through a link j due to flow F k, measured in flits/cycle

(link utilization).

• Variable to show if a link j is utilized for flow F k.

Uk
j =











1 if FLk
j > 0

0 if FLk
j = 0

• Variables to indicate the set of input links (I(R)) and the set of output links (O(R))

for a router R.

• Variables to indicate the total number of flits that comprise a flow F k (capacity of

flow), Ck, and total number of flits across all flows, TC.
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• Variable to indicate the total number of hops for Fk.

hpk =
∑

j∈LT

Uk
j − 1

• Variable to formulate total delay across all the links. The delay-per-flit across the

stressed and unstressed links is used, as described in Section 4.2.3.

TLD =
∑

k∈Tf

∑

j∈LT

FLk
j ∗ dlj ,

where Tf represents all flows in the network and dlj is the delay-per-flit of link j:

dlj =











dlusj if j ∈ LT − Lstress

dlsj if j ∈ Lstress.

• Variable to show if a router i is utilized for a flow Fk.

rk
i =











1 if
∑

j∈O(i) Uk
j = 1

0 if
∑

j∈O(i) Uk
j = 0

• Variable for delay across all the routers. Here also delay-per-flit across the stressed

and unstressed routers is used, as in Section 4.2.3.

TRD =
∑

k∈Tf

Ck ∗ (
∑

i∈RT

dri ∗ rk
i ),

where dri is the delay-per-flit of each router i,

dri =











drus if i ∈ RT − Rstress

drs if i ∈ Rstress.

.
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• Variable to indicate total delay.

TD = TLD + TRD

• Link utilization for a flow F k in flits per cycle.

P k
j = FLk

j /TD

• Variable to indicate energy-per-flit for a flow F k (Ek
flit). Assuming each flit is com-

posed of n bits, the energy model given by Hu and Marculescu [31] is used to model

Ek
flit.

Ek
flit = n ∗ hpk ∗ Esbit + n ∗ (hpk − 1) ∗ Elbit,

where Esbit and Elbit are the energy consumed by the router switch and energy con-

sumed by the links when 1 bit of data is transported through the router. Therefore,

the total energy consumed due to all the flows is

TE = TC
∑

k∈Tf

Ek
flit.

• Variable to indicate EDPPF, defined as the product of total energy and total delay-

per-flit.

EDPPF = (TE ∗ TD)/TC

• In order to avoid deadlock or live-lock, a turn prohibition model [15] is used. In

a two-dimensional NoC topology, a flit can follow eight different turns. According

to the directions of the input and output links, turns can be categorized as: west-

north (WN), north-east (NE), east-south (ES), south-west (SW) in the clockwise

direction; and west-south (WS), south-east (SE), east-north (EN), north-west (NW)

in the counter-clockwise direction.
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6.2.3 Constraints

Different constraints used in the formulation are described next.

• Every link that is utilized for a flow F k must operate under its threshold value (Tj).

This threshold is calculated using the TAC values as described in Section 6.2.1.

∑

k∈Tf

P k
j ≤ Tj ∀j ∈ LT

• The number of hop counts for a flow F k must be less than a maximum limit Hk.

hpk ≤ Hk ∀k ∈ Tf

• There should be a single path between a (s, d) pair. Conservation of flow is also

required. Therefore ∀k ∈ Tf , for a source router Rs and destination router Rd,

∑

j∈I(Rs)

Uk
j = 0

∑

j∈O(Rs)

Uk
j = 1

∑

j∈I(Rd)

Uk
j = 1

∑

j∈O(Rd)

Uk
j = 0.

For an intermediate router Ri,

∑

j∈I(Ri)

Uk
j =

∑

j∈O(Ri)

Uk
j .

• In order to avoid deadlocks, some of the turns as discussed in the previous section

need to be prohibited. Therefore, constraints due to the prohibition turn model given

by Nikitin et al. [15] are also included in the MILP formulation.

6.2.4 Cost Functions

Different objective functions for the routing algorithm that need to be minimized are

shown in Table 6.1.

CPLEX [32] is used to solve this multi-objective MILP and GARNET to obtain the

network parameters.



35

Table 6.1: Cost functions to minimize.
Description Variables Involved

Number of links utilized by a flow
P

j∈LT
Uk

j

Total number of links utilized for all flows
P

k∈Tf

P

j∈LT
Uk

j

Total delay due to all routers TRD
Total delay due to all links TLD
Total energy across all flows TE

Energy-Delay-Product-Per-Flit EDPPF

6.3 Experimental Results

The following section reflects on the system level (multicore) overheads of mitigating

aging degradation in an NoC.

6.3.1 Comparative Schemes

Three different schemes are used to show the importance of an aging aware NoC design

and the critical need for a formalized approach in this pursuit.

• NO-AGE: This scheme models a system without aging awareness in NoC routing to:

(a) quantify its resultant impact on system robustness; and (b) establish a baseline

to estimate power-performance overheads for aging aware routing algorithms in NoC

(described next). This scheme employs deterministic XY routing algorithm [33].

• TAC-AGE: This scheme models asymmetric aging effects using the system-level

aging model described in Chapter 4. This scheme obeys TAC limits, but are not

optimized for other design constraints. Here, also XY routing is used.

• MIP-ROUT: This scheme extends TAC-AGE and uses the MILP-based aging aware

routing algorithm to mitigate the aging effects on performance and energy.

6.3.2 Robustness Evaluation

In order to show the robustness degradation in a 4×4 NoC mesh that does not consider

aging aware-routing (NO-AGE), the reliability of this scheme is compared with the MIP-

ROUT scheme that models the aging-aware routing. Table 6.2 shows the router and link

utilization for both the schemes for canneal benchmark run. As evident from the table,

under NO-AGE, several routers and links exceed their TAC limit (TAC-LIM), which will
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render them faulty after some period of stress. MIP-ROUT adjusts these utilizations, and

therefore improves NoC robustness. In the case of TAC-AGE, since stressed routers and

links meet their TAC limits, its robustness is better than that of NO-AGE but lower than

that of MIP-ROUT.

Figure 6.1 shows the mesh reliabilities of the schemes for an aging period of 7 years

using the reliability’s exponential dependence on failure rate [33]. As expected, NO-AGE

shows higher failure rate compared to MIP-ROUT, as its design does not adapt to the

wear-out degradation of NoC components. As stressed routers and links are well below

their TAC-LIM in MIP-ROUT, its reliability is better than TAC-AGE also.

Table 6.2: Stressed router and link utilization.
Stressed Routers

R1 R0 R2 R5 R4 R6 R3 R7
NO-
AGE

0.54 0.33 0.28 0.22 0.17 0.15 0.14 0.09

TAC-
LIM

0.36 0.22 0.19 0.15 0.12 0.10 0.10 0.07

MIP-
ROUT

0.32 0.20 0.16 0.14 0.10 0.09 0.08 0.03

Stressed Links
L9 L12 L20 L13 L0 L23 L15 L1

NO-
AGE

0.165 0.126 0.100 0.098 0.085 0.080 0.060 0.056

TAC-
LIM

0.111 0.086 0.069 0.072 0.065 0.066 0.050 0.048

MIP-
ROUT

0.066 0.037 0.029 0.025 0.022 0.040 0.030 0.029

Year
0 1 2 3 4 5 6 7 8

M
es

h 
R

el
ia

bi
lit

y

0
0.2
0.4
0.6
0.8

1
1.2 MIP−ROUT NO−AGE TAC−AGE

Fig. 6.1: Robustness degradation over time.
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6.3.3 Overhead Analysis

Network Latency

Figure 6.2 shows the overhead estimated in network latency for TAC-AGE and MIP-

ROUT, relative to the NO-AGE scheme. As TAC-AGE does not optimize design constraints

like the total router and link latency, it incurs higher overhead as compared to MIP-ROUT.

MIP-ROUT reduces the overhead by an average of 62.7% for different benchmarks (labels

same as in Table 6.3).

Energy-Delay-Product-Per-Flit

Figure 6.3 shows the EDPPF for different benchmarks across these schemes. Both TAC-

AGE and MIP-ROUT show overheads relative to NO-AGE, as they adapt to offer greater

robustness. Compared to TAC-AGE, MIP-ROUT reduces this overhead by an average of

46% across different benchmarks.
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d 

(%
)

3
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13

18

23

TAC−AGE MIP−ROUT

Fig. 6.2: Latency overhead (lower is better).
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IPC

Table 6.3 shows the loss in IPC due to TAC-AGE and MIP-ROUT, relative to NO-AGE.

Across different benchmarks, MIP-ROUT shows 41% system performance improvement over

TAC-AGE, hence showing the effectiveness of the proposed approach.

Table 6.3: Percentage IPC loss (lower is better).
Benchmark Label TAC-AGE MIP-ROUT

Canneal can 29.5 22.9
Dedup ded 29.6 15.4
Facesim fac 13.2 6.8
Ferret fer 28.8 14.8

Fluidanimate flu 19.5 8.5
Freqmine fre 25.2 16.8
Raystone ray 16.9 11.3

can ded fac fer flu fre ray

E
D

P
P

F
 O

ve
rh

ea
d 

(%
)

3

8

13

18

TAC−AGE MIP−ROUT

Fig. 6.3: EDPPF overhead (lower is better).
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Chapter 7

Conclusion

This thesis has presented an analysis of the impact of aging on NoC architecture,

considering both NoC routers and links. A critical need is observed to optimize NoC

power-performance metrics while considering wear-out degradation resulting from asym-

metric utilization of NoC components. To efficiently tackle this multi-objective design

challenge, two routing algorithms are proposed: (a) Aging and congestion aware adaptive

routing algorithm, and (b) Aging-aware oblivious routing algorithm. Extensive experi-

mental analysis using real workloads demonstrates improvements in network latencies and

EDPPF for both the algorithms. At the system level also, the proposed algorithms show re-

duction in performance overhead, mitigating the effects of aging mechanisms such as NBTI

and electromigration.



40

References

[1] J. D. Owens, W. J. Dally, R. Ho, D. N. Jayasimha, S. W. Keckler, and L.-S. Peh,
“Research challenges for on-chip interconnection networks,” in IEEE Micro, vol. 27,
no. 5, pp. 96–108, 2007.

[2] X. Fu, T. Li, and J. A. B. Fortes, “Architecting reliable multi-core network-on-chip for
small scale processing technology,” in IEEE Dependable Systems and Networks (DSN),
pp. 111–120, 2010.

[3] C. Hernandez, F. Silla, and J. Duato, “A methodology for the characterization of
process variation in noc links,” in Design Automation and Test in Europe (DATE), pp.
685–690, 2010.

[4] A. K. Kodi, A. Sarathy, A. Louri, and J. M. Wang, “Adaptive inter-router links for low-
power, area-efficient and reliable network-on-chip (noc) architectures,” in Asia-Pacific
Design Automation Conference (ASP-DAC), pp. 1–6, 2009.

[5] A. K. Mishra, N. Vijaykrishnan, and C. R. Das, “A case for heterogeneous on-chip in-
terconnects for cmps,” in International Symposium on Computer Architecture (ISCA),
pp. 389–400, 2011.

[6] K. Bhardwaj, K. Chakraborty, and S. Roy, “Towards graceful aging degradation in nocs
through an adaptive routing algorithm,” in Design Automation Conference (DAC), pp.
382–391, 2012.

[7] ——, “An milp based aging aware routing algorithm for nocs,” in Design Automation
and Test in Europe (DATE), pp. 326–331, 2012.

[8] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha, “Garnet: A detailed on-chip net-
work model inside a full-system simulator,” in International Symposium on Performace
Analysis of Systems and Software (ISPASS), pp. 33–42, 2009.

[9] PARSEC, http://parsec.cs.princeton.edu/.

[10] B. Li, L.-S. Peh, and P. Patra, “Impact of process and temperature variations on
network-on-chip design exploration,” in Network-On-Chip Symposium (NOCS), pp.
117–126, 2008.

[11] S. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano, A. Tiwari, and J. Torrellas, “Var-
ius: A model of process variation and resulting timing errors for microarchitects,” in
IEEE Transactions on Semiconductor Manufacturing, vol. 21, no. 1, pp. 3–13, 2008.

[12] W. Wang, S. Yang, S. Bhardwaj, R. Vattikonda, S. B. K. Vrudhula, F. Liu, and Y. Cao,
“The impact of nbti on the performance of combinational and sequential circuits,” in
Design Automation Conference (DAC), pp. 364–369, 2007.



41

[13] M. Sun, M. G. Pecht, and D. Barbe, “Lifetime rc time delay of on-chip copper intercon-
nect,” in IEEE Transactions on Semiconductor Manufacturing, vol. 15, pp. 253–259,
2002.

[14] A. Shafiee, M. Zolghadr, M. Arjomand, and H. Sarbazi-Azad, “Application-aware
deadlock-free oblivious routing based on extended turn-model,” in IEEE International
Conference on Computer-Aided Design (ICCAD), pp. 213–218, 2011.

[15] N. Nikitin, S. Chatterjee, J. Cortadella, M. Kishinevsky, and Ü. Y. Ogras, “Physical-
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