1,628 research outputs found

    Model validation for a noninvasive arterial stenosis detection problem

    Get PDF
    Copyright @ 2013 American Institute of Mathematical SciencesA current thrust in medical research is the development of a non-invasive method for detection, localization, and characterization of an arterial stenosis (a blockage or partial blockage in an artery). A method has been proposed to detect shear waves in the chest cavity which have been generated by disturbances in the blood flow resulting from a stenosis. In order to develop this methodology further, we use both one-dimensional pressure and shear wave experimental data from novel acoustic phantoms to validate corresponding viscoelastic mathematical models, which were developed in a concept paper [8] and refined herein. We estimate model parameters which give a good fit (in a sense to be precisely defined) to the experimental data, and use asymptotic error theory to provide confidence intervals for parameter estimates. Finally, since a robust error model is necessary for accurate parameter estimates and confidence analysis, we include a comparison of absolute and relative models for measurement error.The National Institute of Allergy and Infectious Diseases, the Air Force Office of Scientific Research, the Deopartment of Education and the Engineering and Physical Sciences Research Council (EPSRC)

    Mixed and galerkin finite element approximation of flow in a linear viscoelastic porous medium

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2013 ElsevierThis article has been made available through the Brunel Open Access Publishing Fund.We propose two fully discrete mixed and Galerkin finite element approximations to a system of equations describing the slow flow of a slightly compressible single phase fluid in a viscoelastic porous medium. One of our schemes is the natural one for the backward Euler time discretization but, due to the viscoelasticity, seems to be stable only for small enough time steps. The other scheme contains a lagged term in the viscous stress and pressure evolution equations and this is enough to prove unconditional stability. For this lagged scheme we prove an optimal order a priori error estimate under ideal regularity assumptions and demonstrate the convergence rates by using a model problem with a manufactured solution. The model and numerical scheme that we present are a natural extension to ‘poroviscoelasticity’ of the poroelasticity equations and scheme studied by Philips and Wheeler in (for example) [Philip Joseph Philips, Mary F.Wheeler, Comput. Geosci. 11 (2007) 145–158] although — importantly — their algorithms and codes would need only minor modifications in order to include the viscous effects. The equations and algorithms presented here have application to oil reservoir simulations and also to the condition of hydrocephalus — ‘water on the brain’. An illustrative example is given demonstrating that even small viscoelastic effects can produce noticeable differences in long-time response. To the best of our knowledge this is the first time a mixed and Galerkin scheme has been analysed and implemented for viscoelastic porous media

    Numerical analysis of a stabilized finite element approximation for the three-field linearized viscoelastic fluid problem using arbitrary interpolations

    Get PDF
    The original publication is available at www.esaimm2an.org.In this paper we present the numerical analysis of a three-field stabilized finite element formulation recently proposed to approximate viscoelastic flows. The three-field viscoelastic fluid flow problem may suffer from two types of numerical instabilities: on the one hand we have the two inf-sup conditions related to the mixed nature problem and, on the other, the convective nature of the momentum and constitutive equations may produce global and local oscillations in the numerical approximation. Both can be overcome by resorting from the standard Galerkin method to a stabilized formulation. The one presented here is based on the subgrid scale concept, in which unresolvable scales of the continuous solution are approximately accounted for. In particular, the approach developed herein is based on the decomposition into their finite element component and a subscale, which is approximated properly to yield a stable formulation. The analyzed problem corresponds to a linearized version of the Navier-Stokes/Oldroyd-B case where the advection velocity of the momentum equation and the non-linear terms in the constitutive equation are treated using a fixed point strategy for the velocity and the velocity gradient. The proposed method permits the resolution of the problem using arbitrary interpolations for all the unknowns. We describe some important ingredients related to the design of the formulation and present the results of its numerical analysis. It is shown that the formulation is stable and optimally convergent for small Weissenberg numbers, independently of the interpolation used.Peer ReviewedPostprint (author's final draft

    Fluid-structure interaction in blood flow capturing non-zero longitudinal structure displacement

    Full text link
    We present a new model and a novel loosely coupled partitioned numerical scheme modeling fluid-structure interaction (FSI) in blood flow allowing non-zero longitudinal displacement. Arterial walls are modeled by a {linearly viscoelastic, cylindrical Koiter shell model capturing both radial and longitudinal displacement}. Fluid flow is modeled by the Navier-Stokes equations for an incompressible, viscous fluid. The two are fully coupled via kinematic and dynamic coupling conditions. Our numerical scheme is based on a new modified Lie operator splitting that decouples the fluid and structure sub-problems in a way that leads to a loosely coupled scheme which is {unconditionally} stable. This was achieved by a clever use of the kinematic coupling condition at the fluid and structure sub-problems, leading to an implicit coupling between the fluid and structure velocities. The proposed scheme is a modification of the recently introduced "kinematically coupled scheme" for which the newly proposed modified Lie splitting significantly increases the accuracy. The performance and accuracy of the scheme were studied on a couple of instructive examples including a comparison with a monolithic scheme. It was shown that the accuracy of our scheme was comparable to that of the monolithic scheme, while our scheme retains all the main advantages of partitioned schemes, such as modularity, simple implementation, and low computational costs

    Stabilized finite element formulations for the three-field viscoelastic fluid flow problem

    Get PDF
    The Finite Element Method (FEM) is a powerful numerical tool, that permits the resolution of problems defined by partial differential equations, very often employed to deal with the numerical simulation of multiphysics problems. In this work, we use it to approximate numerically the viscoelastic fluid flow problem, which involves the resolution of the standard Navier-Stokes equations for velocity and pressure, and another tensorial reactive-convective constitutive equation for the elastic part of the stress, that describes the viscoelastic nature of the fluid. The three-field (velocity-pressure-stress) mixed formulation of the incompressible Navier-Stokes problem, either in the elastic and in the non-elastic case, can lead to two different types of numerical instabilities. The first is associated with the incompressibility and loss of stability of the stress field, and the second with the dominant convection. The first type of instabilities can be overcome by choosing an interpolation for the unknowns that satisfies the two inf-sup conditions that restrict the mixed problem, whereas the dominant convection requires a stabilized formulation in any case. In this work, different stabilized schemes of the Sub-Grid-Scale (SGS) type are proposed to solve the three-field problem, first for quasi Newtonian fluids and then for solving the viscoelastic case. The proposed methods allow one to use equal interpolation for the problem unknowns and to stabilize dominant convective terms both in the momentum and in the constitutive equation. Starting from a residual based formulation used in the quasi-Newtonian case, a non-residual based formulation is proposed in the viscoelastic case which is shown to have superior behavior when there are numerical or geometrical singularities. The stabilized finite element formulations presented in the work yield a global stable solution, however, if the solution presents very high gradients, local oscillations may still remain. In order to alleviate these local instabilities, a general discontinuity-capturing technique for the elastic stress is also proposed. The monolithic resolution of the three-field viscoelastic problem could be extremely expensive computationally, particularly, in the threedimensional case with ten degrees of freedom per node. A fractional step approach motivated in the classical pressure segregation algorithms used in the two-field Navier-Stokes problem is presented in the work.The algorithms designed allow one the resolution of the system of equations that define the problem in a fully decoupled manner, reducing in this way the CPU time and memory requirements with respect to the monolithic case. The numerical simulation of moving interfaces involved in two-fluid flow problems is an important topic in many industrial processes and physical situations. If we solve the problem using a fixed mesh approach, when the interface between both fluids cuts an element, the discontinuity in the material properties leads to discontinuities in the gradients of the unknowns which cannot be captured using a standard finite element interpolation. The method presented in this work features a local enrichment for the pressure unknowns which allows one to capture pressure gradient discontinuities in fluids presenting different density values. The stability and convergence of the non-residual formulation used for viscoelastic fluids is analyzed in the last part of the work, for a linearized stationary case of the Oseen type and for the semi-discrete time dependent non-linear case. In both cases, it is shown that the formulation is stable and optimally convergent under suitable regularity assumptions.El Método de los Elementos Finitos (MEF) es una herramienta numérica de gran alcance, que permite la resolución de problemas definidos por ecuaciones diferenciales parciales, comúnmente utilizado para llevar a cabo simulaciones numéricas de problemas de multifísica. En este trabajo, se utiliza para aproximar numéricamente el problema del flujo de fluidos viscoelásticos, el cual requiere la resolución de las ecuaciones básicas de Navier-Stokes y otra ecuación adicional constitutiva tensorial de tipo reactiva-convectiva, que describe la naturaleza viscoelástica del fluido. La formulación mixta de tres campos (velocidad-presión-tensión) del problema de Navier-Stokes, tanto en el caso elástico como en el no-elástico, puede conducir a dos tipos de inestabilidades numéricas. El primer grupo, se asocia con la incompresibilidad del fluido y la pérdida de estabilidad del campo de tensiones, y el segundo con la convección dominante. El primer tipo de inestabilidades, se puede solucionar eligiendo un tipo de interpolación entre las incógnitas que satisfaga las dos condiciones inf-sup que restringen el problema mixto, mientras que la convección dominante requiere del uso de formulaciones estabilizadas en cualquier caso. En el trabajo, se proponen diferentes esquemas estabilizados del tipo SGS (Sub-Grid-Scales) para resolver el problema de tres campos, primero para fluidos del tipo cuasi-newtonianos y luego para resolver el caso viscoelástico. Los métodos estabilizados propuestos permiten el uso de igual interpolación entre las incógnitas del problema y estabilizan la convección dominante, tanto en la ecuación de momento como en la ecuación constitutiva. Comenzando desde una formulación de tipo residual usada en el caso cuasi-newtoniano, se propone una formulación no-residual para el caso viscoelástico que muestra un comportamiento superior en presencia de singularidades numéricas y geométricas. En general, una formulación estabilizada produce una solución estable global, sin embargo, si la solución presenta gradientes elevados, oscilaciones locales se pueden mantener. Con el objetivo de aliviar este tipo de inestabilidades locales, se propone adicionalmente una técnica general de captura de discontinuidades para la tensión elástica. La resolución monolítica del problema de tres campos viscoelástico puede llegar a ser extremadamente costosa computacionalmente, sobre todo, en el caso tridimensional donde se tienen diez grados de libertad por nodo. Un enfoque de paso fraccionado motivado en los algorítmos clásicos de segregación de la presión usados en el caso del problema de dos campos de Navier-Stokes, se presenta en el trabajo, el cual permite la resolución del sistema de ecuaciones que definen el problema de una manera completamente desacoplada, lo que reduce los tiempos de cálculo y los requerimientos de memoria, respecto al caso monolítico. La simulación numérica de interfaces móviles que envuelve los problemas de dos fluidos, es un tópico importante en un gran número de procesos industriales y situaciones físicas. Si se resuelve el problema utilizando un enfoque de mallas fijas, cuando la interfaz que separa los dos fluidos corta un elemento, la discontinuidad en las propiedades materiales da lugar a discontinuidades en los gradientes de las incógnitas que no pueden ser capturados utilizando una formulación estándar de interpolación. Un enriquecimiento local para la presión se presenta en el trabajo, el cual permite la captura de gradientes discontinuos en la presión, asociados a fluidos de diferentes densidades. La estabilidad y la convergencia de la formulación no-residual utilizada para fluidos viscoelásticos es analizada en la última parte del trabajo, para un caso linealizado estacionario del tipo Oseen y para un problema transitorio no-lineal semi-discreto. En ambos casos, se logra mostrar que la formulación es estable y de convergencia óptima bajo supuestos de regularidad adecuados.Postprint (published version
    corecore