24,135 research outputs found

    Sampled signal reconstruction via H2 optimization

    Get PDF
    In this paper the sampled signal reconstruction problem is formulated and solved as the sampled-data H2 smoothing problem. Both infinite (non-causal reconstructor) and finite (reconstructor with relaxed causality) preview cases are considered. The optimal reconstructors are in the form of the cascade of a discrete-time smoother and a generalized hold (interpolator). In the particular case of reconstructing polynomial signals with infinite preview, the proposed procedure recovers the cardinal B-spline reconstructors

    Fast Ensemble Smoothing

    Full text link
    Smoothing is essential to many oceanographic, meteorological and hydrological applications. The interval smoothing problem updates all desired states within a time interval using all available observations. The fixed-lag smoothing problem updates only a fixed number of states prior to the observation at current time. The fixed-lag smoothing problem is, in general, thought to be computationally faster than a fixed-interval smoother, and can be an appropriate approximation for long interval-smoothing problems. In this paper, we use an ensemble-based approach to fixed-interval and fixed-lag smoothing, and synthesize two algorithms. The first algorithm produces a linear time solution to the interval smoothing problem with a fixed factor, and the second one produces a fixed-lag solution that is independent of the lag length. Identical-twin experiments conducted with the Lorenz-95 model show that for lag lengths approximately equal to the error doubling time, or for long intervals the proposed methods can provide significant computational savings. These results suggest that ensemble methods yield both fixed-interval and fixed-lag smoothing solutions that cost little additional effort over filtering and model propagation, in the sense that in practical ensemble application the additional increment is a small fraction of either filtering or model propagation costs. We also show that fixed-interval smoothing can perform as fast as fixed-lag smoothing and may be advantageous when memory is not an issue

    Active Classification for POMDPs: a Kalman-like State Estimator

    Full text link
    The problem of state tracking with active observation control is considered for a system modeled by a discrete-time, finite-state Markov chain observed through conditionally Gaussian measurement vectors. The measurement model statistics are shaped by the underlying state and an exogenous control input, which influence the observations' quality. Exploiting an innovations approach, an approximate minimum mean-squared error (MMSE) filter is derived to estimate the Markov chain system state. To optimize the control strategy, the associated mean-squared error is used as an optimization criterion in a partially observable Markov decision process formulation. A stochastic dynamic programming algorithm is proposed to solve for the optimal solution. To enhance the quality of system state estimates, approximate MMSE smoothing estimators are also derived. Finally, the performance of the proposed framework is illustrated on the problem of physical activity detection in wireless body sensing networks. The power of the proposed framework lies within its ability to accommodate a broad spectrum of active classification applications including sensor management for object classification and tracking, estimation of sparse signals and radar scheduling.Comment: 38 pages, 6 figure

    Online Sequential Monte Carlo smoother for partially observed stochastic differential equations

    Full text link
    This paper introduces a new algorithm to approximate smoothed additive functionals for partially observed stochastic differential equations. This method relies on a recent procedure which allows to compute such approximations online, i.e. as the observations are received, and with a computational complexity growing linearly with the number of Monte Carlo samples. This online smoother cannot be used directly in the case of partially observed stochastic differential equations since the transition density of the latent data is usually unknown. We prove that a similar algorithm may still be defined for partially observed continuous processes by replacing this unknown quantity by an unbiased estimator obtained for instance using general Poisson estimators. We prove that this estimator is consistent and its performance are illustrated using data from two models

    A particle filtering approach for joint detection/estimation of multipath effects on GPS measurements

    Get PDF
    Multipath propagation causes major impairments to Global Positioning System (GPS) based navigation. Multipath results in biased GPS measurements, hence inaccurate position estimates. In this work, multipath effects are considered as abrupt changes affecting the navigation system. A multiple model formulation is proposed whereby the changes are represented by a discrete valued process. The detection of the errors induced by multipath is handled by a Rao-Blackwellized particle filter (RBPF). The RBPF estimates the indicator process jointly with the navigation states and multipath biases. The interest of this approach is its ability to integrate a priori constraints about the propagation environment. The detection is improved by using information from near future GPS measurements at the particle filter (PF) sampling step. A computationally modest delayed sampling is developed, which is based on a minimal duration assumption for multipath effects. Finally, the standard PF resampling stage is modified to include an hypothesis test based decision step

    Sequential Monte Carlo smoothing with application to parameter estimation in non-linear state space models

    Full text link
    This paper concerns the use of sequential Monte Carlo methods (SMC) for smoothing in general state space models. A well-known problem when applying the standard SMC technique in the smoothing mode is that the resampling mechanism introduces degeneracy of the approximation in the path space. However, when performing maximum likelihood estimation via the EM algorithm, all functionals involved are of additive form for a large subclass of models. To cope with the problem in this case, a modification of the standard method (based on a technique proposed by Kitagawa and Sato) is suggested. Our algorithm relies on forgetting properties of the filtering dynamics and the quality of the estimates produced is investigated, both theoretically and via simulations.Comment: Published in at http://dx.doi.org/10.3150/07-BEJ6150 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    The path inference filter: model-based low-latency map matching of probe vehicle data

    Full text link
    We consider the problem of reconstructing vehicle trajectories from sparse sequences of GPS points, for which the sampling interval is between 10 seconds and 2 minutes. We introduce a new class of algorithms, called altogether path inference filter (PIF), that maps GPS data in real time, for a variety of trade-offs and scenarios, and with a high throughput. Numerous prior approaches in map-matching can be shown to be special cases of the path inference filter presented in this article. We present an efficient procedure for automatically training the filter on new data, with or without ground truth observations. The framework is evaluated on a large San Francisco taxi dataset and is shown to improve upon the current state of the art. This filter also provides insights about driving patterns of drivers. The path inference filter has been deployed at an industrial scale inside the Mobile Millennium traffic information system, and is used to map fleets of data in San Francisco, Sacramento, Stockholm and Porto.Comment: Preprint, 23 pages and 23 figure
    corecore