12 research outputs found

    k-nearest neighbors directed noise injection in multilayer perceptron training

    Full text link

    Evaluation of SLAR and thematic mapper MSS data for forest cover mapping using computer-aided analysis techniques

    Get PDF
    Separate holograms of horizontally (HH) and vertically (HV) polarized responses obtained by the APQ-102 side-looking radar were processed through an optical correlator and the resulting image was recorded on positive film from which black and white negative and positive prints were made. Visual comparison of the HH and HV images reveals a distinct dark band in the imagery which covers about 30% of the radar strip. Preliminary evaluaton of the flight line 1 date indicates that various features on the HH and HV images seem to have different response levels. The amount of sidelap due to the look angle between flight lines 1 and 2 is negligible. NASA mission #425 to obtain flightlines of NS-001 MSS data and supporting aerial photography was successfully flown. Flight line 3 data are of very good quality and virtually cloud-free. Results of data analysis for selection of test fields and for evaluation of waveband combination and spatial resolution are presented

    Discriminant analysis of multi sensor data fusion based on percentile forward feature selection

    Get PDF
    Feature extraction is a widely used approach to extract significant features in multi sensor data fusion. However, feature extraction suffers from some drawbacks. The biggest problem is the failure to identify discriminative features within multi-group data. Thus, this study proposed a new discriminant analysis of multi sensor data fusion using feature selection based on the unbounded and bounded Mahalanobis distance to replace the feature extraction approach in low and intermediate levels data fusion. This study also developed percentile forward feature selection (PFFS) to identify discriminative features feasible for sensor data classification. The proposed discriminant procedure begins by computing the average distance between multi- group using the unbounded and bounded distances. Then, the selection of features started by ranking the fused features in low and intermediate levels based on the computed distances. The feature subsets were selected using the PFFS. The constructed classification rules were measured using classification accuracy measure. The whole investigations were carried out on ten e-nose and e-tongue sensor data. The findings indicated that the bounded Mahalanobis distance is superior in selecting important features with fewer features than the unbounded criterion. Moreover, with the bounded distance approach, the feature selection using the PFFS obtained higher classification accuracy. The overall proposed procedure is found fit to replace the traditional discriminant analysis of multi sensor data fusion due to greater discriminative power and faster convergence rate of higher accuracy. As conclusion, the feature selection can solve the problem of feature extraction. Next, the proposed PFFS has been proved to be effective in selecting subsets of features of higher accuracy with faster computation. The study also specified the advantage of the unbounded and bounded Mahalanobis distance in feature selection of high dimensional data which benefit both engineers and statisticians in sensor technolog

    The decision tree approach to classification

    Get PDF
    A class of multistage decision tree classifiers is proposed and studied relative to the classification of multispectral remotely sensed data. The decision tree classifiers are shown to have the potential for improving both the classification accuracy and the computation efficiency. Dimensionality in pattern recognition is discussed and two theorems on the lower bound of logic computation for multiclass classification are derived. The automatic or optimization approach is emphasized. Experimental results on real data are reported, which clearly demonstrate the usefulness of decision tree classifiers

    The Shape of Learning Curves: a Review

    Full text link
    Learning curves provide insight into the dependence of a learner's generalization performance on the training set size. This important tool can be used for model selection, to predict the effect of more training data, and to reduce the computational complexity of model training and hyperparameter tuning. This review recounts the origins of the term, provides a formal definition of the learning curve, and briefly covers basics such as its estimation. Our main contribution is a comprehensive overview of the literature regarding the shape of learning curves. We discuss empirical and theoretical evidence that supports well-behaved curves that often have the shape of a power law or an exponential. We consider the learning curves of Gaussian processes, the complex shapes they can display, and the factors influencing them. We draw specific attention to examples of learning curves that are ill-behaved, showing worse learning performance with more training data. To wrap up, we point out various open problems that warrant deeper empirical and theoretical investigation. All in all, our review underscores that learning curves are surprisingly diverse and no universal model can be identified

    Thresholding method for dimensionality reduction in recognition systems

    Full text link

    Quantitative Spatial Upscaling of Categorical Data in the Context of Landscape Ecology: A New Scaling Algorithm

    Get PDF
    Spatially explicit ecological models rely on spatially exhaustive data layers that have scales appropriate to the ecological processes of interest. Such data layers are often categorical raster maps derived from high-resolution, remotely sensed data that must be scaled to a lower spatial resolution to make them compatible with the scale of ecological analysis. Statistical functions commonly used to aggregate categorical data are majority-, nearest-neighbor- and random-rule. For heterogeneous landscapes and large scaling factors, however, use of these functions results in two critical issues: (1) ignoring large portions of information present in the high-resolution grid cells leads to high and uncontrolled loss of information in the scaled dataset; and (2) maintaining classes from the high-resolution dataset at the lower spatial resolution assumes validity of the classification scheme at the low-resolution scale, failing to represent recurring mixes of heterogeneous classes present in the low-resolution grid cells. The proposed new scaling algorithm resolves these issues, aggregating categorical data while simultaneously controlling for information loss by generating a non-hierarchical, representative, classification system valid at the aggregated scale. Implementing scaling parameters, that control class-label precision effectively reduced information loss of scaled landscapes as class-label precision increased. In a neutral-landscape simulation study, the algorithm consistently preserved information at a significantly higher level than the other commonly used algorithms. When applied to maps of real landscapes, the same increase in information retention was observed, and the scaled classes were detectable from lower-resolution, remotely sensed, multi-spectral reflectance data with high accuracy. The framework developed in this research facilitates scaling-parameter selection to address trade-offs among information retention, label fidelity, and spectral detectability of scaled classes. When generating high spatial resolution land-cover maps, quantifying effects of sampling intensity, feature-space dimensionality and classifier method on overall accuracy, confidence estimates, and classifier efficiency allowed optimization of the mapping method. Increase in sampling intensity boosted accuracies in a reasonably predictable fashion. However, adding a second image acquired when ground conditions and vegetation phenology differed from those of the first image had a much greater impact, increasing classification accuracy even at low sampling intensities, to levels not reached with a single season image

    The analytical design of spectral measurements for multispectral remote sensor systems

    Get PDF
    The author has identified the following significant results. In order to choose a design which will be optimal for the largest class of remote sensing problems, a method was developed which attempted to represent the spectral response function from a scene as accurately as possible. The performance of the overall recognition system was studied relative to the accuracy of the spectral representation. The spectral representation was only one of a set of five interrelated parameter categories which also included the spatial representation parameter, the signal to noise ratio, ancillary data, and information classes. The spectral response functions observed from a stratum were modeled as a stochastic process with a Gaussian probability measure. The criterion for spectral representation was defined by the minimum expected mean-square error

    Classification with overlapping feature intervals

    Get PDF
    Ankara : Department of Computer Engineering and Information Science and the Institute of Engineering and Science of Bilkent University, 1995.Thesis (Master's) -- -Bilkent University, 1995.Includes bibliographical references leaves 83-88.This thesis presents a new form of exemplar-based learning method, based on overlapping feature intervals. Classification with Overlapping Feature Intervals (COFI) is the particular implementation of this technique. In this incremental, inductive and supervised learning method, the basic unit of the representation is an interval. The COFI algorithm learns the projections of the intervals in each class dimension for each feature. An interval is initially a point on a class dimension, then it can be expanded through generalization. No specialization of intervals is done on class dimensions by this algorithm. Classification in the COFI algorithm is based on a majority voting among the local predictions that are made individually by each feature.Koç, Hakime ÜnsalM.S
    corecore