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ABSTRACT

The task of selecting the best set of spectral channels

is vital to the design of multispectral remote sensor

systems. .is: would be desirable to choose a sensor design

such that the entire pattern recognition system performs

in an optimal manner. In order to choose a design which will

be optimal for the largest class of remote sensing problems,

a ;Method is developed which attempts to represent the

spectral response function from al scene as accurately as

possible. The performance of the overall recognition

system, then, is studied relative to the accuracy of the

spectral representation. The spectral representation is

only one of a set of five interrelated parameter cate-

gories which also includes the spatial representation

parameter, the signal-to-noise ratio, ancillary data, and

information classes.

The spectral response functions observed from a stratum

are modeled as a stochastic process with a Gaussian proba-

bility measure. The criterion for spectral representation

is defined by the minimum expected mean-square error. The
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sensor is modeled as a set of basis functions such that the

output approximates the input by a linear combination of

the basis functions suitably weighted by a sequence of

coefficients. The optimum set of basis functions with

respect to the mean-square error criterion is given by the

solutions to the Karhunen-Loeve expansion. The development,

of the Karhunen-Loeve expansion was generalized to include

a weight function such that each point in the spectral

interval could be assigned a weight corresponding to its

importance. The computation of the optimum set of basis

functions is incorporated into an analytical procedure that

seeks to design practical sensors, comparing their per-

formance against the optimal design.

The five parameter categories are discussed with regard

to their effect on the pattern recognition system perform-

ance. The usefulness of the graph of the recognition system

performance as a function of spectral representation is

introduced.

A software system is developed to test and evaluate

this method using field measurements data taken from two

locations on three different dates each. 	 Four different

weight functions are evaluated. The effect of sample size

on the evaluation of a data set is demonstrated. For each

stratum the first few eigenvectors are plotted, and the

mean-square error and probability of correct classification

are evaluated. The graphs of probability of correct

r
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classification vs. expected mean-square error allow the

study of the relationship between classification performance

and spectral representation. One can also study the

dimensionality of the observation space relative to repre-

sentation and performance.

The procedure is demonstrated to be a valuable tool for

the design of sensors for the limited collection of data.

The value of the weighted Karr unen-Loeve expansion is

demonstrated. The performance of several suboptimal sensors

are compared with the optimal desi gn. A proposed suboptimal

sensor is designed which demonstrates superior performance

in representation accuracy and classification accuracy

over the other suboptimal sensors. It is shown that spec -

tral sampling should be done using spectral channels which

have a smaller bandwidth, particularly in the red part of

the visible region ` than are currently being used on

operational sensor systems.
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CHAPTER 1.	 INTRODUCTION }f

ri

Earth observational remote sensing has emerged as a }

prominent technology in the last two decades.	 Important

j

developments in sensor technology, computer systems, pattern

recognition theory , and image processing techn iques haveg	 g

brought the remote sensing state-of-the-art to the point

where it is a powerful tool for studying earth resources.

With the launching of the Landsat satellites and advanced

automated processing of the image data, worldwide monitoring
a

of the earth's surface for locating and utilizing natural

resources is now a reality.

1.1	 The Pattern Recognition System

A basic tool for remote sensing is pattern recognition.

From a systems perspective the components of a pattern recog-

nition system can be placed into three distinct blocks - the

scene, the sensor, and the processor (figure 1.1). 	 The

scene includes everything in front on the sensor. 	 The

information in the scene is contained in the spectral, spatial

and temporal variations of the electromagnetic energy that

is either reflected by or emitted from the earth's surface

and passes through the atmosphere.	 The sensor measures the

received electromagnetic energy and prepares the measurements

y:
r

L

_
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Figure 1.1 Pattern recognition system.

S1

	

.	 i

N



3

^j

for transmission to the processor. The processor digitally

implements a set of algorithms for classification and image

processing as required by the user or analyst.
l 	 .

In this research we focus on the sensor subsystem and

develop an analytical technique for selecting certain parame-

ters for the sensor design. Because of the interrelationship

with other parts of the pattern recognition system, the

sensor design problem will be considered as a part of the

integrated overall system design problem. That is, sensor

design choices will be made on the basis of overall system

performance. Therefore, we begin with a more detailed

discussion of the parts of the system and how they interface

with each other..

1.1.1 The Scene

A distinctive characteristic of the scene is that it

is not under the control of the system designer or the

analyst. In fact, the intent of remote sensing is to observe

and learn as much about the scene as possible without modify-
5 "

ing it or affecting it in any way.

For current earth observational remote sensing problems,

the information bearing signal is the spectral response

function x(a,r,s,t). The parameters of this function are

h ' the wavelength, A, the spatial coordinates, r and s, and

time-,,t. Historically, the desired information has been

extracted primarily from the spectral variations (Holmes

and MacDonald, 1969,)"_ to which we will limit ourselves, here,

r
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i
although significant progress is being made in extracting

information from spatial (Kettig and Landgrebe, 1976;

Haralick et al, 1973; Wiersma and Landgrebe, 1976) and

temporal variations (Swain, 1978). A typical spectral

response function for green vegetation at a fixed location

and time is shown in Figure 1.2. The interval of interest,

A, typically includes the visible and infrared regions of

the electromagnetic spectrum from 0.4 micrometers to 2.4

micrometers.

The scene is very dynamic and complex. Changes in sun

angle, atmospheric conditions, climate, cover type, and a

variety of other variables can produce significant changes

in the spectral response. Instead of trying to account for

each of the variables that affect the spectral response, we

choose to model the scene as a stochastic process. The

complete characterization of this process model is not known

a priori. In order to obtain this knowledge, one observes

the scene over a period of time, an area of space and an

interval of the spectrum and estimates the parameters from

the observations which are necessary to complete the

characterization.,

It is generally necessary to group the observations

taken from the scene into classes. For purposes of classi-

fying the data into distinct classes it is .required that

the class list have the following properties simultaneously

(Landgrebe, 1978):

- Each class must be of interest to the user,
i.e of informational value

a
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- The classes must be separable in terms of the
features available

- The list must be exhaustive, i.e., there must be
a class to which it is logical to assign each
pixel in the scene

1.1.2 The Sensor
'i

The function of the sensor is to transform the con-
k1

tinuous parameter functions x(A) into a finite number, N,

of measurement values (xl , x2 , .... XN) called features.	 k

Ideally, the sensor would be under the control of the system

user who could then optimize the sensor and the processor

for a specific application. However, in practice the sensor

is a complex, expensive system which is designed infre-

quently. Control over the sensor, consequently is the

responsibility of the system designer rather -than the user.
a

The system designer cannot optimize the sensor for a

particular location, time, and application but must create

a single instrument which must serve a broad s pectrum of

users and applications over a number of years._

A basic sensor is shown schematically in Figure 1.3.

The system components can be placed into five blocks - the 	 a

collector (typically a set of optics) which collects the 	 a

electromagnetic energy over the spectrum of interest, the

scanning mechanism which controls the pointing of the

collector, a spectral dispersing device, the detectors which

convert electromagnetic energy into electrical signals, _

and the signal processing unit. The sensor is mounted on

L.
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xi = I XMa iMda

n
(1.2)

a platform such as an aircraft or spacecraft.

The operation of the sensor can be expressed mathemat-

ically as the representation of the waveform x(a) by a set

of functions [^ i (X)}. The original waveform is approxi-

mated by the series expansion

N
x	 xi^i (A)	 (1.1)

where the ^ i (a) represent the spectral sensitivity (as a

function of a) for one feature of the sensor system and the

xi are the coefficients in the expansion and the measurement

values which will be used by the processor. Each x i is

obtained by using the linear functional

1.1.3 The Processor

The measurement values (xi , x2 ,	 x N ) from the

sensor become the input to the processor which typically

contains a digitally im.olemented classification algorithm

A comprehensive list of all the processors that have

been implemented would require a monumental effort to com-

pile. Texts such as Nilsson (1965), Fukunaga (1972), and

Duda and Hart (1973) describe some basic classifiers which

may be adapted for specific applications. The point,_ here,

is that the system designer and the analyst have great

flexibility in choosing the processor.

L
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An important step in the design of a classifier is the

training phase. After the classification algorithm has been

selected, the parameters required by the algorithm must be

determined in order to obtain good performance. The process of

selecting these parameters is the training phase. To train

the classifier a set of (presumably correctly) class-labeled

samples from the scene are selected from which the necessary

parameters can be computed.

During the design procedure it is important to specify

the performance of the system which implies that a measure

of the performance must be defined. The global performance

criterion, e 0 , is a function of many system parameters.

	

eo = f (a)
	

(1.3)

The list of system parameters is indicated by a. This func-

tion is so complex that the straightforward analysis and

subsequent optimization of the whole system with respect to

6  is not trivial. What seems more appropriate is to list
the parameters in order of importance and investigate the

effect of each on the Performance.

Landgrebe (1978) has listed five general parameter

categories which affect the system design. These are:

Spectral representation

Spatial representation

Signal-to-noise ratio

Ancillary data

Information classes
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It is important to recognize that these parameters are inter- j

related; hence, a change in one parameter may affect the
i

value of one or more of the other four. 	 In this research

we will be concerned primarily with the spectral representa-
l

tion; however, the other four parameters will play a neces-

sarily important role in the analysis.

t.
a

1.2	 Previous Approaches to Sensor Design.

Them have been basically three approaches to selecting

spectral bands for multispectral scanner design.	 They are

1) in-depth studies of physical considerations, 2) empirical

'methods, and 3) simulators.	 All three of these approaches

have contributed to our knowledge of the scene and to the

design and development of present-day scanner systems.

Important physical considerations which have been

studied are atmospheric effects and the interaction of light

with various cover types. 	 Atmospheric effects include

scattering and absorption by water vapor, carbon dioxide,

and ozone (Korb, 1969; Hulstrom, 1974). 	 By evaluating the

transmittance of the atmosphere over the spectral interval

of interest, one can eliminate certain portions of the

interval, since little or no energy will reach the sensor.
{

Scattering effects are less pronounced but are important

for consideration.

Studies have been do ge to investigate the interaction

k of electromagnetic radiation with plant leaves to determine

.t

L
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regions of the•'spectrum which will be useful for identifying

vegetation and determining plant., stress (Harnage, 1975;

",Gates et al, 1971). On.a larger scale the interaction of

light with .a plant canopy has been studied which takes into

consideration the effects of leaf size, plant size, and plant

density (Colewell,'1974). Similar studies have been done

with soils (clay and Peterson, 1975; and Montgomery, 1976)

and with water temperatures (Bartolucci, 1977). A typical

procedure for these studies is to take measurements with a.

spectroradiometer on a restricted set of information

classes over the entire spectrum. For a single observation

a single spectral response function is recorded. The average

response is taken over a small number of samples and con-

clusions are drawn from the average. It is important to

note that over a collection of these spectral response

functions, the functions vary significantly about the mean.

Furthermore this variation is potentially information

bearing. This information is lost if one considers only

the mean response function.

The second approach is empirical in that a scanner

with many spectral bands is constructed, and the selection

of the bands is done experimentally. Examples of experiment-

al scanners which have been constructed are the Hichiga:n.

scanner (Hassel et al, 1974) and the A1SDS scanner (Zaitzeff

et al, 1971). The spectrum is sampled using on the order

of 10-30 spectral channels (12 for Michigan scanner 24 for
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MSDS) which are thought to be of interest. Data is collected

using the scanner, and processing is performed to evaluate
{
t= the channels over a variety of scenes. Some examples of

empirical studies which have been done are Landgrebe et al

(1977) with agricultural cover types, Ooggeshell and Hoffer

(1973) with forest covers, and Vincent and Thompson (1972)

with geological applications. This empirical approach has

the advantage of retaining the information in the variations

about the mean since a large number of samples can be

collected. However, the spectral sam pling is crude and

incomplete for representing the whole spectrum.

Simulators have been developed to generate typical

spectra according to a scene model. The artificial spectral

response functions can then be used to evaluate spectral

bands. A system which has been set up to simulate multi-

spectral data is described by Malila et al (1977). At this

time there is not sufficient understanding of the scene to

be able to develop and use accurate models.

One additional research effort due to Wiswell (1978)

which differs from the previous approaches deserves mention-

ing. The purpose was to extract information from a scene

using the entire spectral interval. The criterion of

average mutual information was proposed which is a measure

of the reduction in uncertainty about the scene after the

observation has been made. This information theoretic

technique was used to evaluate spectral _bands 'on the basis

E$
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of maximum average mutual information. An autoregressive

stochastic process model was used for the scene. Consider-

able effort was expended in developing and testing this model,

the parameters of which were then used to compute average

mutual information. While spectral bands were evaluated on

the basis of the information criterion, the relationship

between average mutual information and some global per-

formance criterion such as classification accuracy was not

demonstrated.

In this research it will be desirable to incorporate

the positive features of past approaches and build on the

knowledge that has been gained through them. We would like

to extract information from the entire continuous spectral

interval of interest rather than from the coarse sample of

the interval provided by experimental scanners. A large

collection of spectral response functions taken from field

measurements of the scene will be utilized in order to take

into consideration the variability of the data over the

scene as well as the average values. A parametric sto-

chastic model will be assumed which has been well studied.

The complete characterization will be learned from observa-

tions of the real data.

An important consideration is the choice of criterion

upon which the sensor system will be designed. The choice

of a global performance criterion, such as probability of

correct classification, seems attractive, since the overall

,x
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performance of the pattern recognition system is ultimately

what we wish to optimize. Usually one would like to

maximize the probability of correct classification; however,

in most cases the integral involved is too complex to

admit an analytic solution. Efforts have been made

in this direction primarily drawing on results from the

literature of feature selection. There have been three

basic approaches along this line: 1) optimization of a

separability measure, 2) discriminant analysis, and 3)

principal component analysis.

Separability measures of the statistical_ distance be-

tween tyeo class distributions are numerical quantities which

are simpler to compute than classification performance and

which provide bounds on the performance. The divergence

(Marill and Green, 1963) and the Bhattacharyya distance

(Kailath, 1967) are two well-known examples of separability

measures. Wacker and Landgrebe (1971, Table 2.4.2)provide

a listing of many of the separability measures that have

been proposed in the literature. The approach is to select

the set of spectral channels which is optimal with respect

to the separability measure.- Typically, a search procedure

is used to arrive at the best choice of spectral channels
^r

^. (Tou and Heydorn, 1967; Whitsitt and Landgrebe, 1977;

Kadota and Shepp, 1967; and Caprihan and deFigueiredo,

1976).	 Note that Kadota and She	 (1967) and Ca rihan andPP	 P

deFigueiredo (1970)	 are extracting information from continuous

j
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functions. Since the separability measure provides at best

only a bound on the classification performance, it cannot be

guaranteed that the channels which optimize the separability

measure will necessarily optimize the system performance.

In discriminant analysis one attempts to find some mea-

sure of the ratio of the between class separability to the

within-class separability (Fukunaga, 1972; Foley and Sammon,

1975). The spectral channels are selected to maximize this

ratio. one can observe intuitively that maximizing the ratio

would improve the performance; however, it cannot be guar-

anteed that the chosen set is optimum with respect to the

global performance criterion.

The method of principal components is a statistical

procedure which reduces the number of variables to be analyzed

to a manageable number (Anderson, 1962; Dempster, 1969).

Principal vectors are found such that the variable in the

first principal vector has maximum statistical variance, and

so forth. A variation on principal component analysis which

has found considerable application is that of cannonical

correlation (Dempster, 1969). It cannot be assured that

once the principal vectors have been selected, the global

performance criterion is optimized.

Although each of the feature selection procedures

described above has been demonstrated to be practical in

spite of the Lack of a tight relationship to the global

criterion, the approach that is proposed here will take

LI;. I
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a different direction. Once

built, and placed into servi

over all possible scenes for

cessor.. The difficulty with

the global criterion is that

processor and set of classes

the sensor has been designed,

--e, it should perform optimally

any possible choice of pro-

the methods for optimizing

one does not know the specific

of a problem at the time the

sensor is designed. Optimizing the choice of basis func-

tions with respect to a global criterion for a specific set

of classes in general may yield poor results with the same 	 r ^

i
	 basis functions on a different set of classes. Furthermore,

the global performance criterion was described as being a

complex function of many parameters (1.3). If we choose as

our criterion some measure of the quality with which the

output of the sensor represents the input, we can optimize

the criterion while holding parameters from the other four

categories fixed. The relationship between the spectral

representation criterion and the global performance criterion

can be evaluated for typical remote sensi'hg problems.

1.3 Present Investigation

In Chapter 2 a procedure is developed to analytically

select spectral channels for a sensor system. The collec-

tion of spectral response functions makes up the stochastic

process. A representation technique based on the Karhunen-

Loeve expansion which minimizes the criterion of mean-square

representation error is.-. developed. This technique is

a

xr

o-
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generalized to include a priori weighting information which

may be available. This weighting method has been termed

the weighted Karhunen-Loeve expansion.

The Karhunen-Loeve expansion is attributed to Karhunen

(1947) and Loeve (1963) and is used extensively in the

stochastic process literature as a technique for represent-
J

ing stochastic processes (Davenport and Root, 1958; Wong,

;1971). In the pattern recognition literature the Karhunen-

Loeve expansion historically has been used as a feature

selection technique (Watanabe, 1965; Chien and Fu, 1967;

Fu, 1968; Fukunaga, 1970; Kittler and Young, 1973).

The parameters and their influence on the global per-

formance criterion are discussed in Chapter 3. The princi-

pal parameter in this research is the spectral representation;

hence, the relationship between the spectral representation

parameter and the probability of correct classification is

developed. The ancillary data, information classes, spatial

representation, signal-to-noise ratio, and the interrelation-

ships between these parameters are also discussed.

An experimental software system which implements the

procedure that was developed in Chapter 2 is described and
x

evaluated in Chapter 4. Results from tests of the system

are presented and discussed.

In Chapter 5 some conclusions from the results are

presented and suggestions are made for further work.
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In this chapter an analytical procedure is developed

to perform the spectral parameter design for a sensor system
l^.

capable of operating as an integral part of any potential

pattern recognition system. Due to the complexity of

the scene, a stochastic process model is used to describe

the scene. The theory necessary to support the procedure

is developed for the case where the spectral response

f unctions are square-integrable functions of the continuous

parameter A. Due to practical consideration for measuring

real data in the field and performing computations on a

digital computer, a discrete a pproximation is developed,

and the potential error due to the approximation is discussed.

2.1 The Analytical Procedure

Consider a pattern recognition system where the scene

which is being observed by the sensor is some portion of

the earth's surface So. It may be desirable to design a

sensor such that So is some subarea, for example, the land

surfaces or a particular nation within its territorial

boundaries. The area defined by the geographical boundaries

of So can be subdivided into areas called strata. We define

o-
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a stratum S c- So as the largest contiguous set of points

{seS} which can be classified to an acceptable accuracy

with a single training of the pattern recognition algorithm.

The sensor model will be a set of basis functions

fq (a)} on the interval A (Figure 2.1). These functions

are essentially filters which have weighted passbands in

differing portions of the spectral interval. The approxi-

mation of a function x M by a set of four rectangular basis

functions is illustrated in Figure 2.2.

The processor for the pattern recognition system will

be denoted by P(A, z, e o ), where A represents the set of

algorithms used in the processor, z is the output of the

system, and eo is the system performance criterion with

respect to z. The set A may include feature selection and

classification algorithms. The output z may be a map, a

r=_

Y
^^^

table or some other presentation of the desired information.

In order to define a remote sensing ? problem, the

analyst decides upon an objective. Depending on the objective

the analyst will specify the components of the pattern

recognition system S', {^i (A) } and P(A, z, e o ) . Quite

often the objective dictates which subset, S'', of S o will be

used. As described in Chapter 1, the sensor { ^ i M)} is

designed infrequently and once put into service remains

fixed. The output z is based upon what information is
1

desired from the scene to achieve the objective.
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The ultimate goal before us is to select a sensor

design Ja i M} which can be used on any subset S' of So

and will provide,as nearly as possible,optimal performance

for any choice of processor P(A, z,eo).

To achieve the design goal an analytical procedure

is set forth which incorporates the design of a theoretically

optimal sensor against which the performance of candidate-

practical sensors can be compared. The following procedure

is proposed (see Figure 2.3):

1. Based on the intended use of the sensor system, the

collection of strata comprising So is specified. Because

of the infinite number of possible strata in So,

only a finite number G of subsets {S i } which are

representative of the entire collection So will be

used to evaluate the sensors.

2. An initial candidate sensor system is specified

by defining a, set of basis functions

At appropriate steps in this procedure the set

of basis functions may be modified to improve

the performance.

3. In steps 4 through 7 each stratum S., i=1, 2,.., G

will be considered in sequence. I.f it is necessary

at any stage to modify * i (a), the sequence should

be repeated to insure that the desired performance

is obtained over all of So.

r.

s
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START

I i--1 I

Design an optimal sensor
I(P (ICI I for S;

c	 Evaluate performance of
PJA I I over Si	 i--i+1

Evaluate performance of
14V;IAIt over S,

Compare performance of
IWAII with I(Pi(Aot

Figure 2.3 Flowchart of the design procedure.
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4. For S i design a sensor which will be optimum with

respect to some criterion for any possible choice

of processor. This optimal sensor 1^i M) will

serve as a standard by which one can compare the

performance of the candidate system..

S. Evaluate the performance of the optimal sensor based

on the criterion of optimality over the stratum Si.

6. Evaluate the performance of the candidate sensor

{^ i (A)} over the same stratum using the criterion.

7. Compare the performance of the candidate sensor

with the optimal design relative to the criterion.

if the performance of the candidate sensor {^i(M

is very nearly the same as the optimum, then, the

proposed sensor is adequate for the stratum under

consideration. In this case the next stratum in

the sequence is fetched and we return to step 4.

In the event that all of the strata have been used

i
i

x

^d

t

^a

	

-	 "the procedure halts. If the candidate system's

performance is substantially below that of the

optimum, it will be necessary to modify our choice

of the set 1V i (a)} and return to step 6. The set

	

i,	 of optimal basis functions { i M} can be used to

provide an aid for modifying TO (W.^) }.

The critical step in this procedure is the design of

the optimum sensor, and will be the principal step to which 	 j

this research will be addressed. The criterion for
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optimality is an important quantitx_..and must be dealt with

carefully.	 An optimality criterion has the dual role of

' providing the measure of performance which will be opti- .	 R:

mixed as well as providing a standard for comparison of

suboptimal systems	 (Middletoft, Sect. 2,3.4, 1960).

The optimal sensor system design will be optimum in 	 3

the following sense. 	 If one has the entire function x(A)

at his disposal, a processor which is optimum with respect

to a global performance criterion Eo may be designed.	 If

x(A) is the. approximation by the sensor to the waveform

x(a), then a fidelity criterion is defined by

fA
E r f(x(A) -x(X))	 dA	 (2.1)

 .w

The condition for optimality requires that the original

waveform be reconstructed with arbitrarily small Er.

There are several possible choices for the function f(•)

in 2.1.	 It is desirable to choose a function for which there

is a greater cost for large errors than for small errors.

Since x(a) will be required to be a square-integrable

function, a .natural choice which satisfies the requirements

for the cost of making an error is the function f(x) = x2,

Equation. 2.1, then, becomes

f

f:r	 [x(A)	 -x(A))
2
	da	 (2.1a)

fA
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2.2	 The Stochastic Process

An experiment is defined as the observation of a point

s in the stratum S.	 Each point sES is mapped into a

spectral response function x(a).
;j

Xi	 s	 x( a )	 (2.1)
A	 ^'

:y

J
The function x(A) is a real-valued function of the continu-

ous parameter a.

Let a(a) be a non-decreasing function of bounded

variation which is absolutel-v continuous. 	 Construct a a- E

measure on the interval h such that a

dQ(a)	 _- WM	 (2.2)
j

dA

We require that x(a) belong to the Hilbert space L ag of

all a-measurable functions for which the Lebesque--Stieltjes

integral

[x(a)l2da(a)	 (2.3)

A

exists.	 The inner product which generates	 he metric for

this space is
K

(x.Y)	 _	 x ( a )Y( a ) da ( a )	 (2'.4)

fA y

(Akhiezer and Glazman, 1961). 	 The norm is given by

L_

a..
.
âw'

n
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j

II x II	 =	 ( x,x) 	 [x(x) ] 2 aQ.(a)
n

y (Ko.lmogorov and Pomin, 1957)'.
1

Consider the	 subset	 LS of LQ2 which consists of the

set of all possible spectral response functions which may
jr

be mapped from points in the stratum.	 The members of this

subset {x(A), xELS } form an ensemble ( Figure 2.4).	 This

ensemble together with the probabilities of occurrence

associated with the functions that belong to LS specify

k a stochastic process ( Papoulis, 1965; Doob, 1963; Gikhman
n

and 3korokhod, 1969).

Crane et al (1972) and others have shown that for
i

remote sensing applications this stochastic process may

' be assumed to have a Gaussian probability measure. 	 The

Gaussian assumption is attractive because its mathematics

are well-studied and tractable and because of its robust-

£' ness.	 Robustness implies that good estimates of the density

{ function can be obtained with a relatively small number of

training samples and that statistical procedures on the

3
process yield good results even for some non-Gaussian pro-

t cesses	 (Lachenbruch et a1, 1972). 	 An important property of
r

a Gaussian process is that every linear function of x(h) EL
's

v2
is a Gaussian random variable 	 ( Van Trees,	 1968).	 Also, a

Y

Gaussian random variable is completely characterized by its ^r .

first and second moments. 	 The first moment or mean function 	 f

of the process is denoted by

z

j

^^^--v"^^i:._,._ _.	 . ,.	 ..... ,.r .rz caa,.s^kL..i,.^:MStu. ^K: h,a:„x,tiP,s *-Y 	
.,.	 _	 .., ..._	 r	 a .	 ..... _.	 ._	 _.	 _•
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MM	 = E{x(A) }	 (2.5)

9

M

} and the second moment or covariance function is denoted by {

K(A,^)	 =	 Ef [x(A)	 —m(a) l	 Ix(E) —m(E)) }	 (2.6)
i

where E ( } denotes ensemble expectat-on.	 The covariance

is assumed to be continuous.

2.3	 Representation of the Stochastic T)rocess

The criterion that has been proposed for designing the

spectral representation parameter for the sensor system

is based on the ability of the sensor to represent funs-

i
tions belonging to the stochastic process. 	 Of the possible

techniques for representation of stochastic processes

(Wong, 1971), it would be desirable to choose a method which

bears a close relationship to the physical model of the

sensor.	 A well 	 technique is to represent the con-

tinuous parameter st^^hastic process {x(A), 	 A ELS } by a .'
a;

sequence of random variables which are the coefficients

of a set of basis functions in a series expansion.	 The
t

basis functions corresnond to the basis functions described

for the sensor model in Figure 2.1.	 That such a representa-

tion is possible without loss of information was shown by

Bharucha and Kadota (1970).

Consider the linear Hilbert space LQ2 and let (oi(A)}

be an infinite linearly independent set of functions_ 	 }

L^	 =
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belonging to LS . For an arbitrary functioa,x(X) E LS

we can associate the infinite series	 fr

w
x(a) x(A) _	 xOiM	 (2.7)

i=1

Note that for the series expansion the continuous parameter

function x(A) is transformed to a point in the Hilbert

space L whose coordinates are given by the vector of
CY 2

coefficients [x 1, x2, ...

Without loss of generality the set {^ i (a)) will be

taken to be orthonormal; that is,

($ i M, ^M= fA (7i	 (a)da(a)	 (2.8)

1 i MV (a)w(A)da
n	 a

tol

If the set {$ i (R)} is not orthonormal to begin with, it 4

All

. 3	can be orthonormalized by the Gram-Schmidt procedure (Courant
r	 ,

and Hilbert, 1953). That such sets exist in Hilbert spaces

has been demonstrated by the construction of sets such as

complex sinusoids, Legendre polynomials, Tschebycheff

polynomials and others.

01.
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i
The coefficients x. are the Fourier coefficients

i

##,
i

defined by

i' x.	 _	 (x (X)	 M	 (2.9)

= fXM i(A)dcrM
} A

fA 
x(A) ^i(a)w(a)da

s

For a given set of basis functions the set of coefficients

which minimizes the mean-square error between each function

and its approximation are the Fourier coefficients (Courant

and Hilbert, 1953).	 Note that the set of coefficients

{Xi }	 can be treated as a vector X =	 [X1 ,	 X2 ,	 ...}T.

This vector representation of the function x(A) 	 is a

motivating factor in choosing this method of representing

the stochastic process, since the vector representation

provides an equivalent mathematical model to the physical

sensor.

Since the Hilbert space L 	 has already been defined,
2

the corresponding definitions for the inner product and

the metric follow. It is possible, therefore, to talk

about a set { 
i
(A)} which is complete in LJ and about the

2
convergence of the sequence

n
n(a) _	 x^i(a)	 (2.10)

i=l

r

y
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i	 ^	 9

r	 to the function x(a). Convergence in L is convergence in

S'	 the mean. If	 (a) converges to x(A), then

	

n	
a

i"	 x(a) = l.i.m. B (A)	 (2.11)
1	 n ->

where l.i.m. is defined as

	

[1,	 n

lim 	 [x(A)x. ^¢. (A) ] dQ(a
n-)

	=
n-)-00 i=1	 1

The problem of designing the optimal sensor becomes

that of selecting the set of basis functions {¢ i M) such

that the series representation will be optimum with respect

to the criterion. The criterion of minimum error in

reconstructing a function is extended to the stochastic

process where the expectation of the mean-square reprasen-

tation error is taken over the ensemble

E {Er}= E 
C	

[x(a) -x(a::`]2dQ(ad	 (2.1.2)

r^

We now propose a list of properties which would be

desirable for the optimal design to have. Because it

would be impractical to transmit an infinite or even a

very large number of spectral channels over a data link

to a processor as well as difficult for any processor to

handle such volume, it is necessary that the representation

of the signal space be characterized by a small number of

dimensions. The series expansion provides a countable set;

far	 1	 ..,.r,x .,u ...zxf^5ilskt^t.'t..5a'4^ k Y:'.^ 	 > 	 .	 __.... r	 __
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hence, by Î_runcating the series at some appropriate number

of terms N a finite dimensional signal space is obtained.

This finite dimensional space is only an ap proximation to

the entire space LS , but it is desired that the approxi-

mation be an adequate representation for LS.

If we form the sequence {Sn }, where

n
s n (a) _	 xi¢i(a)

i=1

it would be desirable that this sequence converge to x M in

the mean-square sense. This convergence guarantees that the

series can be made arbitrarily closes to x(A) by increasing n.

Another desirable property is that the convergence be

rapid in the first few terms. One would expect that an

increase in the number of terms in the expansion would

reduce the representation error. It is desirable, though,

that each additional term decrease the representation error

-by a maximum amount. A plot of the ex pected mean-square
jl
representation error as a function of the number of terms

n would show a large decrease in the mean-square error

for the .first few terms with a considerably slower rate of

tconvergence for higher order terms.	 If the expansion is

truncated after N terms, the series

N

R	 (a)	 _	 ^	 x.^p. (a)
N

.

should represent the function x(X) with minimum expected
i

mean-square representation error.`

L.

,:^,:<<<

;j.

J
E

s

L

(2.13)
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We would also like the representation in terms of the

optimal basis functions to be complete in the following

sense. Let T be the minimum acceptable expected mean-

square representation error. If the representation by

the series expansion for some finite number of terms is

such that

E {er }= 
EIfA

 [x(a) - Rn M 1 2da(AI <T	 (2.14)

i

then the set of N basis .functions will be complete inethe

N-dimensional subspace of L S that has an expected error

less than T.

The completeness of the set can be expressed in terms

of the coefficients of the expansion. Squaring and inte-

grating term-by-term the expression in 2.14 becomes

IfA
E { Er}= E [x(a)1 2dQ(a) 	 E{ ^xi ^ 2

} i-1

since, E { r}? 0

OD

IfA
E{IXiI2}_`EIXMI2da(a)l(2.15)

"Y
Inequality 2.15 is Bessel's inequality and guarantees that

the sum of the squares of the coefficients always converges.

Furthermore, if there is equality, then Bessel's inequality

becomes Parseval's equality

(" r(

	

E{ fxil2}= 
EI ! [x(a) ] 2da(a)]	 (2.1.6)

`'	 a	 l-1	 A	 •11
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i
and the set f^ M } is said to be complete. The direction,

here, is to find the complete set {O i Ml and use only

those terms in {o
i
(a)} which provide a good approximati`>nk'

(E {er}<T) in the mean-square sense.
r

To obtain the optimal set of basis functions {¢1(a)'}

some results from linear integral equation theor y are
w

required (courant and Hilbert, 1953; Akhi;ezer and Glazman,
!I

1961; Riesz and Sz.-Nagy, 1956; Lovitt, 1,924; Tricomi,
r'

1957; Ash, 1967),

The linear integral operator on L
S 

is""defined by

X(A) =	 k(/k(/'X,0.	 x(E) dc) (C)	 (2.17)

fA

T7

where k(a,C) is the kernel of the operator. An operator

is compact if for every bounded sequence of functions

{Xn (a)}, the sequence of functions xm (A) has a con-

vergent subsequence. A bounded operator is self-adjoint if

( x ► Y) _ (x, *y )

We now state a theorem and some consequences of that theorem

which will determine the set of basis functions {^i(A)}

t	 Theorem: I.f ^ is compact and self-adjoint, then the
f

solutions to the Linear homogeneous integral equation

YiT i (a) _q i (x)	 (2.18)

y

_4!4
ei r u Yp	 tt ti 	 Lti t t .a	 a
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%I

.E

is a set of eigenfunctions	 i (A)} with corresponding

eigenvalues y i . The following statements can bemade:

- The eigenvalues are real"

1	 - The eigenfunctions form a basis for the space LS,

The eiaenfunctions for distinct eigenvalues

are orthogonal

co- The series E x. (a) converges in mean-square
i=l

to x(A).

The covariance function K(a,E) satisfies the necessary

conditions on the kernel. Since the covariance kernel

is Hilbert-Schmidt,,
i

1 J ( K(X,	
12 d X)dcr(a) < j E[x(A)l 2da(a) <	 (2.19)

n	 n

it can be shown that the operator K is compact (Weston, 1977).

The covariance function is real and symmetric; hence, it is

self-adjoint. If the covariance kernel is non-negative

definite, the inequality

fA	
aJ K(A,E) x 	 x 	 da(A) d( ) _' 0	 (2.20)

is satisfied and the eigenvalues are non-negative. If the

kernel is positive definite then the inequality is strict

and the eigenvalues are non-zero and positive (Van Trees,
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The random variables xi generated by the linear
r

functional .s are uncorrelated
a

E{xx}-E If x(X) ^i (A)dA	 x(^) $	 (E)dE (2.21)
1

= j q(x) f K(a, ^) ^	 (^)d^ d^
a

w_	 i=j

j	 f	 i	 j oL i 34j w

If xM is a Gaussian process, then the coefficients

T'

xi are independent Gaussian random variables 	 (Ash, 1967).

It is possible to order the set of eigenfunctions
x

A`

MJ such that the sequence an (A) for n =N, fixed,

minimizes the expected mean-square representation error.

To accomplish this ordering, the correspondingeigenvalues

are ranked such that

Y l	 > Y 2	 '- Y 3 -'

The expected mean square error for N terms is

(Brown,	 1960)

E{ r}In=N-E xi^i(a)J 2daM (2.22)
1	 -II	 i N+1

fAi=1

OD
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since from equation 2.21 E{Ix i l 2 1 = -Y 
i* 

The graph of the

expected mean-square error as a function of the number of

terms N in the expansion will show a sharp decrease in the

error as the first terms are added. As an example consider

the second-order stochastic process on the interval [-1,1]

with mean zero and covariance K(A,E) = exp(
'w

The eigenvalues are given by Van Trees (1968, p. 188)

Y 	 ? -^	 (2.23)
1 +b.

i
x
)

where the bi are solutions to the equation

(tan bi +b.) (tan bi- b )	 0	 (2.24)
i

M

A graph of the expected mean-square error for this process

as a function of the number of terms (Figure 2.5) illustrates

the desired rapid convergence property. It is important
Y

to note that for a fixed N the best set of N basis function

from the set of all possible basis functions is the ordered

set {^ i (a)), i = 1, 2, ... , N.

In an effort to present an intuitive interpretation of

the eigenval_ues and eigenfunctions consider the first

eigenvalue and its corresponding eigenfunction for a partic-

ular stochastic process. The first eigenvalue is found

by choosing a function l (a) which maximizes the variance

of the coefficient of that .function. That is, the co-
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Figure 2.5 Eigenvalues for the stochastic process
example.
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x = 	XM^	 MdclM	 (2.25)
fA 	 11 

r

t

The variance of xl is equal to the first eigenvalue

(2.21) which was chosen to be the largest of the set of :kr

Y

eigenvalues.	 Since the variance is the largest for the

coefficient xl , the uncertainty about the original function

x(A) is reduced the most by using the first term. 	 From
i

a Shannon information theory point of view (Shannon, 1948)

knowing the value of the coefficient x 1 provides the most
(

information concerning the input signal that a single j
f

measurement: can give.	 From the argument of being able to

reconstruct the waveform, the coefficient X 1 gives the

single most valuable measurement from which the input

signal could be reconstructed.

The first eigenfunction can be used to identify por-

tions of the spectral interval which may be more useful

than others.	 If at a point A on A the value of ^.(a)

is close to zero, then the contribution to xl is not signifi-

cant.	 On the other hand, if at a point a, 
q (A), 

is

significantly different from zero, then,.the spectral

response at that point may be of importance.

The second eigenvalue and eigenfunction attempt to

find the second most useful portions of the spectral

interval.	 The variance of the second coefficient x 2 is

the second largest since the eigenvalue is the second
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largest. The third eigenvalue and eigenfunction corres-

pond to the third most useful and so forth. Therefore,
L.

there is an ordered sequence of eigenfunctions 0 1 M
^ 2 (a), ...whose corresponding coefficients x 1 , x2 , ... ,.

{ provide a decreasing amount of information and a decreas-

ing contribution to the reconstruction of the original

:Function x(A).	 Based on the ranking, the eigenfunctions

provide some intuitive indications concerning the importance
^r

of the points in the spectral interval.
W

A useful concept when discussing a signal set is the

dimensionality of the signal space. 	 The dimension of a

signal space can be defined as the minimum number of basis

functions required to completely reconstruct any .function

from the ensemble (Bennett, 1969).	 The orthogonal

expansion which we have just derived provides an approxi-

mate method of determining the dimensionality of the obser-

vation space.	 If T is the value of expected mean-square

error such that the approximate representation using only

enough eigenfunctions to reduce E{E} to a level below T,

then the number of eigenfunctions is a reasonable approx-

imation to the dimensionality of the signal space.

A general method has been developed for obtaining an

optimal set of orthonormal basis functions such that

if we choose an acceptable value of expected mean-square

representation error Efe}, the series expansion can be

truncated at some finite number N which will represent

^V`^^1e ^n".t__i ..... .._ .	 _.,_.;;iet.+SUS:,^.J.1.1..;e+cxdlf.^$1.-.F!rti.1TG ^•^	 '.''^.,
	 ..	 .._	 , ..
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any function in LS with L(`'r) less than the required

value.	 Built into this derivation is the capa-

bility of adding a priori information which may be avail-

able concerning the spectrum. If we let w(a) = 1.0 for

all a e A: the series expansion is identical to the

Karhunen-Loewe expansion derived in many texts (Davenport

and Root, 1958; Van Trees, 1968; Middleton, 1960). When

the weighting function is unity for all A, the expansion

will be referred to as the unweighted Karhunen-Leeve

expansion.

Due to measurement difficulties in water absorption

bands and differences in detector characteristics it has
ti

become apparent that the use of a weighting,function dif-

ferent from the uniform one used above may be advantageous,

q
	 The use of the weighted Karhunen-Loeve expansion has

appeared only briefly in the literature (Kailath, 1971;

Kailath, 1974). It is thought that the lack of wider use

for the weighted Karhunen-Loeve expansion is due primarily

to a lack of need for it until this time. The weighted

Karhunen-Loeve expansion will be used extensively in the

results to be presented later.

4

2.4 Discrete Approximation

It is proposed to solve the optimal sensor problem

described in the previous section on a digital computer
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Y '
"	 w using real data taken in the .field. 	 Howevor, the solution

4

must be approximated in order to take into consideration

some practical constraints.	 First, the spectral response

functions are not available as square-integrable functions'

on the dense set {a EA}.	 The functions are obtained int

the.field by sampling the spectral response with an instru-

ment that uses very fine spectral windows. 	 Secondly, the

parameters of the process are not known a priori; hence, it n

is necessary to estimate the mean and covariance functions

using a representative sample from the ensemble. 	 Finally,
3

°z-

r because the data will be stored and processed digitally z

it is necessary to quantize the amplitude of the response

at each of the spectral sample points.	 Each of these con-

straints can potentially contribute to the representation

error for the process.	 In this section we want to consider

the significance of the error due to spectral sampling,

ensemble sampling and quantization.

2.4. 1 	 Spectral Sampli; <7 j]

Up to this point the spectral response functions have

'been treated as functions of the continuous parameter X.
A

Suppose that the function x(a)	 is sampled at L intervals.

Each spectral response function then becomes a vector u =

[ul, u
2 1'
	 ..., uL ] T .	 It would be desirable to use a large

F

enough number of sample points such that the error intro-

^ duced by sampling the spectral interval is not significant.

x^
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Note that once the sampling has been done the dis-

p,rete equivalents to the solutions of the eigenvalue problem

are used. The linear integral equation becomes

r	 = Kw0
	

(2.26)

-here (D is the L x L matrix of eigenvectors, K is the L x L

covariance matrix given by

E f [ui - u  ] [u^ u ' ) }
	

(2.27)

ui = E{ui}

r is the diagonal matrix of L eigenvalues, and W is the

diagonal matrix of L weighting coefficients.

Because the actual covariance function is unknown, the

loss of information or representation error from sampling

cannot be evaluated. However, we can derive an expression

that gives some insight into the effect of the error due

to sampling. To evaluate the error due to sampling, the

interval over the random process with mean m(X) and co-

variance k(X,^), the interval A is partitioned (Figure

2.6) into L equal intervals with L +1 end points A..

Define a set of sampling functions by

1
< X < X

gi
M 	

'V
	 i-1	

i X e A	 (2.28)

	0 	 elsewhere

where AX ' = X i A i-l . The waveform x (X) can be approximated

by

,^}	 y3 • f̀s:	 4 xS°o.Y^^:S^^i2kein^ ^'.SS-:.IG t '._:..., ,	 .:.i^1-. .

	

..xt +t... T'-	 a•r^t .̂wi..	 .......	 .: .+.u...._.t.. r3	 etic. vF _	
.'?JiS:i.^' "w^y4Gri
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Figure 2.6	 Partitioning of the spectral interval into
L subintervals.
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xL (A) 	 xi0i( A )

i=1
(2,29)
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y

Using the expression for mean-square representation error,

ES = j [x(A) - xL (A) )` d o (A)
n

(2.30)

the form for the expected error due to spectral sampling

can be derived. The coefficient for the ith sampling
4

function is given by

Xi =

	

	 x(A)9 i (A)d6(A)	 (2.31)
fA

The expected mean square error due to sampling is

E{e s }	 E 
fn 

[x (A) - xL (A)1 2do(A)^	 (2.32)
J

=	 K(A,A)do(A) -E	 [xi-miI 	 m2(A)do(A) -	 m

fA 	 Ci=1	

fA

	 i=1

where m (A)	 E { x (A) } and mi	 E { xi }	 If the number

of intervals L approaches infinity,

L
lim. EL	 (xi-mi)21= fAK(X,X)dcr(X) 	 (2.33)
L

f
and

F

.{	
L

1imm?	 j m2 (A) da(A)	 (2.34)
i	 n

and the limit for the expected error is zero.

w

L;
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r "'
The discrete version of the Karhunen-Loeve expansion

1
r can be evaluated using the sampled spectral, response

functions .	 Let y 	 = xi -
 

mi l then

E{yi }	 =	 0.	 (2..35)

E{y iy i 	k} =	
ij

( The discrete form of the integral equation is

4

( Lr L = KWOL	(2.36)

where rL is the diagonal matrix of ei genvalues YL	 and ^P
s 1

is the matrix of eigenvectors^ L	for the L,sampling
^ 1

intervals.	 Therefore,

L	 2	 L
E	 (x. - m)	 _	 Y

	
(2.37)

1	 i	
Lii=1 	i=1

Hence, the expected error is the difference between the sum

of the eigenvalues for the unsampled covariance function

and the sum of the eigenvalues for the covariance matrix
s-

plus the difference between the integral of the mean

function squared and- the sum of the squares of the

elements of the mean vector.

►' ^y '

°O	 L	 2	 L	 2E{E }
S	 1 

Y•	 Y
Li 

+	 m MdaM -	 m.	 (2.38)
fA^ i=1	 =1 i=1

d -z As an example consider the second-order zero-mean

process described earlier with covariance K(_a,E) _ expHa-0 ,

it

4 _^	 W ....^ 	 ,..	
..,z•.^	 . .........uum	 +r:.c'GS.^'CLP.-`d4+^'^'..:-''tl'.^i.P1" r̂Yi4 "s'^""
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Suppose the interval [-1,1] is partitioned into 20 sub-

intervals and the eigenvalues for the 20 dimensional system

is computed. The expected mean square representation error

due to sampling is:

E{£ S } (L=20 _ 1-1
1 e l- ^ ( da -

	

	 y 	 (2.39)
 i=1 i

L
= 2.0 -	 YL

i=1	 i

The first ten eigenvalues for the continuous covariance

and the sampled covariance are listed in Table 2.1.

Table 2.1 Eigenvalues for continuous and sampled covariance.

EIGENVALUES

CONTINUOUS	 SAMPLED

1 1.149	 1.149
2 .391	 .390
3 .157	 .156
4 .080	 .078
5 .047	 .046
6 .031	 .029
7 .022	 .020
8 .016	 .015
9 .012	 .011

10 .010	 .008

The expected mean-square error due to spectral sampling

for 20 terms is 0.065.	 Depending on the form of the co-

variance function and the mean function,one can choose a
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sufficient number of samples L to reduce the error to a
i!

X
W^. negligible value.

2.4.2	 Ensemble Sampling

Ideally, one would have available the complete ensemble s

from which the stochastic process could be accurately

characterized.	 Unfortunately, a complete ensemble may
` of

require an infinite number of sample response functions r	
r

since there are an infinite number of points in a stratum.

A reasonable alternative is to select a representative

sample from the ensemble from which the unknown parameters

may be estimated.	 In sampling the ensemble one is con-

cerned with the number of samples that are needed and how

the sampling is done. 	 By a 'representative' sample it

is implied that the sample .functions are taken from all

typical observations in the stratum.

The number of samples required to adequately estimate
1

the eigenvalues and eigenvectors can be evaluated in a

straightforward manner. 	 Using perturbation theory

(Wilkinson, 1965), a first order approximation to the

estimates of the eigenvalues and eigenvectors can be 	 =

as	 of	 covariance estimatederived	 functions	 the

Y i 	^ i K q	 (2.40)

iT

^^^.	 +	 1 --^	 (2 41)a	 -1	 ( Y i Y^)	 J x
J

Jul
^

b

t

ti.
Iv

`a

n •

_s'3^^^'70'.:,,^, ;:zk-,	 •.+r. -at ,'•ft	s;"?+.u+r<	 „r ^... a	P+7'..	 ^	 yA'^^•} 	 ^ 	 '"••' .._ 	 e_	 ..,._	 .	 ._	 _	 ..	 _..^	 ...... ...	 ..	 ....	 .. .....	 ...._
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where y i and ^i are estimates of the eigenvalues Y i and	 y

eigenvectors	 respectively. These estimates are til
1	 ^	

s

approximately unbiased (Fukunaga, 1972) since 	 +,

E { Y .	 T k ^	 - ^T Ka i = Y l	 (2.42)	 w

F

and	 a

L	 ^i E {K} ^j	
;y

E {^i} ^ i + J X 1	 (Yl _ 
Y^) 

^
j = ^i	

(2.43)

j=i

The variances of the estimates are expressed by

a
Var G i I =E {yi - Y i ) 2 } a E	 i K ^i) 2 - Yi	 (2.44)

and

L E
	 f<
	 ) 2

Var [i]	 E {
1^ i - ^i^^2}	

(Y.l- Y )	
(2.45)

I = 1	 i	 j

jai

The term that must be evaluated is E {(^ K ^ 	 The

derivation follows that of Fukunaga (1972) from which the

result is shown to be

(N 1) N	 N

H	 E { (	 K ^])2} =	
Yl sij +
	

S 
2 2Yi al j (2.46)

s (N	 (N(NS-1)

+

	

	 S 2 Yl Y7

( NS-1)

L_
,l

^^	 _.:_,..,^.a-. 	 ...r:-s.°—' ,a...:..».:F-.. sra»E::.^^?.^-	 = w^•y ..s 	 _,.+r«	 ^---..:..	

'y ^l	

..	

`	
.,x,

.. r	 1	 +Wkd^i. w `us`.x. t 	 `!t^di^'^sl%`.F i 3
_-emu,___,	 I! _.. _ ...x ^.._^a7. w"'^V.,3.a ^^o.,..w -3d-"	

__ ,,..	 -
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z	
,

V?here NS is the number of sample functions in the ensemble

and d., is the Kroncker delta. 	 Now the variances can be
13

written

4 N -1
S

Var	 [ y •)	 =	 ?	 (2.47)1	 2	 ( 2 
(N_1)S

and

N	 NS	 yiy .
Var	 [ i)	 _	 ----	 2	 (2.48)

j=1	
(NS 1)
	 (yi-yj)

jai
i

Note that the variance of the eigenvalue is proportional to

the square of the eigenvalue. 	 The variance will decrease

as the number of samples is increased and asymptotically

approaches zero as N S approaches infinity. 	 Since the

expected mean-square error is a function of the eigenvalues

the estimate of the error is also asymptotically unbiased.

The variance of the eigenvectors is very large when

two eigenvalues are close together.	 If all of the

eigenvalues are well separated the variance of the

eigenvectors approaches zero 'as NS approaches infinity.

2.4.3	 Quantization
LZ

Quantization of the amplitude of each element in the

output vector is necessary for subsequent data transmission,

st(.)r^^ n,e and digital processing. 	 A Q-level quantizer divides

the amplitude range into Q equally-spaced intervals. The



a

:t

5 2

{ ith interval has end points x i and xi+l and output level

yi equal to	
(xi+1 

+ x
i 
)/2.0. 	 The expected mean-squarer

error due to quantization is _given by Max (1960).

X. {Q-1
E {e	 } _	 (x -Yi ) 2 p(x) dx	 (2.49)f

q	 i-0
	

x.
^	 ^

l

where p(x) is the probability density function for the

random amplitude x. r

Suppose the interval corresponding to the amplitude

i
range has length I and is divided into O subintervals.

Assume that the probability density function is very

small outside I.	 The length of each subinterval L I is

the ratio I/Q.	 An upper bound to E {e }can be foundq

easily by 'noting that

2
L

(x-yi)2 <	 (	 LI ? 2 =	 4 (2.50)

and

X.
4

p(x)dx = 1 (2.51)
i=1	

x1

Therefore,

2L

E {e q }	 < 4 (2.52)

r,

By keeping the length L I reasonably small the quantization

error will not be significant.
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If the probability density function has a significant

portion of the function outside the designated amplitude

range the expected error may increase substantially. The

quantizer will assign the value y  to all values of x

greater than xQ , and yo to all values of x less than xl.

If x is outside the amplitude ranee saturation will occur.

The mean-square error will increase significantly if this

situation occurs.

The total expected mean-square representation error

is a function, of the errors due to truncation, spectral

sampling, ensemble sampling, and quantization. It has

been demonstrated that the error due to quantization is not

significant. In ,fact the uncertainty in -the measuring

devices is considerably greater than the uncertainty due.

to quantization. Since the covariance and mean function

are not known ap.riori it is not possible to evaluate the

expected error due to spectral sampling. I°Iowever, it wa:a

demonstrated that for a known case the number of samples

required to reduce the error: to a negligible value was

not t- reasonable. Therefore, in the experimental work

it will be assumed that the expected error due to spectral

sampling will be sufficiently smaller than the average

error in the ilieasuring system.

Since the estimates of the eigenvalues and eigenvoctors

are unbiased, it is expected that the corresponding error

3

r
L

r
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s

due to the fact that only a finite set of sample functions
`^	 k

was available would be small, especially if the number of

sample functions was sufficiently large.*

The principal source of error which will be considered

will be the error due to truncation. Hence, provided that

some care has been taken with regard to the number of

spectral samples, number of sample functions, and the

length of the quantization intervals, the approximation

to the continuous case is not unreasonable.

w

t^

it

r

t
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CHAPTER 3.	 THE PARAMETERS AND OVERALL

SYSTEM PERFORMANCE

The intent in choosing a particular sensor design is F
fi

e+

ti

to optimize the expected performance of the pattern recog-

nition system with respect to the global performance 4

criterion e o .	 The quantity 60 is a complicated function

of a set by parameters a.	 By varying the parameters a

search can be made to find the best combination to

optimizeeo .	 The first step is to list the parameters.

Five parameter categories were listed in Chapter 1:

- spectral representation

- spatial representation

- signal-to-noise ratio

- ancillary data

- information classes

The problem is to quantify these parameters categories such

that an optimization procedure can be ap plied. As a preliminary

step, it is proposed to consider each category individually,

and study the relationship between that category and the

global criterion.. The other parameters will be held

constant while allowing the parameter under investigation

to vary. It is also important to understand the inter -

relationships between the parameters; a change in one
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,rameter may influence the performance criterion both

rectly and indirectly through another parameter.

The primary focus, here, is on the spectral ,represen-

tion parameter and its corresponding quantity, mean-square

presentation error, e r . In Chapter 2, an analysis

ocedure was developed in which an ordered sequence of

sis functions allows the spectral response function to

represented with decreasing expected mean-square error.

It remains to show the effect of the spectral parameter

on the overall system performance. This chapter will

first deal with the relationship between e  and e r , followed

by a discussion of some research results relating other

parameters to co.

There are a variety of processors which can be used

to evaluate a data set depending on the nature of the

problem. Typical processors include separability computers,

linear classifiers, quadratic classifiers, non-parametric

classifiers and context classifiers. We will choose the

maximum likelihood Gaussian classifier as an example of

a quadratic classifier which will be used as representative

processor for evaluation of the pattern recognition system.

Let X be an observation from one of M classes Ci,

i= l r 2, ...,M, with a;priori probabilities Pl. The maximum

likelihood decision ruie can be stated as follows: Assign

X to the class C  if

^l
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Pk P(XlCk ) = max {PiP(X ICi ) }

i

(3.1)

where the p(X.JC i ) are the class conditional probability

density functions. If Q is the observation space, then this

rule partitions Q into the subspaces 52 1 , 52 2 , ... , Q,, corre-

sponding to the classes C1 , C2 ,...,CM' respectively.

The probability of correct classification has found

widespread use in the pattern recognition and remote

.sensing community, and will be used here as the system

performance criterion. For a multivariate, multiclass

pattern recognition problem the probability of correct

classification is defined as

Pc =	 max {Pi p (XICi ) } dX	 (3.2)
SZ	 i

where p(XICi ) is the conditional jointly Gaussian probability

density function for class i

"	 3.1 Spectral Representation

The expected mean-square error:, E 
{er}, has

been used as a measure of the fidelity of the spectral

representation. The Karhunen-Loeve expansion has been
k'

developed as a means of representing the spectral response

functions in the ensemble by a finite series expansion

such that E 
{er} 

is minimized. We wish to study the

relationship between the spectral representation and the

performance of the overall pattern recognition system.
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If the stochastic process is completely known,

and if all the terms in the Karhunen-Loeve expansion

are used in the representation, then a decision scheme

exists which is optimal in the sense of maximizing the

probability of correct classification. For the M-class

pattern recognition problem an experiment is defined

whose outcome is the vector X belonging to the set of all

possible outcomes. A decision scheme is realized by

partitioning the observation space into M regions such

that if X belongs to Sk i , then the decision, 'X belongs

to class C
1
.,	 u' is made. Stich a decision scheme can be

arrived at by evaluating the a posteriori probabilities,.j

for each class. The aosteriori probability P	 P	 Y (p (Ci ^ X))

is the conditional probability that class C i occurs given	 Y

that the measurement value is equal to X. If the vector

X is finite dimensional, then it is straightforward to

evaluate the a posteriori probabilities and, using equation

3.1 1 to design a classifier which is optimal in the sense

of maximizing the probability of correct classification

(Anderson, 1958).
d

This approach has often been generalized to the

case where the vect<.zrs are infinite dimensional and the

outcomes are real functions x W on an interval (Grenander,

1950; Kadota, 1964, 1965; Van Trees, 1971). The procedure?
r

begins by representing observed sample ,function in the
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'.a

ensemble by a finite vector [x , x ... , x ] of
1 2	 N

F coefficients which are the coefficients in the Karhunen-

Loeve expansion. The a posteriori probability for each

class is constructed and the limit as N approaches

infinity of the conditional probability P(C i Jxi , x2 , ..., xN)

is taken. Bharucha (1969) has shown that this limit exists,

and furthermore, that the resulting decision scheme opti-

mally partitions the observation space such that the

	

probability of correct classification is maximized. 	 4.

We now consider the implications of the constraint 	 t

that the number of terms in the expansion be finite

has on the classification performance. If N features are

used, it cannot be guaranteed that the first N features

are the best for discriminating between M classes in a

particular remote sensing problem (Foley and Sammon, 1975).

A simple example has been used to demonstrate this fact.

Suppose there are two .features and it is desired to use

only one feature to discriminate between the two classes.

Let the classes be distributed as shown in Figure 3.1.

Based on the criterion of minimum mean-square representa-

tion error the basis function $ 1 should be chosen. However;

it is obvious that^ 2 is the better choice for discriminating

between the classes. Hence, if say ten terms are used in

the representation, it may be true that the 34th term, for

example, is superior for discriminating between classes

than some of the first 10 features.

- ^K	 ^ :. d̂Yi ufr+ln/',4S'^3f^.rihL+SLdck"	 i	 _. .	 r
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Figure 3.1 Two distributions which demonstrate a potential
difficulty in using the best feature for
representation to perform classification
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We wish to develop, here, the relationship between the

expected mean square error for an optimal set of basis func-

tions and the probability of correct classification. If the

stochastic process is completely known, a decrease in the

mean-square representation error does not result in.a de-

crease in the probability of correct classification.	 The tis1

addition of a measurement or feature does not decrease the f

separability.	 If the added measurement contributes only

noise, then the separability of the distributions is the
•

,a

same as without the added measurement. 	 This monotonicity is

implied in the convergence of the a posteriori probabilities

as N approaches infinity.

The intent here is to have as small a value of E{c } as
r

possible or at least drive it well below the average measure-

ment noise.	 Every decrease in E{er} is known to not decrease
a

PC. Returning to the example, we would not choose only one

feature if we could help it, but rather choose to keep both

features since this would reduce E{e } to zero for the two-
r

dimensional case.

If the probability of correct classification is plotted

as a function of the expected mean-square representation er-

ror as sketched in Figure 3.2, some important insights into

the nature of the data can be gained. 	 We know that as the

expected error decreases the classification accuracy does

not decrease.	 The monotonicity is indicated by the solid

4 line in the figure.	 We wish to observe the behavior of the

iG2_	 . _	
'.	 ^ 	 .A	 uGyy^
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Figure 3.2 Probability of correct classification as a
function of expected mean-square representa-
tion error.
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relationship between the expected error and the classifica-

tion performance as E{er} becomes small. It may occur that

at some point P, a large decrease in the expected error

results in little or no change in the classification per-

	

formance as indicated by the dashed line 	 	 . In this case

the number of terms required to represent the process with

an error of T is sufficient for the information classes

chosen. one may be able to evaluate the portions of the

spectrum which are of most value based on the first few
Y

eigenvectois. Also, in this case one can estimate the
E

maximum classification performance that can be achieved by
t

noting the value of Pc that the graph is approaching as the

expected error becomes small.

Suppose, however, that at point P a small decrease

in the expected error results in a significant improvement

in classification performance as indicated by the dashed

line B^. In this case more terms are required to attain

the maximum discrimination capability. Also the eigenvec-

tores which correspond to the largest improvements in

performance can be analyzed to determine which spectral

regions are contributing the most.

Several times in this discussion the condition that

the process be completely known was stated. If the process

is not completely known, but must be estimated from a finite

data set then the situation becomes different. The effect

of a finite data set size is now discussed.

^^ 'b- Y,S {4I` iM. •'=^ tT.rt y+y^j	 ^t t̂̂ 'C	 ^ a„rr _. .r <y. r .. _	
n ., ..	 .- v .
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3.2 Ancillary Data

Ancillary data is information other than the spectral

response functions themselves associated with a stratum

which has bearing on the performance of the system over

that stratum. An example of ancillary data which is

important for this research is the design set. Sample

response functions drawn from the ensemble are used to

design the classifier. For a maximum likelihood Gaussian

classifier the design procedure is to estimate the mean

vectors and covariance matrices for each class from the

design set.

For a fixed number of features or dimensions, it is

well known that if the design set is used to test the

classifier performance, the estimate of probability of

correct classification P c will be optimistically biased

(Fukunaga, 1972; Toussaint; 1974). That is, the estimate

is better than the true performance. If a test set, con-

sisting of sample functions from the ensemble different

from those in the design set, is used, the performance

estimate is inferior to the true performance. If the

number of sample functions Ns is increased the estimates

of classification performance both approach the true

performance. If the number of sample functions N
s 

approaches

infinity, the probability structure will become completely

known and the true performance can be evaluated.

y

v ..	
1	 y
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Now, consider the case where the number of sample

functions is fixed while letting the number of features

be a variable. If N s is infinite, increasing the number

of features from N to N+1 will either improve the per-

formance or the performance will be the same for Nand N+l

features. However, if Ns is finite, increasing the number

of features may have an adverse affect on the performance

estimate.

Three research results have been published which

attempt to determine the relationship between the design

set size and the number of features. One of the first

attempts to quantify and explain this relationship was done

by Allais (1964). The study involved the linear prediction

problem which is closely associated with the linear two-

class pattern recognition problem. Allais showed both

analytically and experimentally that for a fixed Ns,

increasing the number of measurements improved the per -

formance for a while until a certain peak was reached,

after which the performance deteriorated drastically.

A second research result reported by Hughes (1968)

showed the same peaking for mean recognition accuracy asw

measurement complexity is increased. The mean recognition

^;.	 accuracy is the average over all discrete non-parametric

,probability structures of the correct. recognition

probability using the Bayes recognition rule. The measure-

ment complexity is the total number of discrete values and

w
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is equal to the product of the number of features and the

number of quantization levels.	 Hughes argues that increas-

ing the measurement complexity necessarily means that a

there are fewer samples, N s , per measurement cell available
:a

to estimate the probabilities associated with each cell.

Hence, when the classification accuracy is computed

using these cell probabilities, the average classification
a

accuracy will decrease as the number of features increases

if the design set size is too small. g

A third research result is due to Foley (1975)

who studied two-class multivariate Gaussian pattern recog-

nition problems t,rith different means but identical co-

variances.	 An analytical expression was developed to

determine what the ratio of design set size to feature

size should be to obtain a good estimate of the performance

of the classifier.	 A ratio of 3-to-1 was considered to

be a good engineering rule-of-thumb for choosing the number

of features for a given sample size.

These results have been somewhat controversial and

often misinterpreted, especially the work by Hughes, and
e

,a

have frequently been discussed in the literature (Kanal

and Chandrasekaran, 1971; Abend et al,	 1969;	 Chandrasekaran,

1971;. 	 and Chandrasekaran and Jain, 	 1974, 1975).

The underlying cause of tho influence of sample size

is due to the statistical uncertainty that occurs, `in

estimating the statistics for the classes. 	 As sketched

3
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in Figure 3.3 the positive bias in the performance estimate

when testing on the design set increases with the number

of features used. This bias is due to the cumulative

effects of the uncertainty in estimating the statistical

parameters (Chen, 1978). When the test set is used to

evaluate the performance the bias decreases as more features

are added. The end result is that a positive bias becomes

significant at some point determined by the sample size

for the estimate on the training set. A degradation in

the performance occurs at the same point for the estimate
1

based on the test set.

A concept which is brought out in much of the litera-

titre dealina with the relationship between feature size and

design set size  is that , the more a priori knowledge

about the--underlying probability structure that is available

the more features that can be used with a given data set

size (Foley, 1972). Conversely, for a fixed number of

features, added knowledge of the probability structure

allows one to reduce the number of design set samples

collected (Mogera and Cooper, 1977). As an example, the

fact that the probability densities are assumed to be

Gaussian implies that fewer sample functions are required

to get good estimat e; of performance than if no parametric

assumption was"made.



Figure 3.3 The effects of sample size on classification
performance as a function of the number of
features, a) true performance, b) Positive
bias in Pc due to testing on the design set,
c) Negative bias in Pc due to testing on	 k
the test set, d) estimate of Pc when testing
on the design set, e) Pc for testing on the
test set.
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3.3 Information Classes

An information class refers to the label assigned

to the sample points in the stratum. The labels are chosen

to be meaningful in the context of the pattern recognition

problem under consideration. Since we are looking for a

sensor which will work well for a variety of pattern

recognition problems, we consider the influence of the

choice of information classes on the overall performance

criterion for the pattern recognition system.

We first note that there is an intrinsic set of classes

which is associated with each stratum. For example, in some

strata the class list may consist of primarily vegetation

classes; whereas, in other strata urban classes may be

predominant. For each stratum a non-unique hierarchial

tree structure may be constructed (Figure 3.4) (Landgrebe,

1978). To construct the information tree it is important

to remember that the class list must be exhaustive; that is,

every point in the stratum must be assigned to one of the

classes. The choice of the class labels depends on the

informational value that they have to the user. At the

top of the tree the classes are easily separable using

few features. As one selects class sets which are deeper

in the tree structure, it becomes increasingly more diffi-

cult to discriminate between the classes.

An example using artificial data can be generated.

which demonstrates the effect of the choice of information

L

I
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Figure 3.4 An information tree for a typical stratum (Landgrebe, 1978).
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.:	 classes on the probability of correct classification. As-	 A

;

sume that the data is two-dimensional and that a tree +

	

+	 structure can be drawn as follows:
i

{

47.

I	 I I	 )	 1

a	 b	 c	 d

where I and II denote the first level classes and a, b,c,
t

and d denote second level classes. Let the mean vectors

and the covariance matrices for the four classes be

class a	 rya	 101.0	 Ka - 3 32 352Y

class b	 __ 10.5 	 2	 1/2

	

11.0	 b	 1/2 3/2

class c	 P4 - 15.0
	 K 	 8	 5/4-c -	 9.0	 c - 5/4 10

e

class d	
Md - 19.5	 Kd	 1	 4

Plotting 20 random points from each of these distributions

in two-dimentions gives some idea. of the four distributions

(Figure 3.5)
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Figure 3.5 Distributions of four information classes.
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a
The performance can be evaluated for the first level

by combining the statistics assuming that the four classes

are equally probable.	 A performance estimator was used

to evaluate the probability of correct classification from

the known statistics. 	 The overall probability of correct

classification at level one is 0.91 whereas the overall
J	

C

probability when attempting to discriminate between the

four classes is 0.59.	 one can readily see from this example

that the choice of classes will effect the overall per--

formance criterion.

Recalling the graph of the classification performance

as a function of expected mean-square erro.;- ,, a different

set of information classes may alter the graph significantly.

In general, information classes that are deeper in the

information tree will require smaller representation error

to achieve a specified classification performance.

Kulkarni (1978) provides further discussion of the per-

formance of a classifier as a function of the design set

size, the measurement complexity, and the depth of the

information tree.

One can also observe that the information classes

present in a stratum influence the selection of the

optimum set of basis functions (^ i
(a)}. Let each

class have z Gaussian probability density with mean

function m.(A) and covariance function K.(A,F) i=1,2,

..	 M. The covariance function for the stochastic

yl'
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process can be written as a function of the class condition-

al mean and covariance functions.
E

K(A,5) = E{(x( A ) -m (X)) (x	 m(E))}

M
where mm _	 Pimi ( A )

i=l

M	
cM

PkKk (A ' o + G Pk m]c
(A)

k=1	 k=1

M	
M

P.m. (A) 

lrl x̂l
 m -	 P.m. (E)
 i=1 i i

For the special case where M=2, this equation reduces to

K(X,^) = P1K1 (A,O + P 2K2 (A,O + P1P2[m1(A)

1:

m2 (A ll ][m1 M - m2M l

Recall that K(A,C) is the kernel of the integral equation

which is solved to obtain the optimum set of basis func-

tions	 Hence, the information classes determine

the values of the mean and covariance functions and their

relationships and, subsequently, influence the selection

of the basis functions. The solutions f^ 
i 
M) to the

integral equation are ordered by the eigenvalues such

that regions of the interval A which have large variance

are weighted more heavily. A change in the spectral
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classes such that the means are further apart, will cause

an increase in the variance along the coordinates in which

there was an increase in the distance between probability

distributions.

3.4 Spatial Representation

The spatial representation parameter reflects the

ability of the sensor to represent the spatial characteris-

tics of objects in the scene. Spatial characteristics

may include the size, orientation, and texture of objects

as well as the distance and direction from other objects

in the scene. In image-oriented pattern recognition

systems the spatial representation parameter is paramount

since the spatial characteristics are information bearing

features; whereas, in numerically oriented systems the

spatial representation is less important but significant.

The fundamental quantity for spatial representation

is the ground resolution element size. The ground resolution

element is the area of the earth's surface which is being

observed by the sensor at a given instant of time. A

physically realizable sensor system is constrained to ob-

serve an area of finite size. The area of the ground

'	 resolution element is determined by the sensor's instantane-

ous field of view (IFOV), altitude, velocity, and scan rate.

The size of the ground resolution element determines

what information classes can be observed. If the size of

L
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an object is denoted by F and the size of the ground -'{,	 r a

resolution element is denoted by p, three relationships
r.

between F and 0 can be expressed:	 p > F, A ;^ F, and A < F

as shown in Figure 3.6. 	 If the size of objects or fields

is smaller than the resolution element size it is very

difficult to identify, them.	 If the object size and reso-

lution element size are about the same, the performance Nllv

is marginal, principally because the center of the object

differs from the center of a ground resolution element a

significant percentage of the time. 	 Quite often the ob-
M1

ject will occupy space in small portions of two or more

resolution elements.	 The resulting mixed elements may

have spectra'_ response functions which are not character-

istic of either the object or the surrounding area.

The best case is when the ground resolution element
3

is much smalier than the field size.	 For crop inventory

applications the field size determines the approximate reso-

lution element size required to keep root mean square

error of area estimates below a specified level (CITARS

experiment; see Harnage and Landgrebe, 1575). 	 Results of

the CITARS experiment indicate that the number of resolu-

tion elements per field should be greater than forty to

avoid the effects of boundary resolution elements.

Having a small ground resolution element also

provides more sample functions per class. 	 As discussed in

a previous section more sample functions will provide

ORIGINAL PAGE I1.3

OF POOR QUALITY

r°r..
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r

better estimates of the statistics and allow more features

to be used to represent the spectrum.

It might seem that the smaller the ground resolution

element the better the performance; however, the signal-to-

noise ratio deteriorates with decreasing resolution element

size. The energy available to the sensor decreases as the

area observed by the sensor at a given time decreases.

The resulting decrease in signal-to-noise ratio tends to

cause a degradation in the overall system performance.

Mobasseri (1978) has shown that an increase in the ground

resolution element size corresponds to a significant

improvement in the classification accuracy. It is assumed

that the size of the fields or objects is sufficiently

large as to not be a factor in these results. Also the

spectral representation parameters, sample size, signal-to--

noise ratio, and the set of information classes were held

fixed.

In this discussion only per-point or per-element

classifiers have been considered so :Far. Classifiers

which incorporate spatial information to improve the

performance have been developed. The ECHO classifier

developed, by Kettig and Landgrebe (1975) divides the

scene into homogeneous objects. These objects are then

classified on a per field basis. Since the decision rule

decides to which class a field belongs on the basis of its

mean vector and covariance matrix rather than the single

L

3ra+
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vector from a single point, a potentially faster and

better classification can be made.

In the experiment of Landgrebe, Biehl and Simmons

;1976), the ECHO and per element classifiers were compared

for different ground resolution element sizes. The results

are shown in Figure 3.7. Note that for the smaller reso-

lution element sizes the spatial classifier is slightly

better than the per-element. As the ground resolution

element s_ze increases the objects size become closer to

the resolution element size and the ECHO classifier becomes

essentially a per-element classifier. Also the per-

element classifier improves as the resolution element size

increases.

Another effort to utilize .spatial information is to

All	 generate texture features (Haralick et al, 1973; and Wiersma

and Landgrebe, 1976). The texture features are numerical

quantities which loosely correspond to some intuitive

properties of textures which humans can perceive. The

spatial resolution in this case affects the textures which

one can observe. A fine resolution has a more detailed

texture as in the respon--^ variations due to the size and

shapes of leaves. A coarse resolution is more sensitive

to large scale textures such as the quilt-like patterns

of agricultural fields.

The choice of the spatial representation parameter

depends primarily on the choice of information classes.
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Figure 3.7 Classification performance vs. spatial reso-
lution using ECHO and peL-point classifiers
(Landgrebe et al., 1977).
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Tradeoffs may be required to achieve improved signal-to-

noise ratios or larger sample sizes. The use of spatial

classifiers is still in early development and quantitative

results on the effects of spatial resolution are still

limited.

t
	 3.5 Signal-to-Noise Ratio

For a given remote sensing problem tre signal is

the part of the received spectral response function which

is information bearing, and the noise is that part-whicr

is non-information bearing. The performance of the

pattern recognition system is dependent on the ratio of

the signal to the noise (SIN). For remote sensing problems

this parameter is difficult to quantify.

There are essentially three types of noise intro-

duced into the pattern recognition system -scene noise,

atmospheric noise, and hardware noise. The scene noise

consists of the variations in the response which have no

informational value for the remote sensing problem being

studied. An example would be the variations in the response

of the soil when an analyst is trying to discriminate be-

tween two crops growing in the soil. Hence, the choice of

information classes will affect the signal-to-noise ratio.

The atmospheric noise includes variations in the

absorption and scattering of the electromagnetic energy

in the atmosphere. The visible regions of the spectrum



83

!	 tend to suffer mostly from scattering in the atmosphere.

The infra	 portions are very susceptible to absorption

particularly in certain bands known as water absorption

bands (Korb, 1969).

The noise generated in the sensor system hardware comes

from the thermal and shot noise introduced by the optics,

the detectors, and the electronics. In addition quantiza-

tion noise is added by the sensor (Billingsley, 1975).

Of interest here, is the effect of the noise on the

overall performance of the system and in particular on the

choice of the spectral parameters.

Intuitively one would expect the noise to be a limiting

factor on the classification performance. Because of the

randomness of the spectral response at the earth's surface,

the probability distributions will overlap even if no atmos-

pheric or hardware noise is added. Hence, in general there

is some inherent classification performance which cannot be

improved upon due to scene and atmospheric noise. However,

noise introduced in the hardward can degrade this inherent

performance.

Several research efforts have been directed at

determining the effect of noise on the system performance.

In each case the noise was modeled as additive white

Gaussian noise. In an experiment reported by Ready et al

(1971) pseudo-random noise was generated on a digital

computer and added to multispectral data taken over an



significantly less whet, a spatial classifier was used.

In dnother research result Mobasseri et al (1978)

studied the relationship between the spatial representation

by the sensor and the signal-to-noise ratio. Noise was

added to simulated multispectral data statistics, and it

was concluded that the added noise reduced the class

separabilities and degraded the classification accuracy.

The effect of additive white Gaussian noise on the

Karhunen-Loeve expansion can be demonstrated quite easily.

The covariance matrix for white noise with variance o2
n

in N dimensions is

cT 2	 0	 0
n

a
S

F	 n =	 0	 a^K 

0 . . . . . .	 a2
n

 I - _..'	 ___W
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agricultural scene. The classification performance was

estimated for varying amounts of added noise power.

The results showed that the overall classification per-

formance decreased with an increase in the noise level.

Also, it was shown that a class which was the most diffi-

cult to identify with low noise levels suffers the most

degradation when noise is added.

In a similar experiment, using data taken by the MSDS

scanner, Landgrebe et al (1976), also, demonstrated the

performance degradation due to added noise. An interesting

result in this experiment was that the degradation was
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A linear transformation on the noise such as the transfor-

mation determined by the Karhunen-Loewe expansion does not

change Kn . For additive white Gaussian noise the signal

covariance and noise covariance are additive

K = K + K
s	 n

After the KL expansion the transformed covariance matrix

is the diagonal matrix given by

Y l + on

K =	 0

Q

0	 .	 . .	 0

Y2 + an	 0

	

.	 2
YN + an

If the signal is of dimension N' then the eigenvalues for

the terms greater than N' are equal to a 2 . The plot of
n

the locus of the eigenvalues corres ponding to the terms in

the expansion is shown

become constant at the

The signal-to-noise ra

2
Yi /an.

in Fiqure 3.8. The eigenvalues

value an for N greater than N'.

do for each channel, then, is

The weighted Karhunen-Loeve expansion can be used

to good advantage when it is known that certain portions

of the spectral interval have low SIN. By weighting those

........r-

a
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Figure 3.8 The locus of eigenvalues for an N'
dimensional signal in white Gaussian noise.

c
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portions with high SIN more heavily, the eigenvectors

will tend to be more sensitive to the regions with high

SIN. In effect basis functions which have significant

components from regions with low weights will have smaller

eigenvalues; hence, they will be ranked lower in the

ordering of the basis functions.

In general noise from any source tends to make dis-

crimination between information classes more difficult.

The degree of the performance degradation depends upon

the statistical separability of the classes. Improvements

in the signal-to-noise ratios are most helpful when the

separability is small.

It is important to realize that one cannot simply

specify a high signal-to-noise ratio without considering

F
	 the other parameters. Because of tie law of conservation

of energy, the amount of received energy ir, a fixed

spectral band ovei a fixed surface area at a given time

is determined. Therefore, in order to improve SIN, it

is necessary to modify the spectral representation parameter,

spatial representation parameter, or both.

We have listed one parameter from each of the five

categories which is believed to be significant. It is impor-

tant to note that a change in any one of the parameters--

mean-square representation error e r , the size of the ground

resolution element A, the signal-to-noise ratio, the number

F

}
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of sample functions per class, or the set of information

classes -frequently causes a change in the optimal value

of one or more of the remaining parameters.

One can conceive of an experiment in which a data

set is constructed which is large enough to include several

values for each of the parameters. An algorithm could be

devised to optimize e 0 over the set of parameters with

t	
respect to a set of constraints which may be placed on a

sensor system. At this time, :iowever, a data set which

would satisfy these requirements is not available.

As stated before the spectral parameter is of primary

importance in this investigation. Due to the dependence

on the other parameters the conditions on the other param-

eters must be stated. The size of the ground resolution

element will be a constant for each data set. The same

instrument will be used at the same altitude for all

observations. Also, since the same instrument and calibra-

tion procedur(!s are used, the noise due to the hardware

will be constant. The noise due to atmospheric and scene

variations, however, may change from stratum to stratum.

The number of sample functions per class will vary, but

in each case the number should be sufficiently large to

obtain reliable results. The information classes will vary

from location to location and for different dates of

Collection.
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CHAPTER 4. EXPERIMENTAL SYSTEM AND RESULTS

A software system has been developed which implements

the sensor design procedure described previously. The

software package basically consists of an algorithm to

compute eigenvalues and eigenvectors, an algorithm to

transform the data, a suboptimal sensor simulator, and a

method of estimating classification performance. A very

necessary part of the experimental system is the field

measurements data library consisting of spectra taken

over typical agricultural scenes. A block diagram showing

the essential parts of the sensor design system is dis-

played in Figure 4.1. This system has been implemented

on the IBM 370/148 at the Laboratory for Application of

Remote Sensing at Purdue University.

This chapter begins with a description of the field

measurements data base and how it is accessed to provide

spectral data for the sensor system design. The software

required to compute the eigenvalues and ei genvectors for

an ensemble, to perform linear transformations, to simulate

`	 suboptimum sensors, and to estimate classification per-

formance is described. The experimental procedure which is

used to test the software system is presented and results
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from using the system are displayed. An important by-

product of the sensor desiqn procedure is an increase in LI:a

understanding of the scene. K ,.iowledge of some important

scene characteristics is extracted with the optimal design

system and procedure. The procedure is used to develop

a proposed sensor design which is compared against the

optimal design for each stratum. A discussion of the

overall pattern recognition system performance using the

proposed sensor is given.

4.1 Field Measurements Data Base

The field measurements data base consists of spectral

samples taken with very fine spectral resolution by the

Field Spectrometer System (FSS) mounted in a helicopter.

The spectral resolution was 0.02 micrometers for the inter-

val from 0.4 to 2.4 micrometers. The spectra that will be

used to test and evaluate the method developed here were

collected over each of two sites at three different

times of the year.

Field data were taken over Williams County, North

Dakota on May 8, June 29, and August 4, 1077. The three

principal information classes are SPRING WHEAT, FALLOW,

which are fields plowed regularly to conserve moisture,

and PASTURE. For the May 8, observation date the wheat

was about 8 cm high so that the wheat field would be

expected to have spectral characteristics very similar to
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bare soil; hence, one would expect that it would he quite

difficult to distinguish between the WHEAT and the FALLOW

classes. The second date, June 29, provided data during

the period of the growing season when the wheat is full

grown and is typical of green vegetation. The final date,

August 4, provided a data set containing fields with mature

wheat. Some of the wheat fields were harvested by August 4;

making it necessary to add the class HARVESTED Wh^AT.

A second location in Finney County, Kansas was chosen

an an example of similar classes in a different location.

Three dates, September 28, 1976, May 3, 1977, and June

26, 1977, were chosen corresponding to the growth stages

emerging, fu11 canopy, and mature. 	 Other crops in nearby

fields, notably grain sorghum, are ripe on the fall date

and emergent on the spring date. The information classes

used for this data set are WINTER WHEAT, FALLOW, and OTHER

CROPS.

The data sets are assembled and stored on disk in a

format that is used by all routines that require access

to the data. Details of the data set assembly along with

the data storage format specification are described in

Appendix B. Also, in the appendix complete information

on each of the six data sets is listed.

i
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4.2 Spectral Parameter Evaluation System

"'he key system elements in the spectral parameter

evaluation system are the processors SPOPTM, which com-

putes the optimal basis functions, SPTES which uses

the basis functions to transform the data, and SPSUB which

simulates suboptimal sensors (Figure 4.1).

The computation of the optimal set of bas . functions

for an ensemble is accomplished by solving the matrix

equation

o F = KW
	

(4.1)
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M

to get the eigenvalues Y 1 , Y 2 ,..., Y  and the eigenvectorskD 1' (D2''''' (DN	 The matrix o is the matrix of eigenvectors,
0 - [^"^2,..., ^N I and F is the diagonal matrix of

eigenvalues.

F

=[
Y 	 0	 .	 .	 .	 0
0	

Y2

0	 .	 .	 .	 .	 .	 .	
Y 

The matrix W is a diagonal matrix of weicrh•t coefficients

wl	 0	 .	 .	 .	 0
w=	 .

}	 0	 w2

E	
0	 wN

e

r
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K is the covariance matrix for the ensemble. Let the mean

vector for the ensemble be M = [m l , m2 ,..., ^^,J T , then

k id = E ((xi -mi ) (x
i
 -m )}	 (4.2)

J

The unbiased estimate is

N
s

k i	 = N	 F	
(xik-m.) 

(x• k -m.)	 (4.3)
3	 s	 k=1	 3

where Ns is the number of sample functions in the ensemble.

Note that in general the stochastic process is non-

stationary. A zero-mean process is defined to be stationary

in the wide sense if the covariance function depends only

on the difference IX -1,1 (Papoulis, 1965). That is,

K(a,(,) = K(a - t.)	 x,& e A

i	 The covariance matrix of a stationary process has elements

which are equal along the diagonals. The methods used

a
to compute the covariance matrices and to compute eigenvalues

and eigenvectors are valid for both stationary and non-

stationary stochastic processes.

Let A be the matrix product of the covariance matrix

K and the diagonal weighted matrix W.

A = Kw
	

(4.4)
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If the weighting matrix W is equal to the identity matrix

I, then the kernel A is real symmetric and the solution

to 4.1 can be found using a standard numerical algorithm

known as the Jacobi method (Wilkinson, 1965, p 266). The

Jacobi method uses a sequence of similarity transformations

to reduce a real-symmetric matrix to a diagonal matrix.

This method is very stable and provides all of the eigen-

values and eigenvectors with good precision.

However, if W is not the identity matrix, then, A is

not synmetric. An algorithm which solves the eigenvalue

problem for real general matrices was published by Grad

and Brebner (1968). This algorithm, EIGENP, computes the

eigenvalues by the QR double-step method and the eigen-

vectors by inverse iteration. Some comments on the

application of the algorithm to the specific computer

used here were published by Niessner (1972).

The complete algorithm package consists o 4 the main

subroutine EIGENP and four callable subroutines SCALE,

HESQR, REALVE, and COMPVE. Subroutine SCALE scalers the

matrix so that the absolute sums of corresponding rows and

columns are roughly egiial . The scaled matrix is then

normalized so that the Euclidean norm is equal to one.

These two preliminary modifications are carried out to

improve the accuracy of the computed results. In HESQR

the scaled matrix is reduced to upper-Hessenberg form by

Householder's method. The QR double-step iterative process

i
j
t
s
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is performed on the Hessenberg matrix to reduce the matrix.

to diagonal form within the computational accuracy limits,

where the elements along the diagonal are the eigenvalue.

The inverse iteration process to find corresponding eigen-

vectors is carried out in.REA.LVE for real eigenvalues and

COMPVE for complex eigenvalues. Since it has been shown

that the eigenvalues will be real for the application under

consideration, there is no need to include COMPVE.

Both the EIGENP algorithm and the Jacobi method have
a

been tested on the same covariance matrix using the

identity matrix as the weight. 	 The differences using the

two methods were negligible even for matrices of order 100.

A necessary part of the Karhunen-Loewe expansion is

the ordering of the eigenvalues and corresponding eigen-
J

vectors.	 Since the eigenvalues are not ordered in the
)^ t

eigenvalue-algorithm a sorting routine was added to the

system to perform this task.

The set of ordered eigenvectors {q (M will be used;;

to perform a linear transformation on the original data
a

vectors X.	 To perform the linear transformation the

coefficients corresponding to each eigenvector arecomputed.

Instead of the vector K, the waveforms are represented

by the set of coefficients {xi } where	
fit	

\\
,^

r
't

-
r. x.	 _	 [x(a) °mM l	 $

i
 (a) w(A) dA	 (4.5)

fA 

s
J

^`,f
t

z

P.
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r	 f y

x :r•. 7^EdCtrl, 	 ^
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^^^^"^^i	
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or in terms of discrete vectors

xi _ $^WIX	 M]-	 (4.6)

This transformation on the field data is performed in the i

program SPTES.

The statistics for each information class are needed

to evaluate the probability of correct classification.

The data set., now represented by the transform coefficients,

ispartitioned into.classes and,the corresponding mean

! erectors and covariance matrices are computed inSPTES.

The maximum likelihood estimates are used for the mean

vectors and covarianceMatrices.

The routine SPSUB was`developed to simulate several
x

suboptimal sensors. 	 A set of N basis functions f*i( A)}

is stored in memory where each function is approximated

' by a 100 element vector. 	 As an example, ei set of four

vectors,	 M,) ,	 ( a ) ,	 M,) ,	 ( a ) was Lmplemented where
4 

a i <	 a -`	 Xi(4.7)[1.0
+l

= 0.0	 elsewhere

The endpoints X. and a i+1 are given under sensor number 1

in Table 4.1. The basis functions may be normalized by

requiring

jN (A] WM dX = 1	 (4.8)

a	 -^
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Each waveform in the ensemble-is' approximated by

x(a)	
xi'^i (a)

(4.9)

R
where -

xi = x(''a) 0 M w M da
fA 

(4.1.0)

_	 For the normal ized basis functions the expected mean-square
r

t
representation error over the ensemble,	 is given by

l

x

`^
f -^ \	 4	 2

E {E} 
_

E (X(X)	 xi Vii] , w(A) d (4.11)
A	 -1

r A second sensor which has been considered, . for practical

''implementation and which has band edges given under sensor
11

number two in Table 4. lM"s , also 	 been included in the

routine 5PSUB

I	

JM1

t

4 Table 4.1	 Spectral band locations for two practical
`sensor designs,

. Sensor Number 1	 Sensor Number 2

Band	 Wavelength	 Band	 Wavelength

' 1	 0.5 pm to 0,6 um	 1	 0.45 Vm to 0.52 pm
2	 0.6 um to 0.7 pm	 2	 0.52 um to 0.60 um
3	 0.7 pm to 0.8 pm 	 3 -_	 0.63 um to 0.69 pm:
4	 0.8 pry to 1.1 30	 4	 0.76 pm to 0.90 um

5	 1.55 rm to 1.75 umF
6	 2.08 um to 2.35 pm }

r
i

r rl

r	 :

_	 t 	 ..	 .._„	
y 	 k	 .+ 	 ^.5fy^lR`M^i.^.. x C S ^''.L^i-r3.i!Yvk^yf+.. 	 ,	 °	 °M	 K ... r ....	 J	 _.	 ..

.. lw^.tiL 0.1L_Y.f	 uN•^i i
-	 ..	 ..	 .,
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` The output of both SPIES and SPSUB is a set of

statistics from which it is desired to evaluate the global

performance criterion of probability of correct classifica-

lion.	 In pattern recognition terminology the estimation of

the class conditional statistics is the training phase or

design of the classifier. 	 It now remains to use these

training sets to compute the performance.	 A Monte Carlo

L. technique has been developed to evaluate the probability

of correct classification integral. The details of the

technique and an evaluation of an algorithm, SPESTM,

designed to implement the technique are covered in Appendix

A.	 A sufficient number of representative spectral response

functions to represent the.-stratum is necessary in order

to obtain a good estimate of the statistics.	 Experience
i

with the performance estimator algorithm has demonstrated

that the algorithm is reasonably efficient in terms of

3 execution time and accuracy.
r

In this section some comments concerning the pro-

cedures for the operation of the spectral parameter

design system are made. These procedures are followed

in generating the results that are given in later sections.

A stratum is selected by choosing a location and

collection date for which a set of field data ha^-, been
fi

i



Sample spectral response functions are selected from the

field data to represent the stratum.	 This selection is

accomplished by specifying the tape that a particular data

set is stored on and the date on which it was collected.

Details concerning this procedure are covered din Appendix B.

The deck of cards, containing the numerical values of the

spectra, is read by SPRDCT which stores the response func-

tions and some ID information onto a disk .file. 	 All of

the analysis algorithms using the data require the data

to be in the format described in the appendix.

The estimate of the covariance matrix of the ensemble`

and the solutions to the matrix equation which gives the

eigenvalues and eigenvectors are computed by the routine a

SPOPTM.	 A weight function which is stored as a vector in

a callable subroutine is selected in SPOPTM. 	 A subroutine t

is used to sort the eigenvalues and corresponding eigen-

vectors such that the eigenvalued are in descending order
t

of magnitude.

An example of the output listing for SPOPTM which g. =,

lists the first 30 eigenvalues 	 is	 shown in Figure 4.2.

Corresponding to each eigenvalue estimate is an estimate
t.

of the variance of the eigen-value, an estimate of the

variance of the eigenvector, and the expected mean-square`'

representation error for using the Karhunen -Loeve expansion.

i
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N EIGENVALUE VAR(GAM) VAR(PHI) MEAN-SQUARE
1
2

2671®23ZO
62400196

18423.0508 0.0003 7'6.056468
OeO368841005.3904 0.0004

3 38.0230 3.7328 0.0023 54.01138974
5

7.3402
6.6256

097763 0.3666 36.673708
'0:7137 0.3665 209048093

6 0.0734 Oe0049
7

15.31304 1p4*71g7731
98

1.6519 0.0071 8.3883020.1131
10 194203 00052 0.0491 6.967997

1 098294 0.0018 0.0572 6.1385922
3

0:6867 0:0012 2:4945 59451897
0.6755 000012 295225 4:776416

14 096203 000010 0.2657 4.156083
15 Oe5687 000008 0.1672 3.587406
16
17

0.4833
093670

090006
0.0003

00706
0:1362

3:
2:737054

•18 093384 090003 Oe1403 2.39865219 Oe2647 0:0002 097469 291133988
20 092567 0.0002 097494 1:87726021 •0:2105 090001 0.1172 1.666809
22 061888 0.0001, 091336 1.,47796423 0.1656 090001 OeI281 1931234924
25

0:1478
0.1177

000001
0.0000

0.1062
Oe2557

1.164518
1:046809

26
27

0.1112
0:0903

000000
090000

092611,
0.651l9

Oe935630
0;.84532828 0e0873 000000 096752 Oe75804329 0.0786 090000 091728 0.679479

30 090672 000000 093435 0.612256

I
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LABORATORY FOR APPLICATIONS OF REMOTE SENSING
PURDUE UNIVERSITY

SAMPLE FUNCTION INFORMATION	 17'JULY9 1978

EXP'e NO * ... ..•.a...9o.......00.e^e^140."
NUMBER OF CLASSES e .....e.......... e: 3
NUMBER :®F^S^IMPLE4 ^FUN^YLONS .es9e.se .WHEAT

.ee^e.e..
CLASS oe...9eee:e9oo. 9 e'9.e.:. e 9.9. eeFALLOW
NUMBER OF SAMPLE FUNCTIONS9e.es.e..211
CLASS	 eo.ee.UNK,NOWN
NUMBER OF SAMPLE FUNCTIONS.....d9..'6®2

4
	

Figure 4.2 Sample output from SPOPTM.
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The variances are computed using the results derived in

Chapter 2. It should be remembered that the eigenvalues

and eigenvectors are estimated from random.samples from a

Gaussian stochastic process. The estimate of„ the first

eigenvalue is 2671.23. This estimate is approximately

unbiased and has a standard deviation of 135.7. Similarly

the estimate of the _norm of the difference between the true

eigenvector and the estimate is approximately unbiased.

The standard deviation is .02. It is interesting to note

that the variance for the 12th and 13th eigenvectors is

relatively large. Recalling that the. expression for the

variance is sensitive to eigenvalu ss.which are close'

together, the large variances are not^^'surprising. The

. mean-square error is computed using the eigenv:?J ue estimates.

ID information concerning the data set is included,;or

reference. The eigenvectors.are punched and stored in a

card data file. A plotting routine is used to display

the eigenvectors. Also, the eigenvectors will be used

later to perform linear transformations on the data.

A crude approximation to the system measurement

error, introduced in making the field measurements, is

used to provide a comparison with the expected mean-square

representation error. Measurement error was assumed to

r ''`..	 be 7%. of the numerical response value. If x(a) is the

true signal and s(A) is the neasured signal including

c
added noise, then, the measurement error is

t
t
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e	 = j [x(a) - s(a)] 2 dA	 (4.12)M
N

m	 „

In discrete form . letxk 	sk 	.07 xx and

a. L
2em =	 (.07 xk )	 (4.13)

k=l

The average E:	 over the ensemble is the estimate of the
'

^rr expected measurement error.P	 ^ v y

5 The linear transformation on the original data set

using the computed eigenvectors ` is performed using SPTES.

4
F - The statistics for the first N terms-or features are

computed for each class and displayed on the printer

(Figure 4.3).	 Also a card deck with the statistics stored

on it is punched for use with the classification performance

estimator.

" The estimate of`'tFe probability of correct classifi-

cation is obtained by SPESTM (see Appendix A). 	 The statis-

tics deck output of SPTES is designed to be identical to

the required input for SPESTM.	 The output of SPESTM

includes the condijt-ional probability of correct classifi-

cation for each class and the overall probability of

correct classification (Figure 4.4).'q

It is possible to evaluate the contribution of each
i,.

u	 ? feature to the separability of the classes.	 Feature selec-

tion is'performed using the SEPARABILITY processor in
r
L

+eF

•; ^	 ^.^n^SC$374`"5^•+^{;1`Yt r
aw

.3i:1jt ^: .(dam-. • ,'	 k
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4
MEAN VECTOR -

22.1997	 17.3667 0.9930 -O 0932

COVARIANCE MATRIX

2576.8550
-37194817	 716.0183
-5497175	 3.4695 24.5298 #
33.6030	 -6.8187 -8.2161 15.4123

{
c

MEAN VErTOit
t

-16.1261	 -17.6414 -1.4610 -0.2640
tt

COVARIANCE	 TRIX
`-

20.0.-3152ii
t-3700427	 144.1309

-111.1944	 -593496 48.6596
z -49.1371	 33.2773 -2e7137 19.3354

MEAN VECTOR

-16.4757	 -1`1.2648 -0.4962 0.1673

COVARIANCE MATRIX

2112.1230( x
X' -170.6249	 168.9570

50.6295	 -32.0785 46.1451
-14.4906	 -1.3899 8. 443 18.5254

Figure 4.3	 Sample output of class conditional statistics.
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;F':4T^';^'°Y^w''	 l"v fniiscM".:^^3^f9w.77i 'st t+. ^, l	r. `a hY f• R'^'Rr	 ;

;.. PROBABILITY OF CORRECT CLASSIFICATION FOR CLASS-	 I.= 0.8308

PROBABILITY OF*CORRECT CLASSIFICATION FOR CLASS 	 2 _ 0.8450

f t;	 PROBABILITY OF CORRECT CLASSIFICATION FOR CLASS 	 3 = 0.5773

OVERALL PROBABILITY- OF CORRECT RECOGNITION = 0.7504

Figure 4.4	 Sample output of classification performance estimates.

N .
0
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C0

LARSYS (Phillips, 1973) in which the divergence is computed

using various combinations of N 1 features.	 The feature

sets are ordered according to the average pairwise di-

vergenco'. This feature selection technique allows one to

find the best feature set quickly without having to try

all of the possible combinations.

Two practical sensor designs are evaluated for

con-^)arison with the optimal design. The spectral bands

used to simulate these sensors was presented in Table 4.1.

The spectral bands are contained in SPSUB which uses them

as a set of basis functions to represent the response func-

tion. A linear transformation is performed on the data,

and the statistics for each class are computed. The average

mean-square error for the suboptimal representation is

computed and printed. The statistics are again punched

on cards in a format suitable for SPBSTM.

SPSUB can also be used to design a practical sensor.

The program can be modified to include any choice of

spectral bands desired.

4.4	 System Testing

The system was exercised in an effort to determine
M	

'4

its capabilities and limitations.	 The data sets taken over

the two locations at different times were used in the tests. 	 ;r<

Ma,	 In particular it would be good to get some feel as to whaty,

:	 would be a good choice for the weight-function. 	 1lso the
x

^..F	

l

_	 :•	 ^	 3,T.xw`s^.i'^'^rat^s:J...rwsea_=r':'pis^;3ra3 	 ..	 :
L^ 	 zY 

h	
-.!T	 -1i^	 ^. ^	

wYtF:iLias ^._^.	 » G ... r {.. ,aJR..	 .._. . ^	 .."	 .....
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number of< samples that are required will be important when

specifying what is desired in future data se-Ls;

E 4.4.1	 Reconstruction

As a first test of the system we would like to demon-

strate the capability of the first few terms in the^Karhunen-

Loeve expansion to reconstruct the.original waveform.	 A

sample spectral response function from an ensemble is

selected and the coefficients in the expansion are com-

puted.	 Using N' terms in the expansion the approximation a

to the original function is given by: r

N' 
f

r	 .
x(A)	 _	 x	 (A)	 + MM	 (4.14):.

i=1	 1 z

where m(A) is the mean function of the process. 	 For this

example a uniform weight function, w(a) = 1,0 for all acA, N

was used.
i

A sequence of graphs showing the original function 4
i

x M as a solid line and the approximated function ^(h)

as a dashed line is shown in Figures 4.5a to 4.5h.	 only

F the first term in the expansion is used in Figure 4.5a;

^. the first two terms are used in Figure 4.5b, and so forth'.

It is readily observed that after a few terms the approxi-

mation is very close to the original..

If the average mean-square error is computed directly,

using the equation
`'

All

ll

° --	 w	 -.^.:.^,.^^^rr- ^-..,•.-^..^^.;-	 ...	 ---^:. ter..... _ :

flfe^'.CX.:.'

tv
,	 .... i.ra .r x	 ....r...+..:..	 u.	 ...a.45.9:a'!'3.^^^^	 r..x .	 ...
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Figure 4.5 Reconstruction of a single spectral response
function using from 1 to 8 terms in the
expansion.
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s = n [x(a) - X(X) ]
2 

da	 (4.15)

and averaging over the ensemble, the value of E{E} is

equal within numerical error to the value given by summing

the eigenvalues

OD

E {e}	 X	 Yi	 (4.16)
i=N°+1

as predicted by equation 2.

4.4.2 Choice of Weight Function

An important part of the analysis procedure is the

choice of the weight function w(x) to be used in the

weighted Karhunen-Loeve expansion. Four different weight

functions, which are displayed in Figure 4.6; were proposed

and tested. Data taken over Williams County, North Dakota

on May 8, 1977 was used to evaluate the different weight

functions. Comparisons were made by evaluating the

eigenvalues, eigenveotors and classification performances

for each of the weight functions.

r.;

	

	 The motivation for the development of the weighted

Karhunen-Loeve expansion is demonstrated by using the first

weight function which has a weight of one assigned to all

wavelengths on the spectral interval (Figure 4.6a).

The first four eigenvectors for this weight function are

graphed in Figure 4.7. It is noted that the first

9

..a'^"4^'P
»?^.^w-,.,,:r^a,k.am •^..oLe > ry 	 e.?SatYa a..t "ka'îs,^'X'^..̂_ eC x '^ • q	 M1

^'sA► '̂1'D tRfisl^`^4Y..:^+StX^...^iy'sA^fi^+'^..^IIiYC'°`" - -,; '^ uri °S'w^,t::,:...a., , . 	 .,., -,,..,.	 ,.:.	 ..	 ..

r	 ,

t	 'f9

7	 ^

t

2

^	 ..3

X	 ^

S	

y

^
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Figure 4.6 Weight functions.
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eigenvector is dominated by the variance in the signal

for a narrow interval near 1.9 um.	 A'similar peak for the

F same interval occurs in the second eigenvector. 	 In the

fourth eigefivector a similar result occurs for a region`
j

near 1.4 um.	 These two bands near 1.4 and 1.9 um corres-

pond to water absorption bands which severely atteivate_

,t the electromagnetic energy passing through the atmosphere

at these wavelengths. 	 The sample spectral response func-

tions have large variations in these bands which causes

y the eigenvalue algorithm to select one or more eigen-

vectors which are sensitive almost entirely to the portion

of the spectral interval corresponding to one of the
r

water absorption bands.	 The source of these large varia-

tions is traced to the calibration procedure during which

a division by a small number occurs, resulting in the

noisy signals in the respective bands.	 The ability of `0

egenvectors 2 and 4 to, aid discrimination between informa-

tion classes is limited and real contributions to the
r

performance for these eigenvectors aiz'due to the small

but finite sensitivity in the remainder of the spectrum.

The three remaining weight functions were chosen to

,J

minimize the effects of the water absorption bands. 	 In }

'£
F
r the second weight function (Figure 4.6b'), the weight is

set equal to .001 for the intervals 1.32 to 1.50 um and
Yi =i

£'.x 1.76 to 1.94 um and equal to one elsewhere. 	 A more radical

sta'	 ^7a5'}flj.ti}l^k^ 4^rx'k^,td'^,Lr•	 'rr	 •..	 •.
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choice off we'Wt f^anotion (Figure 4.6c) is based on the
Y•'solar spectral irradiance at sea level (Handbook of

Geophysics, 1961).. The sonar irradiance is strongest in

the visible and decreases to very small values in the

infrared., The two water absorption bands are accounted

for as well as several other Messer molecular absorption

hands. A criticism of this choice of weight function is

\ that the reflectance from vegetation, for example,

is very low in the visible while it is quite high in the 	 ,

infrared, which,is the opposite of the solar irradiance

curve, Hence, the third w^i.ght function, based on the

r	 irradiance curve will tend to give too much importance
}

to the visible region and too little importance to the

infrared regions; `specially those between 1.5 and 1.7 una

and those between 2.2 and 2.4 um. The fourth weight func

'tion was chosen to weight the low reflectance typical of 	 `

the visible region lower. It has slightly higher weight
^r

values for the two water absorption bands and has a weight

of 0.7 for the visible region. The first four eigen-- 	 ;.

vectors for weight functions '2,^w.. and 4 are shown in
x

Figures 4.8, 4.9, and 4.10, respectively.	 :

i

	

	 The-expected value of the integral over A of the

square of the response functions can be treated as a total

received signal energy. This expected energy is equal to

the sum of all of the eigenvalues, which is different for

Y

4	 •

_ zas7+ 4t^	 44r'-AZ4ti''• -k,..^ F` :'.^a.	 w§ k.7-+': s,.,n,.	 a.....^..... . W .	 ....	 . e ..	 ...:	 ....	 , .	 •
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Figure 4.8	 First four optimal basis functions using
weight function number 2 over Williams

u unty, May 3, 1977 data.
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each weight function. 	 The expected energies are 1985,

550, 177, and 589, respectively where the units are

relative to the units of per cent response for the spec-

tral responsefunctions.	 Ideally, the weight function

would reduce the energy which is noise and retain that

which is signal.	 By using low weights in the water absorp-

tion bands, an improvement in overall signal-to-noise ratio
f; A

has been gained.	 However, in the case of the third weight

function, the reduction in energy may have been too much.
. A1

The infrared regions are not represented significantly in

any but perhaps the second eigenv-ctor

As a final comparison between weight functions,

the classification performances are examined. 	 In Table 4.2

the estimate'of the probability of correct classification

as a function of the number of terms in the expansion

for each of the four weight functions.	 Porten terms it

.appears that the second and third weight functions are the

better choices with the second weight function demonstrating--^,,

a slight advantage in the first few terms.	 The conclusion ,.___ -

drawn at this point is that the second weight function is

the most reasonable choice and will be one used in the

results that follow.



Table 4.2	 Comparison of the-probability of correct
classification using N terms in the weighted f')
Karhunen-Loewe expansion among four choices
of weight functions.

Weight Function'
' !r

N	 1	 2	 3	 4 j

1	 .355"	 .467	 .468	 .488
z

2	 .443	 .729	 .675	 .730
3	 .729	 .819	 .700	 .799
4	 .736	 .833	 .806 .817

$ ^^	 5	 .742	 .851	 .853	 .822
6	 :794	 .882	 .896	 .834 'a
7	 .807	 .894	 .897	 .851
8	 .823	 9^3	 914	 .860

<<	 9	 .851	 ^94 3	 . 956	 - .889
1	 ^•
A	 10	 .862	 .949	 954	 ,931

`̂ E-valuatic4.4.3	 n of the Eigenvalue Algorithm j

The methods employed in the algorithm EIGENP have

been well-studied (see Wilkinson, 1965) and are characterized

by good numerical stability and accuracy even for covariances

matrices which have a rank of 100.	 The accuracy of the

 algorithm depends largely on the particular machine on
s

which the algorithm is implemented.	 The accuracy, is pro-

portional to the rank of the matrix, to the number of

iterations required for the iterative procedures used, and

to 2-t where t is the number of significant digits in the

r mantissa of a binary floating-p9int number. 	 For the IBM 370

machine using double-precision the value of t is 56. 	 Typi-

cally eigenvalues can be computed which are accurate to

p'„yr. •	 -	 w^e'r+ivm:fc.. 	 . 	 :. 'F++4:iYA^^T'T.^':c'.;+."';^	 ^+, -t	 :. a1
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jr

,
,<,Jjsix decimal places. The norm of the difference between a

computed eigenvector and the true eigenvector is also on

the order of 10_6

The accuracy of the computed eigenvalues and eigen-

vectors deteriorates slightly with the introduction of

the weight matrix. Weight matrices containing small

weights tend to cause under,flow conditions. to occur in the

reduction to Hessenberg form.

Computation times for matrices of rank 100 are on the

order of 10 minutes of CPU time. Hence, one is restricted

somewhat ' in using this algorithm a large number of times-

4. 4.4 Sample Size

The number of sample functions, used to represent

the ensemble, influences both the estimates of the eigen-

1J'

	

	 values and eigenvectors and the estimate of the classifica-

tion performance. The prediction of the general effects

of the sample size have been described earlier; however,

it would be desirable to-demonstrate these effects in

the context of the present problem for the purpose of

deciding whether or not a sufficient number of samples

were collected

An experiment was performed using the data taken over

Williams County on August 4, to demonstrate the effect of

sample size. Subsets- of the ensemble were used to simulate

small data set sizes of 55, 110, and 294 sample functions.
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9

^t
The breakdown in the number of samples from the four

information classes is shown in Table 4.3. 	 The eigenvalues

4 and eigenvectors were computed using 55, 110, 294, and 1444

samples, respectively,.	 Several sample functions, which.
^l

were used to compute the eigenvalues, were not used to

± evaluate the performange because they were from fields in

9 which there.was some uncertainty as to which°cover type i

the functions belonged. 	 The eigenvalues and eigenvectors r

for each case were computed using the second weight func-

tion, and the expected mean-square error was plotted as a

function of the number of terms in the expansion in Figure

4.11.	 The effect of sample size on mean-square error is

most detectable for the number of terms .greater than ten.

r
It is observed that the expected mean-square error increases

ti

with increasing sample size.

4

a

_ Table 4.3	 Sample size assignments for data from Williams
County, N.D. on August 4, 1977,

y
s:

Class	 NUMBER OF SAMPLES

t WHEAT	 25	 60	 134	 808

WHEAT HAR	 5	 10	 22	 34

FALLOW	 15	 25	 76	 330 i

PASTURE	 10	 15	 62	 130

Total	 55	 110	 294	 1,302
z

k

F

r5, 4 ,,^. "  11!

i

f	 <
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The classification performance was evaluated for each

additional term in the sequence and a plot of P c as a

function of the mean-square representation error was drawn

for each cane (Figure 4,12). The small sample function

size has two effects on Pc vs. E {sr } curve. First the

j^

	 smaller mean-square error causes the curve to be further

to the,left than it should be. Second, the small sample

size causes the performance to be higher than it should be

for a given expected mean-square error.

The question of whether or not the set of samples

adequately represents a stratum is a difficult one. In

particular the method of selecting which functions to

include in the sample is not easy to determine. One reason

is that relatively few sample functions are available and

as in the case of this research one uses all the functions

that are available. This experiment demonstrates the

effects if we assume that the 1444 sample functions accurate-

ly represent the ensemble. Certain trends indicate that

the number of samples available is adequate. The change

in the expected mean-square error is quite small between

the curves 297 and 1444 samples in Figure 4.11. Also,

the performance as a function of representation error in

Figure 4.12 is probably close to accurate for the largest

sample size. In the following the ensemble will consist

of all of the sample functions that are available which

is on the order of 1000. It should be pointed out that

-^._^.t.
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Figure 4.12 Influence of sample size on the estimate of
--classification performance for William-s County,
August 4, 1977, using weight function number 2.
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if there are a larger number of 'classes, a larger number

of samples will be needed to obtain good'classification

performance estimates using high dimensionality.

4.4;.^'5 Results

The analytical procedure for spectral parameter de-

sigh of'sensor systems was performed using the'data col-

lected on three dates over each of two locations'. 	 Results

from using the experimental sy^tem are presented graphically,

in Figures 4.13 through 4'.30.	 The three.collection'dates

for Williams County, North Dakota, are presented first

followed by the three data sets from Finney County, Kansas.

Weight function 'number two was used for all cases.

't , For each data set the expected mean-square error

is plotted as a function of the number of terms used in

the Karhunen -Loeve expansion. 	 A logarithmic scale is

used for the mean -square error because of the large range

of values.	 The units for the mean-square error are rela-

tive to the units on the spectral response.function which

are in terms of percent reflectance.",,	 Since

E	 EXM 1 
2 
w M dX	 Yi	 (4.17)

If	 CO

the units of error are relative to the-expected mean-

square value of the response functions in the ensemble.,
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Figure 4.19 Expected mean-square error as a function of
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expansion for Williams County, August 4, 1977,
using weight function number 2.
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Figure 4.22 Expected mean-square error as a function
of the number of terms in the Karhunen-Loeve
expansion for Finney County, September 26,
1976, using weight function number 2.
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Loeve expansion for Finney County, May 3,
1977, using weight function number 2.
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tion vs expected mean-square error for
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B. ' -	 f

e first twelve weighted eigenvectors for each set of

data dare shown. Note that the graphs are of weighted

eigenvectors; that is, Fi (A) where

^ i M w(a)	 (A-18)

is plotted as a function of wavelength. The weighted

eigenvectors will. be used to determine effective ways of

sampling the spectrum.

The important relationship between probability of

correct classification and expected mean-square error is

depicted in the graphs ofPc vs E {E r )for each data

set. Starting with the first eigenvector, the values of

Pc and. E { E r } are plotted as the number of terms in the

Karhunen-Loeve expansion is increased up to ten terms.

Again a logarithmic scale is used for the mean-square error.

4.5 Scene Understanding

Although the primary thrust of this research was to

arrive at an analytical approach to sensor design, it has

beneficially resulted in some important contributions

to scene understanding. Four important characteristics

of the scene can be studied using the analysis procedure

that has been developed, here -the dimensionality of

the observation space, the determination of the important

regions of the spectrum, the relationship between spectral

pT
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representation and classification performance, and the

maximum achievable classification performance. These

characteristics are evaluated over the limited number of

data sets available.

4.5.1 The Dimensionality of the Observation Space

The dimensionality of the observation space is

determined by the minimum number of basis functions re-

quired to reduce the expected mean-square representation

error to a value below a specified level T. The problem

becomes that of determining an appropriate value for T.

Consider the expected measurement error discussed earlier.

This measurement error is an attempt to quantify the.

capability of the field data gathering system to make

accurate measurements. If the value of T is much less

than the expected measurement error, then, one would expect

that no real improvement in performance may be achieved

by increasing the number of terms in the expansion. 	 ..i

The expected measurement error for each of the six

data sets is listed in Table 4.4. Two choices for T will
	 a

be considered. First, let the ratio of the expected

E

	

	 measurement error to T1 be ten-to-one. The number of

terms required to reduce the expected mean-square repre-

sentation error to less than T1 is six in all but the

first data set where only five terms are required (see

Table 4.4). Six terms appears to be a very reasonable

i

F'
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R,

a



^	 K,.. 	 a	 v	 .s r^	 . x	 Y	 r 770 r

^^ an ar r_. n^o ..r

'
Table 4.4	 Expected measurement error and proposed. values for T for each

of the data sets.

Expected
_	 I!

Measurement Number of Number of	 Number of terms
Data Set	 Error	 T1 Terms for T1	 T2 Terms for T2 R <".99

Williams Co. 178.8	 17.9 5 1.78 18 10

Y

May 8, 1977

Williams Co. 140,7	 14.1 6 1.41 20 4June 29, 1977

r Williams Co.	 127.4	 12.7 6 1.27 17 5Aug.	 4,	 1977

Finney Co. 103.9	 10.4 6 1.04 18 5
Sept.	 28, 1976

Finney Co. 156.6	 15.7 6 1.57 22 5May 3, 1977

Finney Co. 165.3	 16.5 6 1.65 19 6
s

June 26, 1977

,
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1

number considering both the representation accuracy and

the data volume required to be transmitte^?,to the processor.

<f	 However, for the purposes of this work it is desirable
•

to decrease T further to insure that as much information

as possible is retained. Therefore, let the ratio of

the expected measurement error to T 2 be one hundred-to-one.

The number of terms required to reduce the expected measure-

ment error to a value less than T 2 is approximately twenty.
r

A second criterion for determining how many terms
f	

in the expansion to use which has often been applied is

to compute the ratio

N

X Yi
R = 

iLl	
(4.19)

Y1

where N is the number of terms in the expansion and L is

the total number of terms available. If R is equal to 1.0

then*the expected mean-square error for the process is zero.

In general this occurs only when N=L, therefore, one must {

be content with choosing of value of R close to 1.0.

Suppose that we choose R =0.99 and require that the number

N be chosen such that the right-hand term in equation 4.19

is greater than R. This would guarantee that the expected

representation error would be less than 1% of the total

signal 'energy'. The last column in Table 4.4 lists the

number of terms required to achieve this representation

Pte_



160

z

accuracy. The first twenty'eigenvect S rs were used in the

analysis of the data which are presented in this research.

4.-5.2 Feature Selection

It is desirable to evaluate the optimal set of basis

functions to determine which features are contributing the

most toward the discrimination between classes in a given

problem. To evaluate the.features it is proposed to rank

them according to their ability to discriminate between

classes. This ranking will achieve three purposes. First

the ranking will indicate whether the orde=r of the features

based on.expected mean-square error is relevant to the

classification problem. Second by examining the.eigenvectors

of the most significant features, some information regard-

ing the selection of the best set of features to use in the

classifier i.s obtained. Finally, the relationship ► between.

the observed spectral response variations and the phenomena-

being observed on the earth's surface can be examined more

closely, since the most significant variations which affect

separability can now be determined.

For each data set, the information classes have been

specified. The features in the optimal set will be

evaluated based on the following criteria:

Estimate of probability of correct
classification for each feature.

Computation of a separability measure
(divergence) for combinations of features
and ranking according to highest average
separability.

',:	 ...^.a_... z•c ^ n•-tea...	 -^  	 ..	 ^ ^ !.ixa ak	 ^^^i^i5ixk' ^:"r r	

.._
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Estimate of probability of correct classifi-
cation for combinations of features.

The rankings for the first ten optimal features are

wr	 .
	 listed in Table 4.5. Note that the rankings are somewhat

subjective because the importance of a particular feature

may be different when used in combination with other features

than when used alone. However, those features at the top

of the lists are definitely superior to those at the bottom.

For convenience the rankings are denoted by a number in

parenthesis indicating the rank below each of the first 10

eigenvectors plotted in section 4.4.5.

In general, the ranking in Table 4.5 bears some similar-

ities to the ranking based on expected mean-square error.

For example, feature 1 is ranked first in two of the six

data sets and second in two others while never being
iFI

ranked below fifth. The low ranking for the May 3,

Williams County . data is not surprising since the first

eigenvector is very similar to bare soil and the responses

from both emerging wheat and fallow fields are similar to

that characterized by bare soil. The first eigenvector

would not be expected to be of much value for discriminating

between the WHEAT and FALLOW classes. Feature 2 is also

ranked high for all of the data sets. At the other end

of the list features 9 and 10 are consistently at or near

the bottom.

t
Y
7
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Table 4.5 Ranking of the first 10 optimal features on their abili ty _to discriminate
between classes. 

Rank May 8, 1977 June 29, 1977 Aug. 4, 1977 Sept. 28, 1976 May 3, 1977 June 26, 1977

1 2 3 2 1 2 1
2 6 2 1 2 1 3
3 3 1 3 4 5 2
4 8 4 7 3 4 4
5 1 5 4 7 3 6
6 5 8 6 5 10 7

7 4 7 8 6 8 5
g -. 6 5 10 7 10
9 9 9 8 9 8

10 y' 10 10 9 6 9

X̂
F	 9
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Only; the first 10 features were ranked, however,

since:--twenty features were available a check was made

of the second ten for features which may be significant.

The importance of these features was determined by esti-

-
mating the probability of correct classification in combin g-

tions with other features as well as by themselves. 	 For

the Williams County data sets features 11 and 12 were

important for the May 8 data . and for the 29th data.	 For

the Finney County data sets features 11 and 13 were

important for the Sept. 28 date while features 15 and

14 were significant for the May 3rd and June 26th dates

respectively.

The evaluations of the spectral interval to select

features for the classifier and to interpret observed

phenomena will be discussed in the next sections.

4.5.3	 Classification Performance as a Function of the
Spectral Representation

The relationship between the overall pattern recog-

nition system performance and the spectral representation

tt parameter is graphically displayed by plotting the proba-

bility of correct classification, Pc , as a function of

" expected mean-square error, E {e	These}.	 graphs areg	 ,
r

plotted again in Figure 4.31 with the three graphs for each

location on the same coordinates. One can evaluate which

terms contribute to the performance as well as to the

F representation.

{
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Figure 4.31 Estimat8 (;-f probability of correct classifica-
tion- vs expected mean-square error for
(a) Williams County and (b) Finney County,
using weight function number 2. (See also
Figures 4.15, 4.18, 4.21, 4.24, 4.27, and
4.30.)
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The graph for the May 8, 1977, Williams County data is

typical. The value of Pc increases steadily with decreas-

ing E 
{er}. 

At the fourth term the graph begins to level

off at a value of 0,83, indicating that P
c 

is may be close

to a maximum. However, at the eighth term the value of P
c

increases sitificantly for a corresponding small decrease

in E (vrI bef-;ire leveling off at about P c = 0.95. The June

data set from Williams County has a similar gra ph with the

final leveling off beginning at about the fifth term.

Comparing these two data sets, a smaller mean-square

e.rzor is required in the May data to achieve an equiva-

lent classification performance. Hence fewer terms or

dimensions are required to achieve a given level of per-

formance.

The last data set from Williams County does not

exhibit the early leveling off noted in the first two-sets.

The performance improves steadily until it reaches approxi-

mately 1.0 at the seventh term.

The September 28, 1976 data set from Finney County

Ilk

has a steady increase in performance with decreasing mean-

square error until the leveling occurs at about P c = .96.

Note that the value of P for the first term is the highestc	 g

of the six graphs; hence, a lot of discriminating information

is present in the first term. The graph associated with

the May 3, 1977, Finney County data set is still increasing

u
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at the tenth term, indicating that more terms are necessary

to determine the maximum performance. The graph for the last

set from Finney County is similar to the graphs for the

first two data sets -from Williams County.

The graph of F`c	 rvs E {e } can be used to determine the

degree of representation accuracy required to achieve a.

specified level of performance. For the data for Williams

County on June 29 a relatively high value of E (c r ) is

acceptable; whereas, for the May data from Finney County

requires a more accurate representation.

For these curves there does not appear to be- any

trends based on location of the data sets. There does seem

to be a trend as far as the time of the growing season at

which the data was collected is concerned. The May dates

in both locations tend to require more representation accu-

racy and tend to still be increasing in performance after

using 10 terms.

The asymptotic properties can be used to estimate the

value of the maximum achievable classification performance.

To .find the maximum performance let E is } approach zero
r

and observe the value of P	 In most cases P will bec	 c
constant or increasing very slowly as E {c } becomes

I	 r
small. The value of the constant to which P is approaching 	 '•!	 x<

c
is maximum value of the probability of correct classifica-

tion. Table 4.6 lists the maximum probability of correct

classification for each data set. Note that for the May 3,
t

F

f1.	

`
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Finney County, data, Pc is still increasing so that the

maximum value of P c is probably higher than that listed.

Table 4.6 Maximum probability of correct classification
for the six data sets.

Data Set

Williams Co., May 8, 1977

Williams Co., June 29, 1977

Williams Co., Aug. 4, 1977

Finney Co., Sept. 28, 1976

Finney Co., May 3, 1977

Finney Co., June 26, 1977

Approximate maximum probability
of correct classification

.95

.96

1.00

.96

.93

.95

4.5.4 Characteristics of the Eigenvectors

For the six data sets there are some general charac-

teristics of the eigenvectors which can be readily observed.

The contribution of the spectral response to the channel

or feature which corresponds to the eigenvector is

determined by the portions of the spectral interval where

the eigenvector has a magnitude or sensitivity different

from zero. This sensitivity is apparent from the linear

functional which determines the coefficients

xi _ fA

 x(a) i (a) w(a)da	 (4.20)

t:
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Therefore, a subinterval of A which has relatively large

values for q M and w(X) will contribute significantly to

the informational value of the coefficient xi.
t

The eigenvectors provide some insights into the

correlation between adjacent regions of the spectrum. 	 Let

the spectrum be sampled using very fine spectral bands.	 Let

the measurements using these bands be denoted by u i , i =1,2,

..., 100.	 The correlation between any two of the measurenents

is given by

E {uiuj ) 	 i0 jOk	 (4.21)
k

where ^ i k is the i th element of the kth eigenvector.	 If

the correlation between two adjacent measurements u, and
i

is high, then, the two measurements are not independent
ui +1

and they could be combined into a single measurement.

It is now possible by examining the eigenvectors to deter-

mine how narrow the spectral measurement bands should be

in various parts of the spectrum.	 Eigenvectors =which have

high frequency variations-in magnitude in a particular

R
subinterval of the spectrum strongly indicate that it may

be desirable to sample that subinterval using very narrow

spectral bands.

Referrinq to the results presented in section 4.4.5,

the first eigenvector typically has the characteristics

of the weighted mean function of the ensemble. 	 The second

•
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eigenvector has a strong component between .72 and 1.3 um

and a second important component in the 1.95 to 2.4 um

band. For the Finney County data set taken on September
k

28, 1976 these two eigenvectors are reversed in order.

gThe third and fourth eigenvectors in all of the data sets{

exhibit noticeable similarities. In the third eigenvectors

Williams County data and the fourth eigenvectors for Finney

County data there exists a significant component in the

subinterval between 1.5 and 1.7 um. The sensitivity in the

visible region from .55 to .70 um is strongest in the

fourth eigenvectors for Williams County data and the third

eigenvectors for the data from Finney County. These similar-

ities over the different data sets are somewhat surprising

and also encouraging in that these similarities indicate

a strong possibility that a sensor can be built which will

work very well over more than just a single data set.
i

As eigenvectors which are later in the sequence of

optimum basis functions are examined, there is an increased

occurrence of subintervals with high frequency variations

in magnitude.	 It is of interest to note that several of

these terms were important for classification performance.
4

Examples of important eigenvectors which have high

frequency variations are the sixth and eighth eigenvectors 	 s

IX

from the May 8, Williams County data and the seventh eigen-

e: vector from the August 4, Williams County data.
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It was observed that the subintervals from 0.6 to

0.7 um and from 0.9 to 1.1 um have considerable high

frequency variation. The 0.6 to 0.7 um band has often

been suggested as very important for identifying green

vegetation. In particular, the chlorophyll absorption

band centered at about 0.65 um is present (Hoffer, 1978).

Differences in the chlorophyll pigmentation are indicators

of plant stress. other pigments are also present in the

visible part of the spectrum. Therefore, there is good

evidence that narrow spectral bands in the region between

0.6 and 0.7 Um may be helpful. The spectral interval

between 0.7 and 1.1 um also possesses high frequency

variations; however, some of these variations can be traced

to water absorption bands occurring at 0.76, 0.93, and

1.12 um. Furthermore tests using narrow spectral bands

in this region did not improve the classification per-

formance significantly over using a wide spectral band.

The significant sensitivity of important eigenvectors

in the spectral bands from 1.5 to 1.7 j,m and 1.96 to 2.4 um

clearly indicates that these bands should be included in the

design. The importance of including these two bands was

further substantiated by improved classification performance.

4.6 Suboptimal Sensor Design

The analytical procedure which has been developed and

tested is particularly useful , as a tool for the design of

^i ^	 ^	 4Y"	 t t'	 ^ sae
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practical sensor systems. Significant contributions to the

design have been made through improved scene understanding;

r
however, the primary purpose is to be able to design a Prac-

tical sensor system by specifying a particular set of
i

spectral bands{ ► i (a)}. The optimal set of basis functions
r

	,L	 generated by the procedure provides a standard against which

any suboptimal practical sensors can be compared. In

addition ; the optimum basis functions {,y i (a)} provide

information regarding the proper choice of spectral bands.

4.6.1 Comparison with Suboptimal Systems

An important use of the optimal design is to use it

as a standard for comparing suboptimal syst,%ms. Two subop-

timal sensors similar to existing or future practical

scanner systems were simulated using the spectral bands

Listed in Table 4.1. The basis functions for these

	

`	 two sensors are given by

1.0 ,	 a ^ a ^ A

^Y l (a) =

	

	 k	 - k+l	 (4.22)
0.0 , elsewhere

where the a are the endpoints listed in Table 4.1.k

r

^t

4+

j=
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The sensors are first compared on the basis of expected

mean-square error. In Table 4.7 the mean-square error for

the two suboptimal sensors is compared with the optimal

sensor for all six data sets. The mean-square error for the

optimal sensor is shown, using the first four, six, and ten

eigenvectors. The units of the expected mean-square error

are relative and are significant for comparison purposes

only. The second weight function (Figure 4.6b) was used for

all error compuations. The large difference in mean-square

error between the suboptimal and the optimal sensors is

due to the fact that sensors one and two do not attempt to

represent the entire spectral interval from 0.4 to 2.4

micrometers. Figure 4.32 illustrates how a 'large contribu-

tion to the mean-square for the suboptimal sensors results

from the lack of spectral channels in large portions of

the spectrum.

Comparison can also be made on the basis of overall

pattern recognition system performance. For each data set

information classes were selected. The performance

criterion was the probability of correct classification.

The performance of the two sensors is compared with

the optimal sensor in Figures 4.33 through 4.38. Using ten

eigenvectors in the representation of the ensemble, the

best four features and the best six teatures as determined

by feature selection were evaluated. The choice of four and

six features was made because suboptimal sensors one and

W.. ,

s



Table 4.7	 Comparison of expected mean-square error (in relative units) for
each of the six data sets using two suboptimal sensors and
the optimal sensors consisting of the first 4, 6, and 10
eigenvectors.

Data Set Sensor 1 Sensor 2	 First Four First Six First Ten

Williams Co. 28570 17340 21.30 11.04 5.144May 8, 1977

Williams Co. 17320 16380 26.31 11.37 5.253June 29, 1977

Williams Co. 18070 14010 19.76 Q.315 3.539Aug.	 4,	 1977

Finney Co. 13360 11650 18.19 7.133 3.035Sept. 28, 1976

Finney Co. 22110 16080 36.67 14.72 6.968May 3, 1977

Finney Co.	 23210	 17760	 26.19	 13.98	 5.769June 26, 1977
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Figure 4.32 Regions of the spectral interval which are not
represented by a suboptimal sensor and which
contribute heavil y to the mean-square error.

a

r

F "
7'v

i

I.. e.



l

i

175
a

i

i

.8

P

R .6

Y

i .4

.2

0.

$4

43 ^. N
^d td N N N

w 4
r74 r—I td d •^-i:

r-1

0

N

0 4J 4J 4-, w

td

w

N
A

M to 04 04

0 0 0•.i
4J

rl
4J

U)

a

N N

o°!a

ri

^!

w

sr

^I

w

^O

$4

w

w

O

a

.763	 .89	 .889	 .917	 .949	 .833	 .882	 .966	 )

Figure 4.33 Comparisons of probability of correct classi-
fication for several sensors for Williams
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County, May 8, 1977.
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two have four and six spectral channels respectively.

4	 The classification performances, using the first four and

the first six

	

	 enei envectors as well as the first ten ei -
g	 9

9̂ . r
vectors, are also provided for comparison. Several observa-

tions can be made from comparing the performances`. In

general considerable improvement in classification per-

formance can be achieved over that of sensor number one. In

several cases the estimate of the probability of correct

classification for sensor 1 one was significantly less than

x	 any of the other combinations of channels presented. Sub- F

optimal. sensor number two does quite well, however, even

approathIng in some cases the performance of the optimal

sensor using the first ten eigenvectors.

For the chosen information classes, a very accurate 	 -

representation of the original spectral response function
a

is not required to obtain good performance. The information

contained in the unused portion of the spectrum does not
SE

appear to be essential for the identification of these

classes.	 However, for a set of information classes which

are deeper in the information tree, a representation

with smaller expected mean-square error may be necessary.P	 q	 Y	 .Y

There is evidence that measurements made by the {?
;r

' optimal set of basis functions are uncorrelated.	 A measure

of the correlation between any two measurements is the

correlation coefficient given by

i

t1 /^

"".c`	 t	 kr=aaat=x_^:+^±^,

^io;.+:^

^c2^ .̂.Ta=.ac:?r`a`u'..--:'--xr--"^.m:^,,..sa^.:.---s;^s.0 	 ^—mv..-^c-.c '• _	 •r.	 r.
$i cwyp dYt'ik#dLSI^
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E{(x -m-) (xi-m.)
P
ij	 =	

(4.23)

[E{ (x _m)
2
 }E{ (x 

_M
)2

Two measurements x 	 and xi, i ^j are said to be uncorre-

lated if p, j =0.	 The matrix of coefficients is called

the correlation matrix. 	 From the properties of the Karhunen

Loeve expansion the off-diagonal correlation coefficients

in the correlation matrix for the stochastic process corres-

ponding to a stratum are zero. 	 Therefore, the measurements

on the process are uncorrelated.	 However, the class condi-

tional correlation matrices in general do not exhibit un

correlated measurements 	 (Bharucha and Kadota, 1969).	 In

practice it was found that the the class conditional

statistics are still relatively uncorrelated. 	 As an

example, the correlation matrices for the three classes

from the data taken over Williams County, on June 29, 1977,

the four band suboptimum sensor number 1 of Table 4.1 were

computed.	 These matrices are listed in Table 4.8.	 The

first two channels of the suboptimal sensor are highly

correlated and the third and fourth channels are highly

correlated.	 The correlation matrices for the first four

optimal basis functions over the same data set are
AM I' l	 A	 a	 MI,

presente	 L). CL

correlation between any pair of channels in the optimal

sensor for any of the three classes. The fact that the

F.	 measurements are uncorrelated implies that the redundancy

I
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of information in the measurements is minimized, and

maximum performance can be achieved with a minimum number

of features.

Table 4.8 Correlation matrices for the four band suboptimal
sensor number 1 using data taken over Williams
County on June 29, 1977.

Class WHEAT

1.00 A0.99	 1.00
0.45	 0.46 1.00
0.22	 0.24 0.96 1.00

Class FALLOW

1.00
0.99	 1.00
0.84	 0.83 1.00
0.68	 0.67 0.95 1.00

Class PASTURE

1.00
0.99	 1.00
0.76	 0.81 1.00
0.68	 0.73 0.99 1.00

q*

l
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Table 4.9 Correlation matrices for the first four optimal
basis functions using data taken over Williams
County on June 29, 1977.

Class WHEAT

1.00

	

-0.45	 1.00

	

-0.23 -0.35	 1.00

	

0.01	 0.25 -0.15	 1.00

Class FALLOW

1.00

	

-0.02	 1.00

	

0.24	 0.30	 1.00

	

0.30 -0.30	 0.02	 1.00

Class PASTURE

1.00(i
-0.62	 1.00
-0.79	 0.30	 1.00
-0.34	 0.07	 0.49	 1.00

n

L

4.6.2	 Evaluation of Spectral Subintervals
^

Ys

In section 4.5.4 methods of evaluating the eigenvectors

,

in order to determine how to select spectral channels for ;>3

a practical sensor were discussed.	 Principally the eigen-

vectors are examined to identify regions which are con- R

` tributing to the information content of the scene. 	 The q

weight function effectively eliminated two subintervals

which were shown to be of little value. 	 The factors which

are important for identifying important subintervals are the

magnitudes of the eigenvectors in these subintervals and

t

s-

^ st
S

^^.

I
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their ranking with respect to representation error and with

respect to classification performance.

Examination of the eigenvectors has revealed that
f

the spectral bandwidths of current sensor systems may be

too wide in certain subintervals of the spectrum. Two

subintervals in particular appear to have significant high

frequency variations to merit narrow spectral-sampling

channel widths. One of these subintervals from 0.9 to

1.15 micrometers is known to have several minor molecular

absorption bands which may be the cause of the increased

high frequency variations. The subinterval from 0.6 to

0.9 um also possesses significant variations in the magni-

tudes of the eigenvectors. This region is considered to

be important for measurements on vegetation classes. There-

-	 fore, the proposed sensor design should reflect the

importance of narrow sampling channels in the subinterval.

Bandwidths as narrow as .02 um may be required to achieve

good performance. However, narrow spectral channels

require more bands to cover the spectrum. The cost

of adding more spectral channels which will cause greater

data volume difficulties should also be considered during

stem.the design of the sg	 Y

4.6.3 Proposed Sensor Design

A proposed sensor is now designed using the techniques

}	 and knowledge that has been developed. It is desirable that

Y

t9
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r	
i

2.

this sensor work well over all six data sets.	 The number of
r	 -	 tU

features or channels will be restricted to between six and

ten.	 Only rectangular basis functions will be considered

because they are orthogonal and simple to implement. 	 The

approach will be to pick a set of basis functions that willk
_r

give a small expected mean-square error, and, then, compare

the resulting classification performance with the optimum.

The selection of spectral channels for the proposed

sensor was based upon manual examination of the eigenvectors

and upon use of equation 4.21 to locate adjacent uncorre-

lated measurements of the spectrum. 	 The eigenvectors over

each band are studied with the intention of locating regions

of the spectrum which need to be sampled with narrow spectral

channels.	 The sampling measurements made by the field

R data collecting system are used to compute the correlation

between measurements normalized to the respective variances.

If two adjacent spectral measurements are uncorrelated, a

good choice for the location of the edge of a rectangular
r

basis function might be between the two measurements.

Graphs of the correlation coefficients as a function of

frequency for each data set are included in Appendix C.

It should be pointed out that even though these groups

y`- indicate that two points are not correlated, there still

may not be much improvement in performance as a result of

.'	 locating the edge of a channel between the two points. The

fact that the edges of two channels are uncorrelated does
}	 r	

^t

f.^
_w

., ̂ -;.a.::r.,.,w .A ^^!r.td... ^.,:^::^sa—. ^-i%?;'^n^"-.ti'u_.+..re^e:;s;1^_ -.u^ ^»,1,.t^..:dl^,^t+ti'S•^.n^`T^
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not guarantee that the spectral channels themselves are

uncorrelated. Furthermore, the examination of the eigen•-

vectors and the computation of the correlations must be
j

considered in light of the signal and noise properties

h	 Kr.}
across the spectrum. Therefore, the procedure is to design

• y'i

a proposed sensor using the principles discussed above
t;

and evaluate the system performance.

The proposed sensor design was developed using the

May 8, Williams County, data. The spectral band locations

are listed in Table 4.10 where the basis functions are,

again, given by

a
1.0 ,	 ak -` a	 Xk+l

0.0 , elsewhere

E	 The resulting design was tested on the remaining data sets

and compared with the corresponding optimum sets of

basis functions.

The performance of this sensor design was very

good. The expected mean-square error for each data set

is given in Table 4.11. The expected mean-square error is

s,. on the order of 1000 which is a factor of 10 less than either
r

suboptimal sensor one or two. This value though high

with respect to the optimal'sensor is probably about as well

as one can do with a small number of rectangular basis func-

tions. The classification performance is listed in Table

4

^..._,_.,	 ^ _ __ ...........e.,_._..,,^,,:-..es....^.^-.,..^,o..,r^,..,., ^o._....^.^•_.Y_ 	 _ .	 _ -	 .__..._._._.mss	 „a..;.,^;^c—n..ssq„r	 ,....,.	
.

y
y
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4.11 and included in the bar graphs of Figures 4.33 to

4.38 for comparison with the other systems. Performance

is significantly better in several cases to either of

•	 the suboptimal systems and very close to the 10 channel

optimal system in a number of the data sets. 	 4.
rt

Table 4.10 Spectral band locations for the proposed
sensor.

Channel Endpoints
i

1 .42	 tam -	 .54	 tam
2 .56	 lam -	 .66	 Pm
3 .68	 um -	 .70	 um r

;a

4 .72	 Pm -	 .90	 tam
t	 5 .92	 tam -	 1.00 um

6 1.02	 um - 1. 30 um
7 1.52	 um - 1.74 tam

1	 8 1.96	 um -	 2.40 tam t
it

E ^ i

'5 5{tl :fi

t

i

x

3



189

}

Table 4.11	 Expected mean-square error (in relative units)
and estimated probability of correct classifi-
cation using the proposed sensor.

i.
L

Data ' Set	 E { e.} pc

t Williams Co.
May 8,	 1977	 939 .946 i

Williams Co. 1700 .969June 29, 1977

q' Williams Co.	 1016 .995Aug.	 4,	 1977

Finney Co. 1068Sept.	 28,	 1976 .953

Finney Co	 1213 .854May 3, 1977

t Finney Co.-
lr

1241
June 26,	 19'77

.966 ;

r

,11Y

I'
tj,

is
J.

T.rr

k

>:;
..
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3

CHAPTER 5.	 CONCLTISIONS,AND SUGGESTIONS FOR

FURTHER RESEARCH.
'r

The purpose of this research was to develop an analyti-

cal technique for selecting spectral channels as a part

of.the design of a multispectral scanner sensor system

f° remote sensing.	 The results and conclusions as a
^s

for

consequence of the development and iTplernentation of this

technique have been significant and are now summarized. €
4

r
The spectral representation parameter is one of five

`THr suggested inter.'Y.lated parameters which influence the

overall pattern recognition system performance criterion. $

Thee quantity associated with the spectral representation

parameter was defined by the expected mean-square error.

The stochastic process, consisting of an ensemble of

spectral response functions from a stratum, was represented

by a series expansion in a set of basis functions suitably

weighted by coefficients. 	 By increasing the number of basis
r

functions in the representation the expected mean-square
4t.

representation error will decrease. 	 The Karhunen-Loeve

expansion was used to provide an ordered set of basis ;•
:. t

functions such that using the first N of them results in
4,

4.
minimum mean-square representation error over all f-

possible choices of N basis functions:

f.,

1

^``^^	 - 'F	 Kcj^FX(^LS. 	 '^-FL^ L^E4	 i .	 -. r	 ..^.e u	 .	 _	 i 	 ^. 	 ..	 .
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The development of the Karhunen-Loeve expansion in

Chapter 2 was generalized to include the possibility of ,

using a weight function in order to weight the different

k

portions of the spectrum relative to their importance.

The motivation was the occurrence of strong but noisy

spectral response variations in two regions of the spectrum

corresponding to water absorption bands. 	 Using the ;y

uniform weight function eigenvectors which were dominated

by components in these bands were among the first five in

the ordered sequence of optimal basis functions; however,
^

their contribution to the overall performance of the system
1

was very small.	 By using a weight function which was

unity except in the water absorption bands where the 7

weight was very small, the eigenvectors containing

significant components from these bands were no longer in

the top ten or twenty eigenvectors. 	 A very noticeable

improvement in classification performance on a term-by-term

basis was noted with the inclusion of this weight function.

The analytical technique developed in this research
w

has contributed to the understanding of the scene. The
s

t	 dimensionality of the observation space required to

achieve sufficient representation accuracy to provide

Yacceptible classification performance for the information

classes was approximately six to eight. A more complex

set of information classes may require more accurate

representation which,• would necessitate using more basis

u
r

^^^^
fret `

t'^wd'I +wti:^WM^+ Aa^> :^1'M3 ^ltt7^r
+
b.;'^at:Ayw,^:5^^	

r
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functions and increase the number of dimensions in the

representation. The graph of the global performance

criterion, which is typically the probability of correct

classification, as a function of expected mean-square

error is useful for studying the relationship between

the spectral representation and the overall system per-

formance. For th'::;4,nformation classes selected the

graph of Pc versus,E {e r } allows one to estimate the

maximum probability of correct classification and to

study which eigenvectors are contributing the most to

the classification performance. Also, the shape of this

curve indicates whether or not the selection of the basis

functions with respect to the mean-square error criterion

bears any, relation to the contribution to'classification

performance. The largest contribution to improved per-

formance occurred when the first few eigenvectors in

the sequence were used. However, in several of the strata

used in this work it was found that eigenvectors that

were sixth or higher in the sequence of optimum basis

functions made important contributions to the classifi-

cation performance. In general, there is good correlation

between the ranking of the basis functions on the basis

of classification performance and the ranking on the basis

of minimizing mean-square error.

An important aspect of understanding the scene is

determining which portions of the spectral interval are

,a

i.
..	 ..y.	 ^-.	 ^-s .	 - r	 ^-,^.:..r^	 ... ,.. _.,.,.,m.,.,.—•--.-.z.:-F,. ..,::.^srr^..-.^ar^.a d.;-mitts .,	 r	 --s.;:;'_ --+r	 :^...,... h^.i.^zw,;m.u..,.h;..l^:,, ,..cut,..x.^..,,,u: ^.^,M,:Ch: CkAh.Lff
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a^a _

most useful.	 By examining which subintervals are being

sampled from the eigenvectors which are most important

\'for classification purposes, one can identify por^ ions

!! of the spectrum which are important and subintervals

which are strongly correlated with other subintervals.

- 'i=ie limited value of the subintervals corresponding to

the water absorption bands near 1.4 and 1.9 micrometers

was well-known and was verified in tk`is research.

It was observed that the plots of the eigenvectors"l

which were Pater in the sequence tended to have increased
fi

high frequency variations. 	 Coupled with the indication
k.

j that these later terms,_provide significant additional
xz' information for classification, it was 'concluded that,g

some spectral regions may require a high spectral sampling

rate.	 Bandwidth intervals of 0.02 um may be required as

compared to the 0.1 um intervals used in the suboptimum

sensor number one.	 Of particular importance was the

. ; of.a	 for	 sampling ofindication	 need	 fine	 the spectrum

V " ; in the visible region corresponding to the chlorophyll

absorption bands	 (0.55 - 0.70 um) .,

r
" The use of the weighted Karhunen-Loewe expansion was t

# demonstrated to be a useful tool in the design of sensor
f

' systems.	 Two suboptimal systems which are similar to

j} existing or planned operational sensor systems were

compared with the optimal' representation. 	 For the i

- N

c 19	 j

,
{
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information classes used it was found that a very high

representation accuracy was not necessary to obtain good

performance.	 The practical sensors, which represented

c	 ?'< the spectral response functions very crudely, performed

quite well compared to the system consisting of the set

of optimal basis functions.	 However, there is a signifi-

` cant improvement in performance that can be achieved by

a better representation in several. of the cases.

!?' A proposed sensor design was developed using the

design procedure.	 The proposed sensor consisted of eight

rectangular bands selected on the basis of the information

provided by the procedure. 	 The performance of the pro-

posed, design was superior in classification performance

to two other practical sensor designs and very much super-

ior in representation accuracy.	 For the information classes

used the classification performance of the proposed sensor

1	 .
was very close to the maximum possible in most cases.

The conclusions drawn so far are based on a very

limited collection of strata. 	 To carry out the procedure

such that the collection is representative of all possible

strata that a given sensor may observe would require many

more,sets of data.	 Suppose, for example, that it is

desired to use a sensor to map vegetation in the United

States.	 Only wheat growing areas of the central plains

are represented by the two locations used in this work.

r
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The spectral variations that are peculiar to agricultural

scenes in the midwestern cornbelt, the small farms of

New England, the southern cotton belt, or the fresh

produce growing regions of the far west are not repre-

sented. Furthermore, other useful areas which may be of

interest such as urban areas, forest lands, deserts,

mountainous regions and large bodies of water,,axe riot

included	 the representation. At present the available

data is primarily taken over the great plains and the

midwest. The helicopter-mounted sensor has proved to

be an efficient method of gathering a sufficient amount

of measurements in a short amount of time. The time-

consuming effort that is needed is the collecting and

correlating of ground truth information which will allow

one to use various sets of information classes.

An important concept which has been alluded to but

which requires further investigation is the design of

methods for insuring that the ensembles assembled are

representative. Specifically it would be desirable to

be able to make some quantitative assessment as to

whether or not the collection of spectral response func-

tions are representative of the ensemble associated with

a stratum and whether or not the set,of strata are

representative of all possible strata which the sensor

may observe.

y
k

k

t.	
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The five parameters were discussed at some length in

Chapter 3. A considerable body of research results has

been collected relating each of these parameters to

classification performance and in some cases showing the

interdependence of the parameters. However, at present

only limited attempts to vary 411 of the parameters

simultaneously to arrive at some , optimal set have been

reported. It is recommended that -^7 •ats of data be assembled

which would allow one to vary all of the parameters.

The available knowledge should provide guidelines for

the proper design of such a collection. Recommended

;,..1. 	 9

f

variables are the mean-square representation error, the

ground resolution element size, added white noise power,

number of training samples, and the information trees

whict correspond to the spectral representation, spatial

representation, SIN, ancillary data, and information class

parameters respectively. Also, it would be desirable to

have available several other classifiers including a

spatial classifier to evaluate performance.

r

h

t.
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Appendix A. A Stratified Posterior Classification

Performance Estimator

A method was needed to estimate the classification

performance for a maximum likelihood Gaussian classifier

from a set of multiclass multivariate statistics. 	 A Monte

Carlo method may be used to evaluate the probability of
4

correct classification integral.	 The method used here

is based on the stratified posterior estimator developed

by Whitsitt and Landgrebe (1977)	 (see also Moore, Whitsitt `f

and Landgrebe, 1976),

Let X be an observation from one of M classes Cl,

y,

i = 1,2,3; ...,M, with a priori probabilities P i .	 The

maximum likelihood decision rule can be stated as follows:

Assign X to the class Ck if

}

P(COX)	 = max {P ( C i (X) } f

i

where P(Ci IX) is the conditional posterior probability s

for class Ci given the observation X.	 This rule partitions

the observation space . Q into subregions Sa l , '^Z 2' ,.,,QM'

corresponding to the classes Cl , C2,..., CM , respectively.

Define the indicator function
s

1 ,	 x E
i

Z1 (X)	 1i
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The probability of correct classification integral is

,given by

M
P,::	 P i 

I 
i ( X) P(x C. )dx	 (A.1)

It is desirable to evaluate the probability of correct

classification for each class as well as the overall

probability. The performance probability for the ith

class is

Pc. - j	 2	 (X) P(x C 
i 

dx	 (A.2)
1	 u

This integral is equivalent to the integral of the con

ditional density function whose support is Q.. 	 The

overall performance, then, is

M
PP.P	 (A.3)I c	 C

From Bayes' rule

P(C	 X) p (x)
p(xjC P

hence,

P(C	 IX)iPp (x) dxI
i
 (x)

c 	 J	 Pi

where p(x) is the mixture density



200

V

r, M
P(x)	 _	 P	 P(xIC )

Therefore,
R

M	 P.

	 fo
P_	 P	 I.(x 	 P(C. 1x) p(XIC) dx	 (A.4)C

i Pij=1 	 1	 1

_r
Define

f Q(x)	 = Ii(x)'P(Ci(x)

Then,

Qi(x) p(xICj ) dx

N

is the conditional expected value of Q i (x) given that x

comes from the class C..	 The estimate of this expected

value is .

N.

Q(xlcj)	 N	 QO
k 1j k=1 

Therefore the estimate of the probability of correctly

classifying observations belonging to class is the unbiased

estimate

M	 P.	 1	
N

pci	 N 	
Qi (xk )	 (A.5)

s j=1 Pi 	 k=1

s.
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(Whitsitt and Landgrebe, 1977). The stratification refers

to the sampling scheme used to obtain the estimate. A

stratified sampling scheme takes advantage of knowledge

of the classes to which the samples belong, whereas random

sampling does not use the class assignment information.

Ni multivariate sample vectors are generated for class i

from the given statistics. The maximum likelihood

rule is used to determine the decision regions. Equation

A.5 is evaluated for the N i sample vectors from each class

and the total probability of correct classification

is computed from equation A.3.

From equation A.4 the term that must be evaluated is

P P(xIC)
P(Ci 	 Pk P

(X I Ck)

k

To evaluate this probability compute Pk P(XICk ) for each

class. Choose the largest value of Pk p(XICk) which

by the maximum likelihood decision rule will be P, p(xIC.).	 F;

	

i. °	 i

The posterior probability is given by equation A.6.

The analysis so far can be applied to any probability

measure. The remaining discussion will deal with the
t

parametric case where the probability measure is Gaussian.`s

That is
LV

..	 r

P(X ICk
	 l	 z exp {-z(x-mk)TKk1(x-mk)}	 (A.7)

(2^)	 I xk 1

T	 ^
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R. wherefmk and Kk are the L-dimensional mean vector and

covariance matrix respectively for class k.

• To reduce the number of computations required the

linear transformation

^ _
X - qr i

2 y + mi	 (A.8) ?N

is introduced where ^ i is the matrix of eigenvectors
x

required to diagonalize the covariance matrix of class i,

^• ri is the diagonal matrix of eigenvalues a nd mi is the

mean vector for class i. 	 Substituting equation A.8 into

As 7,

p(xjC 	 (2n)	 z ^Kk ^ - 	ex	 2[Tr	 K	 y
L

y 	 ¢i k 1 i ri2

4
!

t
Tr 2	 T	 -1	 -	 T	 -1

+ 2y	
i 

$ i Kk	 (m^ mk ) + (m^-mk )	 Kk	 (m^ _Mk ) ]1

In this form it is not necessary to perform the intermediate
t

computational step of -transforming the generated random

vectors to get the desired statistics.	 It is only necessary

to generate'M sets of random vectors y with expected (;

value the zero vector and covariance matrix I and to use E

them in expression A.8.

The random vectors are generated using a pseud-

random sequence of .uniformly distributed random numbers. i

/L ^Y^
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The subroutine RANDU from the IBM 360 subroutine package

generates the random numbers and transforms them by the

inverse cumulative-distribution-"function method to

obtain zero mean, unit variance, independent Gaussian

random numbers. These random numbers are used to fill

the elements of the vector y. The y vectors have an

expected value equal to the zero vector and a covariance

matrix equal to the identity matrix.

Estimator Evaluation

N.

Since	 1) Qi k(x) is an unbiased estimate of
N 
1

k=1

Qi (x) p(x C i )dx, the estimator

z;	 M	 M ..-^-	 1P

	

N.
cat	 ^;	

_ P	 P	 L Q (xk))	 (A.9)
s, r	 c	 i=1 1 j =1 Pi Nj k=1 1	 J
r

I>

	

	 is an unbiased estimate of the probability of correct

classification (Moore, Whitsitt, and Landgrebe, 1976).

The variance of the estimator can be shown to be

smaller than the variance for a count estimator using
f'	

7

stratified sampling (Moore, Whitsitt, and Landgrebe, 1976).

The variance for the stratified count estimator is {
r

2Pi (P
-P 2 )	 (A.10)

i=1 Ni	 ci ci

Y	 ['

r,
P.	 h

' .	
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If the probabilities of correct classification for each

class are known then the variance of the stratified

count estimator can be evaluated and used as a bound

on the stratified posterior estimator.

A FORTRAN program SPESTM was written which accepts

the mean vectors and covariancematrices for up to

ten classes and up to 10 dimensions. These statistics

are used to generate random vectors and estimate the

classification performance for the classes specified
4

by the distributions.	 s

To test the method and the program a three-class
2

problem was constructed. The mean vectors for the classes 	
r

were

M1 = [-1, -1, ..., -11T

M2	 [0, 0, ..., 0)T

M3 = [1, 1, ..., 1^T

The covariance for each class was the identity matrix.

The number of random vectors generated for each class was

1000. The exact classification accuracy as a function

of the dimensionality can be evaluated for this case.

Pcl = 1 - erfc ( ILIM

Pc t = 1 - 2 erfc	 (VI-117) 

Pc3 - 1 - erfc	 ( L 2)

Pc = 1 - 4/3 erfc	 ( 3L/2) {
tr

r
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2
x
2

where erfc (a) = j e	 dx
a r2 7

and L is the dimensionality. Table Alcontains the results

of evaluating the class conditional performance and

the overall performance for from one to ten dimensions.

A bound on the standard deviation of the estimator

can be computed by calculating the standard deviation

^ for the stratified count estimator. 	 Table A2 lists f

the standard ^viations for from one to ten dimensions

for this experiment.

The actual variance was estimated by repeating the a •;;

classification performance estimation 20 times using

different starting points in the random number generator.

The maximum difference between the estimate and the true

value E	 and the standard deviationfrom the truemax

value were computed for from one to ten dimensions as =_

shown in Table A3.

Based on the results presented in the tables, differ-
.

ences in estimation of overall performance of less than .005'

(Z of 1%) will not be considered significant. 	 The per- ;#r
i	

z

k 4k formance of the algorithm is demonstrated to be quite a

adequate for its intended use. 	 The class conditional esti-

mates are less reliable but are sufficient to observe trends

in the performance due to the individual classes. 	 Tho. :run- P
ning time for this algorithm is quite reasonable, ever-for

xe

^!;

ten dimensions.

e`
,y

•	 ayJ

y,.
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Table Al. Test of error estimator.

f

P PP^1 Pc2 c 3 c

1 0.6915 0.3829 0.6915 0.5886
2 0.7602 0.5205 0.7602 0.6803
3 0.8068 0.6135 0.8068 0.742.3
4 0.8413 0.6827 0.8413 0.7885
5 0.8682 0.7364 0.8682 0.8243
6 0.8897 0.7793 0.8897 0.8529
7 0.9071 0.8141 0.9071 0.8761
8 0,.-9214 0.8427 0.9214 0.8951
9 D9332 0.8664 0.9332 0.9109

10 0.9431 0.8862 0.9431 0.9241

pcl Pct Pc3 Pc

0.6859 0.3793 0.7001 0.5884
0.7671 0.5116 0.7700 0.6829
0.8037 0.6202 0.8081 0.7440
0.4283 0.6852 0.8550 0.7895
0.8642 0.7425 0.8703 0.8256

.0.8767 0.7939 0.8787 0.8498
0.8993 0.8242 0.9065 0.8766
0.9129 0.8472 0.9240 0.8947
0.9193 0.8809 0.9360 0.9120
0.9209 0.9012 0.9481 0.9234

NN
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Table A2.	 Theoretical bound,of standard deviation for
different dimensions.,

,. L _•_

1 .00858 ^(

2 .00826

3 .00781

r 4 .00733
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5 00686
f

6 .00640 ;k
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Pcl	 Pc2	 Pc3	 Pc

.016 1.010 .017 .003

.033 .019 .049 .005

.018 .010 .014 .002

.036 .018 .027 .005

.016 .017 .017 .003

.046 .031 .055 .007

.011 .016 .015 .003

.025 .029 .029 .005

.015 .014 .012 .002

.031 .033 .026 .004

.014 .014 .010 .003

.026 .023 .022 .006

.009 .016 .012 .003

.027 .033 .027 .005

.013 .013 .012 .003

.025 .036 .023 .006

.013 .014 .012 .002

.026 .031 .021 .004

.009 .012 .009 .002

.016 .024 .019 .005

Q
Emax

aEmax

Q
Emax

^E
max

CrE
max

Cy E

max

^Emax

^E
max

Cy E

max

0
Emax
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Table A3. Experimental standard deviation of estimates.

Dimens ions

1

2

3

4

5

6

7

8

9

10

a = standard deviation

E
max = maximum difference between estimate and true value

over 20 trials
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^k	
Appendix B. Data Base Description

1'.

4

	

k E	 The data sets used in this research are described andi
sufficient information to access this data is provided'.

Data set number 1`
Location:	 Williams County, North Dakota r

Collection date:	 8 May L977

1 CLASS	 SAMPLE FUNCTIONS/CLASS

SPRING WHEAT	 664
SUMMER FALLOW	 437
PASTURE	 164

Field measurements library tape number: 	 4896 a

Comments:	 Wheat is just emerging (plant height -8 cm).

Data set number 2

Location:	 Williams County, North Dakota
Collection date:	 29 June 1977

CLASS	 SAMPLE FUNCTIONS/CLASS

SPRING WHEAT	 787
SUMMER FALLOW	 291

PASTURE	 161
,r

Field measurements library tape number: 	 4897 t
Comments:	 Wheat is green and at full height. 	 The
mixture is below average.

t

i

r^

,y
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Data set number'3

Location:	 Williams, County, North Dakota
.. Collection date s, ,4 Auq.asi 1977

CLASS SAMPLE FUNCTIONS/CLASS
SPRING WHEAT 931
SUMMER FALLOW 330.

r : PASTURE 183
4 Field measurements library tape number: 4898

Comments:	 Wheat is mature.	 In a few fields, the wheat
is harvested.,

"
Data set number 4

Location:	 Finney ' County, Kansas
Collection date: 28 September 1976

CLASS SAMPLE FUNCTIONS/CLASS-
7

z WINTER WHEAT 141
SUMMER FALLOW 414
GRAIN SORGHUM 2:x'7

Field measurements library tape number: 4292
Comments:	 Wheat is emergent while 'other crops are at	 r
mature stages.

=^a

a
t Data set number 5

^. Location:	 Finney County, Kansas
a

Collection date: 3 May 1977

CLASS SAMPLE FUNCTIONS CLASS

WINTER WHEAT- 65$
SUMMER FALLOW 211

°j OTHER CROPS 652 +

Field measurements library tape number: 4295
Comments:	 Wheat is near full canopy and green.

;f Other crops are emergent,

t P.

s:

t} lCl
_s

y^
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Data;;set number 6

Location: Finney County, Kansas
Collection date: 26 June 1977.

CLASS	 SAMPLE FUNCTIONS/CLASS

WINTER WHEAT	 677
SUMMER FALLOW	 643
GRAIN SORGHUM	 157

Fieldmeasurements library tape number: 4296
Comments: 'Wheat is mature and ready for harvest.

Accessing the Data

A software package called EXOSYS (Simmons et a1, 1972)

was developed at LARS for handling field measurement data.

Sampled spectral response functions are calibrated and

stored on magnetic tape along with pertinent identiciation

information. EXOSYS, also, provides access to the field

measurement data through three processors - IDLIST, GSPEC,

and DSEL. The ZDLIST processor scans the tape and lists

information from the identification record as required. One

can use this information to select appropriate runs to repre-

sent the ensemble. The GSPEC processor creates a pinched

deck consisting of the 100 sampled values of the spectral

response functions for all of the desired runs. The DSEL
n

processor simulates rectangular' spectral channels and uses

data from the tape to evaluate the response in each channel 	 l

for the ensemble.
l

The GSPEC processor is used to assemble the data sets. j7	 em	 a e
4

t,

It is required to specify the library tape number, the	 !^

1R

y4
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i;

cover type or class, and the collection date to put together

all of the sample _functions on a particular date for a

single class (see Figure Bl). 	 The sample functions are
x-
:. collected by class to facilitate the estimation of

class dependent statistics.	 A deck of cards containing

the sample functions for all of the classes is read by the

routing SPRDCT and stored on disk in the format as shown

in Figure B2.	 All programs which access the data sets

expect the data to be in this format.	 Supplimentar

information such as the number of samples in each class`,

and the name of each class are added from the terminal

during the execution of SPRDCT (Table Bl).	 Processing of

the ensemble is accomplished with the data stored on

the desk file; however, the data file may be stored on

magnetic tape between processing sessions.

S
C	 1

^ f	 <
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.a

T

100 WORDS
ID Information

Integer #4

Sample Function 100 WORDS
"	 No.	 1	 (100 points)

*REAL4 c1as^,s 1
I

Sample Function 100 WORDS

> No.	 2	 (100 points)
REAL *4

r.
io	 WORDS

.REAL * 4 Class 2

3

y
5

a
100 WORDS

r REAL *4 s

Figure B2.	 Spectral parameter design system data storage'
format.
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s
^l

` -	 'Table Bl. ID information locations in data storaaa
format. J^Ie

WORD ITEM

1-15 Date data set was assembled
t 16 Experiment number
' 17 Number of classes 4
F^ 18 Number of sample points (=100)
r. 21 Number of samples for class 1 i

4 22 Number of samples for class 2
* 	 . 23 Number of samples for Blass 3

24 Number of samples for class 4 #
25 Number of samples for class5}
26 Number of samples for class 6
27 Number of samples for class 7

30-39 Label for class 1
40-49- Label for class 2

f50-59' ` Label for class 3
'60-69 Label for class 4, a
70- 79 Label for class 5"
80-89 Label for class 6
90-99 Label for class 7 {

K
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di
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Appendix C.	 Correlation Between Sample Measurements on the
Spectrum

Graphs of the correlation coefficients as a function

'. of wavelength which were used to help locate spectral band

edges Pry: presented.	 Traditional methods of _spectral analy-

sis are not appropriate for this analysis since the calcula-

tion of the spectral density to obtain a sampling bandwidth

assumes that the stochastic process is stationary and that

the sampling rate will be uniform over the entire interval

A.	 It is believed that it is necessary to sample some

parts of the spectrum more frequently than others; hence,

the correlation measure proposed here is used.

The measure of the correlation between two adjacent

spectral samples u 	 and ui+1 on the interval A is the corre-

lation coefficient given by

E{ tui-ui ) dui+1-ui+1 ) }o .	 _	 (C.1)

a. E{(ui-ui ) 2}E{(uiui}'+l-+1)2

z

i The correlation coefficient can be computed using the

eigenvalues and eigii^.nvectors. 	 The matrix equation which

w was,solved is given by
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^r	 Kwo

or

Yea = $roT
	

(C.2)

The covariance matrix K consists of the elements-kij,

where the k,, are the correlations between the ith
13

and jth spectral samples. Assuming W is the identity

matrix, the correlation coefficient is equal to kij

normalized by dividing by the square root of the product of

the respective variances. Using equation C.2, two adjacent

spectral channels have the correlation coefficient

Oikoi+l,k'yk

Pi,i+l	
k	

I	 (C.3)

C ( k Oik o ik yk ) ( k ^i+ lok i+l,kYk)] 2

where $ ik is the ith element of the kth eigenvector.

The second weight function from Figure 4.6 is used.

Since this weight function is unity everywhere on A except

over the water absorption bands, equation C.3 is valid
i

everywhere except over the absorption bands and on the edges

	

of the absorption bands. 	 }

The graphs of the correlation coefficients as a func-

tion of wavelength for each of the six data sets are pre-

sented in Figures C.1 through C.6.
I
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Appendix D

Computer Program Listings

X1
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c - - - - — - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

C SPRDCT
C

I^K	
C PURPOSE
C TAPEEXOSYS DATA IN PUNCHED FORMAT IS 

READ 
AND STORED OWN

C REVISED
C 3 JULY, 1978
C

- - - - - - - - - - - - - - - - - -- - -C	 - - - - - - -
C

COMMON ID(100)
INTEGER®4 IN (S) DAY (3) , T IME(3), NOGRPS, GROUPS( 5)
INTE.GER94 ISAM ,SINT.DATE ( I5),INFO(10,7)
REAL*4 WBCOEF (2,5),DATA (250*)	 100)
EQUIVALENCE (DATE ( l),ID(l)),(IAXFO( ( I,I)	 ID(30)), ( INFO ( I,2),ID(40)),

O CINP0 (1 3)-,ID (S0)),.(INFO ( 1,4),ID(60))	 ( INFO ( I,5),ID (7@)),(INFO(I,6
ID(90)), (INFO(1,7), 11)(90)).
IND 11

NT - 100
C
C ID INFORMATION
C

WRITE ( 16, 10)
le FORXAT (5X 'TYPEIN DATE ',/

READ ( IS, lb)DATE
IS FORMAT (ISAI)
C
C EXP. NO., NUMBER OFCLASSES, AND NUMBER OF DIMENSIONS
C

WRITE ( 16,20)
219 FORMAT (SX,'TYPE EXP . NO,.,CLASSES , AND DIMENSIONS',/'

READ ( IS,25) ID(16), ID(17), ID(IS)
25, FORMAT ( 13,2X, 12,3X, 13)
C
C EXPERIMENT INFORMATION
C

NCLS - ID(17)
DO 35 I;I,NCLS
WRITE ( I	

, 
30)1

30 FORMAT ( SX,'TYPE CLASS INFO AND NO	 SAMPLES ' YOR CLASS ' , I 1,/1X, 10(

35 READ ( IS,40) ( INFO (L, 1),L-1, 10), ID(20+1)
40 FORMAT 00A I AX, 13)

WRITE(I 1)	 ID
CALL SPLBL

C
C READ SAMPLE FUNCTIONS FROM EACH CLASS

DO SOO Kxl,NCIS
WRITE(6 80)

((80 FORMAT	 /),I0X, 'SAMPLE FlPiCTAT'ONSI)
NF - ID(20+K)
DO 200 JJ=I , NF

I1 00	 READ (S,I000)DAY,TIME , N,NOGRPS NOSAMS,
1000	 FORMAT(3A4,2X , 3(I2,IX ,/ 4SX,S14 ,/,20X,II,8X,I3,/)

READ (5,1100) (DATA ( I)il=I:NOSAMS)
1100' FORMAT (29A4)

WRITE(6, 150) IN,
ISe FORKAT(IOX,28A4)

DO 164 I- I,NT
160 X ( I) - DATA(1+1)

WRITE(I 1) X
200 CONTINUE
SOO CONTINUE

END FILE I1
STOP
END

RM 7'T
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I m

C- - - - - - - - - - - - - - - - - - - --- - - - - - - - - - - - - - -
C
C SPOPTM

C
C PURPOSE
C	 TO DESIGN THE OPTIMUM SENSOR FOR A GIVEN DATA SET.
C
C USAGE
C	 CALLED FROM EXEC ROUTINE
C
C DESCRIPTION OF PARAMETERS
C	 Am -	 MEAN VECTOR OF DATA
C	 Cov -	 COVARIANCE MATRIX OF DATA
C	 PHI - MATRIX OF EIGENVECTORS.
C	 GAM	 EIGENVALUES
C	 N	 - DIMENSIONALITY OF DATA SET
C	 NCES - NUMBER OF CLASSES
C
C SUBROUTINE AND FUNCTION SUBPROGRAMS CALLED
C	 EIGENP,EISORT,SPWGTI
C
C METHOD
C	 THE KARHUNEN-LOEVE EXPANSION WITH THE MAXIMUM LIKELIHOOD ESTIMATE
C	 OF THE COVARIANCE MATRIX AS THE KERNEL IS USED TO 1177RESENT THE
C	 RANDOM PROCESS.
C
C REVISED
C 14 AVG, 1978
C
C- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C

COMMON ID(100)
REAL*4 AM(100),Y(100),COV(5050) PHIP(100,100)
REALOS VECI(100,100),EVI(100),IiDIC(100),ACOV(1001,100),GAM(100)
REAL68 PHI(100,100),SUM
REAL*4 X(100),W(100)
REWIND 2
WRITE(16,5)

5	 FORMAT(5X,'OPTIMUM SENSOR DESIGN')
C
C READ ID INFORMATION
C

READ(2) ID
WRITE(C),S)

8	 FORMAT(1H1,5(/))
CALL SPLBL
N = 11)(18)
NCT - N•QN+1)12
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C
C COMPUTE COVARIANCE
C

WRITE(16,10)
10 FORMAT (SX,'COVARIANCE BEING ESTIMATED 	 (SPOPTM)')

NCLS - ID(17)
-NFT _ 0
DO 20 I = 1', NCIS

20 NFT - NFT + ID (20+1)	 l
a CON=s—DFLOAT (NFT)/DFLOAT (NFT-1)

DO 30 I- 1,N
30 AM ( I) a 0.0

DO 35 I-1,NCT
^. 35 COV(I) - 0.0

DO 65 IJ-1,NFTi READ(2) X
A

` IN=O
^....

z DO	 1- 1 , N
AM(I)
	

A(l) + X(-I)/DFLOAT(NFT)
DO 504- 1, 1
IN- IN+ 1
00V(IN) - COV(IN) + X(I)*X (J)/DFLOAT (NFT-1)

50 CONTINUE
h 65 CONTINUE

IN-0
DO 60 I . 1, N r
DO 60J 1,i

I I	 +
<'7OV(IN) - COV(IN) — CON°AM ( I)'AM(J)

r^ C0 'CONTINUE

C WEIGHTING FUNCTION{ C ,
IN	 0
DO 210 Ia1,N k 'a
DO 210 Ja 1,I ,Ca

i IN = IN + 1 r
ACOV ( I,J) = COV{IN)
ACOV(J,I) = COV(IN)
CONTINUE

{
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C

r
f

- CALL SPWGT2(W)

t^

C
DO ,230 I-1,N
D0^^250 J -1,N .

250	 APAV(I,J) = ACOV(I,J)+W(J) 4
C
C COMPVJTE TRACE OF COVARIANCE
C

SUN - 0.0
^., 80

DO 80 I=1,N
=	 +

t a
SUN	 SUM	 ACOV ( I,I) ^#

4 C COMPUTE EIGENVALUES AND EIGENVEGTORS
^. C

WRITE(16,75)
F 75 FORMAT (SX,'EIGENVALUES AND EIGENVECTORS	 (EIGENP)-)

NM =N,
T-56.
CALL EIGENP (N,NM,ACOV ,T,GAM ,EVI,PHI ,VECI,INDIC,W)

G CALL EISORT (N,GAM9PHI)

Y 

^s
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C
C PRINT EIGENVALUES AND MEAN-SQUARE ERROR
C

CO - FLOAT(NFT)/(FLOAT(NFT-1)•FLOAT(NFT-1))
Cl n FLOAT(4*NFT-1)/(FLOAT(NFT-1)*FLOAT(NFT-1))
WRITE(6 110)

110	 FORMAT(^(/),SX,'N',SX,'EIGENVALUE',5X,'VAR(GAM)',5X,'VAR(PHI)',SX,
• 'MEAN-SQUARE ERROR')
DO 150 I.1,30
VARP a 0.0
DO 120 J-1 100
IF(J .EQ. f) GU TO '-5
VAR.'' - VARP + C00GAM % ;) *GAM ( J) / (GAM (I ) - GAM ( J)) ••2

115 CONTINUE
120 CONTINUE

VARG - C1•GAM(I)•GAM(I)
SUM - SUM - GAM(I)
WRITE(6,145)I,GAM(I),VARG,VARP,SUM

145	 FORMAT(4X,I2,4X,FIO.4,4X,F10.4,2X,FIO.4,2X,F14.6)
150 CONTINUE

DO 155 J-1,N
DO 155 I-1,N

155	 PHIP(I,J) - PHI(I,J)
DO 180 J n 1,20
WRITE(7,160)(PH1P(I,J),l-I,N)

1CO FORMAT(20A4)
180 CONTINUE

STOP
END

C- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C
C SUBROUTINE FOR SORTING EIGENVALUES INTO DECENDING ORDER.
C
C- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C

SUBROUTINE EISORT(N,EVR,VECR)
REALO8 SiORE,EVR(N),STOVEC(100),VECR(N,N)

C
DO Sc 1-1,N

DO 85 J-1,N
IF(EVR(I) - EVR(J))85,85,70

70	 STORE EVR(I)
EVR(I) - EVR(J)

1	
EVR(J) - STORE
DO 80 K-1,N

STOVEC(K) = VECR(K,I)
VECR(K,l) - VECR(K,J)
VECR(K,J) n STOVEC(K)

80	 CONTINUE
85	 CONTINUE

RETURN
END
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C • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
C SUBP.OUI'INE SPLBL PROVIDES A LABEL TO DESCRIBE THE DATA USED IN THE
C EXPERIMENT. INFORMATION tINCLUDED IN THE LABEL CONSISTS OF THE DATE,
C EXI-ERIMENT NUMBER, NUMBER OF CLASSES, NUMBER OF SAMPLES IN EACH CLASS
C AND INFORMATION ON EACH CLASS.
C
C 7 JULY, 1977
C
C • • • • • • • • • • • • • • • • • • • • • • • s • • • • • • • • • • •
C

SUBROUTINE SPLBL
COMMON IDt100)
INTEGER•4 DATE(15),INFO(10,5)
EQUIVALENCE(ID(1),DATE(1)),(INFO(l,l),ID(30)),(INFO(1,2),ID(40)),
•(INFO(1,3),ID(50)),(INFO(1,4),ID(60)),(INFO(1,5),ID(70))
WRITE(6,20)
WRITE(6,30)
WRITE(6,40)DATE
WRITE(6,50)ID(16)
WRITE(6 55)ID(17)
NCLS - 017)
DO 10 Ja 1 NCLS
WRITE(6,66)(INFO(I,J),I=1,10)
WRITE(6 80)ID(20•J)

10 CONT INH
20	 FORMAT(1H1,////15X,'LABORATORY FOR APPLICATIONS OF REMOTE SENSING'

1)
30	 FORMAT(29X,'PURDUE UNIVERSITY')
40	 FORMAT(12X,'SAMPLE FUNCTION INFORMATION',IIX,15A1/)
50	 FORMAT(10X,'EXP. NO,',27('.'),13)
55	 FORMAT(10X,'NUMBER OF CLASSES',18('.'),I2)
60	 FORMAT(IOX,'CLASS',30('.'),20AI)
80	 FORMAT(10X,'NUMBER OF SAMPLE FUNCTIONS',9('.'),I3)

RETURN
END

C
C
C WEIGHTING FUNCTION NUMBER 1
C
C

SUBROUTINE SPWGTI(Ii)
REAL94 W(100)

C
WRITE(6,15)

15	 FORMAT(//SX,'WEIGHTING FUNCTION NUMBER 1'//)
DO 20 I=1,100
W(I)_ - 1.0

20	 CONTINUE
RETURN
ra1D
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C

t C
WEIGHTING FUNCTION NUNBER 2	 ">

C
SUBROUTINE SPWGT2(W)
REAL04 W(100)

C
WRITE (6,15)
FORMAT(//SX, ' WEIGHTING FUNCTION NUMBER'2'//)

C
DO 20 I=1,100
Wtii)	 _ i.®

20 'CONTINUE
DO 30 1.46,55

30 W(ID _ 0.001
DO 40 I.68,77

40 WW t0.001
( RETURN

END
s

'

C
`

3S

C	 WEIGHTING FUNCTIONON NUMBER 3
C
C th

SUBROUTINE SPWGT3(W)
k REAL04 W(100)

C
WRITE (6,15) L

T., 15 FORMAT (//SX,'WEIGHTING FUNCTION NUMBER 31//)
W(1) _ .73
W(2) -	 91 Y

W(3) - 1.08 i
W(4)	 -	 1.18
W(5) = 1.22
W(6) - 1.20

' W(7) - 1.20
W(8)	 = 1.18
W(9) = 1.17M

W00) = 1.17 t,
W01) - 1.17
W(12)	 - 1.18
W(13) -	 1.17
W(14)	 -	 1.15

' W(15)	 -	 1.11 ?R
' W(16)- =	 83.

W(17) - 1.04 1
. W (18)	 . 57

^.	 ., W(19)	 _ .91 s

W(20) = .86
W(21) _
W(22) _	 6

< W(23) = .81 ..,W(24) _ .61
W(25) _ .48 M,
W(26) _ .26
W(27) - .28 .Y
W(28) m
W(29) _ .65
W(30) _ .63

;.,

x
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C
j`

C	
WEIGHT FUNCTION NUMBER 4

C
SUBROUTINE SPWGT4(W)
REAL*4 W(100)

i C
WRITE(6,15)

r" 15	 FORMAT(//5X,'WEIGHT FUNCTION NUMBER 4'//)
DO 30 1=1,15

30	 W(I)	 0.7
DO 40 1=16,45

40	 W(I)	 1.0
;.: DO 50 I=46,52

50	 W ( I)	 0.1
DO 60 I=53,67

' 60	 W(1)	 =	 1..0
" DO 70 1=68,77

70	 W(I) = 0.01
k DO 80 I=78,100

X	 , g0.	 W(I)	 1.0
RETURNIt LAND

4i— —	 --—	 — -- — — — — - — — — —	 •}—- — — — — — — — - — — - —	 -	 -	 - -
x

C	 SPTES TRANSFORMS THE DATA USING THE OPTIMUM SET OF BASIS
x., C	 VECTORS, COMPUTES THE MEAN—SQUARE ERROR, AND COMPUTESTHE

C	 STATISTICS FOR EACH CLASS.
C
C	 6 FEBRUARY, 1978 j
C

x ——-———————-	 — — — — — —C	
_

— — — — — - — - — 
COIQMON ID(100)
REAL04 P(IO),PHI(100,20),X(100),Y(100),Z(100)
REAL04 AM(100),AVE (20,10),COV (210,10) }

u C ,. r

C	 SELECT 'NUMBER OF TERMS }
y°C

? WRITE (16,10) sa

10	 FORMAT (SX,'NUMBER OF TERMS?') f
READ ( 15,15)NTERM

15	 FORMAT(12) 
C

REWIND 2ID

AyeNCLS = ID(17)
' N = ID(18)

NCT = NTERM• (NTERM + 1)/2

2P „NFT = NFT + ID(20+1)^

NFT = 0
DO 20 I =1, NCLS ?

T= DO 25 I = 1,NCLS
. SP(I) - 1./FLOAT(NCI)

'25	 CONTINUE .
WRITE (7,28)NCLS, NTERM

.; 28	 FORMAT ( I2,3X,I2)
WRITE (7,30)(P ( I),I=1,NCLS) -'

< 30	 FORMAT ( 10176.4)

.	 242
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C
C 	 COMPUTE MEAN FUNCTION'
C	 -
v DO 300 I=1N
300	 AM ( I) = 0.0 is

DO 320 K=1,NFT
READ(2) X
DO 320 I-I,N

fi

AM(I) = AM(I) + X(I)/FLOAT(NFT)
320	 CONTINUE

REWIND 2
g K -	 READ(2)- IDC	 r,

C	 READ EIGENVECTORS 	 IfC>`
DO 40 J=1, NTERAf
READ (5,35)(PHI ( I,J),I=1,N)

35	 FORMAT(2OA4)
40	 CONTINUEC

r- C	 LOOP ON THE SAMPLE FUNCTIONS IN THE DATA SET
a	 ,.. C

AVESQ = 0.0
DO 200 ICLS=I,NCLS
DO SO I=I,NTERM

50	 AVE ( I,ICLS) = 0.0
DO 55 I = 1, NC'1

55	 COV(I,ICLS) = 0.0

C —NF = ID (20+ICLS)
' CON = FLOAT (NF) /FLOAT (NF— 1)

DO 150 ISAM=I,NF

CC	 READ .SAMPLE POINTS FROM FUNCTION
; C

READ(2) X
,. C

C	 TRANSFORM DATA USING BASIS FUNCTIONS
C

DO 70 J=1,NTERM
Y(J) = 0.0., DO 70 I=I,N
Y(J)	 = Y(J) + PHI(I , J)*.(X(I)	 — AM(I)) 3

i 70	 CONTINUE
I C

C	 COMPUTE SQUARED ERROR
;. C

DO 80 I=1,N
j 8E	 Z(I) = 0.0

^. DO 85 J = 1,NTERM
e

Z(I) = IZ ( IN + PHI(I,J)•Y(J)
85	 CONTINUE

_ DO 88 I=1,N €
88	 Z ( I) _ Z(I) + AM(I)

XSQ = 0.0
ZSQ — 0.0
XZ	 0.0
TSQ = 0.0
DO 90 I = I,N_ XSQ = XSQ + X(I)*X(I) r
ZSQ = ZSQ + Z(I) •Z(I) r;

XZ = XZ + 2.0*X ( I)*Z(I)
90	 CONTINUEw ESQ = (XSQ — XZ + ZSQ)

AVESQ	 AVESQ + ESQ

d ^



• 244Y,2'	 •	 -
z.

C

C	
COMPUTE STATISTICS

DO 100 1-1,NTERM
«	 ; AVE(I , ICLS) ='AVE ( I YCLS) + Y(I)/FLOAT(NF):;+.200	 CONTINUE

IN	 -0
DO 110 J=1 NTER19
DO	 110 I^i-' 19 J	 "
IN^ = IN
COV(IN , ICLS) = COV(IN , ICLS) + Y(I)OY(J)/FLOAT(NF-1)

110	 CONTINUE
150	 CONTINUE
CC

PRINT STATISTICS

C'	 IN, 0}

;M

DO 160 J=1, NTERM
DO 160 I=I,J
IN ='IN +	 1s

^•;	
U

COV(IN,ICLS) _ C'OV(IN , ILLS) --,CONOAVE ( I,ICLS) OAVE ( J,ICI.S)
160	 CONTINUE

WR ITE (6,165)ICIS
165	 FORMAT (5(/),10X,'STATISPICS FOR CLASS',I4)`

CALL MCOVP (NTERM , AVE(1,ICLS) , COV(1,ICLS)).
WRITE (7,170) (AVE(1,ICLS) , I-I,NTERN) *,

170	 FORMAT(20A4)
=. WRITE (7,175) (COV(I , ICLS) , I=1,NCT)

t	

O

175	 FORMAT(2OA4)
C

200
=AVESQ/FLOAT (NFT)	 ^{AVNESQ

_ WRITE(6,210)AVESO
t 210	 ///10X,'MEAN-SQUARE ERROR =>1,E10.4)

FORM
AT (

END z

_ 	 C r -	 - r . r r - - r - - - - r r - r r r r r - 	 r - - j j

C SPDECKC	 \

MUR1..OTOC	
PROVIDE STATS IN APPROPRIATE FORM FOR SEPARABILITY

C	 PROCESSOR.
C	 2. TO SELECT FRATURES TO BE INPUT TO ERROR ESTIMATOR.

^,.. C
C	 11 AUG., 1978
C	 %!S

C - - - - - -	 _ - -	 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ r 	 _ -,
-

A_

INTEGER 4 IC(10) ry
REAL114 AVE (20,10),COV (210,10),P(10),COVTP(20,20)C

WRI E 06, 10)
10	 FORMAT (5X,+SEP	 0, SEL	 A1)

READ (15,15)IS
15	 FORMAT(I1)

9 READ(5,20),NCLS,N

RMAT (1
(,+3 1)

20	 FOR	
rs /2

READ (5,25)(P ( I),I=1,NCLS)
25	 FORMAT( lOF6. 4)

F



`11

DO 40 K=1, NCLS
r READ (5,30) (AVE ( I,K),I=1,N)
' 	 .. READ(5,30) (COV ( I ,K) , I =1,NCT)

30 FORMAT (20A4)
40 CONTINUE

IF(IS )45,45100
'	 . 45 CONTINUE

C
C PUNCH STAT DECK,. C

.. DO 50 K= I , NCLS
' S0 WRITE(7,70)(AVE ( I,K),I=1,N)

DO 60 K=1 NCI.S .
60 WRITE (7,80)(COV ( L,K),I=1,NCT')

'	 f 70 FORMAT( ' MN',17A4)
80 FORMAT ('CV1,17A4)
90 STOP
C

414
C
100 WRITE ( 16,110) k	

.
110 FORMAT (SX,'TYPE NUMBER OF CHANNELS DESIRED 	 (I2)') ,.

READ ( 15,115)NT
115 FORMAT C I2)' t

DO 150 K=1,NT
WRITE06,120)

120 FORMAT (5X, 1 SELECT CHANNELS (I2)')
READ ( 15,125) IC(K)

c
125 FORMAT(I2) r

^, 150. CONTINUE
C

I.
WRITE (7,20)NCLS,NT
WRITE (7,25)(P( 'I),I=-':,NCLS)
NCTP = NT• (NT+ I) /2

C a
DO 200 I CIS= 1, NCLS

C
DO 160 K=1, N`f
ICP = IC(K)

i160 AVE (K,ICLS) = AVE(ICP , ICL.S) v
WRITE (7,30)(AVE ( I,ICL.S),I=1,NT)

€.. C..	
., IN=O M

DO 165 I=1,N ^s
DO 165 J=1,I
IN =	 IN +	 1

}

- COVTP ( I,J) = COV ( IN,ICLS) i.
COVTP ( J,I) = COV ( IN,ICLS)

I, 165 CONTINUEr<, Ci L _ 0

DO 180. %=1, NT
5 L = _L + Ik DO 180 KL=1,L

ICK = IC(K)
ICL = IC(KL.)

{	 ' COVTP (K,KL) _ COVTP ( ICK,ICL)
180 CONTINUEr C

IN=® a
DO 185 I = I , NT f
DO 1 S J=I,I
IN = IN + 1
COV (I N, I CIs) = COVTP (I, J)

185 CONTINUE
F WRITE (7,30)'(COV ( I,ICLS) , I=1,NCTP)

200 CONTINUE
CF

STOP y
ENDC

r	
,

r--ef'. kI}.d.1.1Gd54i`YFI^^#Yl.'l^'Y+
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2

C —	— — —	 — — — — — --- — — — — — — — -. — — — — —	
_

C
C SPSUB SIMULATES 5 SUBOPTIMUM SENSORS AND COMPUTES MEAN-SQUARE
C ERROR AND CLASS STATISTICS FOR A SE,OF DATA. i

} C
C 31 JANUARY,. 1978

C. — — — — — — — — — — — — —	 - — — — — - — — - — --- — — — — — — — — —

1 C
COMMON ID (100)

i INTEGER04 SENSOR,IR(5)
REAL*a:°'HI(100,20),X(100),Y(100),Z(100); AVE (20,10),COV(210,10)
REAL•4 PHIN(100,20),P(10),WAL(100),W(100)

t C
;j C - - - - - -. - - - - - - -	 - - - - - - - - - -	 - - - - --

b, C LIST OF VARIABLES 
C AVE(I,J) = MEAN

,

 VECTOR FOR CLASS J
,. i. C

C
COV(K,J) =COVARIANCE MATRIX FOR CLASS J

ERROR FORESQ - SQUARED	 ONE :SAMPLE FUNCTION
' C N = NUMBER.OF TERMS IN THE REPRESENTATION

G NCLS = NUMBER OF CLASSES
C
C

NF = NUMBER OF SAMPLES IN THE CLASS
PHI(I , J,) = BASIS VECTOR FOR THE JTH TERM IN THE REPRESENTATION

C X(I) = SAMPLE FUNCTION FROM ORIGINAL DATA

^j
-	 C Y(I) = REPRESENTATION VECTOR

C Z(I) = RECONSTRUCTION VECTOR
«:. rj I

•t^ C — — — — — -.	 — — - — — — - —. — — — - — — — — - — —.	 — — --- — — — — —

C
,^.

1

C SELECT SENSOR FROM TERMINAL,

WRITE(16,10)
c F' 10 FORMAT(SX,'SELECT SENSOR',/10X,'1. LANDSAT°,/1 OX, '2. THEMATIC MAPP
z •ER',/10X,'3. TEST',/10X„'4. PROPOSED',/IOX,'S. PROPOSED 2')' a

READ(15,15) SENSOR
15 FORMAT (I 1)t .

'
C a
C ZERO BASIS FUNCTIONS AND SET UP SELECTED SENSOR 1,
C

DO 40 J=1,20
DO 40 1= 1,100 fi'

40 PHI(I,J)	 = 0.0 `.
? GO TO (50,100,150,200,250),SENSOR

d.:H
C

f,
C

SET UP BASIS FUNCTIONS FOR LANDSAT

50 CONTINUE.:.
N:4

t NCT = 19
1 a DO 60 1=5,9

60 PH1' ( I, 1)	 =	 1.0
DO 65 1 = 10, 14

65 PHI(I,2)	 =	 1.0
DO 70 I=15,19

70 PHI(1,3) =	 1.0
75 '1DO	 =20,34

_75 PHI(I,4)	 =	 1.0

_ G0 TO 300.
C r

t' K

^^	 ya

.. ,. ',^;^	 >	 ..... .,....,	 >.wl.bti. ..•'a+F.. Sa,...YkJL3 ,.,. •,wa:r!4'k...	 .,...,.a .a.. A-iy...	 YI`dCA t..f._.'^I 1
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j[C	 SET UP BASIS FUNCTIONS FOR THEMATIC MAPPER
E	 , C,

100	 CONTINUE .r^
_	

...

NCT = 21
DO 110 I=2,6

110 _	 PHI ( I,I)	 -	 1.0
DO 115 1=7,10.

115	 PHI ( 1,2)	 =	 1.0
DO 120 I=11,15

.` 120	 PHI ( I,3)	 =	 1.0
DO 125 1-18,25

125	 PHI ( 1,4)	 _ _1.0
` DO 130 I=58,68j 130	 PHI ( I,5) = 1.0
a., DO 135 1=84,97 e;

135	 PHI ( I,6)	 =	 1.0'
GO TO 300

C I	 'w
C	 SET UP TEST BANDS

150	 CONTINUE
N = 6
NCT = 21
PHI(10 , I)	 =	 1.0 a
PHI (30 , 2) = E0 :.
PHI(52 ,3)_-	 1.8
PHI(64 , 4) = 1.0
PHI(74,5) = 1.0
PHI(92,6) -	 1.0

} GO TO 300
C
C	 SET UP	 PROPOSED SENSOR BASIS FUNCTIONSy.

200	 CONTINUE M
r N = 8

NCT = 36 7 y;

210	 PPHHI (I0^1)=11.0Pt
DO 215 1=8,13

{ 215	 PH? ( I , 2)	 = -1.0
DO 220 I=1ii•;'15

220	 PHI(1,3) = 1.0
DO 225 1=16,25

225	 PHI ( 1,4) = 1.0

x DIES)
=28 1 
0230

DO 235 1=31,4S 
235	 PHI(1 , 6)	 = i.e

DO 240 1=56,67
^- 240	 PHI(1 , 7) = 1.0

DO 245 I=78,109

E
245	 PHI ( 1,8) = 1.0 '.

GO TO 300

C	 SET UP PROPOSED SENSOR NUMBER 2

' C250	 CONTINUE
N = 8
NCT = 36
DO 255 I=1,13

255	 PHI(I,1)	 =	 1.0
DO 260 I=14,15

260	 PHI(I,2) = 1.04
DO 265 I=16,26

265	 PHI ( I,3) = 1.0
DO 270 I=27,32

270	 PHI ( I,4)	 = 1.0

{
s^

a	 ^$
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DO 275 I=33,35
275 PHI(1,5)	 =	 1.0

DO 280 I=36,45
280 PHI ( I,6)	 =	 1.0

DO 285 I=56,67
285 PHI(I,7) . -	 1.0 - —

=° DO 290 I=78,100
290 PHI ( 1,8)	 =	 1.0
CC_

300 CONTINUE
C
C	 NORMALIZE liSi! ' "FUNCT IONS
C

DO 430 L=1,N
SUM = 0.0
DO 410 I=1,100
SUM = SUM + ABS(PHI(I,L))

410 CONTINUE
DO 420`1=1,100
PHIN ( I,L)	 = PHI ( I,L)/SUM	 -'

420 CONTINUE
430 CONTINUE	 _ --
C
C	 POSITION' TAPE AND READ ID INFORMATION
C

REWIND 2
READ (2) ID I
NCLS	 ID(17)
NFT	 0
AVESQ = 0.0
DO 302 IL=l,NCIS

302 NFT = NFT + ID (20+IL) a
NXP ='ID('16) R
WRITE (6,305 ) NXP,NCLS,N

305 FORMAT ( 1H1,S(/),20X, 'SUBOPTIMUM SENSOR SIMULATION FOR EXP. NUMBER' }
//20X, 'NUMBER OF CLASSES =', I3,//20X,'NUMBER OF DIMENSIONS =',

•13>,
WRITE (6,308 ) SENSOR

308 FORMAT (//20X,'SENSOR ',I1)
WRITE (7,310)NCLS,N ^r310 FORMAT ( I2,3X,I2)
DO 312 IL= I,NCLS
NF = ID (20+It)

312 P(IL)	 = 1./FLOAT (NCLS) t
WRITE (7,314) (P(, I=1,NCLS)

- 314	 FORMAT ( 10F6.4}
CALL SPWGT2(W)

C
C	 LOOP ON THE SAMPLE FUNCTIONS IN THE DATA SET
C

DO 600 ICLS
_
 I,NCLS i 

)DO 315 I=1,N
,. 315	 AVE(I , ICLS) = 0.0

DO 320 I=1,NCT
320	 COV(I,ICLS) = 0.0
C

f C
NF _ ID (20+ICLS) .
CON	 FLOAT (NF) /FLOAT ( NF-1 ) ^t

. DO 500 ISAM= I,N1'C

C	 READ SAMPLE POINTS FROM FUNCTION

'
C

READ ( 2) X

/1j	 1
:i\4i
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C	 TRANSFORM DATA USING BASIS FUNCTIONx,
C

DO 330 J=1,N
Y(J) = 0.0
DO 330 I.1,100
Y(J)	 = Y(J)	 +	 (PHIN ( I,J)*X(I))

330	 CONTINUE

C	 COMPUTE SQUARED ERROR
'. C

DO	 1-1,100
I
335

335
DO 340 J=Y,N ,.
DO 3.40 I=1,100
Z(I)	 = Z(I)	 + PHI ( I,J)*Y(.J)

z ` _ 340	 CONTINUE
XSQ , = 0.0	 \lZSQ = 0.0
XZ '= 0.0

,j DO 345 I=1,100
XSQ. = XSQ + X(I)eX(Ima)

t ZSQ = ZSQ + Z (I)*Z(I)*W(I),`. XZ = XZ +_ 2.0•X(I )*Z(I)*W(I)
345	 CONTINUE

ESQ = (XSQ ° XZ + ZSQ)
AVESQ = AVESQ +ESQ	 i

a
^f C

C	 COMPUTE STATISTICS
C

DO 350 I=I.N
AVE 0 ,ICLS) + Y(I)/FLOAT(NF)

350	 CONT( INU^)
IN_0

k DO 360 J=I,N
DO 360 1=I,J

COV ( INNICLS) _ COV(IN,ICLS) + Y(I)*Y ( J)/FLOAT(NF-1)
360	 CONTINUE
500	 CONTINUE
C
r

3
PRINT STATISTICS FOR THE CLASS ? ,

Y `	 a 0 t fi^AO 510 J=1,N ' y
.	 r DO 510 1=I,J

IN = IN +	 1
' COV ( IN,ICLS) = COV(IN , ICLS) - CON*AVE ( I,ICLS) •AVE(J , ICLS)

510	 CONTINUE
r
#d WRITE (6,515)ICIS

515	 FORNAT (5(/),10X,'STATISTICS FOR CLASS' , 14)
} Cal.LLMCOVP (N,AVE(1,ICLS),COV(1,ICLS))

WRFrE(7 ,520) ( AVE (I , I CIS) , I=1,N)
520., ` FOROAT ( 2OA4) -WRI 'tE(7,530) (COV(I , ICLS) , I=1,NCT) ``
530	 FORMAT(2OA4)

#

C;
r	 ; 600	 -CONTINUE

AVESQ = AVESQ/FLOAT(NFT)
WRITE (6,6 10) AVESO

610	 FORMAT (//110x , ' MEAN"SQUARE ERROR	 ' E'i a . 8)
,. STOP

END #

^. ... .....	 ...a,.u...+ 	 ..	 ^....	 .w_	 511d0nYllKi^R• ^^	 r'L....._



C
C	 COMPUTATION OF AVERAGE ERROR OVER A DATA SET.
C

COMMON ID(100)
REAL*4 X(100),W(100)

C
REWIND 2
READ(2) ID
CALL SPLBL
CALL SPWGT4(W)
N =	 11)(18)
NCLS	 ID(17)d DELTA	 0.07
AVE = 0.0
NFT = 0
DO 100 X-1,NCLS
NF	 ID(20+K)
NFT	 NFT + NF
DO 100 L=I,NF
READ(2) X
SUM = 0.0

20 I=IN
+tSU

DO
N = SUM

,
	DELTAODELTA•X(I)•X(I)•W(f)

20 CONTINUE
AVE	 AVE + SUM

100 CONTINUE
AVE = AVE/FLOAT(NFT)
WRITE(6,120)AVE

120 FORMAT(S(/),SX,'AVERAGE MEASUREMENT ERROR =',E20-8)
C

STOP
END

250

C
C CONTROL PROGRAM FOR SPEST TO PROVIDE FOR VARIABLE DIMENSIONING.
C
C 24 JAN.,	 1978
C

REAL*4 PR(IO),PHI(10,10,10),P(le),AM(le,le),coV(ss,lo)
C
C READ INPUT VARIABLES
C M - CLASSES-	 N - DIMENSIONS
C

READ(5,
10 FORMAT(12

10)M
,3X,

,N
12)

C
C P (1)	 APRIORI PROBABILITIES
C

NCT = NO(N+1)12

15 FORMAT(IOM.4)
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C	 ^.
C	 MEANS	 AND„'COVARIANCES FOR EACH CLASS”

f	 C	 ).

D0.30 I=1,M
READ (5,20)(AM ( J,I),J=1,N)
READ (5,20)(COV (K,I),K=1,NCT)

20	 FORMAT(2OA4)
CALL MCOVP (N,AM(1,I),COV(1,1))

z	 30	 CONTINUE
'	 CALL SPESTM (M,N,PHI , P,AM,COV,PR,PC)

DO 40-I=1,M
40	 WRITE (6,50)1,PR(I)
50	 FORMAT (// 10X,'PROBABILITY OF CORRECT CLASSIFICATION FORCLASS',I3,

WRITE (6,60)PC
60FORMAT (/// 10X,'OVERALL PROBABILITY OF CORRECT RECOGNITION = ' ,F6.4

STOP

v

`	 C———————.———-———.—————.——————.—_—_———.—— 	 p_

CC	 SPESPM IS AN ESTIMATOR OF THE CLASSIFICATION PERFORMANCE FROM A
C	 GIVEN SET OF STATISTICS FROM M CLASSES. 	 THE ESTIMATOR IS A
C	 STRATIFIED POSTERIOR ESTIMATOR (REF. WHITSITT AND LANDGREBE),
C	 THE PROBABILITY DISTRIBUTIONS ARE ASSUMED TO BE MULTIVARIATE
C	 GAUSSIAN
C

C	 19 JANUARY,. 1978

C— — — — — — — — — — — — — — — — — — -`— — — — — — — — — — — — — — — —
SUBROUTINE SPESTM(M,N,PHI ,P,AM,COV,PR,PC)
REAL04 OP(10) , P(10),PR ( 10),AM(10,10) , COV(55,10) , COVT(55)
REAL94 GAM ( 10,10),PHI (N,N,M),DET ( 10),COVIN (55,10)

y	 REALo4 Y(10),TE1 ( l0),DEL ( 10),COVU ( 10,10)
REALR8 PX ( 10),BIG,DEN,SDET ( 10),BETA ,ZO,Z1,Z2,Z3
C 

C—	 — — — — — — — — —	 — — - — — —	 — - — — - - - — — — — — — - — —

`	 C	 LIST' OF VARIABLES
C	 M =NUMBER OF CLASSES
C	 N = NUMBER OF DIMENSIONS

^'	 4	 C	 P(I) = APRIORI PROBABILITIES OF CLASS I
i	 C	 PR(I) _ CLASS. CONDITIONAL PERFORMANCE

C	 PC = OVERALL PERFORMANCE
C	 AM(J , I)	 = MEAN VECTOR OF CLASS I
C	 COV ( J,I) = COVARIANCE MATRIX OF CLASS I(STORED IN UPPER TRIANGULAR
C	 FORM)	 a
C
C— — — — — — — - — — — - — — — — — — — — — — — — - — — — - — — — - — —

G	
_	

L
R ^ IX — 947913	 '	 afl

NCT = NO (N+ 1) /2	 a 7i

x
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C	 COMPUTE EIGENVALUES AND EIVENVECTQRS FOR EACH MATRIX

MV=O
EPS = 1.0E-6
D0 1 100 IJ=I,M
DO SS I=I,NCT

SS	 COVT Q) - COV (I , I J )
CALL EIGEN (COVT ,PHI(1,1,IJ) ,N,MV)

z L = 0
DO 60 I =1,N

t L = L + 1
60	 GAM ( I,IJ) = COVT(L)
C
C	 COMPUTE DETERMINANT AND INVERSE Or EACH MATRIX

't C
f DO 65 I=1,NCT

a 65	 COVT ( I) = COV(I,IJ)
s CALL SMINV (COVT,N,DET ( IJ),MV,EPS,IER)

IF(IER)1000 , 70,1000
70	 CONTINUE

SDET ( IJ) = SQRT (DET(IJ))
DO 75 I=1,NCT

75	 COVIN ( I,IJ) = COVT(I)
100	 CONTINUE

ha MV=0
DO 105 I=1,M

105	 QP ( I) = 0.0

C	 IOOP ON CLASS ICL
i C

PC=0.0
DO 500 ICL=1,M
AVEQ = 0.0

C
C	 LOOP ON THE NUMBER OF SAMPLES' I
C

NS = 1000r
-

DO 300 IJ=1,NS
Y

` C	 GENERATE Y VECTOR FROM CLASS ICL
F,. C

DO	 110 I=1,N
CALL RANDU ( IX,IY,XP) k

IX = IY

CALL NDTRI(XP,Y(I),XD,IER)
`q 110.	 CONTINUE

Tc z C	 COMPUTE CONDITIONAL PROBABILITIES. FOR EACH CLASS

'
C

DO 200 JCL=1, M
IF(JCL	 EQ. ICL) GO TO ISO
DO 130 I=1,N 7	 ?TEI(I)	 = 0.0
DEL ( I)	 = AM (I , I CL)	 - AM (I , ,TCL)
DO 130 J=1,N:.
TE1 ( I)	 = TE1(I)	 + SQRT(GAM(J , ICL))OY ( J)•PHI ( I,J,ICL)

,; 130	 CONTINUE
JJ = 0
DO 140 1=1,N Al

Y' DO 140 J=1,I
F J J= J J+	 1

COVU ( I,J) = COVIN ( JJ,JCL)
COVU ( J,I)	 = COVIN ( JJ,JCL)

140	 CONTINUE
`t

T
+

t 4

y.y,yr
	

b
y
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Z1 = 0.0
Z2	 0.0

Z3	 0.0
DO 150 I=1,N

F DO 150 J-1 , N,
ZI = Z1 - 0.S9 TEI(I) COVU(I, J)^1°EI(J)
Z2 n Z2 -- TE1(I)OCOVU(I,J)•DEL(J)
Z3 = Z3 — 0.5•DEL ( I)*COVU ( I,J) vDEL(J) s;'

150 CONTINUE }.

ZSUM _ Z1 + Z2 + Z3
y.

IF(ZSUM . LT. —100) GO TO 190 <, k
BETA = P ( JCL) O I.0

' PX(JCL) _ BETA*DEXP (Z1+Z2+Z3)/SDET (JCL)
IF(PX ( JCL)	 .EQ. 0.0) WRITE ( 16,919) ICL,JCL ,ZSUM ,SDET ( JCL),PX(JCL)

170 CONTINUE

^
GO TO 200

180 CONT I NUDE
Z0 = 0.0 ;.
DO 185 I=1,N 1
Z0 = Z0- O.S*Y(I)*Y(I)

185 CONTINUE
..

4	
,

IF(ZO	 I.T.. 	 —100) GO TO 190
BETA = P(JCL) •i.0,

t

PX(JCL) - BETA*DEXP(ZO)/SDET ( JCL)
IF(PX ( JCL) .EQ. 0.0) WRITE ( 16,919)	 ICL,JCL ,ZO,SDET ( JCL),PX(JCL) r
GO TO 200

190 PX (JCL) = 0.0
200 CONTINUE
919 FORMAT (SX,215,3EI2.4)
C_
C
C	 CHOOSE THE LARGEST -

._

C
BIG - — 1000
DO 220 1=1,M
IF(PX ( I)	 .GT. BIG) LOC - I

AM BIG) BIG - PX(I)
220 CONTINUE

DEN = 0.0
DO 230 I=1,M
DEN = DEN + PX(I)

230 CONTINUE
I Q = BIG/DEN

C	 AVERAGE
C

CO (L
, )OC	 QP (LOC) + P ( ICL) •Q/P (LOC)

300
500 CONTINUE

DO 510 ICL=I,M
i PR(ICL) = QP(ICL) /FLOAT(NS)

PC m PC + P(ICL)*PR(ICL)
- 510 CONTINUE

RETURN
-; 1000 WRITE(6,1100)IER

1100 FORMAT(10X,'* 00 INVERSION ERROR(',I2,')***')
STOP

e END

 jd; 
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