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ABSTRACT

CLASSIFICATIO N  W IT H  O VER LAPPIN G  FEATU R E
INTERVALS

Hakime Unsal Koç
M .S. in Computer Engineering and Information Science 

Advisor: Assoc. Prof. H. Altay Güvenir 
January, 1995

This thesis presents a new form of exemplar-based learning method, based on 
overlapping feature intervals. Classification with Overlapping Feature Intervals 
(COFI) is the particular implementation of this technique. In this incremental, 
inductive and supervised learning method, the basic unit of the representation 
is an interval. The COFI algorithm learns the projections of the intervals in 
each class dimension for each feature. An interval is initially a point on a class 
dimension, then it can be expanded through generalization. No specialization 
of intervals is done on class dimensions by this algorithm. Classification in the 
COFI algorithm is based on a majority voting among the local predictions that 
are made individually by each feature.

Keywords: machine learning, supervised learning, inductive learning, incre­
mental learning, overlapping feature intervals, concept description
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ÖZET

Ç AK IŞIK  ÖZELLİK AR ALIK LA R I İLE SIN IFLAN D IR M A

Hakime Unsal Koç
Bilgisayar ve Enformatik Mühendisliği, Yüksek Lisans 

Danışman: Doç. Dr. H. Altay Güvenir 
Ocak 1995

Bu tezde örnek-tabanh öğrenme için çakışık özellik aralıklarına dayalı yeni 
bir teknik sunulmuştur. Çakışık Özellik Aralıkları ile Sınıflandırma (COFI) 
bu yöntemin özel bir uygulamasıdır. Bu çıkarımsal, artımlı ve yönlendirilmiş 
öğrenme tekniğinde en temel gösterim birimi aralıktır. COFI algoritması tüm 
özelliklere ait her sınıf eksenindeki aralıkların izdüşümünü öğrenir. Aralıklar ilk 
olcU'cik sınıf eksenlerinde birer noktadırlar, daha sonra tüm bir eksen boyunca 
genelleştirmeyle genişlerler. Bu algoritmada herhangi bir özelleştirme gerçek­
leştirilmez. Öğrenme işleminden sonra, tahmin etme işlemi özelliklerin kendi 
adlarına yajDtığı tahminler arasındaki oy çokluğuna dayanır.

Anahtar Sözcükler: öğrenme, yönlendirilmiş öğrenme, çıkarımsal öğrenme, 
artımlı öğrenme, çakışık özellik aralıkları, sınıf tanımı
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Chapter 1

Introduction

Learning refers to a wide spectrum of situations in which a learner increases his 
knowledge or skill in accomplishing certain tasks. The learner applies inferences 
to soine material in order to construct an appropriate representation of some 
relevant aspect of reality. The process of constructing such a representation is 
a crucial step of in any form of learning [59].

One of the central insights of AI is that intelligence involves search, and that 
effective search is constrained by domain specific knowledge. This framework 
can be applied to problem solving, language understanding and learning from 
experience. One can even apply this search metaphor to machine learning as a 
field of scientific study [.38]. In this framework, machine learning researchers are 
exploring a vast space of possible learning methods, searching for techniques 
with useful characteristics and looking for relations between these methods.

Machine learning is one of the oldest and most intriguing areas of artificial 
intelligence and cognitive science. It has developed especially in 80’s, and 
has emerged as a subfield of AI that deals with techniques for improving the 
performance of a computational system. It is now distinguished from studies 
of human learning and from specific knowledge acquisition tools.

The aim of the machine learning and the statistical pattern recognition is 
to determine which category or class a given sample belongs to. Through an 
observation or measurement process, a set of values (usually numbers) which 
make up the observation vector serves as the input to a decision rule which
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assigns the observed instance to one of the given classes [22]. In the statistical 
pattern recognition field, probabilistic approaches are used.

There are two kinds of major directions of AI research, symbolic and sub- 
symbolic models. The most active research area in recent years has continued 
to be symbolic empirical learning. This area is concerned with creating with 
and/or modifying general symbolic descriptions, whose structure is unknown 
a -priori. Symbolic models are good in high-level reasoning, however they are 
weak in handling imprecise and uncertain knowledge. Subsymbolic models, 
such as neural networks and genetic algorithms, are powerful in lower-level rea­
soning especially imprecise classification and recognition problems. However, 
they are weak in high-level reasoning. Both of these models are important for 
understanding intelligent systems.

Learning fx'orn examples has been one of the primary paradigms of machine 
learning research since the early days of AI. Many researchers have observed 
and documented the fact that human problem solving performance improves 
with experience. In some domains, the principle source of expertise seems to 
be a memory for a large number of important examples. Attempts to build 
an intelligent (i.e., at the level of human) system have often faced the problem 
of memory for too many specific patterns. Researchers expect to solve this 
difficulty by building machines that can learn using limited resources. This 
reasoning has motivated many machine learning projects [48].

Inducing a general concept description from examples and counterexamples 
is one of the most widely studied method for symbolic learning. The goal is to 
develop a description of a concept from which all previous positive instances can 
be rederived while none of the previous negative instances can be rederived by 
the same process of rederivation of positive instances. Classificcition systems 
require only a minimal domain theory and they are based on the training 
instances to learn an appropriate classification function.

In this thesis, we propose a new symbolic model for concept learning, based 
on the representation of overlapping feature intervals. The Classification with 
Overlapping Feature Intervals algorithm is the particular implementation of 
this technique. In this new technique, overlapping concept descriptions are 
allowed, that is there may exist different classes for the same feature values. 
No specialization is done on the concept descriptions.
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In the overlapping feature intervals technique, the basic unit of the rep­
resentation is an interval. Each interval is represented by four parameters: 
lower and upper bounds, the representativeness count, which is the number of 
instances that the interval represents and the associated class value of the in­
terval. The intervals are constx'ucted through class dimensions for each feature. 
Initially, an interval is a point, that is, its lower and upper bounds are equal to 
initial feature values of the first instance for each feature. Then a point inter­
viú can be extended to a range interval such that its lower and upper bounds 
are not equal. This process is based on generalization through close interval 
heuristic [63]. During the training process, the set of values for each feature for 
each concept (class) is partitioned into segments (intervals) corresponding to 
concepts. That is, the concept description is the collection of intervals of each 
class dimension and the projection of these concept descriptions are learned by 
the COFI algorithm.

The ability to generalize from examples is widely recognized as an essential 
capability of any learning system. Generalization involves observing a set of 
training examples of some general concept, identifying the essential features 
common to these examples, then formulating a concept definition based on 
these common features. The generalization process can thus be viewed as a 
search through a vast space of possible concept definitions, in search for a cor­
rect definition of the concept to be learned. Because this space of possible 
conceiDt definition is vast, the heart of the generalization problem lies in utiliz­
ing whatever training data, assumptions and knowledge available to constrain 
this search.

Generalization is the main process of the training phase of the COFI algo­
rithm. The COFI algorithm does not use any specialization heuristic. In order 
to avoid overgeneralization of intervals, generalization is limited with a use of 
specified parameter. Therefore, the generalization of an interval to include a 
new training instance depends on the external variable, called generalization 
ratio and the maximum and the minimum feature value up to current exam­
ple. By using this generalization ratio and these local maximum and minimum 
feature values a generalization distance is calculated. Whether a feature Vcilue 
is joined to an existing interval or it constructs a separate point interval is 
determined by this generalization distance. Small generalization ratios cause 
many number of small intervals to be constructed, whereas hirge generalization
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ratios cause small number of large intervals.

The prediction process is simply a search for the intervals corresponding to 
the test instance’s each feature value on the related class dimensions. If the 
test instance’s current feature value falls within an interval in at least one class 
dimension, then a prediction can be made. Otherwise, no prediction is made 
and the final prediction is UNDETERMINED.

In the prediction phase of the COFI algorithm, local knowledge of each 
feature is important and this knowledge is maintained in a vote vector. For 
each feature a vote vector, whose elements represent the vote given to each 
class by that feature,is constructed. The vote is the relative representativeness 
count., which is the ratio of the representativeness count of the matched interval 
to the total number of instances which have the same class value as the test 
instance. Then, each feature’s vote vector is summed for the final prediction. A 
voting is performed among the elements of this final vote vector, whose result 
is the class that receives the maximum vote in the final prediction of the COFI 
algorithm.

The COFI algorithm handles unknown attribute and class values in a 
straight forward way. Similar to human behavior, it just ignores these unknown 
attribute and class values. Most of the learning systems, usually overcome this 
problem by either filling in missing values with most probable vcilue or a value 
determined by exploiting interrelationships among the values of different at­
tributes or by looking at the probability distribution of known feature values 
[46|.

Here, we have firstly given the introduction of machine learning and de­
fined briefly the concept learning problem. Then an overview of the COFI 
algorithm has been presented. In Chapter 2, we will present some of the ex­
isting concept learning models. Then the detailed explanation about our new 
algorithm, COFI, will be given in Chapter 3. In Chapter 4, we evaluate the 
COFI algorithm by giving the complexity analysis and the results of empirical 
evaluation on artificial and real-world datasets. Finally, in Chapter 5, we will 
discuss the results of this study and conclude by giving general evaluation of 
the algorithm.



Chapter 2

Concept Learning Models

The field of machine learning (ML) is as difficult to define as its parent field 
artificial intelligence. One might describe it as the field of inquiry concerned 
with the processes by which intelligent systems improve their performance over 
time. However, such hard and fast definitions are no more successful at de­
scribing scientific disciplines than they are useful in characterizing everyday 
concepts. The best may be to describe the central tendency of the field, a 
tendency that may itself change as the field develops. For instance, machine 
learning shares with Artificial Intelligence (AI) a bias towards symbolic rep­
resentations rather than numeric ones, although symbolic representcition does 
not exclude the numeric one. Similarly, most machine learning research em­
ploys heuristic approaches to learning rather than algorithmic ones. These 
dimensions separate artificial and cognitive science from mainstream computer 
science and pattern recognition, and machine learning is much more closely 
associated with the former two areas than with the latter two.

Carbonell defines machine learning as follows [8]:

Perhaps the tenacity of ML researchers in light of the undisputed 
difficulty of their ultimate objectives, and in light of early disap­
pointments, is best explained by the very nature of the learning 
process. The ability to learn, to adapt, to modify behavior is an 
inalienable component of human intelligence.

Despite the name machine learning, a significant fraction of the field has

5
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always been concerned with modeling human behavior, starting with Feigen- 
baum’s EPAM model of verbal learning [18]. There is also considerable inter­
est in applied machine learning research, focusing on the automatic construc­
tion of knowledge-based systems. For instance, Michalski and Chilausky have 
worked on a knowledge base from examples [36]. Since learning is a central 
phenomenon in human cognition, the researchers evaluate machine learning 
methods in terms of their ability to explain human learning.

A number of different themes can be identified within the machine learning 
community, each corresponding to central goals of its parent field, artificial in­
telligence. For instance, many AI researchers are concerned with implementing 
knowledge-intensive systems, nevertheless those often take many man-years to 
construct. Machine learning may provide methods for automating this pro­
cess, promising considerable savings in time and effort. Similarly, many AI 
researchers view artificial intelligence as a scientific discipline rather than an 
engineering one, and hope to formulate general principles of intelligent behav­
ior that hold accros a variety of domains. Since machine learning focuses on 
the acquisition of domain specific knowledge rather than the knowledge itself, 
it holds considerable potential for such general principles.

In the literature, two forms of learning can be distinguished: Knowledge 
Acquisition (KA) and Refinement of Skills Through Experience [59].

1. Knowledge Acquisition: Briefly, knowledge acquisition, like machine 
learning, describes techniques for increasing the functionality of a computer 
system. Knowledge acquisition focuses on the identification of knowledge for 
use in expert systems. Since this knowledge can be acquired in many ways, 
a wide variety of techniques have been studied. Knowledge acquisition and 
machine learning have been closely linked by their common application field, 
namely building up knowledge bases for knowledge-based systems. Learning 
and KA can be seen as two processes that construct a model of a task domain, 
including the systematic patterns of interaction of an agent situated in a task 
environment.

2. Refinement of Skills Through Experience: Learning in this per­
spective, consist of gradually correcting deviations between observed and de­
sired behavior through repeated practice. This form of human learning covers
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mental, motor and sensory processes. For example, learning a musical instru­
ment is a good illustration of this process. Skill refinement is poorly under­
stood, and few AI systems have attempted to simulate it to date.

As scientific databases continue to grow, the analysis of scientific data be­
comes an increasingly important apj^lication area for machine learning research. 
Much of the research on scientific data is directed towards predicting properties 
of a physical process. Such processes are often described in terms of a function 
defined over the attributes of the domain or a stochastic model. First, the 
best machine learning technique is selected for the problem domain. It has 
been argued that instead of producing a description of the problem domain in 
terms of logical rules, functional descriptions or a complex statistical model, 
it is possible to store a collection of memories (cases) and perform prediction 
by interpolating from them. It is shown that memory-based reasoning meth­
ods [47] are as effective as the more complex approaches, such as probabilistic 
approaches.

Many decision-making problems fall into the general category of classifica­
tion. Empirical learning techniques for classification span roughly two cate­
gories: statistical pattern recognition [14, 22] and machine learning techniques 
for induction of decision trees [43] or production rules. Although a technique 
from either category is applicable to the same set of problems, the two cate­
gories of procedures can differ radically in their underlying models and final 
format of their solution. Both approaches to learning can be used to chissify a 
sample pattern or example into a specific class.

Another distinction, symbolic and subsymbolic learning models concerns 
the level at which one represents instances and acquired knowledge. Many 
researchers in machine learning employ symbolic representations to describe 
both instances and rules [53]. In some cases, these involve complex logical 
or relational expressions, but a significant fraction of the work on inductive 
learning has employed attribute-value or feature representations of knowledge. 
However, inductive techniques also play a central role in subsymbolic learn­
ing paradigm, such as neural networks and evolutionary computing techniques 
[21, 40, 62]. In many cases, the inputs given to “subsymbolic” techniques are 
equivalent to the inputs provided to “inductive” methods.

There exist substantial and interesting differences among subsymbolic and
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symbolic induction methods. Their learning algorithms and representations of 
knowledge differ in significant ways, and their inductive biases also appear to be 
quite different. However, all can be applied to the same class of induction tasks, 
and they can be compared to one another both experimentally and analytically. 
In the following sections, we will explain some of the basic machine learning 
and statistical pattern recognition techniques applied to concept learning tasks.

Concept Learning

The most widely studied method for symbolic learning is one of inducing a 
general concept description from examples and usually known counterexamples 
of the concept. The task is to build a concept description from which cill pre­
vious i^ositive instances can be rederived by universal instantiation while none 
of the previous negative instances (counterexample) can be rederived by the 
same process [8]. Until recently “learning” referred almost exclusively to clas­
sification mechanisms, focusing on programs that learn concept descriptions 
from a series of examples and counterexamples. While learning now extends to 
include many other topics and types of systems, classification is still an active 
field. Classification systems have only a minimal domain theory and rely al­
most exclusively on the training examples to learn an appropriate classification 
function.

Learning a concept usually means to learn its description, that is, a relation 
between the name of the concept and a given set of features that are used to 
describe instances. Several different representation techniques have been used 
to describe concepts for supervised learning tasks. One of the widely used 
representation technique is the exemplar-based representation. The represen­
tation of the concepts learned by the exemplar-based learning techniques stores 
only specific examples that are representativeness of other similar instances.

Previous implementations of the exemplar-based models usually extend the 
the nearest neighbor algorithm, in which some kind of similarity or distance 
metric is used for prediction. Therefore, the training complexity of such al­
gorithms is proportional to the number of instances or objects stored. More 
recently, approaches using decision trees, connectionist circhitectures, represen­
tative instances, and hyperrectangles (exemplar-based learning) have appeared 
in the literature. These approaches construct concept descriptions by exam­
ining a series of examples, each of which is categorized as either a positive
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example of the concept or a negative example (counterexample). That is, the 
main task is to construct a concept definition from the positive instances, which 
excludes the negative examples, by finding a relation between the name of the 
concept and a given set of features.

2.1 Exemplar-Based Learning

Exemplar-based learning was originally proposed as a model of human learning 
by Medin and Schaffer [35]. In the simplest form of exemplar-based learning, 
every example is stored in memory verbatim, with no change of representation. 
The set of examples that accumulate over time form category definitions; for 
example, the set of all chairs, that a person has seen, forms that person’s 
definition of “chair” . An example is normally defined as a vector of features, 
with values for each feature, plus a label which represents the category (class) 
of the example.

Exemplar-based learning is a widely used representation technique of the 
concept learning, in which the concept definition is constructed from the ex­
amples themselves, using the same representation language. In the exemplar- 
based learning, the examples are the concept. Little or no domain specific 
knowledge is required in exemplar-based learning.

In the literature, there are many different exemplar-based learning models. 
A hierarchical classification of exemplar-based learning algorithms is shown in 
Figure 2.1. All of these models share the property that they use verbatim 
examples as the basis of learning. For example, instance-based learning [4] 
retains examples in memory as points, and never changes them. An example 
concept description of this representation is shown in Figure 2.2. The main 
implementations of this technique are performed by Aha and Kibler, and the 
algorithms are known as IBl through IB5 [2, 4]. The only decisions to be made 
are what points to store and how to measure similarity. Another example is 
the nested-generalized exemplars (NGE) of Salzberg. This model changes the 
point storage model of the instance-based learning and retains examples in the 
memory as axis-parallel hyperrectangles. Salzberg implemented NGE theory 
in a program called Exemplar-Aided Constructor of Hyperrectangles (EACH),
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Exemplar-Based Learning

Instance-Based Learning Exemplar-Based Generalization

Nested Generalized Generalized Feature
Exemplars Values

Feature Partitioning Overlapping Feature
Intervals

Figure 2.1. Classification of exemplar-based learning algorithms.

where numeric slots were used for feature values of exemplar [49]. An exam­
ple of concept description is shown in Figure 2.3. In the feature partitioning 
techniques, examples are stored as partitions on the feature dimensions. One 
example of the implementation of feature partitioning is the Classification by 
Feature Partitioning (CFP) algorithm by Şirin and Güvenir [56]. An example 
concept description of this algorithm is presented in Figure 2.4. In the overlap­
ping feature intervals technique, intervals are the representation of the concept 
descriptions. In this technique, the main property is to allow overlapped con­
cept descriptions. The implementation of this technique is performed as the 
main purpose of this thesis and the algorithm is called Classification with Over­
lapping Feature Intervals (COFI).

2.1.1 Instance-Based Learning (IBL)

Instance-based learning algorithms use specific instances rather than precom­
piled abstractions during prediction tasks. These algorithms can also describe
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Figure 2.2. An example concept description in the IBL algorithms in a domain 
with two features.

probabilistic concepts because they use similarity functions to yield graded 
matches between instances.

IBL algorithms are derived from the nearest neighbor pattern classifier [10]. 
The primary output of the IBL algorithms is a concept description in the form 
of a set of examples. This is a function that maps instances to categories or 
classes.

In Figure 2.2, the representation of the concept description is shown. All ex­
amples are represented as points on the n-dimensional Euclidean space, where 
12 is the number of features. In the figure, there are two features and three 
classes, namely A, B, and C. The test instance is marked as Test, and according 
to similarity function, this test instance will be classified as B.

An instance-based concept description includes a set of stored instances, 
called exemplars^ and some information concerning their past performances 
during classification. This set of instances can change after each training in­
stance is processed. However, IBL algorithms do not construct extensional 
concept descriptions. Instead, concept descriptions are determined by how the 
IBL cilgorithm’s selected similarity and classification functions use the current 
set of saved instances. There are three components in the framework which
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describes all IBL algorithms as defined by Aha and Kibler [4]:

1. Similarity Function: computes the similarity between two instances, 
similarities are real-valued.

2. Classification Function: receives the similarity function’s results and 
the classification performance records of the instances in the concept 
description, and yields a classification for instances.

3. Concept Description Updater: maintains records on classification 
performance and decides which instance to be included in the concept 
description.

Five instance-based learning algorithms have been implemented: IBl, IB2, 
IB3, IB4 and IB5. IBl is the simplest one and it uses the similarity function 
computed as

sim ilarity(x,y) — —
\ E  -  S'/)'

/=i
(2 .1)

where x and y are the instances and n is the number of features that describes 
the instances. IBl stores all the training instances. Therefore IBl is not incre­
mental, however, IB2 and IBS are incremental algorithms. IB2’s storage can 
be significantly smaller than IB l’s, as it stores only the instances for which the 
prediction was wrong. IBS is an extension of IB2. It employs a significance test 
to determine which instances are good classifiers and which ones are believed 
to be noisy. Once an example is determined to be noisy, it is removed from 
the description set. IBl through IBS algorithms assume that all attributes are 
equally relevant for describing concepts.

Extensions of these three algorithms [1, 2] are developed to remove some 
limitations which occur from some assumptions, such as, concepts are often 
assumed to

• be defined with respect to the same set of relevant attributes,

• be disjoint in instance space, and

• have uniform instance distributions.
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IB4 [2] is an extension of IB3. It learns a separate set of attribute weights for 
each concept. These weights are then used in IB4’s similarity function which is 
a Euclidean weighted-distance measure of the similarity of two instances. Mul­
tiple sets of weights are used because similarity is concept-dependent, the sim­
ilarity of two instances varies depending on the target concept. IB4 decreiises 
the ciffect of irrelevant attributes on classification decisions. It subsequently is 
more tolerant of irrelevant attributes.

The problem of novelty is defined as the problem of learning when novel at­
tributes are used to help describe instances. IB4, like its predecessors, assumes 
that all the attributes used to describe training instances are known before 
training begins. However, in several learning tasks, the set of describing at­
tributes is not known beforehand. IB5 [2], is an extension of IB4 that tolerates 
the introduction of novel attributes during training. To simulate this capability 
during training, IB4 simply assumes that the values for the (as yet) unused at­
tribute are missing. During this time, IB4 fixates the expected I'elevance of the 
attribute for classifying instances. IBS instead updates an attribute’s weight 
only when its value is known for both of the instances involved in a classifica­
tion attempt. IBS can therefore learn the relevance of novel attributes more 
quickly than IB4. Theoretical analyses of instance-based learning algorithms 
can be found in [S].

Also noise-tolerant versions of instance-based algorithms are presented by 
Aha and Kibler in [3] in 1989. These learning algorithms are based on a form of 
significance testing, that identifies and eliminates noisy concept descriptions.

2.1.2 Nested-Generalized Exemplars (NGE)

Nested-generalized exemplar theory is a variation of exemplar-based learning. 
This theory is a model of a process whereby one observes a series of examples 
and becomes adept at understanding what those examples are examples of. 
Salzberg implemented NGE theory in a program called EACH (Exemplar- 
Aided Constructor of Hyperrectangles) [49], where numeric slots were used 
for feature values of exemplar. In EACH, the learner compares new examples 
to those it has seen before and finds the most similar example in memory. 
To determine the most similar hyperrectangle, a similarity metric, which is
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inversely related to a distance metric (because it measures a kind of subjective 
distance), is used. This similarity metric is modified by the program during 
the learning process.

NGE theory makes several significant modifications to the exemplar-based 
model. It retains the notion that examples should be stored verbatim in mem­
ory, but once it stores them, it allows examples to be generalized. In NGE 
theory, generalizations take the form of hyperrectangles in a Euclidean n-space, 
where the space is defined by the variables measured for each example. The 
hyperrectangles may be nested one inside another to arbitrary depth, and in­
ner rectangles serve as exceptions to surrounding rectangles [49]. The learner 
compares a new example to those it hcis seen before according to similarity 
metric. The term exemplar (or hyperrectangle in NGE) is used to denote an 
example stored in memory.

The system computes a match score between E and / / ,  where E' is a new 
data point and H  is the hyperrectangle, by measuring the Euclidean distance 
between these two objects. Consider the simple case where H  is a point, 
representing an individual example. The distance is determined by the usual 
distance function computed over every dimension in feature space.

Deh =  wh
i

 ̂ J? TJ
j -  ( Wf
^  max f —min f y (2.2)

where Wfj is the weight of the exemplar H, Wf is the weight of the feature 
/ ,  Ef is the value of the /th  feature on example E, Hj is the value of the 
fth  feature on exemplar H, max/  and min/  are the minimum and maximum 
values of that feature, and n is the number of features recognizable on E.

If the exemplar H  is not a point but a hyperrectangle, as being the case 
usually, the system finds the distance from E  to the nearest face of H. There 
are obvious alternatives to this, such as using the center of H. The formula 
used above is changed because i f / ,  the value of the /th  feature on i f ,  is now a 
range instead of a point value. If we let ii/./ower be the lower end of the range, 
and if/,upper be the upper end, then the equation becomes:

D eh — wh
df

> [ W f --------------- —̂
^  maxf — m mf y (2.3)
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Figure 2.3. An example concept description of the EACH Algorithm in a 
domain with two features.

where

df =
Ef Hĵ upper Ej Hĵ uppgj·

Hf¡lower Ej Ef <C. Hj
0 otherwise

(2.4)

If a training instance E  and exemplar H  are of the same class, that is, a 
correct prediction has been made, the exemplar is generalized to include the 
new instance if it is not already contained in the exemplar. However, if the 
closest example has a different class then the algorithm modifies the weights of 
features so that the weights of the features that caused the wrong prediction 
is decreased.

In Figure 2.3, an example concept description of EACH algorithm is pre­
sented for two features / i  and / 2. Here, there are three classes. A, B and C, and 
their descriptions are rectangles (exemplars) as shown in Figure 2.3. It is seen 
in the figure that rectangle A contains another rectangle, B, in its region. B is 
an exception in the rectangle A. The NGE model allows exceptions to be stored 
quite easily inside hyperrectangles, and exceptions can be nested any number 
of levels. The test instance, that is marked as te s t  in Figure 2.3, falls into the 
rectangle A, so the prediction will be the class value A for this test instance.
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2.1.3 Classification By Feature Partitioning

The Classification by Feature Partitioning (CFP) algorithm [56, 57, 58, 61] is 
similar to the COFI algorithm, and it is the basis of this thesis. In the CFP 
algorithm, learning is done by storing the objects separately in each feature 
dimension. These stored objects are disjoint segments of feature values. For 
each segment, lower and upper bounds of the feature values, the associated 
class, and the number of instances it represents, representativeness count, are 
maintained. CFP learns segments of the set of possible values for each feature. 
An example is defined as a vector of feature values plus a label that represents 
the class of the related example.

Initially, a segment is a point on the representing feature dimension. A 
segment can be extended through generalization with other neighboring points 
of the same class in the same feature dimension. In order for a segment to be 
extended to cover a new point in feature / ,  the distance between the segment 
and the value of feature /  must be less than a given generalization limit, which 
is defined separately for each feature.

The CFP algorithm pays attention to the disjointness of the segments. 
However, segments may have common boundaries on different features. In this 
case, weights of the features are used to determine the class value. The feature 
which has the maximum weight is chosen and this feature determines the class 
value. The training process in CFP has two steps: learning feature segments 
and learning feature weights.

The prediction in CFP is based on a vote taken among the predictions 
made by each feature separately. The effect of the prediction of a feature in 
the voting is proportional to the weight of that feature. All feature weights 
are initialized to 1 before the training process starts. The predicted class of a 
given instance is the one which receives the highest amount of votes among all 
feature predictions.

The first step in the training is to update the partitioning of each feature 
using the given training example. For each training example, the prediction of 
each feature is compared with the actual class of the example. If the prediction 
of a feature is correct, then the weight of that feature is multiplied by (1 +  A ) 
otherwise, it is multiplied by (1 — A ), where A  is called the global feature
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Figure 2.4. An example concept description of the CFP Algorithm in a domain 
with two features.

weight adjustment rate.

Figure 2.4 is presented here in order to illustrate the form of the resulting 
concept descriptions learned by the CFP algorithm with two features / i  and 
/ 2. Assume that there are two classes, positive (+ ) and negative (-), and their 
boundaries are shown in Figure 2.4. If a test instance falls into a region that 
marked with +, then the prediction will be the positive class for this instance 
in Figure 2.4. Similarly, if it falls into a region that marked with - , then the 
prediction will be the negative class. However, if the test instance falls into a 
region with marked with U, then no prediction will be made for this instance. 
Finally, if the test instance falls into a region that marked with T then the 
prediction will be made according to the weights of the features, that is, the 
feature which has the maximum weight makes its segment’s class value as the 
final prediction.

A noise tolerant version of the CFP algorithm has also been developed. In 
this extension, the CFP algorithm removes the segments that are believed to be 
introduced by noisy instances. A new parameter, called confidence threshold 
(or level) is introduced to control the process of removing the partitions from 
the concept description. The confidence threshold and observed frequency of
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the classes are used together to decide whether a partition is noisy.

Also a hybrid system, called GA-CFP, which combines a genetic algorithm 
with the CFP algorithm has been developed [24]. The genetic algorithm is used 
to determine a very good set of domain dependent parameters  ̂ of the CFP, 
even when trained with a small partition of the data set. An algorithm that hy­
bridizes the classification power of the featui’e partitioning CFP algorithm with 
the search and optimization power of the genetic algorithm is presented. The 
resulting algorithm CA-CFP requires more computational capabilities than the 
CFP algorithm, but achieves improved classification performance in reasonable 
time. The complexity analysis of the CFP algorithm is presented in [25].

A limitation of the CFP algorithm can be seen in the following example 
in Figure 2.5. Here, the domain has only one dimension. In Figure 2.5A, the 
order of the training dataset is given. The first instance has the class value 
Cl and this instance constructs a point segment at the feature value Xi on the 
related feature dimension initially, as shown in Figure 2 .5 A.a. Then second 
example is processed, it has also the class value Ci and its feature value is X2- 
Here, we assumed that the generalization distance is greater than the difference 
between a;i and X2· Therefore, a range segment is constructed on the feature 
dimension and its lower bound is Xi and upper bound is X2 as shown in Figure 
2.5A.b. Then, let the next five instances belong to another class C2, and their 
related feature values are between xi and X2- In this case, the big segment in 
Figure 2 .5 A.b has subpartitioned into six segments for class ci and no segment 
can be constructed for the second class C2 as shown in Figure 2.5A.C.

However, if the last five instances were processed before the first two in­
stances in the previous example, then the segments would have been con­
structed as shown in Figure 2.5B. Firstly, a range segment is constructed for 
the class C2 as shown in Figure 2.5B.a, and then two point segments are con­
structed for the last two instances as in Figure 2.5B.b. The concept descriptions 
(segments) for A and B cases are very different from each other in Figure 2.5, 
although the same training instances were processed. It is seen that the order of 
the instances is very important and it affects the resulting concept description 
considerably.

In order to overcome this limitation, we need to store the instances of

and Df for each feature
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Figure 2.5. Constructing segments in CFP by changing the order of the training 
dataset.
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Xi Xn

X, X - 7

Figure 2.6. Constructing intervals in the COFI Algorithm with using same 
dataset as used in Figure 2.5 .

different classes separately in a feature dimension independent from each other. 
The COFI algorithm solves this problem by storing examples as overlapping 
intervals for each class separately. The concept description learned by the 
COFI algorithm from the same set of training instances is shown in Figure 2.6 
independent from the order of the examples, when the generalization ratio is 
chosen properly.

2.2 Decision Tree Techniques

Another approach to inductive learning is the one which involves the construc­
tion of decision trees. Here the concept representation is done by using tree 
structure.

A decision tree can be used to classify a case by starting at the root of 
the tree and moving through it until a leaf is encountered. At each non-leaf 
decision node, the outcome of the case for the test at the node is determined 
cind attention shifts to the root of the subtree corresponding to this outcome. 
When this process finally leads to a leaf, the class of the case is predicted to 
be that record at the leaf.

2.2.1 Decision Trees

This method was developed initially by Hunt, Marin and Stone in 1966 [27], 
and later modified by Quinlan (1979, 1983), who applied his IDS algorithm 
to deterministic domains such as chess and games [41, 42]. Quinlan’s later
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research has focused on induction on domains that are uncertain and noisy 
rather than deterministic. His approach is to synthesize decision trees that has 
been used in a variety of systems, and he has described his system ID3 , the 
details can be found in [41, 42, 43]. A more extended version of ID3 is C4 .5  

[46] which can convert a decision tree to a rule base.

The overall approach employed by ID3 and C4.5 is to choose the attribute 
thcit best divides the examples into classes and then partition the data accord­
ing to the values of that attribute. This process is recursively applied to each 
partitioned subset, with the procedure terminating when all examjDles in the 
current subset have the same class. The result of this process is represented 
as a tree in which each node specifies an attribute and each branch emanating 
from a node specifies the set of possible values of that attribute. Terminal 
nodes (leaves) of the tree correspond to sets of examples with the same class 
or to cases in which no more attributes are available.

The recursive partitioning method of constructing decision trees will con­
tinue to subdivide the set of training cases until each subset in the partition 
contains cases of a single class, or until no tests offers any improvement. The 
result is often a very complex tree that “overfits the data” by inferring more 
structure than is justified by the training cases. A decision tree is not usually 
simplified by deleting the whole tree in favor of a leaf. Instead, the idea is to 
remove parts of the tree that do not contribute to classification ciccuracy on 
unseen cases, pi'oducing something less complex and thus more comprehensi­
ble. This process is known as the pruning. There are basically two ways in 
which the recursive partitioning method can be modified to produce simpler 
trees: deciding not to divide a set of training cases any further, or removing 
retrospectively some of the structure built up by recursive partitioning [46].

The former approach, sometimes called stopping or prepruning, has the 
attraction that time is not wasted assembling structure that is not used in the 
final simplified tree. The typical approach is to look at the best way of splitting 
a subset and to asses the split from the point of view of statistical significance, 
information gain, error reduction, or whatever. If this assessment falls below 
some threshold then the division is rejected.

The difference between this approach and the other learning methods, in­
cluding the COFI algorithm, is that the performance of these systems does not
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depend critically on any small part of the model, whereas decision trees are 
much more susceptible to small changes.

2.2.2 IR  System

In this section, the specific kind of rules, called “1-rules” , are examined. These 
are the rules that classify an object on the basis of a single attribute that is, 
they are 1-level decision trees. This system is defined by Holte, in 1993 [26].

IR is a system whose input is a set of training examples and whose out­
put is a 1-rule. IR can be treated as a special case of the classification with 
overlapping feature intervals technique. The COFI algorithm uses all of the 
featui'e infornuition for a final prediction. However, in IR, one of the features 
is chosen to make the final prediction. IR system treats all numerically valued 
attributes as continuous and uses a straight forward method to divide range of 
values into several disjoint intervals. Similar to the COFI algorithm, IR han­
dles the unknown attribute values by ignoring them. IR makes each interval 
“pure” , that is, intervals contain examples that are all of the same class. IR 
requires all intervals, except the rightmost, to contain a more than a predefined 
number of examples.

During the training phase, the construction of the intervals in the IR rule 
is done. After the training phase, one of the feature’s concept description is 
chosen as a rule.

Holte shows that simple rules such as IR are as accurate as more complex 
rules such as C4. Given a dataset, IR generates its output, a 1-rule, in two 
steps. First, it constructs a relatively small set of candidate rules (one for each 
attribute), and then it selects the one that makes the smallest error on the 
training dataset. This two steps pattern is similar to the training process of 
many learning systems.

In [26], Holte used sixteen datasets to compare IR and C4, and fourteen 
of the datasets were selected from the collection of datasets distributed by 
the machine learning group at the University of California at Irvine. The main 
result of comparing IR and C4 is an insight into the tradeoff between simplicity 
and accuracy. IR rules are only a little less accurate (3.1 percentage points)
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than C4’s pruned decision trees on almost all of the datasets. Decision trees 
formed by C4 are considerably larger in size than 1-rules.

The fact that, on many datasets, 1-rules are almost as accurate as more 
complex rules has important implications for machine learning research and 
applications. The first implication is that IR can be used to predict the ac­
curacy of the rules produced by more sophisticated machine learning systems. 
A more important implication is that simple-rule learning systems are often a 
viable alternative to systems that learn more complex rules.

2.3 Statistical Concept Learning

The purpose of the statistical concept learning (or statistical pattern recog­
nition) is to determine to which category or class a given sample belongs to 
as for the machine learning. It is felt that the decision-making processes of a 
human being are somewhat related to the recognition of patterns; for example 
the next move in chess game is based upon the present pattern on the board, 
and buying or selling stocks is decided by a complex pattern of information. 
The goal of the pattern recognition is to clarify these complicated mechanisms 
of decision-making processes and to automate these functions using computers.

Pattern recognition, or decision-making in a broader sense, may be consid­
ered as a problem of estimating density functions in a high-dimension space 
and dividing the space into the regions of categories or classes. Because of this 
view, mathematical statistics forms the foundations of the subject.

Several classical pattern recognition methods have been presented in the 
literature [13, 14, 2 2 , 62]. Some of them are parametric, that is, they are 
based on assumed mathematical forms for either the density functions or the 
discriminant functions.

The Bayesian approach to classification estimates the (posterior) probabil­
ity that an instance belongs to a class, given the observed attribute values 
for the instance. When making a categorical rather than probabilistic classi­
fication, the class with the highest estimated posterior probability is selected.
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The posterior probability, P(wc\x.) of an instance being class c, given the ob­
served attribute value vector x, may be found in terms of the prior probability 
of an instance being class c, P{wc)] the probability of an instance of class c 
having the observed attribute values, P{x).  In the Naive Bayesian approach, 
the likelihoods of the observed attribute values are assumed to be mutually 
independent [14, 22, 60].

Naive Bayesian classifier is one of the common parametric classifiers. When 
no parametric structure can be assumed for the density functions, nonparamet- 
ric techniques, for instance nearest neighbor method, must be used for classifi­
cations. Here we will explain Bayes Independence (Naive Bayesian Classifier) 
and Nearest Neighbor methods because of their similarities to the COFI algo­
rithm.

Nearest neighbor method is one of the simplest methods conceptually, and 
is commonly cited as a basis of cornparison with other methods. It is often 
used in case-based reasoning [51].

Bayes rule is the optimal presentation of minimum error classification. All 
classification methods can be viewed as approximations to Bayes optimal clas­
sifiers. This theory is the fundamental statistical approach to the problem 
of ¡pattern classification. This approach is based on the assumption that the 
decision problem is posed in probabilistic terms, and that all of the relevant 
probability values are known.

Both NBC and NN algorithms are non-incremental, that is, they take and 
process all the training instances at once. On the other hand, the COFI algo­
rithm has an incremental structure. The COFI algorithm process each example 
separately and when new instances are fetched, it updates its concept descrip­
tion, that is, it does not have to know all the feature values at once. On 
the other hand. Naive Bayesian Classifier (NBC), and the version of nearest 
neighbor algorithm (NN*), similar to the COFI algorithm, process each feature 
separately. Therefore, we will compare the COFI algorithm with the NBC and 
the NN* algorithms.
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2.3.1 Naive Bayesian Classifier (NBC)

The computation of the a posteriori probabilities P(tCc|x) lies at the heart of 
the Bayesian classification. Here Wc is the class and x is the feature vector of 
the instance to be classified. Bayes rule allows us to compute the probabilities 
P{wc) and the class conditional densities p(x|tOc), but since these quantities 
are unknown, the best is to compute P(tUc|x) using all of the information at 
disposal.

Let Cl =  { u;i , u>2, . . ,uia:} be the finite set of s states of nature and A =  
{a i, q;2, .., «a } be the finite set of a possible cictions. Let be the loss
incurred for taking action ai when the state of nature is Wj. Let the feature 
vector X  be a vector-valued random variable, and let p(x\wj) be the state- 
conditional probability density function for x, that is, the probability density 
function for X  conditioned on toj being the state of nature. Finally, let P{wj)  
be the a priori probability that nature is in the state P{wj).  That is, P{wj)  
is the proportion of all instances of class j  in the training set. Then the a 
posteriori probability P(u;j |x) can be computed from p(x|iOj) by Bayes rule:

P{wj\yi) =
p{x\wj)P{wj)

P(x)
(2.5)

where

i=l
Wj). (2.6)

Since P{wj\yi) is the probability that the true state of nature is Wj, the 
expected loss associated with taking action cvj is merely

i?(ai|x) = ^ A ( q; ,> j)P (u;j|x ). 
i=l

(2.7)

In decision theoretic terminology, an expected loss is called risk, and P(o;i|x) 
is known as the conditional risk. Whenever we encounter a particular observa­
tion X ,  we can minimize our expected loss by selecting the action that minimizes 
the conditional risk. Now, our problem is to find a Bayes decision rule against 
P{wj)  such that minimizes the overall risk. A decision rule is a function a (x) 
that tells us which action to take for every possible observation. That is, for
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nbc(test excimple e) : 
begin

prediction = 0 
foreach class c

/*class_count[c]:# of examples that have the class value c * /  

g[c] = class_count[c] / (no of training examples)

foreach feature f
g[c] = g[c] * probability(e, f, c)

if g[c] > g[prediction] then 
prediction = c

return(prediction)
end.

Figure 2.7. The NBC Algorithm.

every X ,  the decision function o;(x) assumes one of the a values « i ,  « 2) ··, «a- 
The overall risk R is the expected loss associated with a given decision rule. To 
minimize the overall risk, we compute the conditional risk for i =  l , . . ,a  and 
select the action a{ for which i?(at|x) is minimum. The resulting minimum 
overall risk is called the Bayes risk and is the best performance that can be 
achieved.

R{ai\x) =  ^  A(o;i|u;j)P(rt;j|x)
i=i

(2.8)

The probability of error is the key parameter in pattern recognition. The 
error due to the Bayes classifier gives the smallest error from given distributions.

There are many different ways to represent pattern classifiers. One way 
is in terms of a set of discriminant functions gi{x), i =  where k is the
number of classes. The classifier is set to assign a feature vector x  to class tui 
if

g i { x ) > g j { x )  f o r a l l i ^ j .  (2.9)

Thus, the classifier is viewed as a machine that computes discriminant functions
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and selects the category whose discriminant function has the largest value.

For the general case we can let gi(x) = —i?(o;|æ) where —R{a\x) is the 
conditional risk, since the maximiim discriminant function will then correspond 
to the minimum conditional risk. For the minimum-error-rate case, things can 
be simplified by taking Qi{x) =  P(wi\x), so that the maximum discriminant 
function corresponds to the maximum a posteriori probability. The algorithm 
for the computing these a posteriori probabilities is shown in Figure 2.8.

The choice of discriminant functions is not unique. More generally, if every 
gi{x) is replaced by f{gi(x)),  where /  is a monotonically increasing function, the 
resulting classification is unchanged. This observation can lead to significant 
analytical and computational simplifications. In particular, for minimum-error- 
rate classification, any of the following choices gives identical classification 
results, but some can be much simpler to understand or to compute than 
others;

gi{x) =  P{wi,x) (2.10)

=
P{x\wi)P{wj)

E L i P { ^ M P { w j )
(2.11)

gi{x) =  P{x\wi)P{wi) (2.12)

gi{x) =  logP{x\wi) -h logP{wi) (2.13)

Even though the discriminant functions can be written in a variety of forms, 
the decision rules are equivalent. The effect of any decision rule is to divide 
the feature space into k decision regions, Ri^..,Rk. If gi{x) >  <7j(x ) for all 
i ^  j ,  then X is in Ri and the decision rule calls for us to assign x to Wi. 
The regions are separated by decision boundaries, surfaces in feature space 
where ties occur among the largest discriminant functions. If Ri and Rj are 
contiguous, the equation for the decision boundary separating them is

<7i(x) =  <?j(x)· (2.14)

While this equation may appear to take different forms depending on the forms 
chosen for the discriminant functions, the decision boundaries are, of course.
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probability(e, f, c): 
begin

foreach train example train_e 
if train_e's class = c then

if train_e's feature value = f then 
equalc++

elseif train_e's feature value < f then
if train.e's feature value = largest_of.smaller then

İ S C + +

elseif train.e's feature value > largest.of.smaller then 
largest.of.smaller = train.e's feature value 
Isc = 1

else
if train.e's feature value = smallest.of.larger then

S İ C + +

elseif train.e's feature value < smallest.of.larger then 
smallest.of.larger = train.e's feature value 
sic = 1

if equalc = 0 then
if largest.of.smaller == -INFINITY then

density = sic / (smallest.of.larger - x) / class.count[c] 
elseif smallest.of.larger = INFINITY then

density = Isc / (x - largest.of.smaller) / class.count[c] 
else

difference = smallest.of.larger - largest.of.smaller 
density = (slc+lsc) / 2 / difference / class.count[c]

elseif largest.of.smaller= -INFINITY then
density = equalc / (smallest.of.larger - x) / class.count[c] 

elseif smallest.of.larger= INFINITY then
density = equalc / (x - largest.of.smaller) / class.count[c] 

else
difference = smallest.of.larger - largest.of.smaller 
density = equalc / difference * 2 / class.count[c]

return (density) 
end.

Figure 2.8. Computing the a posteriori probabilities in the NBC Algorithm.
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the same. For points on the decision boundary, the classification is not uniquely 
defined. For a Bayes classifier, the conditional risk associated with either de­
cision is the same, and it does not matter how ties are broken. The algorithm 
of the NBC is given in Figure 2.7.

NBC processes each feature separately as the COFI algorithm does, that 
is, probabilities are independent from each other:

F(x\iUc) =  JJ F(xf\wc). 
1=1

(2.15)

For this reason the comparison of these methods is useful and the results 
of this comparison is given in Chapter 4.

2.3.2 The Nearest Neighbor Classification

Let X "  =  {x i , . . . ,x „ }  be a set of n labeled samples, and let x)̂  C be 
the sample nearest to x. Then the nearest neighbor rule for classifying x is to 
assign it the label associated with x|j. The nearest neighbor rule is a suboptimal 
procedure, its use usually will lead to an error rate greater than the minimum 
possible Bayes rate.

In this thesis, a special case of the nearest neighbor (NN) classification 
method is used and this case is represented by NN*. In this special case ecich 
feature is processed independently as processed in the NBC and the COFI al­
gorithms. We hcive used NN* in our comparisons, because the COFI, the NBC 
and the NN* algorithms share a common property of processing each feature 
separately and applying a voting mechanism to make the final prediction. In 
NN* all the examples are stored in memory as verbatim. In order to make 
predictions, the distance between test instances and training examples should 
be computed.

In the NN* algorithm, for each feature, the nearest training instance to the 
test instance is determined independently. Here the distance between a test 
instance x and a training instance y on feature /  is defined as

distance f (x,y)  = Xf — yf. (2.16)
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nn(test instance e) : 
begin

foreach class c 
vote[c] = 0

foreach feature f
distance to nearest = infinite 
foreach train example train_e

distance = distance(e, train_e, f) 
if distance < distance to nearest then 

distance to nearest = distance 
foreach class c

nearest_count[c] = 0
nearest_count[train_e's class value] = 1 

elseif (distance = distance to nearest) then 
nearest_count[train_e^s class value] ++; 

foreach class value c 
vote[c] = vote[c] + nearest_count[c]

prediction = 0 
for each class c

if vote[c] > vote[prediction] then 
prediction = c

return (prediction) 
end.

Figure 2.9. The NN* Algorithm.
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Here Xf is the /th  feature value of the test instance x and y/ is the f th  
feature value of the training instance y.

All examples are processed once for each feature, that is, the distance be­
tween all examples’ first feature value and the test instance’s first feature value 
is computed sejDarately. The training example which has the minimum distance 
(nearest instance in terms of the first feature) gives its class value as prediction 
for the corresponding feature, in our example this is the first feature. This 
process is repeated for all features. At the end, after all features make their 
predictions, the class value which is predicted mostly is the final prediction. 
The cilgorithm of this process is given in Figure 2.9. According to this distance 
metric, all feature values should be searched to find the minimum distance. 
Since the feature values are not stored in an ordered form in the real-world 
datasets, a sequential search gives the prediction for each feature. Therefore, 
the prediction complexity of this algorithm for one instance is 0{nm)  where n 
is the number of features, and m is the number of instances.

In Chapter 4, we will compare these statistical concept learning methods, 
the NBC and the NN* algorithms with the COFI algorithm in terms of accuracy 
and the space complexity by using some artificial and real-world datasets.



Chapter 3

Classification with Overlapping 
Feature Intervals

In this chapter the detailed explanation of the Classification with Overlap­
ping Feature Intervals (COFI) will be presented. The COFI algorithm is an 
exemplar-based concept learning algorithm. Learned concepts are represented 
as intervals on the class dimensions for each feature. Making pi’edictions de­
pends on the search over these intervals and voting among the predictions that 
all the features made.

The characteristics of the COFI algorithm will be presented firstly. The 
characteristic features will be compared with other learning techniques. Then, 
training and testing in the COFI algorithm will be presented and discussed, 
and the execution of the algorithm will be explained through examples.

3.1 Characteristics of the COFI Algorithm

Obviously, a learning system should have some characteristics to perform the 
learning task. However, these characteristics differ from one technique to an­
other one. Here, the general characteristics of the COFI algorithm are pre­
sented and then compared to some other learning methods.

3 2
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3.1.1 Knowledge Representation Schemes

One of the most useful and interesting dimension in classifying machine learning 
techniques is the way they represent the knowledge they acquire. Many systems 
acquire rules during the learning process.

Typically such systems will try to generalize the antecedents of rules, so 
that those rules apply to as large a number of situations as possible. Another 
way to represent what is learned is with decision trees as in the ID3 and C4.5  

algorithms [46].

Usually exemplar-based learning models produce neither rules nor decision 
trees. Instead, they create a memory space filled with exemplars, many of 
which represent generalizations and some of which represent individual exam­
ples from the system’s experience. In the IBL algorithms, individual instances 
are stored as shown in Figure 2.2. In the NGE algorithm, the exemplars are 
hyperrectangles, i.e., rectangular solids in E" [49] as shown in Figure 2.3.

In the COFI algorithm, the knowledge representation is similar to the NGE 
method. In this method no domain theory is used as in exemplar-based learn­
ing algorithms. Learned concepts are stored in memory and called intervals. 
These intervals are stored as a list for each feature and for each class. Each 
element (node) of this list contains upper and lower bounds of the interval, rep­
resentativeness count, that is the number of examples that interval represents, 
and the associated class value of the interval. The number of intervals depends 
on the example dataset, generalization distances and the coming order of the 
examples. At the worst case, if all examples are nominal and have different 
feature values, that is, they are unique, then the number of intervals is eqiuil 
to mn where m is the number of instances, and n is the number of features. 
However, if example feature values are linear and generalization distances are 
greater than zero, there will be much less number of intervals. The learned 
intervals are presented in the Appendix for each real-wold datasets that are 
used for empirical evaluation of the COFI algorithm.

The conversion of intervals to the if-then rules is also possible for the COFI 
algorithm. The explanation of this process is given in this chapter, in Subsec­
tion 3.2.4.
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3.1.2 Supervised Learning

Historically, the most important learning paradigm has been that of supervised 
learning. In this framework, the learner is asked to associate pairs of items. 
When later presented with just the first item of a pair, the learner is supposed 
to I'ecall the second. This paradigm has been used in pattern classification, 
concept acquisition tasks, learning from examples, system identification and 
associative memory. For example, in pattern classification or concept acquisi­
tion, the first item is an instance of some pattern or concept and the second 
item is the name of the concept. In system identification, the learner must 
reproduce the input-output behavior of some unknown system. Here, the first 
item of each pair is an input and the second item is the corresponding output.

Any ¡prediction problem can be cast in the supervised learning paradigm by 
taking the first item to be the data based on which a prediction must be made, 
and the second item to be the actual outcome what the prediction should have 
been.

On the other hand, in unsupervised learning techniques, the task is to es­
timate the class distributions successively, assuming that we do not know the 
true distributions from which the incoming samples are taken. This is also 
termed learning without a teacher. Because of the additional ambiguity, the 
computation of unsupervised estimation becomes more complex. However, 
the development of this kind of techniques is motivated by the hope that the 
machine may improve the performance without any outside supervision after 
initial learning in a supervised mode.

In the COFI algorithm, the supervised learning paradigm is followed. Here 
the first item is the attribute values of an instance and the second item is the 
class of that instance.

3.1.3 Incremental Learning

Strategies employed by most systems fall into one of two main categories as 
Quinlan has pointed out. The machine learning systems using incremental 
learning strategies attempt to improve cin internal model with each example
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they process. In batch (non-incremental) learning strategies^ a program must 
see all of the input examples before beginning to build a model of the domain.

Researchers who explore the incremental approach are typically concerned 
with developing plausible models of human learning, with agents that must 
interact with a dynamic environment, or with the efficiency of the learning 
mechanisms. In contrast, those who employ non-incremental learning methods 
are typically concerned with automating the process of knowledge acquisition 
for expert systems.

A non-incremental learning strategy usually assumes random access to the 
examples in the training set. A learning system which follows this strategy 
search for patterns and regularities in the training set in order to formulate 
decision trees or rules. They may examine and re-examine the training set 
many times before settling on a good model. The advantage of this approach 
is that it is not sensitive to the order of the training examples.

Despite the differences in motivation, researchers in both paradigms have 
much to learn from each other. Incremental and non-incremental systems often 
use the same basic learning operators and produce similar results. In many 
cases, one can create incremental variations of non-incremental algorithms. 
Presumably, many incremental learning methods also have non-incremental 
counterparts.

The COFI algorithm employs the incremental learning strategy. The learn­
ing task is performed in a dynamic environment. In the COFI algorithm, 
system represents the concept definition by means of the intervals. The con­
struction of intervals depends on the generalization distances. Since general­
ization distance is determined according to current maximum and minimum 
feature values, the order of the instances affects the boundaries of the inter­
vals. That is, generalization distance values depend on the order of the data. 
If generalization distances had static values then the order of the data could 
not be important and the COFI algorithm could not behave in an incremental 
manner. When a new training example is fetched, then the generalization dis­
tance and the related interval are updated. This is very similar to the human 
learning of ranges. One example of this incremental structure is illustrated 
by the following example where the dataset contains three instances, and the 
domain has a single feature. Let the training instance’s first feature values be
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Order of training instances (A)

ii.i = 1 c = 1

^ 2,1 -  4 c= 1

13,1 = 10 c= 1

generalization ratio g = 0.5

a) execution for i ,

f,

b) execution for i .

c) execution for i ;

------- 1---------
1

Cl
1

Cl
1
1

I
4

Cl
------- 1---------

Cl
------- 1-------------

Cl
_______ 1______

10

<[1 , 1 ] ,l,c^  > Di = 0 .0

<[ l , l ] , l , c^> Di = 1.5 

<[4,4],l,Cj >

<[ l , l ] , l , c^> Di = 4.5 

<[4,4],l,Cj > 
<[10,10],l,c^>

Figure 3.1. An example of construction of the intervals in the COFI Algorithm.
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Order of training instances (B)

11.1 c = 1

12.1 “ C = 1

13. 1  = 4  c = 1

generalization ratio g = 0.5 

a) execution for i ,

f Cl
1 ----- h-

1
<[l,l],l,c^> Di= 0.0

b) execution fo r i2

Cl Cl > Di = 4.5
H------
10 <[10,10],l,c^>

c) execution for i j

10
<[l,4],2,c^> Di=4.5

<[10,10],l,c^>

Figure 3 .2 . An example of construction of the intervals in the COFI Algorithm 
with the order of the training instances is changed.



given as shown in Figure 3.1. Then the construction of the intervals will be 
as shown in Figure 3.1. Here generalization distance Di is updated according 
to generalization ratio g and the current maximum and minimum feature val­
ues. It is clear that current maximum and minimum feature values depend on 
the order of the training instances. It is seen that, three point intervals are 
constructed after the execution of the third instance in Figure 3.1.

However, if the order of the instances is changed, then the construction 
of the concept descriptions will be as the one shown in Figure 3 .2 . Here, 
the order of the training instances is also shown in Figure 3 .2 . It is seen 
that, two intervals are constructed after the execution of the third instance. 
Therefore, updating generalization distances and updating intervals are the 
dynamic processes of the COFI algorithm, and these processes make the COFI 
algorithm incremental.
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3.1.4 Inductive Learning

Inductive learning is a process of acquiring knowledge by drawing inductive 
inference from the facts that are provided by a teacher or an environment. 
Such a process involves operations of generalizing, specializing, transforming, 
correcting and refining knowledge representations. There are several differ­
ent methods by which a human or machine can acquire knowledge such as 
rote learning (or learning by being programmed), learning from instruction (or 
learning by being told), learning from teacher provided examples (concept ac­
quisition), and learning by observing the environment and making discoveries 
(learning from observation and discovery).

The COFI algorithm performs the learning task from a set of preclassified 
training examples and makes generalizations on the knowledge to construct the 
concept descriptions.



CHAPTER 3. CLASSIFICATION WITH OVERLAPPING FEATURE INTERVALS 39

3.1.5 Domain Dependence in Learning

Domain dependence is important for some learning strategies. For example, 
explanation-based generalization (EBG) requires considerable amount of do­
main specific knowledge to construct explanations. In explanation-based learn­
ing (EBL), domain specific knowledge is applied to formulate valid generaliza­
tions from a single training example. The characteristics common to these 
methods is their ability to explain why the training instance is a member of 
the concept being learned [11 , 39].

Although there are common principles underlying explanation-based gen­
eralization, implementations are, of necessity, domain dependent. This results 
from the fact that explanation-based systems must construct explanations each 
time they experience a prediction failure, and these explanations always draw 
upon domain knowledge. As a result, every explanation-based learning system 
is different since every domain has its own special knowledge.

Exemplar-based learning, on the other hand, does not construct expla­
nations at all. Instead, it incorporates new examples into its experience by 
modifying its existing concept representation in the memory. Because it does 
not convert examples into another representation form, it does not need a do­
main theory to explain what conversions are legal. A consequence of domain 
independence is that systems can be adapted to new domains quickly without 
any extra domain knowledge.

The COFI algorithm is a kind of exemplar-based learning system. There 
is only one domain specific parameter in the COFI algorithm: generalization 
ratio. According to the structure of the features, this parameter is externally 
set.

3.1.6 Number of Concepts and Number of Features

Many early programs could learn exactly one concept, and some systems still 
remain limited in that sense. The COFI algorithm hcindles multiple concepts. 
Since it allows overlapping among classes (concept descriptions), the number 
of classes is not very important for the execution of the COFI.
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Number of features also is not important for the COFI algorithm. It can 
handle large number of features. Usually learning programs have difficulty 
to handle large number of features. The problem is that with a large num­
ber of features, very little can be learned using concept learning techniques. 
Exemplar-based learning systems perform best with a small number of vari­
ables, as do many other learning techniques.

3.1.7 Properties of Feature Values

The attributes in a dataset may be nominal (categorical), or they may be 
continuous (numerical). The term continuous is used in literature to refer to 
attributes taking on numerical values (integer or real), or in general an attribute 
with a linearly ordered range of attribute values.

Usually learning programs handle only binary variables or only continuous 
variables, but not both. The learning techniques that use only nominal at­
tribute values divide range of continuous values into subrange of values and 
assign each subrange to a nominal value, discarding the linear order defined 
on these values. The COFI algorithm handles features which have any type of 
values. Linear features may take on values from — oo to oo and they are con­
tinuous. Nominal features take on discrete feature values, for example, color 
attribute of an object is a nominal feature, or binary values such as answers to 
yes/no questions are also nominal feature values.

The COFI algorithm hcindles both the linear and nominal values in the 
same way but the generalization distances are taken as zero for the nominal 
values, because nominal feature values are not generalized.

3.2 Description of the COFI Algorithm

In this section the detailed description of the voting-based learning from over­
lapping feature intervals will be presented and illustrated.

Two processes of the COFI algorithm will be explained in the following 
sections: Training and the prediction processes. In the training of the COFI
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algorithm, learning task is performed by learning the knowledge representation 
overlapping feature intervals. In the prediction process, a test instance is taken 
and a prediction is made for it’s class value, that is, the prediction phase 
corresponds to classification by predicting the class of an unseen instance. In 
the following two subsections, the training and the prediction algorithms will 
be explained in details through examples.

3.2.1 Training in the COFI Algorithm

The input of the COFI algorithm is a training dataset. Each instance in the 
training dataset is represented by a vector. This vector’s size is equal to the 
number of features plus one for the associated class value. That is, ¿th instance 
e is represented as Cj = <  ¿̂,1, ,̂ ¿,2, ··, Xi,n·, cj >  where Xi,i,Xi,2, ■■,Xi,n are the cor­
responding feature values of features f i , /2·, ■■■, fn·, and Cj is the associated class 
of the example e«· where 1 < j  < k, here k is the total number of the classes. 
Therefore, the dimension of the example vector ei is n 1 where n is the num­
ber of features. In the COFI algorithm, both nominal and continuous feature 
values can be processed. In the algorithm, the continuous valued features are 
referred as linear features, and nominal valued features are referred as nominal 
features.

In the training process, examples are processed one by one and the cor­
responding intervals are constructed. This construction is described in detail 
and illustrated below. After the training phase, the COFI algorithm has com­
pleted its learning task. In other words, the COFI algorithm has learned the 
projections of the class intervals of each class dimension for each feature.

Learning overlapping feature intervals is done by storing the objects sep­
arately in each class dimension for each feature as class intervals of values. 
Basic unit of the representation is the “interval” in this algorithm. An interval 
consists of four parameters; lower and upper bounds, representativeness count 
and a class value. Lower and upper bounds of the interval are the minimum 
and maximum feature values that fall into the interval respectively. Represen­
tativeness count is the number of the instances that the interval represents, 
and finally the chiss value is the associated class of the interval. The COFI 
algorithm performs the learning task by learning the projection of the concepts
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over each class dimension for each feature, that is, the COFI algorithm learns 
the overlapping feature intervals for each feature.

Here, the training algorithm of the COFI will be presented and illustrated. 
Instances are represented as a vector of feature values and the associated class 
value. Initially, when the first example is processed, a point interval is con­
structed. This interval’s lower and upper bounds are equal and this boundary 
value is the corresponding feature value. It is represented as a point in the 
corresponding class’s feature value.

As an example, suppose that the first training instance of a training dataset 
Cl is of class Cl. As shown in Figure 3.3a, the corresponding class dimensions 
are updated and a point interval is constructed for each class dimension of 
each feature. In other words, if the first example is ci = <  xi,i,Xi,2iCi >  
where Xi,i,Xi,2 are the feature values of / i , / 2  and ci is the associated class, 
then a point interval will be constructed for the corresponding class dimension 
of each feature. In fact, a point interval firstly partitions the related class 
dimension of each feature into three intervals: First interval’s lower bound is 
—oo, upper bound is and representativeness count is 0 , second interval’s 
lower and upper bound are xi,i and the representativeness count is 1 , finally 
the third and the last interval’s lower bound is xi,i, upper bound is oo and 
the representativeness count is 0 again. First and third interval’s class value is 
associated as undetermined but the second interval’s class value is determined 
by the related instance’s class value, which is c i . Here an interval is represented 
as < [lower bound, upper bound], class value, representativeness count >.

According to this representation, the intervals for feature f\ in Figure 3 .3a 
may be represented as follows:

the first interval is :
< [-oo,Xi,i),UNDETERMINED,0 >,

the second interval is:
< [a:i,i,a:i,i],ci, 1 > ,

the third interval is :
< (a;i,i,oo],UNDETERMINED, 0 > .

For the second feature / 2, similar representation is valid. In this case, the
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Figure 3.3. An example of construction of the intervals in the COFI Algorithm.



CHAPTER 3. CLASSIFICATION WITH OVERLAPPING FEATURE INTERVALS 44

update_generalization_d istance(feature f ) : 
begin

D_f = (current_m ax(f) -  current_m in(f) )  * g e n e ra liz a t io n .ra tio  
end.

Figure 3.4. Updating generalization distances in the COFI Algorithm.

feature value is xi 2̂- If the is replaced by x i 2̂ in the above representation, 
then the second feature’s interval representations will be provided.

If the next coming training example belongs to another class dimension, 
the same procedure is applied and a new point interval is formed in this new 
corresponding class dimension. However, if it belongs to the same class di­
mension, then there is a potential for generalization of intervals. An interval 
may be extended through generalization with other neighboring points or the 
intervals in the same class dimension to cover the new feature value. In order 
to generalize the new feature value, the distance between this value and the 
previously constructed intervals must be less than the generalization distance, 
D f, for this feature.

Estimating the generalization distance Df for each feature is the first task of 
the training process. The algorithm of this process is given in Figure 3.4. Here 
the current maximum and current minimum feature values are the maximum 
and minimum values of the related feature seen up to the current example. 
They are updated by each new training example. The current jn ax (f) func­
tion in Figure 3.4, returns the maximum value for feature /  and the function 
current_m in(f) returns the minimum value for feature /  encountered up to 
the current training instance. The algorithm works in an incremental manner. 
Since current jn ax (f) and cu rren tjn in (f) change through out the training 
process, the COFI algorithm is effected by the order of the training instances. 
Firstly, the maximum and the minimum values are equal to each other and 
they are the first feature value of the related feature of the training instance. 
Therefore, initially all the generalization distances are 0 for each feature.

If the feature values of the next training instance are different from the 
previous example’s feature values, then one of the maximum and minimum
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value of the related feature is updated so the generalization distance will also 
be updated. The change in the generalization distances D f are computed before 
updating the class intervals. Generalization ratio, g, is an external parameter 
and used to scale the generalization distances. The generalization distance is 
computed as given below if the generalization ratio is g (the generalization 
ratio g is in the range [0,1]).

D f =  (current.maxf — current jn in j) * g. (3.1)

The generalization process is applied only to linear type of features. Nom­
inal feature values are not generalized. Therefore, if nominal feature values 
are processed then no generalization is done and Df values are taken as 0 for 
these kinds of features. The algorithm of the updating the generalization dis­
tances for each feature is given in Figure 3.4. The training process of the COFI 
algorithm is given in Figure 3.5.

After deciding the generalization distance D f, the intervals should be up­
dated according to D f. If the distance between the new coming example’s 
feature value and the previously constructed intervals is greater than the D f, 
then the new coming example constructs a new point interval.

Suppose that the second training instance C2’s first feature value is 0:2,1 and 
the distance between 0:2,1 <ind the point interval < [0:1,1, 0:1,1], ci, 1 > is less than 
the generalization distance Di. The second instance C2’s second feature value 
is 0:2,2 and the distance between X2,2 and the point interval < [0:1,2, 0:1,2], ci, 1 > 
is greater than the generalization distance D2· That is, for the second example 
62 = <  0:2,1, 3:2,25 Cl >,

\xi,1 -  X2,i\ < Di and

|3:i,2 -  3:2,2] > T>2 .

For the first feature / 1, generalization will occur, in the /1  ’s corresponding 
class dimension ci, but no generalization will be done on / 2 ’s class dimension 
Cl. Example of this process is shown in Figure 3.3b. The COFI algorithm will 
generalize the interval for 0:1,1 into an extended interval < [0:1,1, 0:2,1], ci, 2 >· 
Here, the representativeness count is also incremented by one, because this 
interval represents two examples now. Another point interval is constructed in
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train(training dataset) : 
begin

foreach example tr_e in the training dataset 
foreach feature f

update_generalization_distance(f) 
foreach class c 

updat e_ int ervals
end.

update_intervals(feature value of f): 
begin

key = feature value of f 
search interval that the key fall into 
if (interval = NULL) then 

make new point interval 
elseif (interval->lower > key) then

if (interval->lower - key) <= generalization.distauce then 
interval->lower = key 
interval->representativeness++

else
make new point interval 

elseif (interval->upper >= key then 
interval->representativeness++

elseif (key - interval->upper) >= generalization_distance then 
if next interval is close enough 

join two nodes
else

make new point interval
end.

Figure 3.5. Training process in the COFI Algorithm.
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the / 2 ’s corresponding class dimension, so this feature’s ci dimension will have 
two intervals < [a;i,2, 2:1,2] ,ci, 1 > and < [2:2,2, 2:2,2], c i , l  >.

If the new training example falls into an interval with a different class then 
the same procedures are executed for this new class dimension. If for example, 
third training instance Ca’s class is C3 , then the partitioning will be done in the 
Ca’s class dimension as in Figure .3.3c. This property of the algorithm allows 
overlapping, becciuse at the same time, different class intervals may be formed 
for the same feature values.

If one of the feature values of the next training example falls into an interval 
properly as shown in Figure 3.3d, then the interval’s representativeness count 
is incremented by one, that is if the interval is < [2:1,1, 0:2,1] ,c i , 2 >  and the 
next instance’s first feature value, xa,i, is between a:i,i and X2,i, that is, a:i,i < 
2'’3,i <  2:2,1, then the new interval will be < [2:1,1, 0:2,1] ,Ci,3 >. No physical 
change occurs on the boundaries of the interval but the representativeness 
count is incremented by one.

Overlapping Concept Descriptions

Perhaps the most important feature of the COFI algorithm is that it allows 
overlapping of intervals which are generalizations of feature values. That is, it 
has the ability to form different class or concept definitions for the same feature 
values. The rationale of this approach is based on the fact that there may exist 
different class values for the overlapping feature values. The COFI algorithm 
may store many intervals which correspond to same feature values but different 
class values. Here it is assumed that there are disjunctive concepts. Many 
concept learning programs have ignored disjunctive concepts, because they are 
quite difficult to learn.

Let us show the overlapping of concept descriptions intervals through an 
example. Let the fifth training instance of Figure 3.3 belongs to C3 . The feature 
values of this instance is shown in Figure 3 .3e. Assume that the generalization 
distances Di is greater than the distance between 0:3,1 and 0:5,1, so a range 
interval is constructed for the first feature’s C3 class dimension. Similarly, D2 

is greater than the distance between 0:3,2 a.nd 0:5,2, again a range interval is 
constructed for the second feature’s C3 class dimension. Here, the overlapping
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occurs between the descriptions of class ci and C3 . For the feature / 1, over­
lapping occurs between the feature values X54 and 2:2,1 and for the feature /2  

overlapping occurs at the point Xi,2. In Figure 3.3e, it is seen that, in the COFI 
algorithm no specialization is done, that is, there is no subdivision of existing 
intervals. This approach is plausible, because in real life, different concepts 
(classes) may exist at the same time, especially in medical field.

3.2.2 Prediction in the COFI Algorithm

After training with the training dataset, the prediction phase can be executed. 
The classification principle of the COFI algorithm is based on a majority voting 
taken among the individual predictions based on the votes of the features. The 
vote of a feature is based solely on the value of the test instance for that feature. 
The vote of a feature is not for a single class but rather a vector of votes, called 
vote vector. The size of the vector is equal to the number of classes. An 
element of the vote vector represents the vote that is given by the feature to 
the corresponding class. The vote that a feature gives to a class is the relative 
representativeness count of the class interval. The relative representativeness 
count is the ratio of the representativeness count to the number of examples of 
the corresponding class value. Since most of the datasets are not distributed 
normally in terms of their class values, this kind of normalization is required. 
The vote vectors of each feature are added to determine the predicted class. 
The class which receives the maximum vote is the final class prediction for the 
test instance.

For a given test instance i, the feature value if is searched on the intervals 
for feature / .  If if falls properly within a determined  ̂ interval in one or more 
of the class dimension(s), then votes of feature /1  represented by the vote vector 
V /  of votes Vfj is obtained for each feature:

V/ = <  Vf,l,Vf,2,-;Vf,k > (3.2)

h io n -U N D E T E R M IN E D : has a class value
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Here, k is the number of classes and

relative representativeness count if ij falls in a class c 
of the interval on feature /

(3.3)

0 otherwise.

The prediction process is performed for each feature by obtaining v j j  vec­
tors and then the final vote vector of the classes is obtained by summing these 
vectors:

n

"  (3.4)V  =  X )  V /  = <  Vi,V2,..,Vc,..Vk >  . 
/=1

where
k

E
c = l

(3.5)

The class which received the highest amount of votes is determined to be 
the predicted class for the test instance i. That is,

prediction(i) — c such that Vc > Vj fo r  each j  c. (3.6)

If the feature value does not fall into any interval in any class dimension, 
then the class is predicted as UNDETERMINED and no votes (in other words 0 
votes) are assigned to the vote vector elements. That is, no prediction is made 
for this feature value. The algorithm of the prediction process is given in Figure 
3.6.

As an example of the prediction process, suppose that the intervals are 
formed for all the training set elements as shown in Figure 3.7. For feature 
/ i ,  there exists one interval for first two class dimensions, and two intervals 
for class C3 . The corresponding intervals are also shown in Figure 3.7. For the 
second feature / 2, there exist two intervals in the first class dimension, and one 
of them is a point interval.

In the prediction phase, there are two possibilities. A test instance i may 
fall into an interval or not. For the first case, the corresponding value of the 
vote vector elements are the relative representativeness counts of the matched 
interval. Let the test instance Fs first and second feature values and ¿1,2 be
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prediction(test excimple i) : 
begin

vote_vector[] = 0 
foreach feature f 

foreach class c
interval= search(i_f) 
if (interval != NULL)

prediction = representativeness count
/ class count of test example i 

vote_vector [c] = vote_vector[c] + prediction

winner = 0 
foreach class c

if vote_vector[c] > vote.vector[winner] then 
winner = c

if (vote_vector[winner] = 0 then 
winner = UNDETERMINED

return(winner) 
end.

Figure 3.6. Prediction process in the COFI Algorithm.
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Figure 3.7. An example of execution of the prediction process in the COFI 
Algorithm.
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given as shown in Figure 3.7. To form the vote vectors, firstly relative repre­
sentativeness count of each matched interval should be computed. As seen in 
Figure 3.7,

class count of Cl : 100  

class count of C2 : 80 
class count of C3 : 95

For this case, the vote vector of the first feature is

vi =  <100/100 80/80 75/95 > =  < 1 1  0.79>, 
the vote vector V2 of the second feature is

V2 =  <0/100 0/80 95/95> =  <0 0 1> .

The vote vectors of each features are added to reach a final prediction, then 
the resulting vector v  is

V =  Vi -f- V2 =  <1 1 0.79> -f <0 0 1> =  <1 1 1.79> .

Here the voting is done for the maximum value, so the final prediction is the 
class C3 .

3.2.3 Handling Missing Attribute Values

One important issue about the COFI algorithm is the handling of the unknown 
(missing) feature values. If the dataset contains unknown feature values, noth­
ing is done about these feature values, that is, no classification or prediction is 
made by the COFI algorithm. This is a natural approach because in real life 
if nothing is known about a feature, it is usually ignored. Also in prediction 
phase, if an unknown value is encountered then no prediction is made, that is, 
the vote given to the vote vector is 0 for this feature. This is one advantage of 
the COFI algorithm because it is a simple and natural way.

If all clciss dimensions give no prediction, then no prediction is made and the 
resulting decision for the class is UNDETERMINED. An example of this situation
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Figure 3.8. An example of execution of the prediction process in the COFI 
Algorithm when test instance does not fall into any intervals.
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is given in Figure 3.8. Here, the test instance’s first and second feature values 
¿1,1 and ¿1,2 does not fall into any intervals, so all elements of the vote vector are 
0. This results in no prediction, and the COFI algorithm gives U N D E T ERMINED 
as its prediction.

3.2.4 Prom Intervals to Rules

In the artificial intelligence literature, knowledge representation in the form 
of if-then rules is a well-known knowledge representation technique. Intervals 
constructed by the COFI algorithm can easily be converted to the if-then rules 
form.

The condition of an if-then rule is a conjunction of conditions about each 
feature value. There will be one condition for each feature and depending on the 
relative representativeness count, different classes can be selected. Therefore, 
the maximum number of if-then rules is:

kY [n d i{f).
f

(3.7)

Here k is the number of classes, and ndi(f) represents the total number of 
disjoint intervals formed on feature / .

Let us illustrate the conversion of intervals into if-then rules through an 
example. Let the representation of concepts in the form of intervals be as in 
Figure 3.9. Here two classes ci and C2 are defined in terms of two features 
fi  and / 2 . The representation in Figure 3.9 consists of only twelve intervals. 
However, there are five disjoint intervals in each feature. Since there are two 
classes, the maximum number of if-then rules is 2 * 5 * 5 =  50. Fortunately, 
many of the rules can be grouped into more compact rules by connecting the 
conditions of the rules with the same class value.

The concept description of Figure 3.9 can be converted into eighteen if-then 
rules and these rules are presented in the following pages.
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Figure 3.9. An example concept description of the COFI Algorithm.
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if /1 < Xi AND (/2 < ?/3 OR 2/4 < ¡2  < y i OR /2 > 2/2) then 
UNDETERMINED

if / 1 < xx AND (i/3 < /2 < ¡/4) then 
C2

if / 1 <  iCi AND (yi <  /2 <  2/2) then 
Cl

if Xi <  f i  <  X3 a n d  (/2 <  2/3 OR 2/4 <  /2) then 
Cl

i f  <  /1 <  3:3 AND (2/3 < / 2 ^ 2 / 4  OR ri >  T4) then 

Cl
if a;i < / 1 < X 3  AND (2/3 < /2 < 2/4) then 

C2
if X3 <  f i  <  X2 a n d  (/2 <  2/3 OR 2/4 <  /2 <  2/1 OR /2 >  2/2) a n d  ri >  ?’2 then

Cl
if X 3 <  f i  <  ^2 and (/2 <  2/3 OR V 4 <  ¡ 2 <  2/1 OR /2 >  2/2) then 

C2
i f  2:3 <  /1 <  .X2 and (2/3 <  /2 <  2/4 OR ri >  T2 +  r4> then 

Cl
if ^3 <  /1 <  X2 a n d  (2/3 <  /2 <  2/4) then 

C2
if X3 <  f i  <  X2 a n d  (2/1 <  /2 <  2/2 OR T2 <  ri +  r3> then 

Cl
if X 3 <  f i  <  X2 a n d  (2/1 <  /2 <  2/2) then 

C2
if X2 <  f i  <  X4 a n d  (/2 <  2/1 OR /2 >  2/2) then 

C2
i f  ^2 <  /1 <  a;4 AND (2/1 <  /2 <  2/2 OR T3 >  r2> then 

Cl
if X2 <  f i  <  X4 a n d  (2/1 <  /2 <  2/2) then 

C2
if /1 >  X4 a n d  (/2 <  2/3 OR 2/4 <  /2 <  2/1 or /2 >  2/2) then 

UNDETERMINED



if / 1 > X4 AND (?/3 <  /2 < 1J4) then 
C2

if / 1 > X4 AMD (yi < /2 < IJ2) then 
Cl
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In this system, the rules are executed in the specific order given above. 
They are executed one by one and if the current rule’s condition is true then 
the prediction is made as the antecedent of that rule and the execution is 
stopped, that is, other following rules are not tried. Бог example, the rule

if <  /1 <  3:3 AMD (уз <  /2 <  2/4 OR Г1 >  Г4) then 
Cl

is executed before the rule

i f  Xi <  f i  <  X3 and (уз <  /2 <  2/4) then 

C2·

For this example, if the condition of the former rule is true then other rules 
will not be executed and the class value will be predicted as ci. However, if it 
is false, then the latter rule will be executed and if its condition is true then 
C'2 will be predicted as the class value. Here, it should be noted that, since 
the execution is done in the given specific order, the inverse of the condition 
xi >  X4, namely, ri < r4 is not added as a condition to the latter rule.

3.3 Comparison of COFI with Other Methods

An instructive comparison of the COFI algorithm may be made with the CFP 
algorithm. CFP is the basis of this voting based algorithm. The representation 
and processing of the data are very similar in both techniques. Both algorithms 
have similar training and prediction phases. The main difference stems from 
the fact that the CFP algorithm does not allow overlapping intervals. In the 
training phase of the CFP algorithm, if a new feature value falls in an interval



with a different class than that of the example and if the segment is a point 
segment, then a new point segment corresponding to the new feature value is 
inserted next to the previously constructed segment. Otherwise, if the class 
of the partition is not undetermined, then the CFP algorithm specializes the 
existing partition by dividing it into two sub-partitions and inserting a point 
segment corresponding to the new feature value in between them. Here it is 
seen that the CFP works on feature dimensions for each class and make spe­
cializations. However, in the COFI, no specialization is made by the algorithm. 
Since the class dimensions are different for each feature, there is no problem 
about a feature value which falls in an interval with a different class.

In the CFP algorithm, weight assignment and adjustment is done for each 
feature. The training process in CFP has two steps: learning feature weights 
and learning feature segments. In COFI, the training process is again made of 
two phases, but the first phase is updating the generalization distances. Weight 
assignment is done through representativeness count to the intervals, not to the 
whole feature.
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CFP is much more sensitive to irrelevant features than the COFI algorithm. 
Since the CFP algorithm allows specializations on the feature dimension, many 
number of unwanted segments are constructed when irrelevant features are pro­
cessed. However, COFI makes no specializations. Therefore, when irrelevant 
attributes are processed, usually one interval is constructed for each class di­
mension and it covers whole class dimension. By using this property of the 
COFI algorithm, irrelevant attributes can easily be detected. In the prediction 
process, vote vectors of all class dimensions give their relative representative­
ness count as prediction. If examples are distributed normally in terms of their 
class values, then their predictions will have no effect to the final prediction for 
the irrelevant attributes. An example of this situation will be given in Chapter 
4. This is one of the advantage of the COFI algorithm over the CFP algorithm.

The CFP algorithm has much more domain dependent parameters than the 
COFI algorithm. The generalization distances and the weight adjustment rate 
are the parameters of the CFP algorithm. In the COFI algorithm, there is only 
one domain dependent parameter, generalization ratio, g. One advantage of 
using less domain dependent parameters is that the algorithm is affected less 
by the chcinges of the data. However, one disadvantage is that all features are
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affected and updated by using one unique parameter. Therefore, it is not easy 
to set this ¡parameter properly for each feature.

After the COFI and the CFP algorithms comparison, we will compare our 
new method with the NBC and the NN* algorithms, because both the NBC 
and the NN* methods process features independently as the COFI algorithm 
does.

Both the NBC and the NN* algorithms are non-incremental algorithms, 
however the COFI algorithm has an incremental structure. These three algo­
rithms apply the majority voting procedure for the classification.

NBC usually gives the optimum solution for the prediction. However, it 
requires much more memory space than the COFI algorithm and its time com­
plexity is also greater than the COFI algorithm.

The performance of the NN* is usually worse than others, besides, it’s 
memory requirement and time complexity is greater than the COFI algorithm. 
In Chapter 4, we will present the comparison results of the NBC, the NN* 
and the COFI algorithms in terms of accuracy and memory requirement on 
artificial and real-world datasets.

It is instructive to compare our COFI algorithm with the IR rule, as well. 
IR, defined by Holte in 1991 [26], can be treated as a special case of the COFI 
algorithm. In this technique, as in the COFI algorithm, feature intervals are 
constructed to form concept descriptions. All classes and features are processed 
independently, as processed in the COFI algorithm. In IR, after the training, 
one of the feature’s concept description is taken as the rule. All prediction 
process depends on this selected feature’s concept description. However, in the 
COFI algorithm, after the training phase, a majority voting is done among the 
concept descriptions of all features.

As a final word for this section, we should emphasize the facts that the 
COFI, the CFP, the NBC and the NN* algorithms process each feature inde­
pendently in prediction and all of these algorithms select the class that receives 
the highest amount of votes from features.



Chapter 4

Evaluation of the COFI Algorithm

In this chapter, both empirical and theoretical evaluations of the COFI algo­
rithm will be presented. In the theoretical evaluation, the training and the 
testing time complexities of the COFI algorithm are computed. In the empir­
ical evaluation, COFI algorithm is compared with the NN*, the NBC and the 
CFP algorithms on artificial and seven real-world datasets.

4.1 Theoretical Evaluation of the COFI Algorithm

Intervals are constructed for each feature and class dimension in the training 
of the COFI algorithm. To construct the whole concept description, of course, 
all the training examples should be processed. This means that, we should 
process all feature values of each instances and put them on the corresponding 
class dimension.

The time comiDlexity of the COFI algorithm depends on the number of 
intervals. The number of intervals is determined by the generalization ratio, 
the nature of attributes of the training examples and the rejDeated feature 
values of the training examples. If nominal features are processed, then no 
generalization is done. In this case, all the intervals are point intervals, also, 
if all of them have unique values then the number of intervals is equal to the 
number of training examples for each feature. This is a very rare situation in 
real world datasets, if it occurs then these kind of fecitures are usually irrelevant

60
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features.

Updating the current representation by a training instance requires to 
search the interval, that the training instance falls on for its class dimension. 
Determining the interval on a given dimension for a given feature value requires 
a search on an ordered list. The complexity of this search is proportional to 
the number of existing intervals currently on the corresponding feature class 
dimension. Let the total number of training instances be m. In the worst case 
the number of intervals for one feature is m. Therefore, the time required by 
the training process for the ¿th instance is

ct.n.k.{i/k) (4.1)

where Ct is the training constant, n is the number of features, k is the number 
of classes and i/k 'is the average number of intervals for one class dimension. 
For all the training instances, this time will be

Ct.m.n.k.(m/k) (4-2)

Here, average number of intervals for one class dimension is m/k, since we have 
k class dimensions for each feature, there are maximum rn intervals for each 
feature. Therefore, training time complexity of the COFI cilgorithm is

0 { ‘m?n). ( 4 .3 )

In the prediction, we have intervals to search for the given feature values. 
Therefore at the worst case, complexity of classification of a test instcince is 
equal to the sequential search time on ordered lists which is

0{m n). (4.4)

By using an appropriate data structure, for example, balanced binciry tree, 
search can be done in (9(logm). However, for its simplicity in the implemen­
tation we choose to maintain the intervals on a feature-class dimension as an 
ordered list.

Space coinplexity of the COFI algorithm is usually less than other tech­
niques that store examples verbatim in memory. However, at the worst case, 
the space complexity of the COFI algorithm is

0{m n). (4-5)

Here, as it is explained above, mn is the maximum total number of intervals.
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4.2 Empirical Evaluation of the COFI Algorithm

In this subsection, results of the experimental evaluation of the COFI algorithm 
will be presented in details and compared with some other learning models. 
The COFI algorithm is tested on seven real-world datasets which are widely 
used in machine learning field, therefore comparisons are possible with other 
models. The real-world datasets are selected from the collection of datasets 
distributed by the machine learning group at the University of California at 
Irvine. We will compare the COFI algorithm with the NBC, the NN* and the 
CFP algorithms.

4.2.1 Methodology of Testing

Most definitions of learning rely on some notion of improved performance. Thus 
various performance measures are the natural dependent variables for machine 
learning experiments, just as they are for studies of human learning. There 
are three important measures for evaluation for a learning algorithm. They 
are accuracy, time, and storage complexity. In the previous section, we have 
computed the time and storage complexity of the COFI algorithm. In this 
subsection, accuracy will be measured empirically.

Several measures of performance are possible. For supervised concept learn­
ing tasks, the most commonly used metric is the percentage of correctly clas­
sified instances over all test instances. This metric cannot be used for un­
supervised learning tasks like conceptual clustering, but this measure can be 
generalized as the average ability to predict attribute values [19].

Accuracy of an algorithm is a measure of correct classifications on a test 
set of unseen instances. There are several ways of measuring the accuracy of 
an algorithm, in the literature the common techniques are cross-validation, 
leave-one-out and average of randomized runs.

Average of Randomized Runs: This method involves testing the algorithm 
over randomly selected training and testing sets. These sets are disjoint. The 
test is repeated for a fixed number of times. The final result is the average 
accuracy across all trials.
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Cross- Validation: This technique involves removing mutually exclusive test 
sets of examples from the dataset. For each test set, the remaining examples 
serve as a training set, and classification accuracy is measured as the average 
accuracy on all the test sets. The union of the all test sets equals to the whole 
dataset.

Leave-one-out: It is an elegant and straight forward technique for estimat­
ing classifier error rates. Because it is computationally expensive, it is often 
reserved for relatively small samples. For a given method and sample size 
(number of instances) m, a classifier is generated using m — 1 cases and tested 
on the remaining case. This is repeated m times, each time designing a classi­
fier by leaving-one-out. Each case is used as a test case and, each time nearly 
all the cases are used to design a classifier.

Evidence for the superiority of the leave-one-out approach is documented 
in the literature [15, 31]. While leave-one-out is a preferred technique, with 
large samples it may be computationally expensive. As the sample size grows, 
traditional train and test methods improve their accuracy in estimating error 
[28].

In this thesis, leave-one-out technique is used to report the performance of 
the COFI algorithm. We have chosen this technique because the accuracy of the 
COFI algorithm depends on the order of the training set. Another important 
issue in testing is that we want to make sure the training and testing sets are 
disjoint. Therefore, the test is performed on an unseen example in the COFI 
algorithm.

4.2.2 Experiments with Artificial Datasets

The success of a learning system is very dependent on the ability to cope 
with noisy and incomplete data, an adequate knowledge representation scheme, 
having a low learning and prediction complexities and the effectiveness of the 
learned knowledge [34]. Most of the real-world datasets contain incomplete 
and inconsistent data, therefore the ability to handle the inconsistent and in­
complete data is very important for learning algorithms.

Mciny researchers tackled the problem of handling examples which contain
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error or noise [7, 45, 52]. There are two types of noise that can be found in 
real-world datasets: classification noise and attribute noise.

One type of noise is the existence of irrelevant attributes. Real-world 
datasets usually contain unequally relevant attributes. Since which attributes 
are relevant and which are irrelevant can not be known before all of them are 
collected, all attributes should be taken initially.

Another type of the noise is the unknown (or missing) feature or class values. 
Handling unknown feature values is simpler than handling the unknown class 
values. To solve the problem of unknown feature values several techniques 
were used. One of them is to ignore them as it is done in NBC, NN*, CFP and 
COFI. In some techniques, additional instances are generated for all possible 
values of the missing attribute and rough sets theory [55] is used to solve the 
conflicts. It is a costly solution and applicable to attributes which have finite 
number of possible values.

To test the performance of the COFI algorithm on domains which have 
unequally relevant attributes, we have generated artificial datasets. These 
datasets contain additional attributes that are randomly generated. We can 
control the system’s behavior on the irrelevant attributes by using these arti­
ficial datasets. The artificial dataset, with no irrelevant features, contains 300 
instances, four features and three classes, 100 excimples for each class.

The noise-free concept descriptions used in the artificial data are given be­
low, these are hyperrectangles in a 4-dimensional space:

class 1:
0.0 < / i  <  5.0 L· 0.0 < /2  < 2.0 k  0.0 <  /3  < 2.0 k  0.0 < U <  5.0 

class 2:
4.00 <  /1  <  6.0 k  4.0 <  /2  < 8.0 k  5.0 < /3  < 7.0 k  4.0 < /4  < 6.0

class 3:
7.0 <  /1  < 10.0 k  7.0 < /2  < 10.0 k  2.0 < /3  < 4.0 k  2.0 < /4  < 5.0
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Learning with Unequally Relevant Attributes:

Both in machine learning and pattern recognition fields, most of the real- 
world datasets contain many unequally relevant features [6, 33]. Therefore, 
handling of these unequally relevant features is a very important task for a 
learning algorithm. Examples can be found in the pattern recognition tasks 
in which feature detectors automatically extract a large number of features 
for the learner [6]. Some of these features are not as relevant as the others. 
Another example can be seen in the field of medicine. The medical records of 
a large number of patients usually contain more information than is actually 
required for describing each disease in the task of learning diagnostic rules for 
several different disease.

One of the solutions to this problem is to use feature weights as used suc­
cessfully in [29, 49, 56]. A weight is assigned to each feature according to its 
importance. This importance is determined according to how much this feature 
affects the final true prediction. If a feature gives usually correct predictions 
then its weight will be high, however, if it usually makes wrong predictions 
then its weight will be low. In Chapter 2, the weight assignment of the CEP 
algorithm was explained briefly.

The COEI algorithm solves the problem of irrelevant features naturally. 
The irrelevant features constructs concept descriptions, or in other words, in­
tervals, such that they include whole class dimension.

Due to the generalization of intervals, usually, only one interval is con­
structed on the class dimension of an irrelevant feature. The lower bound of 
this interval is the minimum feature value and the upper bound of the feature 
is the maximum feature value. Therefore, if the number of examples for each 
class is equal to each other, that is examples are normally distributed in terms 
of their class values in the dataset, then the vote of each class dimension is 
equal to each other for the irrelevant feature. Therefore, their votes can be 
ignored. One example of this situation is given in Figure 4.1 and in Figure 
4.2. In Figure 4.1 the noise-free concept description of our artificial dataset 
is shown. In Figure 4.2, the concept description of our artificial dataset is 
shown with one irrelevant feature. It is seen that the irrelevant feature has 
large intervals that cover all the class dimension for each feature. In fact, it 
is a normal consequence of irrelevancy. This means that, feature values are
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DOMAIN: arlifIdal-O.dala (t; 0.75) g : 0.250
EXAMPLE.'300 CWSS:1 PREDICTION:! TEST-CORRECT: 75 ACCURACY: 1.00
fO: 1.729 fl: 1.306 f2:1.176 f3:W3

Run:l
Avr:1.00

Feature 0 min: 0.122 max: 9.987 gen.llmit 2.̂ 66—linear—

Feature 1 min: 0.(X13 max: 9.902 gen.limit 2.405 —linear—

Feature 2 min: 0.008 max; 6.955 genjimit 1.737—linear—

Feature 3 min: 0.010 max: 5.976 gen.limit 1.492—linear—

9.99
9.99
9.99

9.98
9.98
9.98

G.9G
G.9G
G.9G

5.98
5.98
5.98

Figure 4.1. The concept description of the noise-free artificial dataset by the 
COFI Algorithm.
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..

DOMAIN; artiiiclal-l.dala (1:0.75) g : 0.250 
EXAMPl£;300 ClASSM PREDICTON:! TEST-CORRECT: 75 ACCURACY: 1.00 
fO: 1.119 f1:0.1GG 12:0.111 13:1.753 M: 0.733

Feature 0 min; 0.122 max: 9.987 gen.limlt 2.̂ IGG—linear—

cl 0.12 C

a  0.12
C3 0.12

Feature 1 mirr 0.(M3 max: 9.982 gen.limlt 2.'185 —llnear-

cl 0.04 C

c2 0.04
C3 0.04

Feature 2 mire 0.008 max; G.955 gen_limlt 1.737 —llnear-

cl 0.01 i :

(2 0.01

(3 0.01

Feature 3 min: 0.010 max: 5.981 genjimit 1.493-linear—

cl 0.01 C
c2 0.01

(3 0.01

Feature 4 min: 0.047 max: 9.983 genjimit 2.484—linear-

cl 0.05
a 0.05
(3 0.05

9.99
9.99 

□  9.99

9.98
9.98
9.98

G.9B
6.98
G.9B

5.98
5.98
5.98

9.98
9.98
9.98

Figure 4.2. The concept description of the artificial dataset by the COFI 
Algorithm with one irrelevant feature.
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distributed between minimum and maximum feature values without any rule 
or boundary through the all class dimensions. If the class counts of each class 
are equal, then the vote vector elements of this irrelevant feature are equal. 
Therefore, they can not affect the final prediction in the COFI algorithm.

Three algorithms, namely the COFI, the NN* and the NBC algorithms, are 
tested on eleven datasets, ten of these datasets contains irrelevant attributes. 
Each time an irrelevant feature is added to the previous dataset. Initial dataset 
is a pure (with no irrelevant feature) dataset. The effect of the irrelevant 
features to the accuracy results and to the memory requirement are shown in 
Figure 4.3 and Figure 4.4 respectively.

In Figure 4.3, it is seen that, increase in the number of the irrelevant at­
tributes causes usually a great decrease in the accuracy for NN* algorithm. 
The NBC algorithm is not affected by the existence of irrelevant attributes. 
The COFI algorithm is also not affected by the irrelevant attributes. Its ac­
curacy results are almost same with or without the irrelevant attribute values. 
This means that, the COFI algorithm is one of the most reliable algorithms 
when irrelevant attributes are considered.

In Figure 4.4, the success of the COFI algorithm is very clear in terms of 
memory requirement. In fact, an increase in the number of irrelevant attribute 
values causes an increase in the memory requirement for all of the three al­
gorithms. However, since the memory requirement of the COFI algorithm is 
much less than the NN* and the NBC algorithms, the increase for the COFI 
algorithm is much less than the other algorithms. The NN* and the NBC al­
gorithms keep all the instances in memory verbatim, so each time they need a 
memory space equal to the number of instances for added irrelevant attribute. 
However, the COFI algorithm requires a memory space equal to the number 
of intervals that is constructed for added irrelevant attribute. If the general­
ization ratio is great enough, the number of the intervals will usually be equal 
to the number of class for new added irrelevant attribute. Here we assumed 
one unit of memory is allocated for each value. Since an interval contains four 
elements: lower and upper bounds of the interval, representativeness count and 
the associated class value, the memory requirement of one interval is four units 
of memory.



CHAPTER 4. EVALUATION OF THE COFI ALGORITHM 69

1 0 0 .0  $ ................................... ^ ..................... i t ........^ ........A ;........ A .......
Q

s:i
\

\

\ /  
\ /

\ /

90.0

80.0

>vo
23oo
<

70.0

&  ,

60.0

50.0

E]^

A ......A  COFI

□ ...... E] NN*

^  - * N B C

'E ^
\

b
- f ]

0 1  2 3 4 5 6 7 8 9  10
Number of irrelevant attributes

F i g u r e  4 . 3 .  A c c u r a c y  r e s u l t s  o f  t h e  C O F I ,  t h e  N N *  a n d  t h e  N B C  a l g o r i t h m s

o n  d o m a i n s  w i t h  i r r e l e v a n t  a t t r i b u t e s .



CHAPTER 4. EVALUATION OF THE COFI ALGORITHM 70

F i g u r e  4 . 4 .  M e m o r y  r e q u i r e m e n t  o f  t h e  C O F I ,  t h e  N N *  a n d  t h e  N B C  a l g o ­

r i t h m s  o n  d o m a i n s  w i t h  i r r e l e v a n t  a t t r i b u t e s .



CHAPTER 4. EVALUATION OF THE COFI ALGORITHM 71

Learning with Missing Attribute Values:

Every learning algorithm should handle missing attribute values in some 
way, because most of the real-world datasets contain unknown attribute values. 
Therefore, in the literature, there are some methods to handle these kinds of 
attribute values [23, 43, 44, 46]. Most of the methods are based on one of the 
following ideas:

• Ignoring examples that have unknown attribute value.

• Assuming an additional special value for unknown attribute values.

• Using probability theory by utilizing information provided by context.

• Generating additional instances for all possible values of the unknown 
attribute.

• Exploring all branches on decision trees, remembering that some branches 
are more probable than others.

The COFI algorithm selects the first method, it just ignores the unknown 
attribute values. This is the simplest approach, but it usually gives good 
results. This approach also causes reduction in training and testing time, 
liowever, other methods cause increase in the training and testing time.

Similar tests, as done for the irrelevant attributes, are done on the artificial 
datasets which contain missing attribute values. Figure 4.5 and Figure 4.6 
show the behavior of the COFI, the NN* and the NBC algorithms in terms of 
accuracy and memory requirement respectively, when the unknown attribute 
values are increasing in the dataset.

In Figure 4.5, it is seen that the COFI algorithm is not affected by the miss­
ing attribute values at all, because this algorithm can construct nearly perfect 
concept description by using the known attribute Vcilues if the distribution of 
the known values is normal. However, the NN* algorithm is affected by the 
missing attribute values. It’s accuracy results are steadily decreases when the 
number of the missing attribute values increase. The NBC algorithm is also 
not affected by the unknown attribute values very much such as the COFI 
algorithm.
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Portion of unknown attribute values (%)
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The memory requirement of these three algorithms cire not affected by the 
number of unknown feature values, so the memory requirement is constant 
through the increase in the missing attribute values. However, the memory 
requirement of the NBC and NN* is much greater than the COFI algorithm 
because of the nature of the algorithms. This situation is shown in Figure 4.6.

4.2.3 Experiments with Real-World Datasets

The COFI algorithm has been tested on seven different real-world datasets. 
These real-world datasets are taken from the collection of databases distributed 
by the machine learning group at the University of California at Irvine. The use 
of real-world datasets provides a measure for the system’s accuracy on noisy 
and incomplete datasets. In addition to this, it allowed comparisons between 
COFI and similar machine learning algorithms. Detailed explanations and 
comparisons will be given about these datasets in the following pages. Here, 
we have used the leave-one-out technique as a testing methodology.

We have compared the COFI algorithm with the NBC, the NN* and the 
CFP cilgorithrns. In these tests, the NBC and the NN* algorithms do not 
require any domain specific parameters. However, several domain dependent 
parameters should be set before the execution of the CFP and the COFI algo­
rithms.

In the testing of the CFP algorithm, GA-CFP is used to determine the 
domain dependent parameters of the CFP algorithm, that is, these domain 
specific parameters have been learned by GA-CFP. GA-CFP has used ran­
domly selected 20% of the dataset as its training data. The population has 
been selected as 100 for the genetic algorithm. Uniform crossover is used with 
the crossover probability of pc=0.7. The probability of mutation is ^^=0.01. 
The chromosome with best fitness value in 50 generations is used to set the 
domain dependent parameters of the CFP algorithm. The fitness value of a 
chromosome is two-fold cross-validation accuracy of the CFP algorithm on the 
training dataset randomly selected 20% of the dataset. In the mutation pro­
cess, an allele is multiplied by a randomly selected value between 0.5 and 1.5. 
The domain specific parameters of the CFP algorithm are the generalization 
distances for each feature and the weight adjustment rate, A . On the other
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Table 4.1. An overview of the real-world datasets.

#  of ^  of Linear #  of Unknown Baseline 
Dataset Size Features Features Classes Features Accuracy
ins
glass
horse-colic

ionosphere

hungarian

Cleveland

wine

150
214
368
351
294
303
178

4
9
22
34
13
13
13

4
9
7

34
6
6
13

3
6
3
2
2
2
2

0%
0%

30%
0%
0%
0%
0%

33%
36%
61%
64%
64%
54%
39%

hand, we have only one domain dependent parameter, generalization ratio g in 
the COFI algorithm and it is externally given to the algorithm. Therefore, it 
is not easy to set this parameter properly. The disadvantage is the difficulty of 
selecting the generalization ratio which provides the best interval construction 
for each feature. However, since we have only one domain dependent parame­
ter, the results of the algorithm are less dependent to the changes on the data 
than the results of the CFP algorithm.

An overview of the datasets is shown in Table 4.1. In this table, name 
of the real-world datasets are shown with the size of the dataset, number 
of features, number of linear features, number of classes, percentage of the 
unknown attribute values, and the baseline accuracy. The baseline accuracy of 
a dataset is the accuracy that will be obtained by predicting the class of any 
test instance as the class of the most frequently occuring class.

In the following pages, brief explanations will be given about the seven 
different real-world datasets that are tested by the NBC, the NN*, the CFP 
and the COFI algorithms.

Iris Flowers: Iris flowers dataset from Fisher [19] consists of four integer 
valued continuous features and a particular species of iris flower. There are 
three different classes: iris virginica, iris setosa, iris versicolor. The four at­
tributes measured were sepal length, sepal width, petal length and petal width. 
The dataset contains 150 instances, 50 instances of each three classes. The ac­
curacy of the COFI algorithm obtained for generalization ratio g — 0.020 is 
95.33%, and with this ¿iccuracy result, it achieves better than the NBC and the
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Table 4.2. Required memory and execution time of training for the COFI 
Algorithm.

Dataset Average Number of Intervals Time (msec.)
iris 137.75 13.348
glass 314.83 42.187
horse-colic 923.02 90.182
ionosphere 70.01 85.517
hungarian 48.99 51.090
Cleveland 69.99 52.817
wine 39.00 16.980

NN* algorithms. Its performance is only 0.67% less than the CFP algorithm. 
Tcible 4.2 shows the memory requirements of the COFI algorithm in terms of 
the number of the intervals and the time of learning phase for the COFI algo­
rithm. Table 4.3 shows the accuracy results of the NBC, NN*, CFP and COFI 
algorithms.

Glass D ata: This dataset consists of attributes of glass samples taken 
from the scan of an accident. The glass dataset contains 214 instances of which 
belongs to one of six classes. In this dataset there are 9 features. All feature 
values are continuous. In the processing of this dataset, the generalization 
ratio is given as 0.022. Results are shown in Table 4.3. Here, the CFP and 
the NBC algorithms achieves better accuracies than the COFI algorithm. The 
performance difference between the COFI and the CFP is again very little, 
1.87%. The NBC algorithm performs the best accuracy for this dataset, and 
the performance difference between the COFI and the NBC algorithm is 2.34%.

H orse-C olic Data: In this dataset there are 368 instances. Number of 
attributes is 22 and the number of classes is 3. Seven of these features are 
linear and fifteen of them are nominal. The 30% of the feature values is missing 
(unknown). We have set he generalization ratio as 0.020 for this dataset. Table 
4.3 presents the accuracy results.

Ionosphere Data: The radar data was collected by a system in Goose 
Bay, Labrador. This system consists of a phased array of 16 high-frequency 
antennas with a total transmitted power on the order of 6.4 kilowatts. The 
targets were free electrons in the ionosphere. Good radar returns are those
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Table 4.3. Accuracy results (%) of the algorithms for real-world datasets using 
leave-one-out evaluation technique.

D ataset NBC NN* CFP COF][
iris 93..33 92.67 96.00 95.33 (g==0.020)
glass 57.01 45.33 56.54 54.67 (g==0.022)
horse-colic 67.30 61.30 61.14 67.66 (g==0.020)
ionosphere 79.77 88.03 88.60 94..30 (g==0.270)
hungarian 79.59 63.95 81.29 84.69 (g==0.280)
Cleveland 80.53 80.20 85.48 81.85 (g==0.079)
wine 93.26 78.65 91.01 94.94 (g==0.043)

showing evidence of some type of structure in the ionosphere. Bad returns are 
those that do not; their signals pass through the ionosphere. Received signals 
were processed using an autocorreletion function whose arguments are the time 
of a pulse and the pulse number. There were 17 pulse numbers for the Goose 
Bay system. Instances in this database are described by 2 attributes per pulse 
number, corresponding to the complex values returned by the function resulting 
from the complex electromagnetic signal. David Aha briefly investigated this 
database. He found that k-nearest neighbor attains an accuracy of 92%, that 
Ross Quinlan’s C4 algorithm attains 94.0% (with no windowing).

In this data there are 351 data instances and 34 continuous attributes. 
The number of classes is 2, that is, this is a classification problem. There are 
no missing values in this dataset. Here the generalization ratio is 0.270 and 
achieved accuracy is shown in Table 4.3.

Hungarian and Cleveland Data: Both datasets are about the heart 
disease diagnosis. Each dataset has the same instance format. Cleveland data 
was collected from the Cleveland Clinic Foundation and Hungarian data was 
collected from the Hungarian Institute of Cardiology.

These databases contain 76 attributes originally, but in machine learning 
field 13 of them is used. All attributes are numeric valued and 6 of them have 
nominal values. The class is determined according to the presence of heiirt 
disease, that is, this is binary classification problem. There are no missing 
values in these datasets for the features that we have used. Accuracy results 
and the memory requirements are shown in Table 4.3 and Table 4.4 respectively.
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Table 4.4. Average memory requirements of the algorithms for real-world 
datasets.

Dataset NBC NN* CFP COFI
iris 750 750 594.36
glass 2140 2140 5389.12
horse-colic 6900 6900 5309.80
ionosphere 12285 12285 16893.52
hungarian 4116 4116 1863.64
Cleveland 4242 4242 2430.84
wine 2492 2492 5197.48

551.00 (g=0.020) 
1259.32 (g=0.022) 
3692.08 (g=0.090) 
280.04 (g=0.270)
195.96 (g=0.280)
279.96 (g=0.079)
156.00 (g=0.430)

W in e D ata: This dataset is about recognizing wine types. This data is 
provided by Pharmaceutical and Food analysis and technologies. The classes 
are separable. In a classification context, this is a well-posed problem with 
“well behaved” class structures. This dataset is the result of the chemical 
analysis of wines grown in the same region in Italy but derived from three 
different cultures. The analysis determined the quantities of 13 constituents 
found in each of the three types of wines. The dataset contains 178 instances. 
The class distribution of the data is given in Appendix. All attribute values 
are continuous. The generalization ratio is 0.043. Table 4.3 shows the results.

It is seen that, the COFI algorithm always achieves better results than the 
NN* algorithm. The COFI algorithm gives the best accuracy result for the 
horse-colic, ionosphere, hungarian and wine datasets among these four algo­
rithms. The NBC algorithm reaches better accuracy result than the COFI 
cilgorithm for only the glass dataset. However, the performance difference be­
tween the the COFI algorithm and the NBC algorithm is only 2.34%. The 
CFP and the COFI algorithm is usually achieves similar accuracy results. The 
COFI algorithm gives better accuracy results for the horse-colic, the iono­
sphere, the hungarian, and the wine datasets than for the CFP algorithm. For 
the iris dataset CFP is only 0.67% worse than the CFP algorithm, for the ghiss 
dataset this difference is 1.87%, and for the Cleveland dataset CFP achieves 
3.63% better accuracy than the COFI algorithm. It is seen that if the over­
all performance is considered, the COFI algorithm achieves the best accuracy 
results among these four algorithms for the seven datasets.
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If memory requirements are compared among these algorithms, it will be 
seen that, the COFI algorithm always uses less memory than the other algo­
rithms. The intervals are stored in memory in the COFI algorithm, and the 
number of intervals depends on the generalization ratio and the structure of 
the dataset, in other words, the distribution of the feature values. Four param­
eters are kept in memory for each interval, these elements are lower and upper 
bounds of the interval, representativeness count and the associated class value 
for the COFI algorithm. In the NBC and NN* algorithms, all the instances 
should be kept in memory verbatim. Therefore, for each instance the feature 
values and the associated class value should be stored in memory. The table
4.4 give the memory requirements of these algorithms for the seven real-world 
datasets. Here we assumed that one unit of memory is allocated for each ele­
ment of an interval and for each feature and class value. Since the execution 
time depends on the search among these stored information in the memory, 
the COFI algorithm is faster than the NN* and the NBC algorithms.

In the CFP algorithm, segments are stored in memory. However, since 
no overlapping is allowed and subpartitioning is done in the CFP algorithm, 
usually number of segments of the CFP algorithm is greater than the number 
of intervals of the COFI algorithm. Memory requirement of the CFP algorithm 
is also shown in Table 4.4.



Chapter 5

Conclusions and Future Work

In this thesis, we have presented a new methodology of learning from examples 
which is a new form of exemplar-based generalization technique based on the 
representation of overlapping feature intervals. This technique is called as 
Classification with Overlapping Feature Intervals (COFI).

COFI is an inductive, incremental and supervised concept learning method. 
It learns the projections of the intervals in each class dimension for each feature. 
Those intervals cori'espond to the learned concepts.

When compared to Naive Bayesian Classifier (NBC) and Nearest Neigh­
bor (NN) algorithms, COFI is similar to them, in that all of these techniques 
process each feature separately. All of them use feature based representation. 
The chissification process is based on majority voting for these algorithms. 
However, COFI requires much less memory than others, because in the train­
ing process, NBC and NN keep all examples with all feature and class values 
in memory separately. However, in COFI, only intervals are stored. There­
fore, when compared to many other similar techniques, the COFI cilgorithm’s 
memory requirement is less than their requirements.

The COFI algorithm is applicable to domains, where each feature is in­
dependent from others. Number of features and number of classes are not 
important for the COFI algorithm. Both nominal and linear feature values 
can be processed successfully.

80
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An important characteristic of the COFI algorithm is its ability of overlap­
ping. When compared to CFP, COFI is successful when CFP is failed in some 
cases. For example, if the projection of concepts on an axis are overlapping 
each other, the CFP algorithm constructs many segments of different classes 
next to each other. In that case, the accuracy of classification depends on the 
observed frequency of the concepts. However, in the COFI algorithm, since all 
class dimensions are independent from each other, no specialization is recjuired. 
The concept descriptions can be overlapped.

Another important property of the COFI algorithm is its way of handling 
the unknown attribute values. Most of the systems use ad hoc methods to 
handle the unknown attribute values [23, 44]. Like CFP, the COFI algorithm 
also ignores the unknown attribute values. Since the value of each attribute is 
handled separately, this causes no problem.

The behavior of the COFI algorithm to the irrelevant features is very inter­
esting. Irrelevant attributes can easily be detected by looking at the concept 
description of the COFI algorithm. Irrelevant attributes constructs intervals 
that cover whole dimension for each class. Therefore, the detection of the ir­
relevant attributes can be performed by looking at the intervals of the COFI 
algorithm. In the CFP algorithm, irrelevant attributes cause many number of 
fragmentations on the feature dimensions. While the COFI algorithm decreases 
the number of intervals, the CFP algorithm increases its segments during the 
processing of irrelevant attributes.

The COFI algorithm uses relative representativeness count for prediction. 
Using relative representativeness count provides a kind of normalization, be­
cause datasets usually contain non-homogeneous examples in terms of the num­
ber of examples that have the same class value. In the COFI algorithm, in­
tervals store four kinds of information; it’s lower and upper bound, associated 
class value and representativeness count. Representativeness count is the num­
ber of examples that interval represents. This number is divided to the total 
number of examples which have the same class value. Therefore, a kind of 
normalization is achieved to make the correct predictions.

One important component of the COFI algorithm is the generalization ra­
tio g. It controls the generalization process. This ratio is chosen externally 
depending on experiments. For a future work, an algorithm may be developed
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to find the optimum generalization ratio or genetic algorithms may be used to 
find the optimum generalization ratio.

One of the most important property of the COFI algorithm is that, one 
may easily predict the class of a given test instance by using the learned con­
cepts. The algorithm does not have to search all features. However, in some 
techniques, for example in decision trees, the algorithm has to search all fea­
tures until it reaches to a leaf. In the COFI algorithm, a decision can be made 
by just looking at some key attributes. This approach is similar to the human 
cipproach of classification.

At the end, it should be expressed the simplicity of the rules for the concept 
descriptions in the COFI algorithm. The simplicity of the algorithm does not 
affect the accuracy results when compared to the very complex algorithm NBC. 
NBC represent its knowledge in the form of probability distribution functions. 
Simple-rule learning systems are generally a viable alternative to systems that 
learn more complex rules by applying more complex algorithms. If a complex 
rule is induced, then it’s additional complexity must be justified by giving more 
accurate predictions than a simple rule.

When compared to the NBC and the NN* algorithms, the COFI algorithm 
uses much less storage, because both the NBC and the NN* algorithms should 
keep cill feature values separately in the memory to find the probability density 
function in NBC and to find the distance metric in NN* for predictions. In the 
COFI algorithm, intervals should be kept in memory. The memory required 
for intervals is usually much less than the required memory for the NBC and 
the NN* algorithms.

As a final word, we should repeat that the knowledge representation scheme 
in the form of overlapping feature intervals is a viable technique in classifica­
tion. The COFI algorithm can compete with the well-known machine learning 
algorithms in terms of accuracy. Also the requirement of much less memory and 
the high execution speed of the algorithm are the important advantages of the 
algorithm. This algorithm may be applicable to other problems encountered 
in artificial intelligence.
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Appendix A

Concept Descriptions of the 
Real-World Datasets

In this section, we will give the concept descriptions learned by the COFI 
algorithm for all of the real-world datasets that are used in this thesis. Here, 
the accuracy is determined as the average of the randomized runs.

In the following figures, in the first and the top box, the name of the example 
dataset, the training ratio i, the generalization ratio g, the number of the 
example that is being processed, the exact class value of the current example 
and feature values of the example are shown during the training phase. In the 
testing phase, the predicted class value, number of the correct predictions are 
added to this top box. At the end, that is, when the algorithm finishes its 
work, number of run, associated accuracy result and the average of the runs 
until the last one are also printed in this box.

In the second and the larger box, the construction of the intervals can be 
followed during the execution of the algorithm. While class intervals are being 
formed, current generalization distance, minimum and maximum feature values 
up to current example and the property of the feature, that is, whether it is 
linear or non-linear, are printed. After the execution, final rectcingles represents 
the concept descriptions. In the following pages, concept descriptions of five 
real-world datasets are presented.

T h e  c o n c e p t  d e s c r i p t i o n  d i f f e r s  a s  t h e  o r d e r  o f  t h e  t r a i n i n g  i n s t a n c e s  c h a n g e s .
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The accuracy depends on the order of the training instances, that is, the COFI 
algorithm has an incremental structure. For each randomized run a different 
accuracy is obtained, and in the following figures the concept description of 
the randomized run which gave the maximum accuracy among the 50 runs is 
presented.

Here, one important characteristic of the COFI algorithm is seen on the 
ionosphere dataset. The concept description of this dataset shows that all class 
dimensions are wholly covered by only one interval for some features. From 
Figure A.9 to Figure A. 12 , the concept description of this dataset is presented, 
and irrelevant features are easily detected in these figures by just looking at 
the structure of the intervals. For example, /7  is one of the irrelevant features, 
because, for all class dimensions there exist only one interval that cover whole 
class dimension.
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........'...................' ·..... ^ ..... COR.... A .......

DOMAIN:iris.data(t;0.75) 9 : »'325 
EXAMPI£;150 C1ASS;1 PREDICTION :1 
fO: 6.800 f1:2.800 f2:4.800 f3:1.400

TEST-CORRECT: 3 7 ACCURACY: 037
Run:43 
Avr:031

Options r)

j  m JjLAih·

Feature 0 min:

CLEAR) cO 4.30

cl 4.30

(2 4 .30

é  Random!» Feature 1 min:

cO 2.00

cl 2.00

C2 2.00

Feature 2 min:

cO 1.00

cl 1.00

a 1.00

Feature 3 min: 1

cO 0.10

cl 0.10

c2 0.10

7.90
7.90 

□ 7.90

□ 4.40
4.40

4.40

G.90
G.90
G.90

2.50
2.50
2.50

F i g u r e  A . l .  C o n c e p t  d e s c r i p t i o n  o f  t h e  i r i s  d a t a s e t .
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^ 1 - ............................................... ............... . ..... ,m .V,....... ........ ..........

Options r
DOMAIN; glass.data (t; 0.75) g : 0.200 Run:41
EXAMPl£:214 CLASS: 2 PREDICTION: 2 TEST-CORRECT: 32 ACCURACY: 0.59 Avr:0.49
(0:1.516 f1:12710 «2:1330 «3:1.430 14:73280 (5:0£70 «6:8240 «7 0.000 f8:0.000

J  Step h 'i-l-

Feature 0 nfiin: 1.511 max: 1.534 genjimit 0.005—linear—
-J

CLEM) W
cl 1.51 1____________________________ ______1 1 1.53
<2 1.51 1 □ 1 1.53
C3 1.51 1 1 1.53^  lîantlomb
(4
(5 1.51 1_________________________ ] 1.53
6 1.51 I IZ=I 1.53
c7 1.51 1___________________ J 1.53

Feature 1 min: 11.020 max: 17380 genjimit 1272—linear—

cl 10.73 1_____________ 1 17.38
a 10.73 1______________  ___L.:.:-. _____ 1 17.38
C3 10.73 1________________ ______1 17.38

> o4
(5 10.73 1 . .. . 1 17.38
cG 10.73 czzz 1 17.38
c7 10.73 1 C Z ___ 1 17.38

Feature 2 min: 0.000 max: 4.490 genjimit 0.89B—linear—

cl 0.00 1 ■ ■ : · Zl 4.49
<2 0.00 1 1 1 1__ 4.49
a 0.00 cz:z m 4.49 J
(4
Ğ 0.00 1 ,J 1 1 4.49
6 0.00 1 □ 4.49
c7 0.00 1 D □ 4.49 i

Feature 3 milt 0.290 max: 3.040 gen.limit 0.550 —linear—

cl 0.29 1 ' " 1 3.50 1^
(2 0.29 1____________ _̂_____________ J 3.50 1 ^

V L ....... o r * ,  J

F i g u r e  A . 2 .  C o n c e p t  D e s c r i p t i o n  o f  t h e  g l a s s  d a t a s e t .
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L · . . . : .........

Options r =
DOMAIN :gtes.data(t: 0.75) g : 0.200 Run:41
EXAMPl£:214 CIASS:2 PREDICTION: 2 TEST-CORRECT:32 ACCURACY: 059 Avr:0.49
ft: 1516 f1; 12710 12:3.330 13:1.490 14:73280 15:0.670 16:8240 17:0.000 ffi: 0.000

J  Step

cmf-

c4

c5 0.29

cB 0.29 IZ
c7 0.29

Feature 4 nfiin:70.1B0

cl 69.81

c2 69.81

c3 69.81

c4
6 69.81

cB 69.81

c7 69.81

Feature 5 min: 0.000

c l 0.00 zz
<2 0.00 1__
C3 0.00 z z
<4
(5 0.00 z
(6 0.00 1

c7 0.00 z z

Feature B min: 5 .790 i

cl 5.43
(2 5.43
C3 5.43
<4
<5 5.43
cfi 5.43
c7 5.43 L

□□
=□

3.50
3.50
3.50

75.41
75.41
75.41

75.41
75.41
75.41

6.21

6.21

6.21

I 6.21 
6.21 
6.21

16.19

16.19

16.19

16.19

16.19

16.19

F i g u r e  A . 3 .  C o n c e p t  D e s c r i p t i o n  o f  t h e  g l a s s  d a t a s e t  - c o n t i n u e d .
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r i . ... ......... ....: J .. . .... .........C O F I.,.2. ... ................·■................. ...........

■ Options r) DOMAIN:glass.data(t;0.75) g ; 0.200 Run: 41
EXAMPI£:214 CtASS:2 PREDICTION: 2 TEST-CORRECT: 32 ACCURACY: 059 Avr:0.49
f0:1516 f1;1Z710 f2:a330 f3:1.490 14:73.280 fS:0£70 16:8.240 17:0.000 ffi: 0.000

2  Step J-L-ii-........... :■.......—
: Feature/ min: 0.

Cl£AR);
cl 0.00 1
(2 0.00 1
C3 0.00 1

Rantlomiгe <4
C5 0,00 1
CB 0.00 1
c7 0.00 L

Feature 8 min: 0.1

cl 0.00 L
c2 0.00 L
c3 0.00 c
c4
6 0.00 1
cG 0.00 1
a 0.00 L

3.15
3.15
3.15

3.15
3.15
3.15

0.51
0.51
0.51

0.51
0.51
0.51

F i g u r e  A . 4 .  C o n c e p t  D e s c r i p t i o n  o f  t h e  g l a s s  d a t a s e t  - c o n t i n u e d .
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ODtions r;· DOMAIN: horse-coiicdata (t: 0.75) g : 0.200 Run: 7
EXAMPl£:368 CIASS:2 PREDICTION: 2 1iST-C0RRECT:G5 ACCURACY: 0.71 Avr:0.66
ft): 1.000 f1:1.000 f2:38.900 0:80.000 M; 44.000 f5:a000 f6;aooo f7:aooo 0:2000 f9:2.000 flO: 3.000

J  step 

СШ]

fiandomize

Feature 0 min: 1.000 max: 2000 gen.limit 0.000 —nominal-

cl 1.00 I 1 2.00
c2 1,00 1 1 2.00
C3 1.00 1 1 2,00

Feature 1 rain: 1.000 max: 9.000 gen.limit 0.000 -nominal-

cl 1.00 1 1 9.00
(2 1,00 1 1 9,00
(3 1.00 1 1 9,00

Feature 2 miicaaooo max: 40.800 gen.limit 0.960-linear-

cl aoo 1 1 40.Й0
a aoo 1 I 40.80
(3 3.00 1 1 40.80

Feature 3 min 30.000 max: 184.000 gen_limit 30.800 —linear—

184.00cl 30.001 _______________________________________ 1
(2 30.00 1 1 184.00

184.00C3 30.00 L. 1

Feature4 min: 8.000 max: 96.000 genjimit 17.600 Hinear—

cl 8.00
(2 8.00
C3 8.00

Features min: 1.000 max: 4.000 gen_limit 0.000—nominal—

cl 1.00 I
a 1.00 I
(3 1.00 I

I I I
I I I

11200
11200
11200

18.00
18.00
18.00

F i g u r e  A . 5 .  C o n c e p t  d e s c r i p t i o n  o f  t h e  h o r s e - c o l i c  d a t a s e t .
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f i : : " : · : . .C D Π ^  .

Options
i(t;0.75) g : 0.200 Run: 7
2 PREDICTION: 2 TEST-CORRECT: 65 ACCURACY: 0.71 Avr:0.66
f2:38.90C f3:80.000 1 4 :44.000 15:3.000 16:3.000 I7;a000 ffl: 2.000 19:2.000 110:3.000 111:3,000 112:2.000 1

C  step _ 111.................
- İJ Ü

Cl 1.00 1 1 1 4.00  1

C2 1.00 1 1 1 4 .00  '
Ci£AR]

C3 1.00 1 1 i 4 .00

Feature 7 min: 1.000 max: 6.000 gen_limit 0.000 —nominal—

^  RaRdonflizo

cl 1.00 1 1 1 1 i 1 6.00
c2 1.00 1 1 1 1 1 1 6.00
c3 1.00 1 1 1 1 1 1 6.00 .

A

Feature 8 min: 1.000 max: 3.000 gen.limit 0.000—nominal— V

cl 1.00 1 1 1 5.00

(2 1.00 1 1 1 5.00

C3 1.00 1 1 5.00

Feature 9 min; 1.000 max: 5.000 gen.limit 0.000 —nominal—

cl 1.00 1 1 1 i i 5.00

a 1.00 1 1 1 1 1 5,00

C3 1.00 1 1 1 1 1 5.00

Feature 10 min; 1.000 max: 4.000 gen.limit 0.000 —nominal—

cl 1.00 1 1 1 1 4 .00  !

(2 1.00 1 1 i 4 .00  1

a 1.00 1 1 1 1 4 .0 0  y

Feature 11 min; 1.000 max: 4.000 gen.limit 0.000 —nominal—

cl 1.00 1 1 1 1 4 .00  : -

(2 1.00 1 1 1 1 4.00  ‘

C3 1.00 1 1 1 1 4 .00

--------- -------------------------

F i g u r e  A . 6 .  C o n c e p t  d e s c r i p t i o n  o f  t h e  h o r s e - c o l i c  d a t a s e t  - c o n t i n u e d .
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....COfI
Options r; ■

)00 f12:Z000 fl3:2.000 fl4:7.000 fl5:3.000 flG: 1.000 f17:54.000 f18; G.500 fl9:3.000 f20:? f2l: 1.000 f22:7111

J  Step -U lb
1 caiui c lum rim i. j .

с ш ) . cl 3.30 1
c2 3.30 L
C3 3.30

^  fiandomlze Feature 19 min: 1.000 max: 3.000 gen.limit 0.000-nominal-

el 1.00 I I I
(2 1.00 I I I
c3 1.00 I I I

Feature 20 min: 1.000 max: 10.100 gen.limit 1.820—linear—

cl 0.10
C2 0.10
C3 0.10

Feature 21 min: 1.000 max: 2000 gen.limit 0.000 —nominal—

cl 1.00 I
C2 1.00 I
C3 1.00 I

Feature 22 min: 0.000 max: 31110.000 gen.limit 0.000—nominal—

cl 0.00 I
(2 0.00 I
c3 0.00 I

Feature 23 min: 0.000 max: 7111.000 genjimit 0.000-nominal-

cl 0.00 I
<2 0.00 I
C3 0.00 I

89.00
89.00
89.00

8.00
8.00
6.00

10.10 

□ 10.10 

10.10

I 2.00 
I 2.00 
I 2.00

41110

41110

41110

7111.(
7111.(
7111.C

F i g u r e  A . 7 .  C o n c e p t  d e s c r i p t i o n  o f  t h e  h o r s e - c o l i c  d a t a s e t  - c o n t i n u e d .
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Options vj

)00 f24:0.000 f25:2000

J Step

3 ) : cT 0.00 1
a 0.00 1

CliAB) (3 0.00 1

Feature 24 min; 0.000 max: 3205.000

iff l3Pd«ri)i2e
cl 0.00 1
c2 0.00 1
C3 0.00 1

;CPR.

iiliiiiiii

Feature 25 min; 0.000 max: ZOOO gen.limit 0.000 -nominal-

el

(2
0.00

0.00

c3 0.00

TTtrav
7111.C
7111.C

3205.(
3205.C
3205.C

I 2.00 
I 2.00 
I 2.00

F i g u r e  A . 8 .  C o n c e p t  d e s c r i p t i o n  o f  t h e  h o r s e - c o l i c  d a t a s e t  - c o n t i n u e d .
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|f£ cm...
Options г )

J Step lUH  

СШАГ1

fiandomize

DOMAIN: ionosphere.data (t: 0.75) g : 0.200 Run: 1
EXAMPlf:351 ClASS:0 PREDICTION :0 irST-CORHECT: 86 ACCURACY: 0.98 Avr:0.98
fC: 1.000 fl: 0.000 12:0.847 13:0.135 14:0.736 15:-0.062 16:0.873 17:0.083 18:0.889 f9:-0.091 fl0:0.7B:

Feature 0 min: 0.000 max: 1.000 gen_limit 0.200 —linear—

cO 0.00
cl 0.00 I

Feature 1 min: 0.000 max: 0.000 gen.limit 0.000 -linear—

cO 0.00 I
cl 0.00 I

Feature 2 min:-1.000 max: 1.000 gen.limit 0.400-linear— 

cO -1.00
cl -1.00 C

Feature 3 min: -1.000 max: 1.000 gen.llmit 0.400 —linear—

cO -1.00 I '
cl -1.00 I

Feature 4 min:-1.000 max: 1.000 gen.llmit 0.400-linear— 

cO -1.00
Cl -1.00 I .............

Features min:-1.000 max: 1.000 gen.limit 0.400—linear—

cO -1.00
cl -1.00 c:

c

Feature G min; -1.000 max: 1.000 gen.limit 0.400 -linear—

cO -1.00 IZH
cl -1.00 I -

Feature/ min:-1.000 max: 1.000 gen.limit 0.400—linear—

cO -1.00 C
cl -1.00 C

Feature 8 mlru -1.000 max: 1.000 gen.limit 0.400 —linear—

cO -1.00 I ' - H H
cl -1.00 f~ ] I

1.00

1.00

1.00

1.00

1.00

□ 1.00

J 1.00 
□ 1.00

□ 1.00 

□ 1.00

1.00
1.00

□ 1.00 

□ 1.00

□ 1.00 

□ 1.00

□ 1.00 

□ 1.00

F i g u r e  A . 9 .  C o n c e p t  d e s c r i p t i o n  o f  t h e  i o n o s p h e r e  d a t a s e t .
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F i g u r e  A . l l .  C o n c e p t  d e s c r i p t i o n  o f  t h e  i o n o s p h e r e  d a t a s e t  - c o n t i n u e d .
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f27;-0.048 128:0.782 f29:-0.007 f30:0.757 f31:-0.067132:0.858 f33:-0.082

FealurB 27 min: -1.000 max: 1.000 gon.limit 0.400 —llnear- 

cO -1.00 I

roalure28 mire-1.000 max: 1.000 gen.iimit 0.400—iinear- 

<0 - 1.00 I

cl -1.00 r~  ...........

feature 28 mire -1.000 max: 1.000 gen.iimit 0.400 —iincar—

cO -1.00 i ___ __________
cl -1.00 I

Feature 30 mire -1.000 max: 1.000 gen.iimit 0.400 —linear—

cO -1.00 C
cl -1.00 c

Feature 31 mire-1.000 max: 1.000 gen.iimit 0.400—linear—

cO -1.00 C
cl -1.00 c

Feature 32 mire -1.000 max: 1.000 gen.iimit 0.400 —linear— 

cO -1.00 I
cl -1.00 I 1

Feature 33 mire-1.000 max: 1.000 gen.iimit 0.400—linear—

cO -1.00 C
cl -1.00 C

□ 1.00
□ 1.00

□  1.00 

D  1.00

□ 1.00 
3  1.0011

i

□ 1.00 
□ 1.00

3 1.00 
□ 1.001

□ 1.001 
H  1.00

□ 1.00 ft 
3 1.001

1

□  1.00 III
□ 1.00 p|

F i g u r e  A . 1 2 .  C o n c e p t  d e s c r i p t i o n  o f  t h e  i o n o s p h e r e  d a t a s e t  - c o n t i n u e d .
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...... con
Options: г J DOMAIN: hungarian.data (t: 0.75) g : 0.300 Run: 17

EXAHPl£:294 ClASS:0 PREDICT10N:0 7IST-CORRECT:G7 ACCURACY:0.91 Avr:0.83
fO: 58.000 fl: 1.000 12:3.000 f3: HO.OOO 14; 179.00015:0.000 (8:0.000 17:180.000 (8:0.000 (9:0.000 (10:?

J  Step j j L J j -  

CLEAR):

Vf Randoml2e

Feature 0 min: 29.000 max: 88.000 gen.limit 11.100—linear—

cO 28.00 C
cl 28.00

Feature 1 min: 0.000 max: 1.000 gen.limifc 0.000 —nominal—

cO 0.00 I
cl 0.00 I

Feature 2 min: 1.000 max: 4.000 gen.limit 0.900 -linear-

cO 1.00 I I
cl 1.00 I I

Feature 3 min:9Z000 max: 200.000 gen.limit 3Z400—linear—

cO 92.00
cl 92.00 C

Feature 4 min: 100.000 max: 529.000 gen.limit 128.700—linear—

cO 85.00
cl 85.00

Feature 5 mire 0.000 max: 1.000 gen.limit 0.000 —nominal—

(0 0.00 I
cl 0.00 I

Feature 8 min; 0.000 max: ZOOO gen.limit 0.000—nominal—

cO 0.00 I
cl 0.00 I

Feature 7 mire 87.000 max: 190.000 gen.limit 30.900-linear— 

cO 82.00 I . ■ —-ZIZ
cl 82.00 I ---------

Feature 8 mire 0.000 max: 1.000 gen.llmlt 0.000—nominal—

cO 0.00 I

GG.00 
□ GG.00

I 1,00 
I 1.00

I 4.00 
I 4.00

200.00
200.00

G03.00
G03.00

I 1.00 
I 1.00

2.00
2.00

130.00
190.00

I 1.00

F i g u r e  A .  1 3 .  C o n c e p t  d e s c r i p t i o n  o f  t h e  h u n g a r i c a n  d a t a s e t .
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l E COR

Options!

:J Step 

ШЙ1:

DOMAIN; hun9arian.data ( t: 0.75) 9 : 0.300 R un; 17
EXAHP1£:294 C1ASS:0 PREDICTION:0 TEST-CORRECT: 67 ACCURACYlOJl Avr:0.83
fO: 58.000 fl; 1.000 f2:1000 13; 140.00014:179.00015:0.000 16:0.000 17; 160.00018; 0.000 18; 0.000 110:?

flandomize

Feature 8 min; 0.000 max: 1.000 gen.llmit 0.000 —nomlnal-

cO 0.00 I
cl 0.00 I

Features min: 0.000 max: 5.000 genjimit 1500—linear—

cO 0.00 C
cl 0.00 I

□

Feature 10 min: 1.000 max: 3.000 genjimit 0.000—nominal—

cO 1.00 I
cl 1.00

Feature 11 min: 0.000 max: 0.000 gen.llmit 0.000-nominal-

cO 0.00 I
cl

Feature 12 min: 3.000 max: 7.000 genjimit 0.000—nominal—

Ф 3.00 I
cl 3.00

I 1.00 
I 1.00

5.00 
I 5.00

3.00
3.00

1.00

I 7.00 
I 7.00

F i g u r e  A .  1 4 .  C o n c e p t  d e s c r i p t i o n  o f  t h e  H u n g a r i a n  d a t a s e t  - c o n t i n u e d .
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con
Options !·;.

J step

0OMAIN;cleveland.ilata(t:0.75) g ; 0.300 Run;27
EXAHP1£:303 C1MS:0 PREDICTION:0 liST-C0RRECT:B6 ACCURRCY:0.87 Avr:0J1
10:58.000 f1:0.000 f2:1.000 13:150.000 ft: 283.00015:1.000 16 : 2000 17:16200018:0.000 13:1.000 110:1.000

:ii,R;

l i i i

Feature 0 min: 29.000 max: 74.000 gen.limit 13.500 Hinear-

cO 29.00 I·· ■ .................

cl 29.00 r

Feature 1 min: 0.000 max: 1.000 gen.limit 0.000 —nominai—

cO 0.00 I
cl 0.00 I

Feature 2 min: 1.000 max: 4.000 gen.iimit 0.900—linear—

cO 1.00 I I
cl 1.00 I I

Features min:94.000 max:200.000 gen.limit31.800-linear—

d) 94.00 I
cl 94.00 I __  ~

Feature 4 mln:12B.000 max:5G4.000 gen.llmit 131.400—linear—

cO 12G.00C
cl 12G.00 C

Features min: 0.000 max: 1.000 gen.limit 0.000-nominal-

(0 0.00 I
cl 0.00 I

Features min: 0.000 max: ZOOO gen.limit 0.000-nominal-

cO 0.00 I
Cl 0.00 I

Feature? min:71.000 max:20ZOOO gen.limit39.300-linear-

71.01
cl 71.00 C

77.00
77.00

1.00

1.00

4.00
4.00

200.00
200.00

5G4.00
5G4.00

I 1.00

2.00

2.00

202.00

202.00

a

F i g u r e  A .  1 5 .  C o n c e p t  d e s c r i p t i o n  o f  t h e  C l e v e l a n d  d a t a s e t .



APPENDIX A. CONCEPT DESCRIPTIONS OF THE REAL-WORLD DATA SETS 106

COR
' Options't';

J  Step . 

CIEA8) '

si- Randomize

DOMAIN: develanddata ( t ; 0.75) g ; 0300 Run; 27
EXAHP1£:303 C1ASS:0 PREDICTIONiO ltST-CORRECT:GB ACCURACY:037 Avr;031
foisaooo f1; 0.000 f2:1.000 f3:150.000 H : 283.00015:1.000 fB:2000 f7 :18200018:0.000 0:1.000 110:1.000

Features min: 0.000 max: 1.000 gen.iimit 0.000—nominal-

cO 0.00 I

cl 0.00 I

features min: 0.000 max: 6.200 gen.limit 1.880—iinear— 

cO 0.00 I
cl 0.00 c

feature 10 min: 1.000 max: 3.000 gen.iimit 0.000—nominai—

cO 1.00 I
cl 1.00 I

feature 11 min: 0.000 max: 3.000 gen.iimit 0.000—nominal—

cO 0.00 I I

cl 0.00 I I

Feature 12 min: 3.000 max: 7.000 gen.ilmit 0.000-nominal—

cO 3.00 I
cl 3.00 I

1.00

1.00

8.20
8.20

I 3.00 
I 3.00

I 3.00 
I 3.00

7.00
7.00

F i g u r e  A .  1 6 .  C o n c e p t  d e s c r i p t i o n  o f  t h e  C l e v e l a n d  d a t a s e t  - c o n t i n u e d .
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con

Options T;
DOMAIN; wine.data(t; 0.75) g : 0.150 Run: 2
EXAMPl£:177 CIASS:2 PREDICTION:! 1iST-CORRECT;44 ACCURACY: 0.98 Avr:050
fO: 14.340 f1:l.G80 f2;Z700 (3:25.000 (4:98.000 (5 : 2800 (8:1310 (7:0.530 f8:Z700 f9:13.000 flO: 0.570

J  step

Cl£AI!i

Feature 0 min: 11.030 max: 14.830 genjimit 0570—linear—

cO 11.03
cl 11.03 I ' . . .
<2 11.03

Randomize Feature 1 min: 0.740 max: 5.800 gen.Iimit 0.759 —linear—

cO 0.74 I. _______
cl 
c2

0.74
0.74

C
c

Feature 2 min: 1.3G0 max: 3.230 gen.Iimit 0.281 —linear-

cO 1.3B CZI
cl 1.36 I
c2 1.36

Feature3 min: 10.600 max:30.000 gen.Iimit 2510—linear—

cO 10.60 I .■ . ■
cl 10.60 I I . -  — H Z
C2 10.60 1

Feature 4 min: 70.000 max: 151.000 gen.Iimit 12150-linear-

cO 70.00
cl 70.00
<2 70.00

Feature 5 min: 1

(0 0.98
cl 0.98
a 0.98

Feature 6 min: 0

cO 0.34
cl 0.34
a 0.34

□

□ 14.83
14.83
14.83

5.80 
I 5.80 

□ 5.80

3.23
3.23
3.23

30.00
30.00
30.00

162.00
162.00
162.00

3.88
3.88
3.88

5.08 
I 5.08
5.08

F i g u r e  A .  1 7 .  C o n c e p t  d e s c r i p t i o n  o f  t h e  w i n e  d a t a s e t .
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ili................. . io n

Options r’
.75) g : 0.150 Run; 2
2 PREDICTION;! TBT-CORRECT;44 ACCURACY: 0.98 AvriOlO
f2:2700 f3:25.000 H: 98.000 f5; 2.800 fG: 1.310 . f7:0.530 f8:2.700 19:13.000 fl0:0570 fl1:1160 f12:G.B00

j  Step 

ClEAfij;

Feature 7 min: 0.130 max: 0£B0 gen.limit 0.080—linear—

(0 0.13
cl 0.13
a 0.13

yf Randomize Features min: 0.410 max: 2.9G0 gen_limit 0.383-linear-

cO 0.41 I _______
cl 0.41 I ______
c2 0.41 I _____ I

Features min: 1.280 max: 11.750 gen_limit 1571—linear—

cO 1.28 I ---------
cl 1.28 I ■ -  .Z]
C2 1.28 I ------

Feature 10 min: 0.480 max: 1.710 gen.limit 0.185—linear—

(0 0.48
cl 0.48
a 0.48 □

Feature 11 min: 1.290 max: 1920 gen.limit 0195—linear- 

cO 1.27
Cl 1.27 I —
C2 1.27 I

Feature 12 min: 2780 max:1B.800 gen.limit 2.103-linear-

(0 2.78
cl 2.78
c2 2.78

□□
---1

0.6B 
□ O.GB 

0.GB

3.58
3.58
3.58

13.00
13.00
13.00

1.71 
I 1.71

1.71

4.00
4.00
4.00

16.80
1B.80
16.80

F i g u r e  A . 1 8 .  C o n c e p t  d e s c r i p t i o n  o f  t h e  w i n e  d a t a s e t  - c o n t i n u e d .


