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ABSTRACT OF THE DISSERTATION 

QUANTITATIVE SPATIAL UPSCALING OF CATEGORICAL DATA IN 

THE CONTEXT OF LANDSCAPE ECOLOGY: A NEW SCALING ALGORITHM 

by 

Daniel Gann 

Florida International University, 2018 

Miami, Florida 

Professor Jennifer H. Richards, Co-Major Professor 

Professor Keqi Zhang, Co-Major Professor 

Spatially explicit ecological models rely on spatially exhaustive data layers that 

have scales appropriate to the ecological processes of interest. Such data layers are often 

categorical raster maps derived from high-resolution, remotely sensed data that must be 

scaled to a lower spatial resolution to make them compatible with the scale of ecological 

analysis.  Statistical functions commonly used to aggregate categorical data are majority-, 

nearest-neighbor- and random-rule.  For heterogeneous landscapes and large scaling 

factors, however, use of these functions results in two critical issues: (1) ignoring large 

portions of information present in the high-resolution grid cells leads to high and 

uncontrolled loss of information in the scaled dataset; and (2) maintaining classes from the 

high-resolution dataset at the lower spatial resolution assumes validity of the classification 

scheme at the low-resolution scale, failing to represent recurring mixes of heterogeneous 

classes present in the low-resolution grid cells.  The proposed new scaling algorithm 

resolves these issues, aggregating categorical data while simultaneously controlling for 
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information loss by generating a non-hierarchical, representative, classification system 

valid at the aggregated scale. 

Implementing scaling parameters, that control class-label precision effectively 

reduced information loss of scaled landscapes as class-label precision increased.  In a 

neutral-landscape simulation study, the algorithm consistently preserved information at a 

significantly higher level than the other commonly used algorithms.  When applied to maps 

of real landscapes, the same increase in information retention was observed, and the scaled 

classes were detectable from lower-resolution, remotely sensed, multi-spectral reflectance 

data with high accuracy.  The framework developed in this research facilitates scaling-

parameter selection to address trade-offs among information retention, label fidelity, and 

spectral detectability of scaled classes. 

When generating high spatial resolution land-cover maps, quantifying effects of 

sampling intensity, feature-space dimensionality and classifier method on overall accuracy, 

confidence estimates, and classifier efficiency allowed optimization of the mapping 

method.  Increase in sampling intensity boosted accuracies in a reasonably predictable 

fashion.  However, adding a second image acquired when ground conditions and vegetation 

phenology differed from those of the first image had a much greater impact, increasing 

classification accuracy even at low sampling intensities, to levels not reached with a single 

season image.  
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INTRODUCTION 

Spatially explicit models of ecological processes across a landscape are useful for 

understanding naturally occurring environmental trends and disturbances or responses to 

management practices.  Such models depend on accurate detection of spatially explicit 

change in land-cover at adequate spatial and temporal resolutions.  Detection and 

monitoring of land-cover are common applications of remote sensing, but the reliable 

interpretation of changes in spectral reflectance patterns, either as they relate to biophysical 

parameters of the land surface or as changes in categorical land-cover classes, depends on 

the accurate identification of land-cover at the spatial, temporal and thematic precision at 

which changes are modeled.  Often, however, spatially explicit models of change patterns 

integrate datasets that have been acquired and/or interpreted at different spatial scales and 

therefore require reconciliation of scales by either upscaling the higher- or downscaling the 

lower-resolution data. 

The relationships between spectral reflectance patterns of electromagnetic radiation 

within the instantaneous field of view (i.e., pixel) recorded at a remote sensor and the 

biophysical parameters they relate to depend on the heterogeneity of the surface area 

covered by a single pixel.  For landscapes that display high heterogeneity in cover types 

relative to the spatial resolution of the remote sensor from which biophysical parameters 

are derived, the integration of highly variable reflectance patterns within a pixel leads to 

large errors and uncertainty in the estimation of those biophysical parameters. 

Complexities of spatial heterogeneity and reliable estimation of biophysical 

parameters using remotely sensed data have been identified and described for a suite of 

parameters and applications.  For instance, Leaf Area Index (LAI), which estimates green 
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leaf area per unit ground, and Fraction of Photosynthetically Active Radiation (FPAR), 

which estimates the fraction of radiant energy absorbed by of plants, are two important 

biophysical variables in ecosystem productivity models.  Estimates of both from remotely 

sensed data rely on prior knowledge of land-cover, biome or vegetation type (Ganguly et 

al. 2012; Le Maire et al. 2012; Steltzer and Welker 2006).  Consequently, as spatial 

resolution decreases, integrating over increasingly heterogeneous land surfaces with less 

precise knowledge of mixed-pixel compositions, leads to increase in error and uncertainty 

of estimated biophysical parameters. 

Another application where scaling of land-cover information is required is the 

modelling of land-cover change across long temporal extents.  For a specific geographic 

region, the classification schemes that capture frequent co-occurrence patterns of 

vegetation classes vary with scale.  Spatial and spectral resolution of a remote sensor 

determine adequacy of a sensor to differentiate the classes of a classification scheme.  

Availability of adequate remotely sensed data at each time step, therefore, dictate the 

spatial and thematic resolutions and, therefore, the scales at which maps can be reliably 

delineated from those data.  Since the spatial resolution of remote sensors increased by 

several magnitudes over the past four decades, low-resolution, mixed-pixel classes can now 

be represented by pure pixels of their constituent class components, resulting in land-cover 

maps with high spatial and thematic precisions.  Multi-spectral datasets of sensors, 

available since the late 1970s, have steadily increased in spatial resolution.  The datasets 

range from low-resolution data of about 1,000 m (e.g., Advanced Very High Resolution 

Radiometer), to medium resolutions of 10-50 m (e.g., Landsat, Satellite Pour l’Observation 

de la Terre, Sentinel 2, etc.), to high resolutions of less than 5 m for commercial and private 
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satellites (e.g., RapidEye, WorldView, GeoEye, etc.).  Airborne multi- and hyper-spectral 

sensors mounted on manned or unmanned aerial platforms even allow for mapping at very 

high sub-meter resolutions.  To combine categorical land-cover maps that were derived at 

different spatial resolutions, a reliable scaling algorithm is needed that retains as much 

information as possible from the higher resolution, while generating representative 

classification schemes that are valid at the lower spatial resolutions. 

However, the most common aggregation methods to match categorical vegetation 

maps to the scale at which biophysical parameters are often analyzed, or at which land-

cover changes are monitored, are the mode or majority rule, the nearest-neighbor rule, and 

the random rule.  Since none of these spatial aggregation methods account for scale 

sensitivity of classification systems, their application leads to uncontrolled loss of 

information content in aggregated maps, and, subsequently, ecological fallacy in ecological 

models that make use of these aggregated data.  Spatial scaling of categorical data, 

therefore, needs to be combined with re-classification and substitution of the original 

classification system.  No spatial aggregation algorithm, to date, considers re-classification 

of the categorical class system. 

This dissertation develops and explores application of a new spatial scaling 

algorithm that accounts for scale sensitivity of classification systems and information loss 

as spatial data aggregation occurs.  Chapter I addresses the requirements of a scaling 

algorithm that produces representative classification schemes at specific scales.  

Developing representative classification systems from quantitative measures of species co-

occurrence patterns has a long history in the fields of phytosociology, vegetation 

classification and community ecology (Braun-Blanquet 1964; Van Der Maarel 1979).  
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Drawing from these sub-disciplines of ecology, a new scaling method and an algorithm to 

implement the method were developed.  In a first step, the theoretical sample space of grid-

based categorical data was explored and characteristics of landscape and scaling 

parameters that affect the sample space were identified.  On the basis of the sample space, 

the new algorithm was developed.  A testing framework was introduced that allowed for 

testing of the effects that landscape characteristics and scaling parameters have on 

algorithm performance.  Effects were tested for a set of simulated neutral landscapes with 

known properties and a range for each of the scaling parameters. 

In Chapter II, the proposed scaling algorithm was applied to high-resolution 

categorical raster datasets to evaluate the effects of algorithm parameters on scaling 

consistency and detection of scaled classes from multi-spectral satellite datasets with lower 

resolution than the scaled high-resolution maps.  The goal was to optimize scaling 

parameters to reduce information loss, increase classification scheme consistency, and 

maximize classification accuracy.  Effects were evaluated for two natural landscapes 

within the greater Everglades (FL, USA) ecosystem whose vegetation had been mapped 

from WorldView-2 (WV-2) multi-spectral data at a spatial resolution of 2 m.  The maps 

were scaled to 30 m, the resolution of multi-spectral Landsat data and detectability of the 

scaled classes from Landsat data was evaluated. 

Because successful scaling of high-resolution categorical maps relies on accurate 

representations of the landscape, Chapter III assessed effects of classification methods on 

classification accuracy, confidence and method efficiency.  In chapter III, I explored the 

trade-offs of training sample size and feature-space dimensionality on overall accuracy, 

location-specific classification confidence, class-specific accuracies and classifier training 
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and prediction times. A framework to model the interactions of training sample intensity, 

feature space, and their effects on mapping accuracies and processing efficiency was 

developed and then used to optimize a mapping method for wetland plant communities 

from high-resolution multi-spectral satellite data. 
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CHAPTER I 

QUANTITATIVE SPATIAL UPSCALING OF CATEGORICAL 

INFORMATION: THE MULTI-DIMENSIONAL GRID POINT SCALING 

ALGORITHM 

Definitions (in alphabetic order) 

Classification – (1) quantitative grouping, to define classes; (2) statistical process of 

assigning objects or sample units to pre-defined categorical classes. 

Community – Frequently occurring association patterns of plant species with similar 

relative abundances and physiognomic characteristics for spatially defined geographic 

units (grain size) within a defined regional extent (landscape). 

Realized landscape – temporally and spatially sampled landscapes divided into spatially 

and temporally discrete units through quantization of space and time continuum. 

Scaling – process of spatial aggregation in combination with classification (quantitative 

grouping). 

Spatial aggregation – (1) spatial distribution of objects across a landscape; antonym: 

dispersion; (2) process of aggregating smaller geographic units into larger units, assigning 

new values based on a decision-rule algorithm. 

 

INTRODUCTION 

Spatially explicit ecological models rely on spatially exhaustive data layers that 

have appropriate scales for the ecological processes of interest (Lam and Quattrochi 1992; 

Mas, Gao, and Pacheco 2010; Quattrochi 1991; Sayre 2005).  Such exhaustive data layers 

are often categorical raster maps that were derived from high-resolution, remotely sensed 
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data and that require upscaling to a lower spatial resolution to make them compatible with 

the scale of ecological analysis.  Quantitative scaling of spatially explicit, continuous, raster 

datasets has received considerable attention (Wu and Li 2009), but several issues associated 

with the scaling of categorical data have not been resolved.  Statistical functions for spatial 

data aggregation that are meaningful for continuous data include sum, minimum, 

maximum, mean or median values of local neighborhoods, but none of these functions are 

valid for categorical data.   

Statistical functions most often used when aggregating categorical data are the 

mode, also known as the majority rule, the nearest-neighbor rule and the random rule.  

Majority rule follows the simple majority or plurality decision rule, where the assigned 

output class label is the input class with the highest proportion of sub-samples (mode); the 

nearest-neighbor rule assigns the class label of the original cell closest to the center of the 

scaled grid cell; and the random rule assigns the output class at random from the classes 

present within the output grid cell, either with the same probability for each class present 

or with probability proportional to class abundance.  Application of these three algorithms 

to the same input data can result in different class assignments of the up-scaled grid cell 

(Fig. 1.1). 

Two critical issues arise with the use of these functions: (1) ignoring large portions 

of information present in the high-resolution grid cells leads to high uncontrolled loss of 

information in the scaled dataset; and (2) maintaining classes from the high-resolution 

dataset at the lower spatial resolution assumes validity of the classification scheme at the 

lower resolution, failing to represent recurring mixes of heterogeneous classes present in 
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lower-resolution grid cells (Fig. 1.1).  The new scaling method proposed in this paper 

addresses both of these issues. 

Spatial Data Aggregation Algorithms and Information Loss  

Spatial upscaling of categorical raster data aggregates information to a coarser 

spatial resolution by combining information from multiple original map objects (i.e., 

pixels, grid cells) from the initial resolution.  As data are aggregated, information is 

generalized, leading to information loss (He, Ventura, and Mladenoff 2002; Turner 1989).  

Different spatial aggregation methods result in very different aggregated map products 

(Gann, Richards, and Biswas 2012; Ju, Gopal, and Kolaczyk 2005), over- or 

underestimating class abundances and often oversimplifying complex spatial patterns 

(Francis and Klopatek 2000; O’Neill et al. 1988; Wu 1999, 2004).  As a result of 

generalization, disjunction of information between scales can result in misleading 

conclusions about extant landscape patterns and their changes over time (Johnson et al. 

2001; Lam and Quattrochi 1992; Mas, Gao, and Pacheco 2010; O’Neill et al. 1996; 

Ostapowicz et al. 2008; Riitters et al. 1995; Scheiner et al. 2000; Tischendorf 2001; Turner 

1989; Wu et al. 2002). 

Incoherence between fine-scale maps and their spatially aggregated versions needs 

to be addressed to avoid faulty inference from models that use spatially aggregated 

categorical maps that are not representative at the scales that they are generated.  Since 

aggregation generalizes with the goal to maintain only information that is crucial to the 

analysis of a phenomenon at the aggregated scale, it is of interest not only to quantify the 

amount of information retained in the aggregated product, but also to control information 

loss.  Hence, to achieve optimal levels of generalization relevant to a scientific question, it 
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is essential for an aggregation algorithm to control information loss in a predictable and 

reproducible fashion and to quantify the information retained in the scaled product in a 

spatially explicit fashion. 

Classification schemes are only valid for the range of spatial scales for which they 

were defined.  Commonly applied spatial aggregation methods, such as the majority rule, 

nearest-neighbor rule, and random rule, do not account for scale sensitivity of 

classification systems.  These algorithms tend to increase abundance of dominant classes 

and reduce or eliminate rare classes (He, Ventura, and Mladenoff 2002) (Fig. 1.1), and 

even more complex spatial aggregation methods, such as scan statistics (Coulston et al. 

2014) only consider the original, high-resolution, classification system classes when class 

labels are assigned to the scaled, larger, spatial units.  These aggregation methods presume 

validity of class descriptors for the aggregated lower-resolution product, regardless of the 

scaling factor, which leads to uncontrolled loss of information content in aggregated maps 

(Fig. 1.1), and, subsequently, ecological fallacy in ecological models that make use of these 

aggregated data. 

Scaling methods that acknowledge class variability with spatial scales often use 

hierarchical class systems that aim at generating more general classes as aggregation occurs 

(Wu and David 2002).  Ju et al. (2005) developed the multi-scale, multi-granular 

framework that allows for scaling in the spatial domain using quad-tree data structures to 

increase flexibility for aggregation in the spatial domain and in the categorical domain.  

The categorical domain, however, was limited to hierarchical class labels that aggregate to 

coarser, all-inclusive, pre-determined class labels (Ju, Gopal, and Kolaczyk 2005).  

Hierarchical classification systems, by definition, aggregate linearly.  However, co-
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occurrence patterns of classes can result from processes that operate at different scales and 

do not necessarily lead to hierarchical systems.  Hierarchical classification systems, 

therefore, over-simplify complex patterns of spatial heterogeneity and mechanisms that 

lead to co-occurrence patterns.  In addition, hierarchical systems often lack the quantitative 

definitions required for automated scaling or aggregation algorithms.  Spatial scaling of 

categorical data, therefore, needs to go beyond aggregation of spatial units.  It needs to be 

conducted in combination with re-classification (grouping) of the original classes of the 

high-resolution classification system.  No aggregation algorithm, to date, considers these 

aspects of spatial aggregation of categorical data. 

An aggregation algorithm that generates scale-specific classification schemes as 

spatial aggregation occurs needs to be consistent in delivering class descriptors (labels) that 

are reproducible and representative for the entire population.  In the case of rasterized 

landscapes, representativeness is the recognition of entities or classes that recur frequently 

at a specific scale.  To attain adequate precision in the thematic domain that supports the 

use of the aggregated product in subsequent ecological models, the scaling algorithm 

should also provide a control mechanism for information retention in the thematic domain 

as the scaled classification scheme is generated. 

Ecology – the Unifying Framework for Scaling 

Several sub-disciplines of ecology have addressed similar issues that arise with 

scaling of categorical data.  Developing representative classification systems that are based 

on quantitative measures (i.e., species co-occurrence patterns) has a long history in the field 

of phytosociology, vegetation classification and community ecology (Braun-Blanquet 

1932, 1964; Van Der Maarel 1975, 1979).  The processes that determine co-occurrence of 
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plant species within a geographic region and the meaning of the term “communities” are 

debated.  What determines the meaning of the term community is whether community is 

perceived as a climax community (Clements 1916), as individuals of species associating 

independently in response to environmental gradients (Gleason 1939; Tansley 1935; 

Whittaker 1962), or as co-location of individuals that are mainly driven by stochastic 

events (Alonso and McKane 2004; Hubbell 2005, 2006; Rosindell, Hubbell, and Etienne 

2011).  However, regardless of which processes are responsible for community assembly, 

the use of the term “community” as a reference to recurring patterns of plant associations 

is practical and meaningful for operational purposes (Boutin and Keddy 1993; Keddy 1992, 

1993).  The definition of the term “community” itself depends on the interest and focus of 

a study (Parker 2001) and, therefore, relies on a set of clearly defined criteria.   

In the context of categorical data scaling, more important than the processes that 

lead to association patterns is the recognition that the quantitative co-occurrence patterns 

of species or vegetation types are dependent on spatial scale.  Association patterns of 

species, when randomly sampled on a 1-m2 scale across a defined spatial extent are 

expected to differ from the association patterns of the same species on a 50-m2 scale 

(O’Neill et al. 1996; Schlup and Wagner 2008).  Consequently, plant community 

classifications vary along the continuum of spatial scales.  Recognizing this variability in 

association patterns at different spatial scales, when upscaling and aggregating classes, 

captures the results of the various processes that lead to association patterns at the different 

scales (Cingolani et al. 2007; Shipley and Keddy 1987). 

Multi-scale, non-hierarchical classification schemes that allow vegetation classes 

to account for the full variability of co-occurrence patterns across scales are more apt to 
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account for patterns that vary across scales, especially when vegetation responses to 

environmental gradients and importance of stochastic events across scales are unknown.  

Such classification systems allow for a more dynamic view of changing landscapes (e.g., 

novel landscapes) at multiple scales.  Common aggregation methods do not recognize this 

need for non-hierarchical, scale-specific, classification systems and ignore ecological 

concepts of community assembly and scale dependence of patterns and processes (Jonsson, 

Moen, and Gunnar 1998), and, therefore, fail to recognize the possible invalidity of their 

aggregates.   

Samples drawn from a categorical raster map for a specific grid cell size (e.g., 3x3 

aggregation kernel) resemble relevé data of species abundance for quadrats or plots, where 

each sampled grid cell represents a plot of a relevé set.  The process of classification or 

quantitative grouping of relative species abundance of relevé plot data results in vegetation 

or community classification schemes.  Hence, a spatial aggregation algorithm that is tasked 

with the generation of a classification scheme faces similar challenges identified in the 

field of phytosociology: (1) how to classify communities or vegetation consistently when 

using sample data; (2) how to validate classes and class systems across the larger 

landscape; and (3) how to reliably assign unknown samples to pre-defined classes (De 

Cáceres and Wiser 2012; De Cáceres et al. 2009; Tichý, Chytrý, and S̆marda 2011; Tichý 

et al. 2010; Wildi 2010). 

A commonly used statistical grouping method is cluster analysis.  Most of the 

classic cluster methods that have been used in community ecology and phytosociology 

consist of a two-step procedure.  The first step establishes a measure of similarity or 

dissimilarity between all samples, which is usually based on distance metrics (e.g., 
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Euclidean, Manhattan, Canberra, etc.).  In a second step, samples are organized into 

clusters (groups) with either some form of hierarchical, k-means, density or probability-

based algorithm.  Distance-based algorithms aim at grouping objects to maximize distance 

of group object attributes and to minimize distances among objects assigned to the same 

group.  The number of statistically significant supported clusters can be determined based 

on a variety of validity indices (Arbelaitz et al. 2013). 

Accurate detection of vegetation requires that classification results are reproducible 

and consistent in determining a reasonable number of clusters that are representative of 

common vegetation-association patterns (De Cáceres and Wiser 2012; De Cáceres et al. 

2009; Mucina, Schaminée, and Rodwell 2000).  However, cluster results are highly 

dependent on cluster algorithm, distance metric and index selection, which leads to low 

confidence in cluster results.  Sampling error of cluster results has been addressed using 

bootstrap methods (Tichý, Chytrý, and S̆marda 2011), but representativeness of resulting 

classification systems derived from only a small sample across the larger landscape are 

rarely evaluated.  Further, the number of statistically supported clusters or classes is highly 

dependent on the nature of the underlying data pattern and its effects on the statistical 

methods that are applied (i.e., methods that rely on distance metrics).  It is therefore crucial 

to understand these effects to evaluate the applicability and limitations of these methods 

(Robertson 1980). 

Defining the Sample Space 

Data type, measurement level, and distribution patterns of the data have a strong 

effect on statistical results, which means that no method is universally superior or inferior 

(Milligan and Cooper 1985; Vendramin, Campello, and Hruschka 2010) and that data 
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analysis methods, including scaling algorithms, need to be evaluated in context.  Statistical 

data type, level of measurement, and distributions that rise from sampling a specific sample 

space are critical when selecting appropriate mathematical and statistical methods for 

inference.      

The sample space in the case of spatially explicit categorical data, as presented in 

raster maps, is a finite, discrete, sample space, where samples for spatial sub-units of local 

neighborhoods result in count frequencies of classes.  This sample space depends on (1) 

the spatial and thematic characteristics of the landscape and (2) the scale factor.  To develop 

a valid algorithm and to be able to evaluate algorithm performance, it is essential to 

understand how landscape characteristics and scale factor affect the sample data type and 

distributions. 

Two landscape characteristics that have an effect on the relative abundance 

distributions of samples are diversity and spatial arrangement or configuration of a 

landscape.  Diversity is represented by richness (rch) and evenness, while the spatial 

distribution patterns of the classes across the landscape can be summarized with a spatial 

aggregation metric (sptAgg) (referring to the characteristic, not the process).  Richness 

simply relates to the number of distinct object types that are differentiated at the sample 

scale.  For vegetated landscapes, object types can refer to species, assemblages, 

communities, or vegetation classes.  Evenness refers to the relative abundance of object 

types (i.e., species or classes) across the landscape.  Numerous ecological models attempt 

to explain the shape of relative species-abundance distributions, and mathematical models 

(e.g., log-normal series, log-series, or geometric series) are fit to model these distributions 

(McGill et al. 2007).  Spatial aggregation, as a characteristic of the landscape, refers to the 
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spatial distribution of object types and can range from systematic to random and from 

highly dispersed to completely aggregated, when the number of patches is equal to the 

number of classes. 

Scale factor (sf) is the ratio of the spatial resolution of the scaled grid to the 

resolution of the original or high-resolution grid (Eq. 1.1), and the number of sub-units or 

grid cells within a sample (𝑁𝑠𝑚𝑝) is the scale factor squared (Eq. 1.2). 

𝑠𝑓 =   
resolution(𝑠𝑐𝑎𝑙𝑒𝑑 𝑔𝑟𝑖𝑑)

resolution(𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑔𝑟𝑖𝑑)
                                                           𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1.1 

𝑁𝑠𝑚𝑝  = 𝑠𝑓2                                                                                                    𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1.2 

For instance, if the scaled grid resolution is 10 m and the resolution of the original data 

grid is 2 m then sf = 5 and the number of original cells in each scaled sample unit is 25.  

Let richness (rch) be greater than 1 and the scale factor (sf) be a positive integer with odd 

parity greater than 1 (i.e., {3, 5, 7 ….}).  Then, the number of possible distinct outcomes 

of a sample is the number of restricted or weak compositions with binomial coefficients, 

(
𝑁𝑠𝑚𝑝 + 𝑟𝑐ℎ − 1

𝑟𝑐ℎ − 1
) , 𝑜𝑟 

(𝑁𝑠𝑚𝑝 + 𝑟𝑐ℎ − 1)!

(𝑟𝑐ℎ − 1)! ∗ (𝑁𝑠𝑚𝑝 + 𝑟𝑐ℎ − 1 − (𝑟𝑐ℎ − 1))!
         𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1.3 

Since percent-cover per sample is constrained to exactly 100% (exclusive and exhaustive 

cell occupancy, without vertical stratification), the precision of relative class abundances 

is calculated according to equation 1.4. 

𝑃𝑟𝑐𝑐 =   
100

𝑁𝑠𝑚𝑝
                                                                                                𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1.4 

For instance, let rch = 2, and apply a scale factor sf = 3 (kernel of 3x3).  The number of 

sample units 𝑁𝑠𝑚𝑝 = 9 and the unique sample compositions (combinations of relative cover 

options) is 
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(
9 + 2 − 1

2 − 1
) , 𝑜𝑟  

(9 + 2 − 1)!

(2 − 1)! ∗ (9 + 2 − 1 − (2 − 1))!
  =  10 

The 9 sub-sample units with 2 class occupancy options for each sub-sample has 10 possible 

frequency combinations of the two classes (i.e., 4,5; 5,4; 3,6; 6,3; 7,2; 2,7; 8,1; 1,8; 9,0 and 

0,9) with a class precision of  𝑃𝑟𝑐𝑐 =   
100

9
=  11.1 %.  Thus, there are 10 possible new 

classes or class labels for the scaled grid cell. 

Table 1.1 presents the relationship of the richness and scale factor to the number of 

constrained unique compositions and their sample precisions.  For a given sf  > 1, as a 

landscape increases in richness (Tbl. 1.1, columns), or for a given rch > 1, as sf increases 

(Tbl. 1.1, rows), the number of unique compositions per sampling unit increases rapidly.  

Precision of relative cover differences (percent intervals) is determined by scale factor only 

(Eqs. 1.1, 1.2 and 1.4) and increases with sf.  For a given landscape, the frequency 

distribution of each possible composition with specific richness and scaled with a specific 

scale factor is then a function of diversity, which includes evenness of the class distribution 

and spatial class aggregation across the landscape. 

Presence and frequency of zeroes in the sample data also depend on landscape and 

sampling characteristics.  For example, for sf = 3, the number of sub-sample units = 9, and 

if rch = 10, every sample will produce compositions with at least one class being absent.  

Consequently, each observation includes at least one zero in the sample vector.  

Observations with zeroes are therefore anticipated whenever the scale factor is small 

relative to the number of classes and are always present when a scale factor produces a 

sub-sample unit count less than the number of original classes.  The number of zeroes in 
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each observation is expected to increase with richness and spatial aggregation of classes 

across the landscape. 

In summary, when sampling categorical raster models of landscapes with a square 

grid of dimensions n x n with n > 1, richness and scale factor determine the number of 

possible sample compositions, and evenness and spatial aggregation characteristics of the 

landscape determine the expected frequency distributions of each possible sample 

combination.  The constraint that the sum of all sample proportions = 1 makes the data 

compositional in nature.  Further, the presence of zeroes in any given observation is very 

probable.  Hence, a scaling algorithm that generates classification schemes as spatial units 

are aggregated has to be robust in dealing with compositional data (i.e., data that are 

percentages or proportions) and with the presence of a high frequency of zeroes in the data 

samples. 

Simplex Space 

The sample space of compositional data is called the simplex or SD (Aitchison 

1986). 

𝑆𝐷  =  {x =  [𝑥1;  . . . ;  𝑥𝐷]|𝑥𝑖  ≥  0 and ∑ 𝑥𝑖  =  κ}

𝐷

𝑖=0

                          𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1.5 

Simplex space is constrained to all 𝑥𝑖  ≥  0 , and the sum of all 𝑥𝑖 =  κ = 1.  Compositional 

data are scale invariant, consequently, statistical methods that group objects should result 

in the same groups and class labels if relative compositions are the same and only totals 

differ (e.g., total area sampled as scale factor increases).  When dealing with compositional 

data, and more specifically, count compositions (i.e., integers), quantitative grouping or 

classification methods (e.g., cluster algorithms, discriminant functions, etc.) that use 
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distance metrics of the real space R and that assume multivariate normal distributions are 

inadequate (Van Den Boogaart and Tolosana-Delgado 2008).  Proposed solutions for 

statistical analysis of compositional data are log-ratio transformations of compositional 

data (Aitchison 1986; Aitchison and J. Egozcue 2005).  Several log-ratio transformations 

have been proposed to convert compositional data from the simplex space S of D 

dimensions to the real space R with D+1 dimensions (Aitchison 1986; Egozcue et al. 2003), 

which then allows for application of analytical methods that are valid in R space.  The 

alternative approach is to stay in the simplex space for data analysis, which has the 

advantage that the modeled relationships of data structures are direct and more 

comprehensible.  The distance that is valid in the simplex space is the Aitchison 

distance, 𝑑𝐴.          

𝑑𝐴   =  [∑(𝑙𝑜𝑔

𝐷

𝑘=1

(
𝑥ℎ𝑘

𝑔(𝑥ℎ)
) − 𝑙𝑜𝑔 (

𝑥𝑖𝑘

𝑔(𝑥𝑖)
))2]

1
2

                                        𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1.6 

The geometric mean of the composition x (Aitchison 1986) is then 

𝑔(𝑥) = (∏ 𝑥𝑘

𝐷

𝑘=1
)

1
𝐷

                                                                                   𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1.7 

Log-ratio transformations and Aitchison distance, however, are not valid for compositions 

with components of zero and several methods have been proposed to deal with zero count 

data (Aitchison et al. 2000; Martín-Fernández, Barceló-Vidal, and Pawlowsky-Glahn 

2003; Martín-Fernández et al. 2014).  In the case of true absence, though, any of the 

proposed methods adds noise to the data and suggests presence of a class when, in fact, the 

class is absent. 
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In summary, common spatial aggregation algorithms (e.g., majority rule, random 

rule) lack robust quantitative scaling mechanisms that acknowledge scale-dependence of 

classification systems.  In addition, currently used algorithms do not estimate spatially 

explicit information loss or allow for control of information retention (thematic precision), 

potentially leading to excessive loss of information when scaling across large spatial units.  

Common statistical procedures and methods to establish vegetation classifications from 

sample data (i.e., cluster algorithms that rely on Euclidean distance metrics) are unsuitable 

for the data patterns that arise from the grid sampling design of categorical data, that 

produce multivariate compositional data structures with zero variance (sum 1 constraint), 

and that have a high frequency of zeroes. 

Therefore, the new scaling algorithm proposed here aims at conducting spatial 

aggregation of categorical data (e.g., land cover, land use, vegetation classes), while (1) 

simultaneously generating a non-hierarchical representative classification system valid at 

the aggregated scale and (2) allowing for control of information loss. 

The Multi-Dimensional Grid Point (MDGP) Scaling Algorithm 

The proposed scaling algorithm performs two main tasks: (1) the classification 

(grouping) of landscape objects that is valid for the scale of spatial aggregation, resulting 

in a scale-specific classification system; and (2) classification (assignment) of spatially 

aggregated units of the landscape to one of the classes of the new classification system. 

The first task creates a valid classification system at the specified scale, while the second 

task assigns the new classes in that system to the aggregated units of the finer scale data. 

The two tasks are integrated. 
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The algorithm recognizes the multi-dimensional feature space spanned by the 

compositional data structure space SD, the polyhedron, where the number of variables or 

features of the polyhedron define the vertices (i.e., richness, the number of original classes).  

Number and location of the regularly spaced grid points in the solid space of the polyhedron 

represent the finite number of discrete unique count compositions for a given richness and 

scale factor (Tbl. 1.1, Fig. 1.2).  As richness and scale factor increase, the number of 

possible class combinations (i.e., scaled richness) increases (Tbl. 1.1, Fig. 1.2), leading to 

an apparent shift from count composition (multinomial) distributions to distributions that 

resemble the multi-dimensional continuous scale (Van Den Boogaart and Tolosana-

Delgado 2008).  As the number of possible output classes rapidly increases to an 

unmanageable number, however, precision of the potential output class labels increases 

beyond ecological and, in many cases, statistical significance (Tbl. 1.1, Precision).   

The solution to reducing insignificant precision that is offered by the proposed 

algorithm is to limit the label precision by implementing a partitioning parameter, which 

reduces the number of grid points in the compositional feature space.  The precision 

parameter partitions the sample space (0-100%) into x equal parts for each class, for which 

class precision 𝑃𝑟𝑐𝑐 = 100/x.  The result is a polyhedron with regularly spaced multi-

dimensional grid points, where the number of dimensions is still equal to the number of 

features (i.e., classes), but the number of grid points is now limited by the number of equal 

parts instead of by the scale factor, thus reducing the number of possible weak 

combinations.  The effects of the partitioning parameter on the number of grid points and 

class-label precision are demonstrated in Table 1.2 and Figure 1.2.  Comparing Tables 1.1 
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and 1.2 illustrates the reduction in number of theoretical grid points and its effect on 

thematic class precision. 

The second step, classification or assignment of each scaled grid cell to a multi-

dimensional grid point, requires a decision rule.  The decision criterion proposed here is 

the minimization of information loss.  Let information loss be defined as the difference 

between relative frequency distribution of the sample data and the generalized, scaled 

representation, i.e., the multi-dimensional grid point.  The percent agreement of each class 

component in the abundance data and the grid point percentage constitutes the percent 

agreement of information; the reduction of information in an aggregated unit is then the 

difference between the abundance data (converted to proportions or percent) of the sample 

and the nominal aggregation percentages of the generalized grid point.  When none of the 

original classes are represented in the generalized class, agreement is zero with no 

information retained; if all proportions of the original composition are maintained in the 

aggregated class label, agreement is 100%, and no information loss has occurred.     

Hence, information retention (IR) for each scaled grid cell can then be defined as 

the sum of minimum agreement of each class component in the sample (Smp) and the grid 

point (GP), where Pi = relative abundance of class i in percent and N = the number of 

classes in the sample data of the scaled grid cell.  

𝐼𝑅 =  ∑ min(P𝑖𝑆𝑚𝑝, P𝑖𝐺𝑃)                                                                       𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1.8

𝑁

𝑖=1

 

For instance, implementing a class-label precision of 50% (part = 2) for a classification 

scheme of three original classes A, B, and C, produces six 3-dimensional grid points, 

including the following two combinations: A50_B50_C0 (A = 50%, class B = 50% and 
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class C = 0%) and A50_B0_C50 (A = 50%, class B = 0% and class C = 50%).  Calculating 

IR for a grid sample with abundance percentages of class A = 40%, class B = 10% and 

class C = 50% results in 50% and 90% IR for grid points one and two, respectively.  

Assigning the sample to grid point two maximizes IR, which is equivalent to minimizing 

information loss.  The integrated class-specific and landscape-level retained information 

content can then be estimated with standard descriptive statistical parameters (mean, 

standard deviation, median and percentile ranges).  Information retention is expected to be 

positively correlated with the partition or precision parameter and thus to function as a 

control parameter for information loss.  Since IR is a bounded metric (0 – 100%), 

independent of class number and scale factor, it can be compared across scaling results of 

different algorithms. 

A third aspect, class representativeness, was introduced to further reduce the 

number of final classes in the scaled classification scheme.  To allow for removal of non-

essential scaled classes that have a very low frequency across the re-scaled landscape, the 

minimum representativeness threshold parameter was implemented.  Applying this 

parameter, output classes (grid points) that are below the user-defined threshold are 

iteratively removed, and the grid cells that had been assigned to them are re-assigned to the 

remaining grid point that maximizes IR.  The process repeats until no class is below the 

representativeness threshold.  The threshold of a minimum percent representativeness 

across the landscape is optional but meaningful, especially when the non-representative 

classes are not of interest ecologically. 

A fourth parameter, also optional, allows for maintaining homogenous classes if 

they fall below the representativeness threshold and would be eliminated in the process of 
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grid point removal.  The homogeneity threshold defines is the minimum class percentage 

in a sample to declare it a homogenous or monotypic class.  If samples are encountered 

where the homogeneity threshold is reached for any of the classes, the grid point 

representing that class will be maintained in the final class set as a homogenous class 

(100%), even if it is below the landscape level representativeness threshold, which allows 

for retention of rare classes. 

Application of the MDGP-Scaling Algorithm to Categorical Raster Data 

Applying the MDGP-scaling algorithm to a categorical raster map requires six 

inputs.  These are a categorical raster map, scale factor (sf), the grid origin of the 

aggregated map, the partitioning parameter (part) representing the thematic class-label 

precision, and the optional threshold parameters for landscape representativeness threshold 

and homogeneity threshold as proportion.  The automated steps of applying the algorithm 

to a raster map are: 

(1) Generate a kernel with dimensions sf x sf. 

(2) Generate all enumerated scaled grid cells for the given scale factor (sf) for 

either a random origin (random selection of cells in the top left quadrant of the 

map to account for edge effect) or a user-defined origin.  The number of grid 

cells accounting for edge effects is the number of original cells minus the edge 

of the kernel along all four edges divided by the scale factor. 

𝑐𝑒𝑙𝑙𝑠(𝑥) −
 2 ∗ (𝑠𝑓 − 1)

2
𝑠𝑓

 ∗   
𝑐𝑒𝑙𝑙𝑠(𝑦) −

 2 ∗ (𝑠𝑓 − 1)
2

𝑠𝑓
          𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1.9 

(3) Extract cell values from map for all enumerated scaled grid cells. 

(4) Generate relative abundance of extracted values for all scaled grid cells. 
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(5) Generate multi-dimensional grid points (MDGP) based on user-defined 

partitioning parameter (part) that determines the thematic class precision of 

significant difference in relative percent cover (Tbl. 1.2, Fig. 1.3). 

(6) Remove scaled grid cells that are above the homogeneity threshold, calculate 

IR (Eq. 1.8) and add to a list of homogenous classes. 

(7) Generate IR for each heterogeneous composition in relation to all nominal 

MDGP compositions (Eq. 1.8). 

(8) Assign each scaled grid cell to the MDGP that maximizes IR. 

(9) Calculate relative abundance distribution of all MDGP classes (scaled output 

classes). 

(10) Remove the class (grid point) with the lowest percentage cover that is below 

the user-defined threshold unless the class is on list of homogenous classes. 

(11) Repeat steps (7) to (10) until all classes are above the landscape 

representativeness threshold and all scaled grid cells are assigned to a grid 

point. 

(12) Generate class descriptors (labels) for each grid point based on class 

dominance and percent rounded to the nearest integer (e.g., A60_B20_C20 

represents a grid point with 3 dimensions (original classes A, B, and C) and 

precision of 20% (part = 5) with class abundance A = 60%, class B = 20% 

and class C = 20%). 

(13) Assign class labels to each MDGP-classified scaled grid cell. 

The objective of the following simulation study was to compare spatial aggregation 

products of commonly applied aggregation algorithms to the proposed MDGP-scaling 
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algorithm and then to conduct a consistency and sensitivity analysis of the MDGP-scaling 

to the scaling parameters scale factor and class-label precision. 

METHODS 

Validity and efficacy of the MDGP-scaling algorithm was evaluated in comparison 

to other commonly applied aggregation algorithms.  It was also assessed with respect to 

consistency and sensitivity of information retention, class count and class-label fidelity as 

a function of scaling parameters and landscape properties.  To evaluate the proposed 

algorithm and compare it to other algorithms, a conceptual framework was developed that 

included a simulation component to generate artificial neutral random landscapes with 

known properties.  The landscape properties or characteristics that were controlled were 

richness, class-abundance distribution (CAD) and spatial aggregation of classes across the 

landscape.  Landscapes were simulated in a full factorial design for a range of values for 

each of these properties. 

Test Framework: Neutral Landscape Models 

Neutral models have been used in ecology to explore interactions between 

processes and patterns (Gotelli and Graves 1996; O’Neill et al. 1988).  In the landscape 

context, neutral models have been expanded to the spatial domain, where neutral refers to 

random landscape models with known properties that are process neutral (Gardner 1991; 

O’Neill et al. 1988).  Testing the performance of algorithms on samples taken from 

complex landscapes with known properties sets the statistical benchmark for applying them 

to real populations (With and King 1997).  Generating multiple replicas of landscapes with 

similar properties but that vary in spatial pattern allows for evaluation of consistency and 

sensitivity of algorithms to the variability of a variety of properties (Fahrig 1991).   The 
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test framework integrated the generation of neutral landscape models, scaling of the high-

resolution landscapes, and evaluation of scaling results when applied to the different 

combinations of landscape properties and scaling parameter options.  The framework 

consisted of three sub-routines (Fig. 1.4): 

(1) Generation of random neutral landscapes using the Python library nlmpy, in a full 

factorial design of value lists that were provided for the four parameters: 

a. Landscape model type { mid-point OR cluster } 

b. Richness (class number) { 2, 3 …. ) 

c. Spatial aggregation weight { mid-point: 0 – 1; cluster:  0 – 0.58 }  

d. Class-abundance distribution model { equal, geometric, log-series, 

gamma, negative binomial, log-normal } 

(2) Raw sample data extraction and grid-cell level tabulation of relative class 

abundances for each generated landscape and scale factor.  Required inputs are: 

a. Scale factor list { odd integers }  

b. Random origin count { integer }; Random origins were generated from a 

list of cells that were in the northwest quadrant of the first aggregation 

cell, including the center of that cell (e.g., for scale factor 3, the list of 9 

cells was limited to row and column (1,1; 1,2; 2,1; 2,2).   

c. For each scale factor and random origin, grid values are extracted from 

each landscape and relative class abundances are tabulated for all lower 

resolution grid cells. 
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(3) Scaling of the data to generate new class labels for the scaled output grid and an 

associated classification scheme for a set of algorithms of interest.  Required 

parameters are: 

a. Scaling algorithm list { majority, random, MDGP } 

For the MDGP-scaling algorithm, additional parameters are: 

b. Class-label precision list { 2, 3 …. }; At least one is required 

c. Landscape representativeness as proportion { 0 – 1 }; Optional with 

default 0.01 

d. Monotypic class threshold as proportion { 0 – 1 }; Optional with default 

0.9 

e. Each algorithm listed is applied to the set of cell-specific relative 

abundance data for each landscape, and evaluation variables for analysis 

are generated and written to file. 

The framework (Fig. 1.4) implements a full factorial design of all parameter lists.  The 

number of landscapes that are generated is the number of class-abundance distributions x 

the richness levels x the number of spatial aggregation levels of classes x the number of 

replicates of each landscape.  The number of scaled landscape versions is then the 

number of landscapes x the number of scale factors x the number of random origins for 

scaling x the number of class-label precisions.    

Landscape Parameter Settings for Simulation 

For the simulation study, neutral landscape models were produced with a mid-point 

replacement algorithm (Fournier, Fussell, and Carpenter 1982; Palmer 1992), which 

produces landscapes that resemble landscapes with environmental gradients.  Variability 
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of spatial patterns was generated for three levels of richness (3, 6, and 9 classes), two 

models of evenness (equal and geometric CAD models), and four levels of spatial 

aggregation (0, 0.3, 0.6, 1).  Equal abundance of cover types, although very unlikely in 

natural systems, provided the most neutral random landscape type.  The equal distribution 

models were contrasted with simple geometric class distribution models on the basis of 

ecological resource limitation theory (Motomura 1932), but any other statistical 

distribution model (e.g., log-series, gamma, negative binomial, log-normal) could have 

been implemented.  Proportions of class presence across the landscape were calculated 

according to equation 1.10 for equal class distributions and according to equation 1.11 for 

the geometric class distributions.  

P𝑐 =
1

𝑁
                                                                                                          𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1.10 

P𝑐 =
2𝑁−1

(2 ∗  2𝑁−1 − 1)  ∗  2𝑐−1
                                                                 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1.11 

The total number of classes is N, and P𝑐 is the proportion of class c.  Spatial aggregation 

for the landscapes was achieved with class aggregation parameters.  For the mid-point 

replacement models, aggregation parameter p ranges from 0 to 1.  For this study, four levels 

of spatial aggregation were evaluated: 0 for low aggregation and 0.3, 0.6 and 1.0 for 

increasingly more aggregated landscapes. 

A full factorial design, using the three richness levels, two class distribution models 

and four spatial aggregation settings, defined 24 landscape types.  For a subset of 12 of the 

24 landscape types, Figures 1.5 and 1.6 illustrate the effects on spatial pattern for richness 

of three and nine classes, and spatial aggregations of 0, 0.3 and 1.  The two figures separate 

landscapes by class-abundance distributions (evenness), resulting in the subset of six 
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landscape plots for both the equal (Fig. 1.5) and geometric (Fig. 1.6) CAD modeled 

landscapes.    

For each of the 24 landscape types with unique characteristics 10 replicates with 

1,000 x 1,000 cells (total number of cell = 1,000,000) were generated, resulting in 240 

neutral landscapes with known properties.  Aggregation algorithms were evaluated for four 

scale factors – 5, 9, 15 and 25 (25, 81, 225, and 625 original grid cells per scaled grid cell, 

respectively).  Origin of the scaled grid was randomized five times for each scale factor 

and landscape to evaluate effects of the arbitrary origin of scaled grids on class-label 

fidelity.  Applying scale factor and random origin to each of the 240 landscapes resulted in 

4,800 datasets of tabulated relative class abundances for each scaled grid cell. 

Algorithm Comparison 

Efficacy of the proposed MDGP-scaling algorithm was first evaluated in 

comparison to two commonly-used, categorical, spatial-aggregation algorithms, the 

majority rule and the random rule.  Majority rule is the simple majority or plurality 

decision rule, where the assigned output class label is the input class with the highest 

proportion of sub-samples (mode).  Hence, the majority rule can be equated to the simplest 

case of an MDGP-scaling algorithm with a single part or the lowest possible class-label 

precision of 100 %.  The random rule assigned the output class at random from the set of 

sub-samples, which means that class label probability was proportional to class abundance. 

Since one of the main concerns with spatial scaling was loss of information content, 

the three classifiers were compared on the basis of mean information retention at the 

landscape scale.  Information retention was assessed to determine if differences in 

information retention were significantly higher for the MDGP-scaling algorithm across the 
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24 landscape types and 4 scale factors that were evaluated in this study.  Retention of 

information content in a landscape was calculated as the mean IR of all classified grid cells.  

Landscape-scale mean IR was compared for the MDGP-scaling algorithm vs. the majority- 

and random-rule algorithm IR using pairwise-paired Wilcoxon rank-sign tests (Wilcoxon 

1945) because not all compared subsets were normally distributed.  Test p-values were 

adjusted using the Bonferroni correction for multiple comparisons by multiplying p-values 

by the number of comparisons.  Since there were 10 replicates for each landscape type with 

five iterations of random origin for each landscape, the number of paired samples for each 

landscape was 50 (N = 50).  Parameters for the MDGP-scaling algorithm for this 

comparison were class-label precision of 33.3% (part = 3) and a representativeness 

threshold of 1%.  The total number of scaled landscape models that were evaluated was 

14,400 (three algorithms x 4,800 aggregated landscape datasets). 

MDGP-Scaling Algorithm Consistency and Sensitivity to Scaling Parameters and 

Landscape Characteristics 

The second objective was to evaluate consistency of the MDGP-scaling algorithm 

and to assess the effects of landscape characteristics and scaling parameters on IR, class 

count and class-label fidelity.  Consistency of an algorithm is crucial to confidence in the 

results it delivers.  The assumption was that a consistent and reliable algorithm produced 

similar results when presented with similar data patterns.  Consistency in this study was 

defined as reproducibility of scaling output characteristics across different simulated 

random landscapes that were congruent in the key characteristics of richness, evenness and 

spatial aggregation.  For upscaling landscapes, it was expected that the scaled landscapes 

originating at arbitrary grid origins of the same original landscape would produce similar 
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scaled data patterns, as reflected in low variability of scaling results, but that variability 

would increase with scale factor as heterogeneity of grid cells increased. 

Three indicators that were expected to display low variance for a consistent 

algorithm, and thus were suitable for algorithm consistency assessment, were (1) 

information retention, (2) class count, and (3) class-label fidelity or the consistency in 

classification schemes.  Class-label fidelity (CLF) was defined as (1) the mean probability 

of class label recurrence across all class labels produced for the five random origins of each 

landscape (CLFmnPrb) and (2) the proportion of classes for which recurrence probability 

was one (CLFprp1).  The higher CLFmnPrb and CLFprp1, the more consistent and reproducible 

the scaled classification schemes.  Consequently, the more stable a classification system 

was across random origin realizations, the higher the probability that scaled classes were 

detectable at that scale for continuous landscapes. 

Consistency in CLF was evaluated with the variability of mean class probability of 

label recurrence calculated at the landscape level (N = 5) and then summarized with the 

mean and standard deviation across the 10 simulated iterations of each landscape type.  

Consistency was then compared across all landscape types by scale factor and class-label 

precision.  Mean information retention and class count consistency were evaluated at the 

landscape level with the standard deviations calculated across the five scaled random grid 

origin results (N = 5) for each random landscape.  Standard deviations were then 

summarized and compared across all 10 simulated landscapes for the 24 landscape types.  

For a consistent algorithm, even when scaling results were compared across different 

simulations of random landscapes that were generated with the same properties (i.e., 
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richness, class-abundance distribution and spatial aggregation), the scaled landscapes were 

expected to display similar properties and to have little variation. 

To evaluate robustness to random configuration differences for landscapes with the 

same characteristics, standard deviations of information retention and class count were also 

calculated across the five random origins for all 10 simulations of each landscape type (N 

= 50) and summarized with mean standard deviation across all landscapes. Variance was 

expected to increase slightly but to stay low if the algorithm was robust to slight differences 

in landscape configurations that did not differ in the core properties of richness, class-

abundance distribution or spatial aggregation. 

Sensitivity of the MDGP-scaling algorithm to scaling parameters and landscape 

characteristics was assessed with the magnitude of effects on IR and CLF evaluated by 

landscape type.  Information retention was expected to significantly increase, while CLF 

was expected to decrease with increasing class-label precision, regardless of landscape type 

and scale factor.  Significance of differences in IR and CLF between class-label precisions 

was tested with pairwise-paired Wilcoxon rank-sign tests (Wilcoxon 1945), and p-values 

were adjusted using the Bonferroni correction.  The magnitude of differences between 

class-label precisions for both variables, however, was expected to vary with scale factor 

and landscape characteristics. 

Since it was expected that IR increased with class-label precision, but that, 

simultaneously, CLF decreased, I also investigated the relationships between these 

variables and the scaled output class count.  Predictability in the relationship between IR, 

class count and CLF establishes the foundation for a formal definition of algorithm 

optimization such that selection of the class-label precision parameter optimizes IR while 
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minimizing scaled class count and maximizing CLF.  Consistency and sensitivity of the 

three indicators (IR, class count and CLF) were assessed for four scale factors (5, 9, 15 and 

25) and four class-label precisions, ranging from two to five parts (i.e., 2, 3, 4, and 5 

representing class-label precisions of 50, 33.3, 25, and 20 %, respectively).  For the 

simulation study, the landscape level representativeness threshold was maintained constant 

at 1 % and class homogeneity at 90 %.  The total number of scaled landscape models that 

were evaluated was 24,000 (five class-label precisions x 4,800 aggregated landscape 

datasets). 

The MDGP-scaling algorithm, simulation and test framework, data analysis and 

visualization was scripted in R (R Core Team 2013), making extensive use of packages 

“raster” (Hijmans and van Etten 2010), “rgdal” (Bivand, Keitt, and Rowlingson 2013), 

“compositions” (Van Den Boogaart and Tolosana-Delgado 2008), “foreach” and 

“doParallel” (Revolution Analytics and Weston 2013).  Neutral landscape generation and 

scaled data aggregation for random landscape origins for the different scale factors was 

scripted in Python 2.7 (Python Software Foundation, https://www.python.org/).  The 

neutral landscapes were generated utilizing the Python module “nlmpy” (Etherington, 

Holland, and O’Sullivan 2015), which implemented the mid-point displacement algorithm 

(Fournier, Fussell, and Carpenter 1982; Palmer 1992).  All data processing was performed 

with the high-performance-computing cluster (HPCC) of the Instructional & Research 

Computing Center (IRCC) at Florida International University. 

RESULTS 

Results of algorithm comparison are reported first, comparing information retention 

and class-label fidelity of the proposed MDGP-scaling algorithm to those of majority- and 

https://www.python.org/
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random-rule algorithms.  Then, results for algorithm consistency and sensitivity of the 

MDGP-scaling algorithm to landscape characteristics, class-label precision and scale 

factor are presented. 

Algorithm Comparison  

A comparison of IR for the three algorithms showed that mean IR was significantly 

higher and that its standard deviation was significantly lower for MDGP-scaled vs. 

majority- or random-rule aggregated datasets for all 24 landscape types and for all four 

scale factors (pairwise-paired Wilcoxon rank-sign tests; Bonferroni adjusted p < 0.001; N 

= 50) (Tbl. 1.3; and Figs. 1.7 for equal CAD models and 1.8 for geometric CAD models).  

Difference in information loss was consistently less between MDGP and majority-rule vs. 

random-rule aggregated landscapes (Figs. 1.7 and 1.8, Tbl. 1.3).  Differences of mean IR 

between MDGP and the other two algorithms were greater for more dispersed landscapes, 

monotonously decreasing as spatial aggregation increased, regardless of richness, class-

abundance distribution, and scale factor (Figs. 1.7 and 1.8, Tbl. 1.3).  Scale factor had a 

greater effect on IR for majority- and random-rule aggregated landscapes than MDGP-

scaled landscapes for all landscapes with equal and geometric CAD with spatial 

aggregation factors greater than zero (Figs. 1.7 and 1.8, Tbl. 1.3).  The difference in IR 

between MDGP-scaled and majority-rule aggregated landscapes increased with scale 

factor for all landscapes (Figs. 1.7 and 1.8, Tbl. 1.3). 

Standard deviation of IR was consistently lower for MDGP-scaled landscapes for 

all landscapes and scale factors, except for two landscapes with equal class-abundance 

distribution, when richness was greater than three and spatial aggregation was zero (Fig. 

1.7, Tbl. 1.3).  On average, standard deviation of mean IR was low for all MDGP-scaled 
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landscapes (0.7 ± 0.6), whereas majority- and random-rule aggregated landscapes, on 

average, had significantly greater standard deviations (1.8 ± 1.1 and 2.2 ± 1.3, respectively) 

(pairwise-paired Wilcoxon rank-sign tests; Bonferroni adjusted p < 0.001). 

MDGP-Scaling Algorithm Consistency 

Consistency of the MDGP-scaling algorithm was high for all three evaluated 

parameters (information retention, class count and class-label fidelity).  Mean variability 

of standard deviations of landscape-specific IR evaluated across landscapes ranged from 

0.036 ± 0.046% to 0.13 ± 0.08%, increasing with scale factor (Tbl. 1.4).  Mean of standard 

deviations evaluated across landscape types and scale factors increased with class-label 

precision. Variability in class count ranged from 0.12 ± 0.23 to 0.54 ± 0.45 classes (Tbl. 

1.4).  As expected, variability increased for both parameters when evaluating the same 

parameters at the landscape type level, pooling mean estimates across all simulated 

landscapes and random origins (N = 50).  Mean standard deviations for information 

retention on average increased by 0.64 ± 0.29% and that of class count by 0.68 ± 0.23 (Tbl 

1.4).  Consistency in class-label fidelity varied from 0.02 ± 0.02 to 0.06 ± 0.05 for 

variability of mean class occurrence evaluated by landscape type (N = 10, SD across 10 

simulations with mean probability calculated for the scaled landscapes with random origin 

(N = 5)) (Tbl. 1.4).   Consistency in the proportion of classes with probability 1 of 

recurrence across all compared scaling results was on average only 0.05 ± 0.02 lower than 

the consistency for mean probability (Tbl. 1.4). 

MDGP-Scaling Sensitivity – Mean Information Retention 

Evaluating the effects of landscape properties and scaling parameters on mean IR 

indicates consistent patterns for all landscape characteristics and algorithm parameters that 
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were assessed.  Concerning landscape properties, mean IR was significantly lower 

(pairwise-paired Wilcoxon rank-sign test; p < 0.001) for landscapes with equal CAD when 

compared to those with geometric CAD with richness and spatial aggregation held constant 

(plots in Fig. 1.9 for equal CAD vs. 1.10 for geometric CAD models, Tbl. 1.5).  Mean IR 

decreased as richness increased and as spatial aggregation decreased (plots in Figs. 1.9 for 

equal CAD vs. 1.10 for geometric CAD models, Tbl. 1.5). 

Considering the effects of scaling parameters within a landscape type, IR 

consistently increased with class-label precision within a scale factor, but decreased with 

increasing scale factor (Figs. 1.9 and 1.10, Tbl. 1.5).  The magnitude of gain in IR for 

increasing class-label precision diminished across all landscapes and for all scale factors 

(Figs. 1.9 and 1.10, Tbl. 1.6).  Largest gains in IR were consistently observed when 

increasing class-label precision from 1-part to 2-part solutions (majority rule or 100% to 

MDGP-2 or 50% precision).  The gain in IR with increasing class-label precision 

diminished as spatial aggregation of a landscape increased, and it increased with richness 

(Figs. 1.9 and 1.10, Tbl. 1.6).       

MDGP-Scaling Sensitivity – Class-Label Fidelity 

Class-label fidelity evaluated with the mean probability of recurring class labels produced 

across scaling iterations was very high for all landscape types, scale factors and class-label 

precisions (Figs. 1.11 for equal CAD models and 1.12 for geometric CAD, Tbl. 1.7).  Class-

label fidelity generally decreased from lower to higher class-label precisions, for low-

richness landscapes and for high spatial aggregation (Figs. 1.11 and 1.12, Tbl. 1.7).  When 

increasing class-label precision, the largest losses of class-label fidelity were encountered 

for fully aggregated landscapes, regardless of richness and class-abundance distribution 
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(Figs. 1.11 and 1.12, Tbl. 1.8).  For landscapes with geometric CAD and low spatial 

aggregation, class-label fidelity actually increased with class-label precision as richness 

increased to nine classes and scale factors were high (Figs. 1.11 and 1.12, Tbl. 1.8). 

Mean probability of class label recurrence for landscapes with equal CAD ranged 

from 0.99 ± 0.02 for a class-label precision of 50%, decreasing to 0.91 ± 0.1 for a precision 

of 20% (Fig. 1.11, Tbl. 1.7).  For landscapes with geometric CAD, a mean probability 

reduction of 0.02 ± 0.05 was observed when compared to the equal CAD landscape version 

(plots Fig. 1.11 vs. 1.12, Tbl. 1.7). 

MDGP-Scaling Sensitivity – Optimization of Class-Label Precision 

Combining the results for information retention, class-label fidelity, and scaled vs. 

original class-count ratios indicates that for most landscapes and scale factors, class-count 

ratios and IR increased with class-label precision, while CLF declined (Tbl. 1.9).  However, 

this relationship was not uniform across all landscapes, with most drastic differences in 

behavior observed for differences in class-abundance distribution of the landscape and for 

high scale factors.   For instance, in the case of landscapes with a scale factor of 15, a non-

linear behavior was observed for the relationship between IR and class-count ratio for 

landscapes with high richness and low spatial aggregation (Figs. 1.13 and 1.14, left panels).  

The relationship of IR and class-count ratio varied from a monotonic asymptotic behavior, 

which was observed for most landscapes, to sigmoid and non-monotonic patterns.  In cases 

of non-monotonic changes (e.g., Fig. 1.14, Tbl. 1.9; richness of six or nine classes and 

spatial aggregation of 0), a strong increase in IR was achieved with no increase or even 

with a decrease in scaled class count.  Instead of increasing the number of classes, the 

algorithm generated more precise class-label definitions of class compositions, which led 
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to an increase in IR while reducing scaled class count.  Considering class-label fidelity, 

only in the case of landscapes with six classes was label mean probability reduced slightly, 

whereas in the case of nine classes, CLF did not change significantly or increased (Tbl. 

1.9).  Optimal class precision decreased with spatial aggregation and was lower for 

landscapes with geometric CAD (Tbl. 1.9).  For landscapes with a spatial aggregation of 1 

and low class count, the majority rule (precision 100%) was preferred, because the gain in 

IR on average was less than 2% (Figs. 1.13 and 1.14, Tbl. 1.9). 

DISCUSSION 

When aggregating data, information is generalized and, therefore, information is 

lost.  Generalization of fine-scale data is often necessary to support coarser-scale modeling 

efforts, but the optimal degree of generalization is subjective.  Validity of generalized data 

is application-specific, and the scientific question posed by the researcher is ultimately the 

deciding factor in determining the data’s adequacy.  In the context of categorical data 

scaling, two thresholds are of interest: the minimum level of thematic class precision that 

is required to maintain enough information to answer the scientific question; and the 

threshold for a class’s representativeness, beyond which it is of no ecological interest at 

the aggregated scale.  The minimum level of class-label precision is the point beyond which 

generalization reduces the information content to levels where the question of interest can 

no longer be adequately addressed.  Both parameters, precision and representativeness, 

need to be determined with respect to ecological validity and significance. 

All categorical raster maps represent generalizations of real landscapes.  The degree 

of generalization of each map depends on the precision in the spatial and thematic domains 

of the map.  The process of spatial aggregation further generalizes, reducing the 
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information content for each aggregated scaled unit and, when integrated across the 

landscape, reducing information content at the landscape scale.  The amount of information 

lost in a scaled and aggregated map unit is zero when no generalization occurs (a full 

detailed description of each aggregated unit is provided), but information loss increases 

rapidly with the reduction of class-label precision.  However, commonly used spatial 

aggregation algorithms neither estimate spatially explicit information loss nor quantify 

information loss at the aggregated landscape scale.  These algorithms also do not provide 

parameter options that permit control of information loss. 

The purpose of my study was to develop a new scaling algorithm that addresses the 

problem of uncontrolled information loss.  The proposed MDGP-scaling algorithm was 

developed in the context of landscape ecology and integrates concepts of community 

ecology and phytosociology, acknowledging variability in co-occurrence patterns of 

species or community classes as spatial scales change (i.e., cell size increases).  This 

research strongly supports the application of the newly developed algorithm to scale 

categorical landscape representations to lower (coarser) spatial resolutions.  The algorithm 

overcomes the limitations of cluster algorithms for quantitative grouping, which are often 

employed in the fields of community ecology and phytosociology.  The proposed criteria 

for evaluation of algorithm consistency were location-specific information retention 

integrated across the landscape, scaled class-count consistency and class-label fidelity.  

Information retention was introduced as an effective means to compare agreement of 

categorical data vectors; this metric can also be used to classify samples in a classification 

system with quantitatively defined classes.  Information retention is a true metric and, 

hence, is also a valid evaluation parameter that facilitates direct comparison of scaling 
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results between algorithms or among results for different parameter settings and varying 

landscape characteristics. 

The simulation study built confidence in the scaling properties of the algorithm and 

the applicability across a large range of landscape settings and spatial data-scaling needs.  

The algorithm was robust in consistently generating representative class labels while 

significantly increasing information retention for the scaled landscapes when compared to 

other commonly used algorithms.  Low variability in class-count ratios and class-label 

fidelity provided the foundation for confidence in reproducibility and reliability of the 

MDGP-scaling algorithm. 

The framework developed here allows expansion to new evaluation parameters.  

Future inclusion of parameters that address class-proportion consistency and consistency 

in spatially explicit class-label agreement will further increase confidence in scaling 

results.  More formalized indices and criteria that consider trade-offs among information 

retention, class-label fidelity, class abundance, and spatially explicit class consistency are 

needed to implement statistically sound optimization routines.  Implementing an integrated 

tuning method to optimize the selection of the class-label precision parameter can then lead 

to algorithm-generated recommendations on parameter selection for specific landscapes. 

MDGP-Scaling Sensitivity to Landscape Characteristics and Scaling Parameters 

Simulation results suggested that, especially when dealing with less aggregated, 

patchy landscapes, the MDGP-scaling algorithm was very successful in retaining 

information at a high level when other algorithms (i.e., majority and random rule) failed to 

do so.   Information loss for an aggregated spatial unit of a scaled map increased drastically 

with richness of a landscape and with scale factor.  Implementing a scaling parameter that 
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controls class-label precision effectively reduced information loss of scaled landscapes as 

class-label precision was increased.  Information retention gain was especially high for 

landscapes with high richness and low to medium spatial aggregation levels, which had 

high information reduction in landscapes aggregated with majority- and random-rule 

algorithms. 

The MDGP-scaling algorithm generates scale-specific classification systems.  The 

more stable a classification system is, the higher the probability that scaled classes are 

detectable at that scale at random locations across the continuous landscape.  The 

demonstrated high proportion of classes with recurrence probability of one across random 

landscapes and the low variance across scaled landscapes with random origins instills high 

confidence in class-label representation across the larger landscape.  Class-label fidelity 

was generally high even for high label precisions and scale factors but was most sensitive 

to spatial aggregation of the landscape.  A sharp reduction in class-label fidelity with 

increasing class-label precision was observed for landscapes that were highly aggregated. 

Gain in information retention with increasing class-label precision was not linear 

but rather followed the law of diminishing returns.  Richness in scaled classification 

systems generally increased with class-label precision, and simultaneously, class-label 

fidelity diminished.  Combining the effects of class-label precision on information 

retention and class-label fidelity it was demonstrated that it was possible to reduce class-

label precision, which in many cases lowered information retention only marginally, while 

significantly enhancing class-label fidelity and reducing class count.   

Reducing class-label precision lead to more general classification schemes, 

resulting in higher representativeness of a class schema to different realizations of the same 
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landscape (random origin) or even realizations of sets of landscapes with similar 

characteristics.  However, it was also demonstrated that an increase in class-label precision 

does not always increase scaled class count or reduce class-label fidelity.  Cases where an 

increase in class-label precision increased information retention but, unexpectedly, also 

reduced scaled class count and increased class-label fidelity demonstrate that landscape 

characteristics can have a strong effect on the scaling results and that the parameter that 

controls class-label precision needs to be optimized for each specific landscape and scale 

factor. 

Applications of the MDGP-Scaling Algorithm 

The motivation for this study was two-fold: (1) to make improvements in spatially 

explicit ecological modeling; and (2) to support the application of remote sensing to multi-

scale mapping.  When developing ecological models, a crucial aspect is the scale of 

analysis; depending on environmental and ecological processes, results can vary 

significantly when evaluated at different scales (Scheiner et al. 2000).  Essential 

components for the reliable interpretation of results are selecting the appropriate scale of 

analysis at which ecological processes of interest operate and choosing the required 

precision of the data.   

Spatially explicit maps at high spatial resolutions provide the precision required to 

separate and distinguish borders of units of the smallest meaningful spatial unit (i.e., land 

cover or land use, or other categorized landscape domains).  These high-resolution data 

layers contain fine-scale spatially explicit information.  Efficient upscaling of these high-

information data layers requires more than just spatial aggregation of discrete spatial units 
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of the original classes; it requires classification of landscape objects into meaningful and 

scale-specific representative classes. 

The MDGP-scaling algorithm is the first algorithm that generates data-driven scale-

appropriate classification schemes while conducting spatial data aggregation.  My study 

demonstrated that the algorithm consistently delivers representative class descriptors 

(labels), generating new, scale-specific classification systems.  To attain adequate precision 

in the thematic domain that supports the use of the aggregated product in subsequent 

ecological models, the algorithm provides a control parameter that allows for optimization 

of information retention and class-label fidelity in the thematic domain. 

Implications for Landscape Ecology Modeling 

Spatial aggregation and scaling of high-resolution maps for use in spatially explicit 

landscape models that model at lower spatial resolutions requires data upscaling.  The 

effects of MDGP-scaling on accuracy and precision of ecological modeling still needs to 

be demonstrated.  However, the consistent gain in information retention of MDGP-scaled 

landscapes and their associated reproducible classification systems strongly suggest that 

the increased precision of scaled maps will improve ecological models that use these scaled 

maps when compared to maps that have been scaled with algorithms that do not consider 

scale-dependent classification systems and do not optimize information retention.   

The major advantages of the proposed MDGP-scaling algorithm are the user-

defined parameters for class-label precision, which facilitate optimization of scaling results 

and allow molding these results to the needs of a specific research scope.  The ability to 

also produce spatially explicit and exhaustive layers of information loss can be a valuable 

input for ecological models that consider the propagation of uncertainty and error. 
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Implications for Remote Sensing Applications 

With increasing availability of remotely sensed data, ranging from very high spatial 

resolutions on the order of centimeters (e.g., airborne sensors mounted on Unmanned 

Aerial Systems) to low-resolution satellite data with spatial resolutions greater than 1 

kilometer (e.g., the Advanced Very High Resolution Radiometer (AVHRR)), there is a 

need for robust and reliable aggregation methods for categorical data.  Detection of land-

cover change over time will benefit from properly scaled landscapes. 

The MDGP-scaling method unifies the classification system with the scaling 

process while maintaining the highest level of information content possible.   I expect that 

the effects of increased location-specific information content combined with a landscape-

specific, representative, classification scheme increases the detectability of the scaled 

classes from spectral signatures of remotely sensed data.   

Scaling high-resolution maps to the spatial resolution of a sensor with lower spatial 

resolution (e.g., WorldView-2 2x2 m pixels scaled to Landsat 30x30 m pixels) with the 

purpose of detecting the scaled classes from remotely sensed data of the lower resolution 

sensor will benefit from high-precision classification schemes that capture frequently 

recurring co-occurrence patterns at the spatial resolution of the sensor.  Such high-precision 

classification schemes at low spatial resolutions are not easy to establish ad-hoc.  The 

automated establishment of a classification system with quantitative class definitions is 

expected to increase classification accuracy.   The effects of MDGP-scaling algorithm 

aggregation on the spectral separability of scaled classes from lower resolution remotely 

sensed reflectance patterns still needs to be demonstrated. 
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Implications for Community Ecology and Phytosociology 

In community ecology and phytosociology, it is common practice to establish 

community classes or to classify co-occurrence patterns through clustering algorithms of 

samples gathered at a specified resolution (e.g., 1 m2) in the field.  Natural groupings in 

data that represent frequently co-occurring patterns rely on cluster algorithm consistency 

and reproducibility of results.  The new MDGP-scaling algorithm can be applied to any 

multi-dimensional data pattern that is produced by relevés.  Future work will focus on the 

sampling intensities required to generate representative and robust classes valid for the 

sampled landscape at the sampled scale.  This will increase the confidence in applying the 

algorithm in the field of phytosociology and community ecology, where sample data are 

the norm and census is the exception.  
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TABLES 

Table 1.1. Number of weak compositions for compositions with constraint of exactly 100% 

coverage. 

 
 

 

Table 1.2. Number of constrained combinations and precision limits for equal-part 

partitioning of n dimensions (richness).  

 
 

 

Richness 3 5 7 9 15 25

2 10 26 50 82 226 626

3 55 351 1,275 3,403 25,651 196,251

4 220 3,276 22,100 95,284 1,949,476 41,081,876

5 715 23,751 292,825 2,024,785 111,607,501

6 2,002 142,506 3,162,510 34,826,302

7 5,005 736,281 28,989,675

8 11,440 3,365,856

9 24,310 13,884,156

10 48,620 52,451,256

Precision 11.11% 4% 2.04% 1.23% 0.44% 0.16%

Scale Factor

Richness 1 2 3 4 5 6

2 2 3 4 5 6 7

3 3 6 10 15 21 28

4 4 10 20 35 56 84

5 5 15 35 70 126 210

6 6 21 56 126 252 462

7 7 28 84 210 462 924

8 8 36 120 330 792 1716

9 9 45 165 495 1287 3003

10 10 55 220 715 2002 5005

Precision 100% 50% 33.33% 25% 20% 16.67%

Part (partitions)
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Table 1.3. Mean information retention (IR) ± standard deviations across landscape iterations and random origin (N = 50) for random-

rule (RND), majority-rule (MAJ-1) and MDGP-scaling algorithm with label precision of 33% (MDGP-3). CAD = Class-Abundance 

Distribution; rch = Richness; sptAgg. = Spatial Aggregation.  Pairwise-paired Wilcoxon rank-sign tests indicate that for all landscapes 

and scale factors (SF), mean IR for MDGP-scaling was significantly greater and standard deviation of information retention was 

significantly lower for MDGP-scaled landscapes when compared to majority- and random-rule scaled landscapes. 

±

CAD rch sptAgg RND MAJ-1 MDGP-3 RND MAJ-1 MDGP-3 RND MAJ-1 MDGP-3 RND MAJ-1 MDGP-3

0 57.6 ± 1.6 66.4 ± 1.4 89.5 ± 0.3 52.8 ± 1.7 62.5 ± 1.6 88.3 ± 0.2 49.9 ± 1.8 59.8 ± 1.7 88 ± 0.1 47.3 ± 1.9 57.3 ± 1.9 88 ± 0.3

0.3 83.1 ± 3.7 87.7 ± 2.7 95.3 ± 1 79.3 ± 4.4 85.2 ± 3.3 94.3 ± 1.1 76.1 ± 5 82.7 ± 3.9 93.5 ± 1.1 72.4 ± 5.5 79.9 ± 4.4 92.7 ± 1.1

0.6 94.6 ± 1.6 96.1 ± 1.2 98.5 ± 0.5 92.4 ± 2.2 94.6 ± 1.6 97.9 ± 0.6 89.9 ± 3 92.8 ± 2.1 97.1 ± 0.8 86.5 ± 4 90.4 ± 2.9 96.2 ± 1.1

1 98.6 ± 0.4 99 ± 0.3 99.2 ± 0.1 97.7 ± 0.6 98.3 ± 0.4 99.2 ± 0.1 96.3 ± 0.9 97.4 ± 0.7 99 ± 0.2 94.3 ± 1.4 95.9 ± 1 98.4 ± 0.4

0 35.4 ± 1.5 45.2 ± 1.4 80.6 ± 1 30.5 ± 1.5 40.2 ± 1.5 78 ± 1.6 28.1 ± 1.6 37.2 ± 1.6 75.4 ± 1.9 26 ± 1.5 34.8 ± 1.7 72.9 ± 2.1

0.3 60.1 ± 3.9 68.9 ± 3.6 89.9 ± 1 53.8 ± 4.1 63.6 ± 3.9 88 ± 1.2 49.1 ± 4 59 ± 4 86.5 ± 1.2 44.6 ± 3.9 54.5 ± 4 85.1 ± 1.1

0.6 89.5 ± 1.8 92.4 ± 1.3 96.9 ± 0.5 85.4 ± 2.5 89.6 ± 1.8 95.9 ± 0.7 80.7 ± 3.2 86.3 ± 2.3 94.6 ± 0.8 74.8 ± 3.8 81.8 ± 3 93.1 ± 1

1 96.9 ± 0.7 97.8 ± 0.5 98.2 ± 0.3 94.7 ± 1.2 96.2 ± 0.9 98 ± 0.1 91.7 ± 1.8 94 ± 1.3 97.5 ± 0.4 86.9 ± 2.9 90.6 ± 2 96.4 ± 0.7

0 26.5 ± 1.3 36.1 ± 1.3 70.6 ± 1.6 21.9 ± 1.3 30.9 ± 1.4 64.5 ± 2.2 19.7 ± 1.4 27.9 ± 1.5 60.5 ± 2.4 18 ± 1.4 25.7 ± 1.6 57.4 ± 2.6

0.3 52.4 ± 3.2 61.9 ± 3.2 87.7 ± 1 45.9 ± 3.1 56 ± 3.3 85.6 ± 1 41.4 ± 3 51.4 ± 3.3 84 ± 1 37.1 ± 2.8 46.8 ± 3.2 82.1 ± 1.6

0.6 83.6 ± 3.9 88.1 ± 2.9 95.2 ± 1 77.3 ± 5.1 83.7 ± 3.9 93.7 ± 1.3 70.9 ± 6 78.6 ± 4.9 92.1 ± 1.5 63.4 ± 6.6 72.3 ± 5.7 90.3 ± 1.7

1 95 ± 0.9 96.4 ± 0.7 97.1 ± 0.3 91.4 ± 1.5 93.9 ± 1.1 96.9 ± 0.2 86.6 ± 2.4 90.4 ± 1.7 96.1 ± 0.5 79.2 ± 3.7 84.9 ± 2.7 94.4 ± 0.9

0 64.2 ± 1.3 72.1 ± 1.1 90.9 ± 0.3 60 ± 1.4 69 ± 1.2 89.7 ± 0.3 57.6 ± 1.5 66.9 ± 1.2 89 ± 0.2 55.4 ± 1.6 65.2 ± 1.3 88.8 ± 0.2

0.3 85.2 ± 2.2 89.2 ± 1.6 95.9 ± 0.6 81.9 ± 2.6 87.1 ± 1.9 95 ± 0.6 79 ± 2.9 84.9 ± 2.3 94.2 ± 0.6 75.8 ± 3.4 82.5 ± 2.7 93.5 ± 0.7

0.6 95.9 ± 1.1 97 ± 0.8 98.8 ± 0.3 94.2 ± 1.5 95.9 ± 1.1 98.4 ± 0.4 92.3 ± 2 94.6 ± 1.4 97.8 ± 0.5 89.8 ± 2.5 92.8 ± 1.9 97.2 ± 0.7

1 98.9 ± 0.3 99.2 ± 0.3 99.3 ± 0.1 98 ± 0.6 98.6 ± 0.4 99.3 ± 0.1 96.9 ± 0.9 97.8 ± 0.6 99 ± 0.2 95.2 ± 1.4 96.5 ± 1 98.7 ± 0.4

0 52.1 ± 1.3 61 ± 1.1 86.1 ± 0.6 47.8 ± 1.3 57.8 ± 1 84.9 ± 0.7 45.6 ± 1.3 56 ± 0.9 84 ± 0.7 43.7 ± 1.4 54.7 ± 0.9 83.1 ± 0.8

0.3 76.7 ± 2.3 82.6 ± 1.9 93.7 ± 0.5 72.2 ± 2.5 79.4 ± 2.1 92.5 ± 0.6 68.7 ± 2.6 76.4 ± 2.3 91.5 ± 0.7 65 ± 2.6 73.2 ± 2.5 90.5 ± 0.7

0.6 92.4 ± 1.3 94.5 ± 0.9 97.5 ± 0.3 89.4 ± 1.7 92.5 ± 1.3 96.7 ± 0.4 86 ± 2.3 90 ± 1.7 95.9 ± 0.5 81.6 ± 2.8 86.8 ± 2.1 94.7 ± 0.6

1 98.2 ± 0.6 98.7 ± 0.4 98.8 ± 0.2 96.9 ± 1 97.8 ± 0.7 98.5 ± 0.2 95.2 ± 1.5 96.6 ± 1.1 98.2 ± 0.3 92.6 ± 2.3 94.7 ± 1.7 97.6 ± 0.6

0 51.4 ± 1 60.4 ± 0.8 85.1 ± 0.4 47.3 ± 1.1 57.3 ± 0.9 83.8 ± 0.5 45.2 ± 1.2 55.6 ± 0.8 82.9 ± 0.5 43.1 ± 1.2 54.3 ± 0.8 82.2 ± 0.5

0.3 72.8 ± 3.4 79.1 ± 2.8 92.4 ± 0.9 68.2 ± 3.7 75.6 ± 3.2 91.2 ± 1 64.7 ± 4 72.6 ± 3.4 90.2 ± 1.1 61.2 ± 4.1 69.6 ± 3.6 88.9 ± 1.2

0.6 91.3 ± 1 93.7 ± 0.7 96.9 ± 0.3 88 ± 1.4 91.4 ± 1 96 ± 0.4 84.5 ± 1.8 88.8 ± 1.3 95.1 ± 0.5 80 ± 2.2 85.4 ± 1.6 94.1 ± 0.6

1 97.1 ± 0.7 97.9 ± 0.5 98.3 ± 0.3 95 ± 1.1 96.4 ± 0.8 97.9 ± 0.3 92.3 ± 1.6 94.4 ± 1.2 97.1 ± 0.4 88.3 ± 2.3 91.5 ± 1.7 96.1 ± 0.5

geom

3

6

9

SF - 5 SF - 9 SF - 15 SF - 25

equal

3

6

9
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Table 1.4. Consistency of the MDGP-scaling algorithm assessed for four levels of class-label 

precision (MDGP-2 to 5) and four scale factors (SF).  Indicator parameters were standard 

deviation of information retention (in percent) and class count evaluated by landscape (N = 

240) and landscape type (N = 24).  Indicator parameters for class-label fidelity were mean 

probability of class occurrence (Mean Prb.) and proportion of classes with recurrence 

probability of 1 (Prp. of Prb.1).  Both indictors were calculated across the five random 

origins of each landscape.  Standard deviation of class-label fidelity was evaluated by 

individual landscape (N = 10) and results were summarized by landscape type (N = 24).     

 

Mean SD Mean SD Mean SD Mean SD

MDGP-2 0.036 0.046 0.045 0.032 0.077 0.049 0.126 0.073

MDGP-3 0.036 0.041 0.054 0.047 0.070 0.055 0.109 0.077

MDGP-4 0.047 0.050 0.061 0.059 0.068 0.045 0.103 0.078

MDGP-5 0.053 0.054 0.059 0.055 0.072 0.060 0.094 0.073

MDGP-2 0.177 0.271 0.117 0.229 0.141 0.279 0.176 0.320

MDGP-3 0.214 0.284 0.257 0.329 0.251 0.355 0.328 0.360

MDGP-4 0.356 0.348 0.394 0.383 0.384 0.394 0.499 0.434

MDGP-5 0.409 0.370 0.457 0.394 0.541 0.445 0.606 0.465

MDGP-2 0.782 0.503 0.973 0.618 1.197 0.710 1.422 0.820

MDGP-3 0.558 0.377 0.660 0.524 0.761 0.566 0.909 0.582

MDGP-4 0.418 0.260 0.513 0.388 0.598 0.468 0.732 0.503

MDGP-5 0.348 0.216 0.388 0.270 0.453 0.378 0.565 0.424

MDGP-2 0.722 0.505 0.588 0.498 0.461 0.427 0.465 0.479

MDGP-3 0.846 0.625 1.066 1.070 0.913 0.775 0.883 0.652

MDGP-4 1.229 0.890 1.285 0.967 1.173 0.870 0.975 0.619

MDGP-5 1.261 0.787 1.473 0.850 1.540 1.031 1.365 0.866

MDGP-2 0.031 0.027 0.019 0.023 0.023 0.028 0.027 0.030

MDGP-3 0.043 0.033 0.038 0.033 0.037 0.027 0.043 0.029

MDGP-4 0.047 0.036 0.041 0.031 0.043 0.035 0.046 0.020

MDGP-5 0.063 0.049 0.046 0.027 0.051 0.037 0.052 0.026

MDGP-2 0.054 0.041 0.036 0.042 0.042 0.043 0.051 0.048

MDGP-3 0.079 0.064 0.072 0.062 0.070 0.052 0.082 0.042

MDGP-4 0.084 0.060 0.075 0.054 0.074 0.060 0.079 0.042

MDGP-5 0.106 0.081 0.080 0.043 0.087 0.054 0.096 0.053

SF-25Label 

Precision

SF-9
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Fidelity - 

Prp. of Prb. 1 
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Table 1.5. Effects of class-label precision and scale factor (SF) on information retention for 24 landscape types varying in class-

abundance distribution (CAD), richness (rch) and spatial aggregation (sptAgg).  Class-label precisions of 50, 33, 25, and 20 percent 

correspond to MDGP-2, 3, 4 and 5, respectively. 

 
 

 

  

CAD rch sptAgg 50 33 25 20 50 33 25 20 50 33 25 20 50 33 25 20

0 85.4 89.5 92.2 93.7 84.2 88.3 91.4 93.0 82.9 88.0 90.7 92.8 81.6 88.0 89.9 92.8
0.3 93.3 95.3 96.4 97.2 91.8 94.3 95.7 96.5 90.6 93.5 95.0 95.9 89.4 92.7 94.4 95.4
0.6 97.8 98.5 98.8 99.0 97.0 97.9 98.3 98.6 96.0 97.1 97.8 98.2 94.7 96.2 97.1 97.6

1 99.2 99.2 99.2 99.3 99.0 99.2 99.2 99.2 98.6 99.0 99.1 99.2 97.8 98.4 98.8 99.0
0 68.2 80.6 85.4 88.1 62.7 78.0 85.0 87.2 59.4 75.4 84.7 86.9 56.8 72.9 83.8 87.1

0.3 85.6 89.9 92.2 93.7 83.7 88.0 90.8 92.4 81.4 86.5 89.6 91.4 78.1 85.1 88.3 90.4
0.6 95.7 96.9 97.5 97.9 94.1 95.9 96.7 97.3 92.3 94.6 95.8 96.5 90.1 93.1 94.7 95.6

1 98.1 98.2 98.2 98.3 97.7 98.0 98.1 98.1 96.7 97.5 97.9 98.0 94.9 96.4 97.1 97.5
0 56.8 70.6 78.4 82.7 50.1 64.5 75.1 81.5 46.2 60.5 71.9 79.8 43.3 57.4 69.1 77.8

0.3 82.7 87.7 90.3 92.0 79.8 85.6 88.7 90.7 76.3 84.0 87.3 89.4 71.8 82.1 85.9 88.1
0.6 93.3 95.2 96.0 96.6 91.1 93.7 95.0 95.7 88.8 92.1 93.8 94.7 86.2 90.3 92.3 93.5

1 97.1 97.1 97.2 97.3 96.4 96.9 97.0 97.0 94.7 96.1 96.5 96.8 92.0 94.4 95.5 96.0
0 87.3 90.9 93.1 94.5 86.2 89.7 92.4 93.7 85.0 89.0 91.7 93.4 83.7 88.8 91.0 93.2

0.3 94.1 95.9 96.8 97.5 92.8 95.0 96.1 96.8 91.6 94.2 95.6 96.4 90.6 93.5 95.0 95.9
0.6 98.3 98.8 99.0 99.1 97.7 98.4 98.7 98.9 96.9 97.8 98.3 98.6 95.9 97.2 97.8 98.2

1 99.3 99.3 99.3 99.4 99.1 99.3 99.2 99.3 98.7 99.0 99.1 99.2 98.1 98.7 98.9 99.0
0 78.9 86.1 89.1 91.2 75.9 84.9 88.0 90.3 74.1 84.0 87.1 89.6 72.8 83.1 86.4 88.8

0.3 91.0 93.7 95.0 95.8 89.5 92.5 94.1 95.1 88.3 91.5 93.4 94.5 86.9 90.5 92.5 93.7
0.6 96.7 97.5 97.8 98.1 95.6 96.7 97.3 97.6 94.4 95.9 96.7 97.1 92.7 94.7 95.7 96.4

1 98.8 98.8 98.8 98.9 98.4 98.5 98.5 98.5 97.8 98.2 98.3 98.3 96.9 97.6 97.8 97.9
0 77.8 85.1 88.4 90.5 75.0 83.8 87.1 89.6 73.3 82.9 86.1 88.8 72.2 82.2 85.5 88.0

0.3 89.4 92.4 93.9 94.9 87.6 91.2 93.1 94.2 86.1 90.2 92.3 93.5 84.3 88.9 91.3 92.8
0.6 96.1 96.9 97.3 97.5 94.8 96.0 96.6 97.0 93.5 95.1 96.0 96.5 91.9 94.1 95.2 95.8

1 98.2 98.3 98.3 98.3 97.6 97.9 97.9 97.8 96.5 97.1 97.4 97.5 95.0 96.1 96.6 96.8

equal
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6

9
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Table 1.6. Differences in mean information retention (IR) as class-label precision increases (rows within scale factors (SF)) for 24 

landscape types varying in class-abundance distribution (CAD), richness (rch) and spatial aggregation (sptAgg).  Initial reference for 

MDGP-scaling algorithm of two parts (precision = 50%) was majority-rule (precision = 100%).   Mean IR increase diminished with 

increasing class-label precision by landscape type and scale factor (Mean; N = 50).  Largest gain was always observed for increase 

from 1-part to 2-part solutions (majority-rule 100% to MDGP-2 or 50%).  Class-label precisions of 50, 33, 25, and 20 percent 

correspond to MDGP-2, 3, 4 and 5, respectively. Colors indicate classified IR change as class-label precision increases from 100 to 50, 

33, 25 and 20 percent.  

 

CAD rch sptAgg 50 33 25 20 50 33 25 20 50 33 25 20 50 33 25 20

0 19.0 4.1 2.7 1.6 21.7 4.2 3.1 1.6 23.2 5.0 2.7 2.1 24.3 6.4 1.9 2.8
0.3 5.6 2.1 1.1 0.8 6.6 2.5 1.3 0.8 7.8 3.0 1.5 0.9 9.5 3.4 1.6 1.0
0.6 1.7 0.7 0.3 0.2 2.3 0.9 0.5 0.3 3.1 1.2 0.7 0.4 4.3 1.6 0.8 0.5

1 0.2 0.0 0.0 0.0 0.7 0.1 0.0 0.0 1.2 0.4 0.2 0.1 1.9 0.7 0.3 0.2
0 23.0 12.4 4.9 2.7 22.5 15.3 7.0 2.2 22.2 16.0 9.3 2.2 22.0 16.2 10.9 3.3

0.3 16.7 4.3 2.3 1.5 20.1 4.3 2.8 1.6 22.4 5.0 3.2 1.8 23.6 6.9 3.2 2.1
0.6 3.3 1.2 0.6 0.3 4.5 1.7 0.9 0.5 6.1 2.3 1.2 0.7 8.3 3.0 1.5 1.0

1 0.4 0.0 0.0 0.1 1.4 0.4 0.0 0.0 2.7 0.8 0.4 0.1 4.3 1.5 0.7 0.4
0 20.7 13.9 7.8 4.3 19.2 14.4 10.6 6.4 18.3 14.3 11.4 7.9 17.6 14.1 11.7 8.8

0.3 20.8 5.1 2.5 1.7 23.8 5.8 3.1 2.0 24.9 7.7 3.3 2.1 24.9 10.3 3.8 2.2
0.6 5.3 1.8 0.8 0.6 7.4 2.7 1.3 0.7 10.2 3.4 1.7 0.9 13.9 4.1 2.0 1.2

1 0.7 0.1 0.1 0.1 2.5 0.6 0.0 0.0 4.3 1.4 0.5 0.3 7.1 2.3 1.1 0.5
0 15.3 3.5 2.3 1.3 17.2 3.5 2.7 1.4 18.1 4.1 2.7 1.6 18.5 5.2 2.2 2.1

0.3 4.8 1.8 1.0 0.7 5.7 2.2 1.2 0.7 6.7 2.6 1.3 0.8 8.1 3.0 1.5 0.9
0.6 1.3 0.5 0.2 0.1 1.8 0.7 0.3 0.2 2.4 0.9 0.5 0.3 3.2 1.2 0.6 0.4

1 0.1 0.1 0.0 0.0 0.5 0.2 0.0 0.0 1.0 0.3 0.1 0.0 1.6 0.6 0.2 0.1
0 17.9 7.2 3.0 2.1 18.1 8.9 3.2 2.2 18.1 9.8 3.1 2.4 18.1 10.3 3.3 2.3

0.3 8.4 2.7 1.4 0.8 10.1 3.0 1.7 0.9 11.9 3.2 1.9 1.0 13.7 3.6 2.0 1.2
0.6 2.2 0.8 0.4 0.3 3.1 1.1 0.6 0.3 4.3 1.6 0.7 0.4 6.0 2.0 1.0 0.7

1 0.1 0.0 0.0 0.0 0.6 0.1 0.0 0.0 1.3 0.3 0.1 0.1 2.2 0.7 0.3 0.1
0 17.4 7.3 3.3 2.2 17.7 8.8 3.3 2.5 17.7 9.6 3.2 2.7 17.9 10.1 3.2 2.5

0.3 10.2 3.1 1.5 1.0 12.0 3.6 1.9 1.1 13.4 4.1 2.2 1.2 14.7 4.6 2.4 1.5
0.6 2.4 0.9 0.4 0.2 3.4 1.2 0.6 0.4 4.7 1.6 0.9 0.5 6.6 2.1 1.1 0.6

1 0.4 0.1 0.0 0.0 1.2 0.3 0.0 -0.1 2.1 0.6 0.2 0.1 3.5 1.1 0.5 0.2

> 20 15-20 10-15 5-10 2-5 0-2 < 0

6

9

SF 25

Parameter Change

SF 5 SF 9 SF 15

equal

geom

3

6

9

3
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Table 1.7. Effects of class-label precision (rows within SF) and scale factor (SF) on class-label fidelity for 24 landscape types varying in 

class-abundance distribution (CAD), richness (rch) and spatial aggregation (sptAgg).  Class-label precisions of 50, 33, 25, and 20 

percent correspond to MDGP-2, 3, 4 and 5, respectively. 

 
  

CAD rch sptAgg 50 33 25 20 50 33 25 20 50 33 25 20 50 33 25 20

0 0.95 0.97 0.98 0.98 1.00 1.00 1.00 0.98 1.00 1.00 1.00 0.97 1.00 0.98 1.00 0.98
0.3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.99 1.00 1.00 0.97 0.98 0.97
0.6 1.00 1.00 0.99 0.94 1.00 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1 0.99 0.90 0.84 0.82 1.00 0.88 0.80 0.70 1.00 0.96 0.91 0.82 1.00 0.99 0.96 0.92
0 0.99 0.99 0.98 0.97 0.98 0.99 0.97 0.99 0.97 0.96 0.98 0.95 0.97 0.92 0.91 0.94

0.3 0.97 0.98 0.98 0.98 1.00 0.98 0.97 0.98 1.00 1.00 0.96 0.97 1.00 0.98 0.93 0.93
0.6 1.00 0.99 0.96 0.89 1.00 0.99 0.98 0.96 1.00 1.00 1.00 0.97 1.00 0.99 0.98 0.97

1 0.97 0.85 0.85 0.77 0.97 0.89 0.76 0.66 1.00 0.94 0.87 0.77 1.00 0.98 0.94 0.89
0 0.99 0.99 0.96 0.94 0.98 0.95 0.95 0.93 0.97 0.92 0.94 0.91 0.90 0.91 0.87 0.89

0.3 0.94 0.97 0.96 0.97 0.99 0.98 0.95 0.96 1.00 0.98 0.94 0.96 1.00 0.95 0.94 0.90
0.6 1.00 0.97 0.95 0.89 1.00 0.99 0.98 0.91 1.00 0.99 0.97 0.93 1.00 0.98 0.93 0.90

1 0.97 0.82 0.81 0.72 1.00 0.87 0.76 0.64 0.99 0.95 0.86 0.77 1.00 0.97 0.93 0.88
0 0.93 0.93 0.95 0.96 1.00 1.00 0.99 0.99 1.00 0.99 1.00 0.98 0.92 0.92 0.94 0.93

0.3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.98
0.6 1.00 0.98 0.97 0.90 1.00 0.97 0.97 0.91 1.00 0.99 0.97 0.95 1.00 1.00 0.99 0.98

1 0.94 0.94 0.93 0.80 0.96 0.89 0.80 0.73 0.98 0.92 0.90 0.78 0.99 0.95 0.93 0.84
0 0.97 0.97 0.95 0.98 0.92 0.97 0.99 0.98 0.92 0.95 1.00 0.98 0.92 0.88 0.95 0.97

0.3 0.97 0.98 0.98 0.94 1.00 0.99 0.94 0.91 0.99 0.95 0.90 0.92 0.98 0.92 0.87 0.87
0.6 1.00 0.97 0.95 0.86 0.99 0.97 0.94 0.87 0.99 0.98 0.91 0.89 0.97 0.92 0.85 0.81

1 0.99 0.97 0.94 0.92 0.99 0.88 0.84 0.71 0.98 0.88 0.78 0.72 0.97 0.89 0.81 0.73
0 0.93 0.98 0.98 0.98 0.95 0.96 0.98 0.98 0.96 0.98 0.98 0.97 0.98 0.97 0.96 0.93

0.3 0.95 0.95 0.93 0.91 0.97 0.97 0.97 0.92 0.98 0.97 0.94 0.91 0.97 0.97 0.91 0.89
0.6 0.99 0.95 0.93 0.86 0.92 0.90 0.84 0.81 0.95 0.87 0.84 0.82 0.93 0.86 0.84 0.76

1 0.96 0.88 0.85 0.80 0.96 0.88 0.80 0.69 0.93 0.82 0.76 0.71 0.87 0.82 0.80 0.71

equal

3

6

9

geom

3

6

9

SF 5 SF 9 SF 15 SF 25
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Table 1.8. Differences in class-label fidelity as class-label precision increases (rows within scale factors (SF)) for 24 landscape types 

varying in class-abundance distribution (CAD), richness (rch) and spatial aggregation (sptAgg).   Initial reference for MDGP-scaling 

algorithm of two parts (precision = 50%) compared to majority-rule (precision = 100%).  Class-label precisions of 50, 33, 25 and 20 

percent. Colors indicate classified class-label fidelity change as class-label precision increases from 100 to 50, 33, 25 and 20 percent. 

  
  

CAD rch sptAgg 50 33 25 20 50 33 25 20 50 33 25 20 50 33 25 20

0 -0.05 0.02 0.01 0.00 0.00 0.00 0.00 -0.02 0.00 0.00 0.00 -0.03 0.00 -0.02 0.02 -0.02
0.3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 0.01 0.00 -0.03 0.01 -0.02
0.6 0.00 0.00 -0.01 -0.05 0.00 0.00 0.00 -0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1 -0.02 -0.09 -0.06 -0.01 0.00 -0.12 -0.09 -0.09 0.00 -0.04 -0.05 -0.09 0.00 -0.01 -0.03 -0.04
0 -0.01 0.00 -0.01 -0.01 -0.02 0.01 -0.03 0.03 -0.03 -0.01 0.02 -0.03 -0.03 -0.05 -0.01 0.03

0.3 -0.03 0.02 0.00 -0.01 0.00 -0.02 -0.02 0.01 -0.01 0.00 -0.04 0.01 0.00 -0.02 -0.05 0.00
0.6 0.00 -0.01 -0.03 -0.07 0.00 -0.01 -0.02 -0.02 0.00 0.00 0.00 -0.03 0.00 -0.01 0.00 -0.02

1 -0.03 -0.12 0.00 -0.07 -0.03 -0.09 -0.13 -0.10 0.00 -0.06 -0.07 -0.10 0.00 -0.01 -0.04 -0.05
0 -0.01 -0.01 -0.03 -0.02 -0.02 -0.04 0.00 -0.02 -0.03 -0.06 0.02 -0.03 -0.10 0.01 -0.04 0.02

0.3 -0.06 0.03 -0.01 0.01 -0.01 -0.01 -0.04 0.02 0.00 -0.02 -0.03 0.02 0.00 -0.05 -0.01 -0.03
0.6 0.00 -0.03 -0.03 -0.05 0.00 -0.01 -0.01 -0.06 0.00 -0.01 -0.01 -0.04 0.00 -0.02 -0.05 -0.03

1 -0.03 -0.16 -0.01 -0.09 0.00 -0.13 -0.11 -0.12 -0.01 -0.05 -0.08 -0.09 0.00 -0.02 -0.05 -0.04
0 -0.07 0.00 0.02 0.01 0.00 0.00 -0.01 -0.01 0.00 -0.01 0.01 -0.02 -0.09 0.00 0.02 -0.01

0.3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 0.00 0.00 -0.01 0.00
0.6 0.00 -0.02 -0.01 -0.07 0.00 -0.03 0.00 -0.06 0.00 -0.01 -0.02 -0.02 0.00 0.00 -0.01 -0.01

1 -0.06 -0.01 -0.01 -0.13 -0.04 -0.07 -0.09 -0.06 -0.02 -0.07 -0.02 -0.12 -0.01 -0.04 -0.02 -0.09
0 -0.03 0.00 -0.02 0.03 -0.08 0.05 0.02 -0.01 -0.08 0.03 0.05 -0.02 -0.03 -0.03 0.06 0.03

0.3 -0.03 0.00 0.00 -0.03 0.00 -0.01 -0.06 -0.02 -0.01 -0.04 -0.05 0.02 -0.02 -0.06 -0.05 0.00
0.6 0.00 -0.02 -0.02 -0.09 -0.01 -0.02 -0.04 -0.07 -0.01 0.00 -0.07 -0.02 -0.03 -0.05 -0.07 -0.04

1 -0.01 -0.03 -0.02 -0.03 -0.01 -0.11 -0.04 -0.13 -0.02 -0.10 -0.10 -0.06 -0.03 -0.07 -0.09 -0.08
0 -0.07 0.05 -0.01 0.00 -0.05 0.01 0.02 0.00 0.03 0.02 0.00 -0.01 0.13 -0.01 -0.02 -0.02

0.3 -0.05 0.00 -0.02 -0.02 -0.03 0.00 0.00 -0.05 -0.02 -0.01 -0.03 -0.04 0.00 0.00 -0.05 -0.02
0.6 -0.01 -0.04 -0.01 -0.08 -0.08 -0.02 -0.06 -0.03 -0.05 -0.07 -0.03 -0.02 -0.03 -0.07 -0.03 -0.07

1 -0.04 -0.08 -0.03 -0.05 -0.04 -0.09 -0.08 -0.11 -0.07 -0.11 -0.06 -0.05 -0.11 -0.06 -0.01 -0.09

<= -0.1 > 0

9

equal

3

6

9

SF 5 SF 9 SF 15 SF 25

Parameter Change -0.05 - -0.09 - 0.04 - 0

geom

3

6
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Table 1.9. Optimization of class-label precision parameter (Optimal Class Prc.) for a scale factor of 15 when considering change in 

information retention, class-label fidelity and in- to output class-count ratio as class-label precision increases.  Landscape types vary 

in class-abundance distribution (CAD), richness (rch) and spatial aggregation (sptAgg).  Optimal Class Prc. suggested on the basis of 

all three criteria.  Colors indicate classified parameter changes as class-label precision increases from 100 to 50, 33, 25 and 20 percent. 

 
 

CAD rch sptAgg 50 33 25 20 50 33 25 20 50 33 25 20

0 23.2 5.0 2.7 2.1 0.00 0.00 0.00 -0.03 0.3 1.0 0.7 0.5 25, 20
0.3 7.8 3.0 1.5 0.9 0.00 0.00 -0.01 0.01 0.7 0.7 0.8 0.7 33
0.6 3.1 1.2 0.7 0.4 0.00 0.00 0.00 0.00 0.7 0.7 0.7 0.7 50

1 1.2 0.4 0.2 0.1 0.00 -0.04 -0.05 -0.09 0.7 0.6 0.5 0.2 100
0 22.2 16.0 9.3 2.2 -0.03 -0.01 0.02 -0.03 0.7 0.1 -0.2 0.9 25, 20

0.3 22.4 5.0 3.2 1.8 -0.01 0.00 -0.04 0.01 0.3 1.2 0.8 0.9 25
0.6 6.1 2.3 1.2 0.7 0.00 0.00 0.00 -0.03 0.8 0.8 0.8 0.7 25

1 2.7 0.8 0.4 0.1 0.00 -0.06 -0.07 -0.10 0.8 0.6 0.4 0.2 50
0 18.3 14.3 11.4 7.9 -0.03 -0.06 0.02 -0.03 1.2 0.2 -0.1 -0.3 20

0.3 24.9 7.7 3.3 2.1 0.00 -0.02 -0.03 0.02 0.1 0.9 0.7 1.1 33
0.6 10.2 3.4 1.7 0.9 0.00 -0.01 -0.01 -0.04 0.9 0.9 0.9 0.8 50, 33

1 4.3 1.4 0.5 0.3 -0.01 -0.05 -0.08 -0.09 0.8 0.7 0.4 0.3 50
0 18.1 4.1 2.7 1.6 0.00 -0.01 0.01 -0.02 0.3 0.9 0.7 0.3 33

0.3 6.7 2.6 1.3 0.8 0.00 0.00 0.00 -0.01 0.7 0.7 0.7 0.8 33
0.6 2.4 0.9 0.5 0.3 0.00 -0.01 -0.02 -0.02 0.7 0.6 0.6 0.6 50

1 1.0 0.3 0.1 0.0 -0.02 -0.07 -0.02 -0.12 0.6 0.4 0.3 0.2 100
0 18.1 9.8 3.1 2.4 -0.08 0.03 0.05 -0.02 -0.1 0.1 0.4 0.4 25, 20

0.3 11.9 3.2 1.9 1.0 -0.01 -0.04 -0.05 0.02 0.4 0.7 0.4 0.6 50
0.6 4.3 1.6 0.7 0.4 -0.01 0.00 -0.07 -0.02 0.7 0.6 0.5 0.5 50

1 1.3 0.3 0.1 0.1 -0.02 -0.10 -0.10 -0.06 0.5 0.3 0.1 0.1 100
0 17.7 9.6 3.2 2.7 0.03 0.02 0.00 -0.01 -0.4 0.1 0.4 0.3 25, 20

0.3 13.4 4.1 2.2 1.2 -0.02 -0.01 -0.03 -0.04 -0.1 0.4 0.4 0.4 25, 20
0.6 4.7 1.6 0.9 0.5 -0.05 -0.07 -0.03 -0.02 0.3 0.4 0.4 0.3 33

1 2.1 0.6 0.2 0.1 -0.07 -0.11 -0.06 -0.05 0.4 0.3 0.2 0.1 50

> 20 15-20 10-15 5-10 <= -0.1 < 0 0 - 0.5 0.5 - 1 >= 1
2-5 0-2 > 0

Parameter Change

Optimal 

Class 

Prc.

Information Retention 

Change
Label Fidelity Change Class Ratio Change

-0.05 - -0.09
- 0.04 - 0

equal

3

6

9

geom

3

6

9
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FIGURES 

 
Figure 1.1. Two common issues associated with majority-, nearest-neighbor- and random-rule 

scaling algorithms. Scaled grid cell (below) represents only one of five original classes, when 

a mixed class is more representative.  In all three cases, four classes are omitted from the 

scaled class label. The single-class scaled class label over-represents its class with 100%, 

when in fact that class was present at only 28.57% for the outcome of the majority rule, 

22.45% for the random rule and only 10.2% for the nearest-neighbor rule.  
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Figure 1.2. Ternary plots for three classes (c1 – c3) and a scale factor of three with 55 

possible combinations (left) of the three classes and a scale factor of five with 351 weak 

combinations (right).  Numbers along the axes are proportions of classes present in each 

combination (dot) in percent. The outer points have one (the apices) or two classes; the inner 

points are composed of all three classes in differing proportions. 
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Figure 1.3. Ternary plots of three classes (c1 – c3) for multi-dimensional grid points of 2, 3, 4 

and 5 parts representing 50%, 33.3%, 25% and 20% class-label precisions (top left to 

bottom right).  Numbers along the axes are proportions of classes present in each 

combination (dot) in percent. The outer points have one (the apices) or two classes; the inner 

points, when present, are composed of all three classes in differing proportions. 
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Figure 1.4. Schema of framework to test the effects of landscape characteristics, scale factor 

and class-label precision on information retention, class-count consistency and class-label 

fidelity in a full factorial design. 
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Figure 1.5. Neutral landscapes with equal class-abundance distribution of three classes (left) 

and nine classes (right) for the lowest spatial aggregation factor (sptAgg) 0.0 (top), an 

aggregation of 0.3 (middle), and the highest aggregation of 1.0 (bottom). 
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Figure 1.6. Neutral landscapes with geometric class-abundance distribution of three classes 

(left) and nine classes (right) for the lowest spatial aggregation factor (sptAgg) 0.0 (top), an 

aggregation of 0.3 (middle), and the highest aggregation of 1.0 (bottom). 
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Figure 1.7. Algorithm comparison for mean information retention (IR) with increasing scale 

factor for three scaling algorithms in simulated landscapes with equal class-abundance 

distribution.  Richness (rch) varies across columns, while spatial aggregation (sptAgg) varies 

among rows.  MAJ-1 = majority-rule algorithm with 100% class-label precision, MDGP-3 = 

multi-dimensional grid point algorithm with class-label precision of 33%, RND-1 = random-

rule algorithm with 100% class-label precision. 
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Figure 1.8. Algorithm comparison of mean information retention (IR) with increasing scale 

factor for three scaling algorithms in simulated landscapes with geometric class-abundance 

distribution.  Richness (rch) increases across columns, while spatial aggregation (sptAgg) 

increases down rows.  MAJ-1 = majority-rule algorithm with 100% class-label precision, 

MDGP-3 = multi-dimensional grid point algorithm with class-label precision of 33%, RND-1 

= random-rule algorithm with 100% class-label precision. 
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Figure 1.9. Sensitivity of information retention (IR) to landscape characteristics and scaling 

parameters for landscapes with equal class-abundance distribution.  Richness (rch) increases 

across columns, while spatial aggregation (sptAgg) increases down rows.  MAJ-1 = majority-

rule algorithm with 100% class-label precision, MDGP = multi-dimensional grid point 

algorithm with 2 = 50%, 3 = 33%, 4 = 25% and 5 = 20% class-label precision. 
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Figure 1.10. Sensitivity of information retention (IR) to landscape characteristics and scaling 

parameters for landscapes with geometric class-abundance distribution Richness (rch) 

increases across columns, while spatial aggregation (sptAgg) increases down rows.  MAJ-1 = 

majority-rule algorithm with 100% class-label precision, MDGP = multi-dimensional grid 

point algorithm with 2 = 50%, 3 = 33%, 4 = 25% and 5 = 20% class-label precision. 
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Figure 1.11. Sensitivity of class-label fidelity evaluated across all landscape iterations with 

the same characteristics for five random origins (N = 50) for landscapes with equal class-

abundance distribution.  Richness (rch) increases across columns, while spatial aggregation 

(sptAgg) increases down rows.  MAJ-1 = majority-rule algorithm with 100% class-label 

precision, MDGP = multi-dimensional grid point algorithm with 2 = 50%, 3 = 33%, 4 = 25% 

and 5 = 20% class-label precision.  
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Figure 1.12. Sensitivity of class-label fidelity evaluated across all landscape iterations with 

the same characteristics for five random origins (N = 50) for landscapes with geometric class-

abundance distribution. Richness (rch) increases across columns, while spatial aggregation 

(sptAgg) increases down rows.  MAJ-1 = majority-rule algorithm with 100% class-label 

precision, MDGP = multi-dimensional grid point algorithm with 2 = 50%, 3 = 33%, 4 = 25% 

and 5 = 20% class-label precision. 
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Figure 1.13. Relationships of information retention to class-count ratio (Output to Input 

Class Count, on left) and class-label fidelity (Class-Label Recurrence, on right) for 

landscapes with equal class-abundance distribution and a scale factor of 15 (N = 225 original 

grid cells).  Within each variable, richness (rch) increases across columns, while spatial 

aggregation (sptAgg) increases down rows.  MAJ-1 = majority-rule algorithm with 100% 

class-label precision, MDGP = multi-dimensional grid point algorithm with 2 = 50%, 3 = 

33%, 4 = 25% and 5 = 20% class-label precision.  Alg. = Algorithm. 
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Figure 1.14. Relationships of information retention to class-count ratio (Output to Input 

Class Count, on left) and class-label fidelity (Class-Label Recurrence, on right) for 

landscapes with geometric class-abundance distribution and a scale factor of 15 (N = 225 

original grid cells).  Within each variable, richness (rch) increases across columns, while 

spatial aggregation (sptAgg) increases down rows.  MAJ-1 = majority-rule algorithm with 

100% class-label precision, MDGP = multi-dimensional grid point algorithm with 2 = 50%, 3 

= 33%, 4 = 25% and 5 = 20% class-label precision.  Alg. = Algorithm. 
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CHAPTER II 

QUANTITATIVE SPATIAL UPSCALING OF CLASSIFICATION SYSTEMS 

USING A MULTI-DIMENSIONAL GRID POINT CLASSIFIER – REAL LANDSCAPE 

APPLICATIONS 

INTRODUCTION 

Spatially explicit models of landscape dynamics as a response to naturally occurring 

environmental trends and disturbances or to management practices have their advantages 

over spatially implicit models (DeAngelis and Yurek 2017), but they require the detection 

of spatially explicit change at adequate spatial and temporal resolutions.  Detection and 

monitoring of land cover are common applications of remote sensing.  Reliable 

interpretation of changes in spectral-reflectance patterns, either as they relate to biophysical 

parameters of the land surface or as changes in categorical land-cover classes depends on 

the accurate identification of land cover at the spatial, temporal and thematic precision at 

which changes are modeled.  Often the spatially explicit models of change patterns integrate 

datasets that have been acquired and/or interpreted at different spatial scales and thus require 

reconciliation of scales by either upscaling the higher or downscaling the lower resolution 

data. 

For instance, the relationships between spectral reflectance patterns of 

electromagnetic radiation within the instantaneous field of view (i.e., pixel) recorded at a 

remote sensor and the biophysical parameters they relate to, depend on the heterogeneity of 

the surface area covered by a single pixel.  For landscapes that display high heterogeneity 

in cover types relative to the spatial resolution of the remote sensor from which biophysical 

parameters are derived, cover type of the pixel oversimplifies or misrepresents large 
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portions of the actual cover types, which leads to large errors and uncertainty in the 

estimation of biophysical parameters.  Complexities of spatial heterogeneity and reliable 

estimation of biophysical parameters using remotely sensed data have been identified and 

described for a suit of parameters and applications (Jacob and Weiss 2014; Liu, Hiyama, 

and Yamaguchi 2006; Lu 2006).  For instance, Leaf Area Index (LAI) which estimates green 

leaf area per unit ground, and Fraction of Photosynthetically Active Radiation (FPAR), two 

important biophysical variables in ecosystem productivity models, rely on prior knowledge 

of land cover, biome or vegetation type (Ganguly et al. 2012; Le Maire et al. 2012; Steltzer 

and Welker 2006; Zhao et al. 2016).  Lotsch et al. (2003) demonstrated the sensitivity of 

LAI and FPAR to land-cover class information, and heterogeneity of vegetation types 

within a pixel affects LAI estimates in a non-linear fashion (Garrigues et al. 2006).  Tian et 

al. (2002) showed that LAI errors at coarse resolution are inversely related to the proportion 

of the dominant land cover in a pixel and that large errors were introduced when the woody 

component made up only a small proportion of otherwise non-woody pixels.  Consequently, 

as the knowledge of mixed-pixel compositions is limited, the error and uncertainty of 

estimated LAI is high.  However, the most common aggregation method for categorical 

vegetation maps to match the scale at which LAI and FPAR are generated is the majority or 

more precisely the plurality rule, which assigns the most common class to the scaled unit, 

regardless of how low that majority is.  Plurality-rule aggregated land-cover maps that have 

much higher spatial resolution than remotely sensed datasets that are used for estimation of 

biophysical responses of ecosystems introduce large errors and uncertainty of estimates.  

Therefore, scaling of land-cover that maintains more precise plant community information 
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could reduce error and uncertainty of biophysical parameter estimates from moderate-

resolution remotely sensed data. 

Another application where scaling of land-cover information is required is the 

modeling of land-cover change across long temporal extents.  For a specific geographic 

region the classification schemes that capture frequent occurrence and co-occurrence 

patterns of classes vary with scale.  Spatial and spectral resolution of a remote sensor 

determine adequacy of a sensor to differentiate the classes of a classification scheme.  

Availability of adequate remotely sensed data, that are available at each time step thus 

dictate the spatial and thematic resolutions at which maps can be derived.  As the spatial 

resolution of remote sensors increases over time, mixed-pixel classes can be represented by 

pure pixels of their constituent class components resulting in land-cover maps with 

increasing spatial and thematic precision.  For instance, the most extensive archive of 

remotely sensed data used in the production of land-cover and land-cover change maps is 

the Landsat Program data repository.  Spatial resolution of the multi-spectral data of 

Thematic Mapper (TM), Enhance Thematic Mapper (ETM) and the Operational Land 

Imager (OLI) is limited to 30 m, the resolution at which Landsat data are distributed.  Since 

the early 2000s, multi-spectral datasets with high spatial resolution have increasingly 

become available.  The data range from 10-20 m resolution in the case of the European 

Space Agency’s Sentinel-2 data, to less than 5 m resolution for commercial and private 

satellites like Digital Globe’s WorldView-2 and -3, or Satellite Pour l’Observation de la 

Terre (SPOT) 5 and 6 data products.  Airborne multi- and hyper-spectral sensors mounted 

on manned or unmanned aerial platforms even allow for mapping at the sub-meter 

resolution.  Combining categorical land-cover maps that were derived at varying spatial 
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resolutions requires a reliable scaling algorithm that retains as much information of the 

higher resolution as possible, while it generates a representative classification scheme that 

is valid at the lower spatial resolution.  The high-information scaled class labels can then be 

applied to the lower resolution remotely sensed data. 

Hence, assessing land-cover change or modeling biophysical response of 

heterogeneous landscapes across different spatial scales requires (1) consistent scaling of 

categorical information to lower resolutions and (2) the reliable detection of the lower 

resolution, scaled, land-cover information from remotely sensed data.  Upscaling of 

categorical maps aggregates information of co-occurrence patterns of class abundances to a 

coarser resolution (i.e., the spatial scale of analysis).  As information of multiple original 

map objects (i.e., pixels, grid cells) of the initial detection resolution or scale are aggregated, 

information is generalized and lost.  Since the most commonly applied scaling algorithm 

for categorical data is the majority-rule algorithm, only the original classes of the high-

resolution map are considered and scaled class labels are assigned on the basis of plurality 

resulting in huge loss of information as the scale factor increases.  To reduce information 

loss, a scaling algorithm needs to account for scale-specific mixed classes that are frequently 

encountered across the landscape at the coarser scales. 

Limiting information loss, while generating scale-appropriate classification schemes 

when scaling categorical grid-based data, is the strength of the MDGP-scaling algorithm 

(Chapter 1).  For simulated landscapes with known properties, it has been demonstrated that 

the MDGP-scaling algorithm delivers consistent and reproducible scaling results in terms 

of information retention (IR) and class-label fidelity (CLF) for a wide range of landscapes.  

The parameters that control the scaled classification scheme are scale factor, class-label 
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precision and minimum representativeness of a scaled class across the larger landscape.  

Scale factor is determined by the ratio of the lower resolution data to that of the higher 

resolution.  Class-label precision and representativeness across the larger landscape are 

determined by the user.  Considerations that enter into the decision-making for these two 

parameters are how much detail of the original location-specific information is to be retained 

and what minimum representativeness of a class across the landscape is desired.  In the 

context of detecting the scaled classes using remote-sensing methods, an additional criterion 

in the selection of the scaling parameters is the reliable detection of scaled classes from 

spectral data with high accuracies.  Since the two user-defined parameters that drive the 

scaled classification scheme are class-label precision and landscape-level class 

representativeness, the effect of these parameters on classification accuracy were evaluated. 

On the basis of simulation results presented in Chapter 1, the following relationships 

between class-label precision and its effects on IR and CLF were established:   

(1) Information retention and class count increase with increasing class-label precision. 

(2)  Class-label fidelity generally decreases with increase in class-label precision. 

Adding landscape-level representativeness to the equation, it is expected that:  

(3) Information retention decreases when the constraint of landscape representativeness 

increases, since small classes that increase label precision are removed and grid cells 

are assigned to classes with less precise and less representative labels. 

(4) Class-label fidelity increases with the removal of small classes that do not occur 

frequently across scaling results.    

With the introduction of classification accuracy, two interactions regarding information 

retention are expected to develop. 
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(5) Since class-label precision increases IR, and, therefore, more clearly associates 

defined thematic classes to spectral classes (signatures), it is expected that 

separability between classes increases, leading to increased classification accuracy.  

However, as the number of thematic classes also increases with class-label precision, 

the chance probability for class confusion increases as well, which reduces accuracy 

and algorithm confidence. 

(6) As the minimum class-representativeness threshold increases, class count decreases, 

which results in a reduced class confusion and higher classification accuracy.  

However, as class count decreases, IR at the grid cell level is reduced and grid cells 

that are further from the nominal class label increase the thematic heterogeneity of 

the mixed class, and with it, spectral variability, which in return is expected to reduce 

classification accuracy. 

These interactions of class-label precision and class representativeness and their effects on 

classification accuracy from remotely sensed spectral reflectance data were addressed in 

this study. 

METHODS 

Effects of class-label precision and landscape representativeness, the scaling 

parameters of the MDGP-scaling algorithm, on landscape-level information retention and 

class separability from remotely sensed, multi-spectral reflectance data were evaluated for 

two natural landscape types within the greater Everglades ecosystem (FL, USA) (Fig. 2.1).  

Plant communities for these two landscapes were mapped from WorldView-2 (WV-2; 

Satellite Imaging Corp., Houston, TX) multi-spectral data at a spatial resolution of 2 m.  The 

resulting landscapes were then scaled to 30 m, the resolution of multi-spectral Landsat 
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satellite data.  With a scale factor of 15, relative abundances of classes for 225 WV-2 grid 

cells (15 x 15) were generated for each 30 m grid cell. 

Applying the MDGP-scaling algorithm in a full factorial design of five options for 

each of the two scaling parameters, class-label precision and landscape representativeness, 

to the relative class abundances for each 30 m grid cell resulted in 25 scaled maps and their 

associated scale-specific classification schemes.  Effects of class-precision and landscape 

representativeness thresholds on information retention and scaled class-label fidelity were 

evaluated for 10 random origins of each of the 25 landscapes.  Classification accuracy of 

scaled classes from Landsat data was evaluated for the realized Landsat grid. 

Study Areas 

The two landscapes for which the scaling and detection analysis was conducted were 

(1) a healthy ridge-and-slough patterned landscape within southern Water Conservation 

Area 3A (WCA3A) and (2) a degraded sawgrass dominated wet prairie in Northeast Shark 

River Slough (NESRS) (Fig. 2.1).  Classification schemes for both regions were developed 

to capture the common plant communities that can be recognized at the 2 m resolution of 

the WV-2 data. 

Water Conservation Area 3A - Ridge and Slough 

The ridge-and-slough landscape of WCA3A is characterized by alternating deeper 

sloughs that are dominated by submerged aquatic, floating broadleaved and emergent 

graminoid freshwater species (Fig. 2.2).  The most common slough species in this region is 

Nymphaea odorata, which forms dense mats of floating broadleaf carpets and is often 

accompanied by different species of Utricularia and floating mats of periphyton.  The 
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elevated ridges that separate the sloughs are dominated by sawgrass (Cladium jamaicense), 

and in the higher elevations by woody shrubs and various tree species (Fig. 2.2). 

The 2-m, scale-specific, classification scheme was composed of eight classes 

including aquatic submerged, broadleaved floating, graminoid and broadleaved emergent 

vegetation plus shrubs and trees (Tbl. 2.1).  Two areas of 1 km2 each were selected for this 

landscape, because very high resolution aerial photography had been acquired by a fixed-

wing unmanned aerial system in August of 2012 for those areas (Zweig et al. 2015).  The 

aerial photography, in combination with field visits at the time of acquisition, provided the 

basis for the 2-m-scale classification scheme, the digitization of training samples and a 

design-based accuracy assessment of the mapped community classes. 

North-East Shark River Slough – Human Induced Wet Prairie  

The second landscape, a sawgrass dominated wet prairie in NESRS, is a degraded, 

former ridge-and-slough landscape that experienced decades of altered hydrological 

regimes, causing a reduction in topographic relief (Larsen et al. 2011; McVoy et al. 2011).  

As a consequence, the slough communities transitioned into remnant shallow depressions 

that are dominated by sedges and rushes forming distinct patches within a matrix of 

sawgrass-dominated communities (Fig. 2.3).  These remnant patches are dominated by 

mixed short-graminoid species of the genera Eleocharis, Panicum, and Rhynchospora.  The 

northern edge of Everglades National Park (ENP) is bordered by Tamiami Trail, a main 

traffic artery connecting the Florida east coast to its west coast.  The construction of 

Tamiami Trail in the early 1920s bisected the Everglades watershed.  Until the recent 

construction of a bridge, raising the road just north of NESRS, culverts connected the flow 

of water between a canal parallel and North of Tamiami Trail and ENP.  Prior to raising the 
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road, the input of nutrient enriched water at the culverts under the road led to the 

development of shrubby and woody plant communities that formed concentric semi-ellipses 

of stratified plant communities centered on the culverts; these expanded southward and 

laterally from the northern border of ENP (Fig. 2.3) into the graminoid-dominated marsh.   

The classification scheme for NESRS consisted of 14 community classes: seven 

included graminoid vegetation; two, broadleaved species; four, shrub and tree components; 

and two were the non-vegetation classes, water and peat (Tbl. 2.2).  This 4.2 km2 study area 

in the NESRS region, a landscape that exposed a large variety of human-induced plant 

community co-occurrence patterns, presented an opportunity to test the MDGP-scaling 

algorithm. 

Plant Community Maps 

The high-resolution plant communities that served as the basis for the scaling 

evaluation were mapped from bi-seasonal WV-2 data at a 2 m spatial resolution.  The 

vegetation map for WCA3A was delineated from wet ground-condition data acquired on 

October 20, 2012 and dry ground-condition data from May 5, 2011.  Reference data for 

algorithm training samples were digitized from aerial photography acquired in 2012 by an 

unmanned aerial system (Zweig et al. 2015).  Satellite data for the NESRS map had been 

acquired on November 6 and 9, 2010 for the wet conditions and on May 6, 2013 for the dry 

ground conditions.  Ortho-rectified and stereo color-infrared aerial photography of 2009 and 

field-acquired reference data of multiple reconnaissance helicopter flights that were 

conducted between 2012 and 2014 were used to inform the digitization of training data for 

all communities. 
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All WV-2 satellite scenes were ortho-rectified using the ortho-rectification module 

in ENVI (Exelis Visual Information Solutions, Boulder, Colorado) applying the rational 

polynomial coefficients (RPC) that were provided by Digital Globe with each image.  After 

sensor-specific radiometric calibration, atmospheric correction was performed using the 

Fast Line-of-sight Atmospheric Analysis of Hypercubes (FLAASH) module in ENVI 

(Exelis Visual Information Solutions, Boulder, Colorado). 

Bi-seasonal signatures were extracted for all training samples and cross-validated 

supervised classification evaluation was performed by applying the random forest algorithm 

(Breiman 1984).  The classifiers were applied to the spectral signatures of each study area 

to generate the maps for WCA3A (Fig. 2.2) and NESRS (Fig. 2.3).  Design-based overall 

accuracy for the regional maps was estimated from stratified random samples.  Accuracy 

was estimated with a 95% confidence at 91.2% for WCA3A and 89.2% for NESRS (Gann, 

Richards, and Sadle 2015). 

Scaling Parameter Evaluation – Class-Label Fidelity and Information Retention 

The correlations between CLF and IR and their dependencies on scaling parameters 

were evaluated in a full factorial design for landscape representativeness of 1, 5 10, 15 and 

20 percent and class-label precisions of 1, 2, 3, 4, and 5 parts.  Monotypic classes that were 

below the landscape threshold were retained in the scaled classification scheme, since they 

maintain high information retention and are expected to generate pure spectral signatures 

with high detection probability and accuracy.  To account for random error related to 

arbitrary grid origin,tenten30 m grids with random origins were generated and relative 

abundance of communities was tabulated from the WV-2 derived map for each grid cell of 

each of the 10 random grids.  Each of the 10 cell-level relative abundance datasets were 
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scaled 25 times applying the MDGP-scaling algorithm with the each of the 25 parameter 

combinations.  For each of the 250 scaling results, mean IR was calculated from grid-cell-

level IR across all cells of the landscape.  Class-label fidelity for each model was estimated 

with two parameters, the mean probability of a class to occur across the 10 random grid 

scaling results (CLFm), and the proportion of classes that had a recurrence probability of 

one (CLFp). 

Interactions of CLFm and IR were plotted and significance of differences for label 

precision by representativeness thresholds was tested with a pairwise-paired Wilcoxon 

signed-rank test, where data were paired by random origin iteration.  Optimal scaling 

parameter solutions for each landscape were identified with an index (OSI) that weighted 

per-class IR above a user-defined minimum-expected threshold multiplied by the CLF 

parameters. 

 𝑂𝑆𝐼 =  𝐶𝐿𝐹𝑚 ∗  𝐶𝐿𝐹𝑝 ∗ (
𝐼𝑅 −  𝐼𝑅𝑚𝑖𝑛

𝑐𝑙𝑎𝑠𝑠
)                                                    𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.1 

Information retention above the expected minimum 𝐼𝑅𝑚𝑖𝑛 was normalized to per-class IR 

gain (Eq. 2.1) above the minimum to only give credit to models that reached the minimum 

expected information retention. The optimal solution model was determined by the 

maximum 𝑂𝑆𝐼 across all compared models. 

Scaling Parameter Evaluation – Spectral Detection Accuracy 

Spectral detection of scaled classes was evaluated for Landsat Thematic Mapper 

(TM) multi-spectral reflectance data.  Landsat 5 TM data acquired on December 25, 2010, 

was used for the NESRS map and an image from November 11, 2011, for WCA3A.  Landsat 

data used for the two regions were atmospherically corrected using the FLAASH module in 
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ENVI (Exelis Visual Information Solutions, Boulder, Colorado).  For each study area scaled 

landscapes were generated for the realized 30 m grid outline specific to the Landsat scene 

path 015 row 042 (World Reference System 2).  The MDGP-scaling algorithm was applied 

to the relative class abundances for the Landsat grid using the same set of 25 models of all 

combinations of the five class precisions (1 to 5) and the five representativeness thresholds 

(1, 5, 10, 15 and 20).  Information retention of all grid cells was averaged for each model 

and scaled class labels of each grid cell for each of the 25 models were joined with the 

spectral reflectance data of the corresponding pixel of the processed Landsat TM reflectance 

data. 

Overall accuracy was used to evaluate spectral detectability and separability 

between classes for each of the 25 scaling models.  Overall and class-specific spectral 

detection accuracies for each of the 25 scaled maps was estimated from the full census of 

grid cells within each study area using a 10-fold cross-validated classification procedure, 

when applying the random forest algorithm (Breiman 1984) to each of the 25 full-census 

training sets.  The number of trees was set to 200. To determine the optimal number of 

randomly selected features at each node, parameter tuning as implemented in the “caret” 

package (Kuhn 2016) was employed.  The “mtry” parameter was evaluated for a range of 

two to six features, the number of features in the TM dataset. 

Since accuracy of class labels increases when the number of classes is low and when 

labels are coarse or vague, accuracy of categorical maps has to be considered in the context 

of precision.  As class-label precision and class count increase, misclassifications are more 

likely, purely attributable to chance.  Hence, a tradeoff exists between class-label precision 

and accuracy.  Consequently, as class-label precision increases, and with it the number of 
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classes in the classification scheme, spectral separability is expected to decrease, because 

more precisely defined mixed classes are expected to resemble each other spectrally.  

However, as class-label precision increases, the more likely it is that partial components of 

the assigned scaled class labels match parts of the actual class label.   

A concept that accounts for less severe misclassifications is to give partial credit for 

labels by weighting the label errors (Cohen 1968).  The weight matrix is then applied to the 

confusion matrix, generating class accuracies with partial-credit weights (Rossiter 2004).  

Applying partial-credit weights to the multi-dimensional class labels generated by the 

MDGP-scaling algorithm is straightforward, since class percentages are included in the 

class-label definitions.  The weights for the weighted adjustment of the confusion matrix 

can be directly informed by the class-label discrepancy at the class-label level or even at the 

pixel level.  The portions of the partially matching class labels were used to calculate the 

weights of the weight matrix.  Diagonal elements of the weight matrix were 1, because all 

label components match 100% and the off-diagonal elements were between 0 and 1, with 0 

indicating no agreement of any label component and 1 representing full agreement.  The 

weight matrix calculated for partially matching class labels was calculated with equation 

2.2. 

𝑊𝑐𝑘 =  ∑ 𝑝𝑀𝑖𝑛(𝑐𝑖, 𝑘𝑖)

𝑛

𝑖=1

                                                                              𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.2 

The weight W for class combination c and k is the sum of the minimum proportions pMin 

of each matching label component i.  For instance, the trivial case of a two-class 

classification system of the high-resolution reference map that has classes A and B and that 

is scaled with a class-label precision of 50% (two parts) theoretically results in a scaled 



 

89 

 

three-class classification scheme with classes A100, A50_B50, and B100.  The weight for 

the predicted and referenced class combination A100 and A50_B50 is 0.5, the sum of the 

minimum proportions of each component, which is 0.5 for class component A + 0 for 

component B.  All nine weights of the 3x3 partial-agreement matrix of this example between 

all classes are 1, 0.5, 0, 0.5, 1, 0.5, 0, 0.5 and 1 (Eq. 2.2). 

Overall accuracy and class-specific omission and commission errors were calculated 

on the basis of a partial credit for matching components of the detailed class labels.  

Applying the weights to the confusion matrix, overall (Eq. 2.3) and class-specific user’s 

(Eq. 2.4) and producer’s (Eq. 2.5) accuracies and their 95% confidence intervals were 

calculated (Rossiter 2004). 

𝐴𝑜𝑤  =  ∑  

𝑟

𝑖=1

∑ 𝑤𝑖𝑗

𝑟

𝑗=1

∗  𝑝𝑖𝑗                                                                             𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.3 

𝐴𝑜𝑤 is the weighted overall accuracy, 𝑤𝑖𝑗 are the weights calculated with equation 1, and 

𝑝𝑖𝑗 are the class proportions of the ith predicted row counts and the jth reference class 

column.   

𝐴𝑢𝑤  =  
1

𝑝𝑖+
∗ ∑ 𝑤𝑖𝑗

𝑟

𝑗=1

∗  𝑝𝑖𝑗                                                                          𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.4 

𝐴𝑢𝑤 is the weighted user’s accuracy, 𝑤𝑖𝑗 are weights, and 𝑝𝑖𝑗 are class proportions of the 

ith mapped class row and jth reference class column.   

𝐴𝑝𝑤  =  
1

𝑝+𝑗
∑ 𝑤𝑖𝑗

𝑟

𝑖=1

∗  𝑝𝑖𝑗                                                                              𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.5 

𝐴𝑝𝑤 is the weighted producer’s accuracy, 𝑤𝑖𝑗 are weights, and 𝑝𝑖𝑗 are class proportions of 

the ith mapped class row and jth reference class column.  For all 25 scaled landscapes per 
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study area, weighted overall accuracies, information retention, and class-label fidelity were 

used to evaluate and select optimal class-label precision and representativeness parameters.   

The trade-offs that have to be negotiated in the case of spectral detection from a 

realized grid are class-detection accuracy, information retention and representativeness of 

the scaled classes of a realized grid across the landscape.  An index was developed to select 

the optimal scaling solution considering class-detection accuracy (𝑂𝑆𝐼𝑎), defined as  

𝑂𝑆𝐼𝑎 =  𝐶𝐿𝐹𝑝 ∗ (
𝐼𝑅 −  𝐼𝑅𝑚𝑖𝑛

𝑐𝑙𝑎𝑠𝑠
)  ∗  𝐴𝑜𝑤                                                     𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.6 

𝐶𝐿𝐹𝑝 is the ratio of scaled classes for the realized grid (i.e., WRS-2 of Landsat) when 

compared to the classes generated from the scaling results of 10 random grid origins.  As 

𝐶𝐿𝐹𝑝 increases, the more likely it is that the scaled classes for the current realized grid are 

representative classes for random locations across the landscape at the scale of interest.  

Information retention above the expected minimum (𝐼𝑅𝑚𝑖𝑛) was normalized to per-class IR 

gain above the minimum.  𝐴𝑜𝑤 is the weighted overall accuracy.  The optimal model 

solution is determined by the maximum of  𝑂𝑆𝐼𝑎 across all evaluated models.  Final maps 

were generated for optimal scaling solutions that provided the highest information content, 

given the detectability of the classes from the Landsat reflectance data. 

Scaling and spectral detection analysis were performed in R (R Core Team 2016) 

making extensive use of packages “raster” (Hijmans and van Etten 2010), “rgdal” (Bivand, 

Keitt, and Rowlingson 2013), “compositions” (Van Den Boogaart and Tolosana-Delgado 

2008), and “caret” (Kuhn 2016).  Data processing was performed with the high-

performance-computing cluster (HPCC) of the Instructional & Research Computing Center 

(IRCC) at Florida International University. 
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RESULTS 

Interaction effects of the scaling parameters class-label precision and landscape 

representativeness on information retention and class-label fidelity were similar but not 

uniform across the two landscape types.  Results for scaling and classification accuracy are 

presented by study area. 

WCA3A:  Information Retention and Class-Label Fidelity 

Scaling the eight-class plant community map of WCA3A for 10 random origin grids 

with 30 m spatial resolution, applying the MDGP-scaling algorithm for the 25 combinations 

of five class-precisions and five representativeness thresholds produced 250 scaled 

landscapes and associated scale-specific class schemes.  Evaluating the effects of class-label 

precision and representativeness thresholds for the 250 scaled landscapes confirmed the 

expected increase in scaled class count and mean IR (p < 0.05) with increasing class-label 

precision for minimum class representativeness across the landscape set to 1%, but increase 

in IR diminished with increasing class-label precision (Fig. 2.4, Tbl. 2.3).  As class 

representativeness threshold increased to 5 and 10%, the increase of IR with increasing 

class-label precision diminished to a point where no significant increases for class-label 

precisions greater than four parts (25%) were observed.  As representativeness thresholds 

increased to 15 and 20%, significant IR increase was observed only for label precisions 

below three parts (33%) (Fig. 2.4, Tbl. 2.3). 

Class-label fidelity generally decreased with increase in class-label precision and 

representativeness.  However, exceptions to the general trend indicated better-than-expected 

class-label fidelity when precision exceeded 50% and minimum representativeness 

increased above 10% (Tbl. 2.3).  Setting the minimum expected IR threshold to 60%, (Tbl. 
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2.3), a class-label precision of 25% with a representativeness threshold of 10% (OSI = 0.73) 

or a 33% class-label precision with a landscape representativeness of 15% (OSI = 0.66) 

scored high on the OSI.  The 33%-precision solution on average yielded seven (SD = 0.67) 

scaled classes, with an average IR of 73.5% (SD = 1.43%) across the landscape and a mean 

probability of class-label recurrence of 0.78, (Fig. 2.4, Tbl. 2.3) with 44% of classes 

recurring with a probability of 1 (Tbl. 2.3).  The 25% class-label precision solution produced 

on average 7.9 (SD = 0.74) scaled classes, which on average retained 77.7% (SD = 0.73%) 

of information and had a mean probability of class-label recurrence of 0.72 (Fig. 2.4, Tbl. 

2.3), with 45% of classes re-occurring with a probability of 1 (Tbl. 2.3).  In both cases, the 

class-label fidelity was higher than expected, which increased the optimal scale index. 

WCA3A:  Spectral-Detection Accuracy 

Scaling the landscape to the specific realized grid of Landsat, IR on average was 

1.1% (SD = 2.33%) greater than the mean IR across the 10 random origin grids.  Overall 

accuracy ranged from 66.6% for majority rule with a 1% class representativeness to 78.2% 

(95% CI: 76.6% – 79.8%) for a 20% class-label precision and a minimum landscape 

representativeness of 15% for each of the five classes the classification scheme produced 

(Fig. 2.5, Tbl. 2.4). 

All scaling solutions with a 1-part or 100% class-label precision had a mean IR of 

less than 65% (Mean = 61.9%; SD = 0.5%), which was significantly lower than the MDGP-

scaled solutions for the two- to five- part label precisions, and produced significantly lower 

overall accuracies than the corresponding multi-part solutions (p < 0.05).  The three 2-part 

(50%) class precision models that were above 70% overall accuracy were those with 

representativeness thresholds of 10% and greater (Fig. 2.5, Tbl. 2.4).  Comparing the three 
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solutions showed that the classification schemes were identical and that the differences in 

accuracy were minor (Tbl. 2.4). 

Adding the spectral detection accuracy to the optimal scaling index provided the 

same scaling solutions as those identified by the OSI.  The 33% class-label precision with a 

15% representativeness threshold produced a classification scheme with 8 classes, an IR of 

74.2% and a class ratio of realized Landsat grid to random origin class solutions of 0.89 

(Tbl. 2.4).  The overall classification accuracy was 73.9% (95% CI: 72.1% – 75.6%), with 

an OSIa of 1.166 (Fig. 2.5, Tbl. 2.4).  The second highest OSIa was 1.122 scored by the 25% 

class-label precision and 10% representativeness threshold model (Tbl. 2.4).  This solution 

also produced eight scaled classes, retained a slightly higher IR of 76.4% and had a higher 

classification accuracy of 75.3% (95% CI: 73.6% – 77.0%), with a class-label count ratio 

of 0.72 (Fig. 2.4, Tbl. 2.3). 

The maps for the two optimal solutions indicate that only the 33% class-label 

precision solution maintained the shrub/tree label in of the scaled classes (Tbl. 2.5).  This 

solution was selected as the best-scaled map for a minimum requirement of a 60% 

information retention when compared to the original high-resolution input map.  This 

solution had eight classes of which four were monotypic input classes and the other four 

were mixed classes (Tbl. 2.5).  Two of the high-resolution community classes, “Aquatic 

Submerged” and “Shrub-Tree”, which accounted for 2.58% cover of the high resolution 

map (Tbl. 2.1) were not maintained in the scaled community class labels.  Except for “trees” 

all class names were included in other mixed class names (Tbl. 2.5).  The scaled map and 

its associated location-specific information retention map are presented in Figure 2.5, and 

the spectrally classified map and location-specific classifier confidence in Figure 2.6. 
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NESRS:  Class-Label Fidelity and Information Retention 

Results for NESRS were similar to those for WCA3A.  The original high-resolution 

map of NESRS had 14 plant community classes, six more than the WCA3A map.  Applying 

the MDGP-scaling algorithm for all 25 class-label precision and representativeness-

threshold combinations confirmed the expected increase in class number and mean IR when 

class-label precision increased (Fig. 2.8, Tbl. 2.6).  With increasing class-label precision, 

increase in IR diminished, and the differences for consecutive pairwise comparisons became 

insignificant (p ≥ 0.05), when representativeness was greater than 1% (Fig. 2.8, Tbl. 2.6).  

For representativeness of 5%, the four- and five-part label precisions had insignificant 

differences in IR.  As representativeness threshold increased the pairs with insignificant 

differences increased: for the 10% representativeness, two- and three-, three- and four-, and 

four- and five-part solutions; for the 15% three-, four- and five-part; and for 20% 

representativeness also the two- and four-part solutions did not show any difference in IR 

(p ≥ 0.05) (Fig. 2.8, Tbl. 2.6). 

Class-label fidelity was significantly higher than for WCA3A.  For mean class 

recurrence probability, the paired comparison by class-label precision and 

representativeness threshold was 0.15 (SD = 0.09); for class proportion with recurrence 

probability of 1, it was 0.24 (SD = 0.16).    With a minimum expected IR threshold of 60%, 

the two solutions, a class-label precision of 33% with a representativeness threshold of 15% 

and a class-label precision of 50% with representativeness of 5%, both scored an identical 

OSI of 0.79, which was the highest when compared to the other 23 models.  The 33% label-

precision solution on average yielded 11.3 (SD = 0.82) scaled classes, with an average IR 

of 72.7% (SD = 0.82%) and a mean probability of class-label recurrence of 0.94 (Fig. 2.8, 
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Tbl. 2.6), with 75% of classes recurring across all random origin iterations (Tbl. 2.6).  The 

25% class-label precision solution produced 13.3 (SD = 0.67) scaled classes, which on 

average retained 74.2% (SD = 0.88%) of the information and had a mean probability of 

class-label recurrence of 0.95 (Fig. 2.8, Tbl. 2.6), with 79% of classes recurring across all 

random origin landscapes (Tbl. 2.6). 

NESRS:  Spectral-Detection Accuracy 

The difference of IR for the Landsat grid scaled maps when compared to the mean 

IR of the random origins was on average 4.6% higher (SD = 2.5).  Overall accuracy ranged 

from ~69% for majority-rule solutions to the highest accuracy of 73.2% (95% CI: 72.8% – 

73.6%).  As in the case of WCA3A, the highest accuracy was achieved for a 20% class-

label precision and a minimum landscape representativeness of 15%.  The number of scaled 

classes in the classification scheme for this solution was eight (Fig. 2.9, Tbl. 2.7). 

All scaling solutions with a 1-part or 100% label precision had a mean IR of 70.3% 

(SD = 0.0%), which was significantly lower than the MDGP-scaled solutions for the two- 

to five- part label precisions.  Accuracy was significantly higher for all multi-part solutions 

with a class representativeness greater than 5% (p < 0.05) (Fig. 2.9, Tbl. 2.7).  For class-

label precisions of 50% and less, the 15% and 20% representativeness thresholds produced 

identical classification solutions. 

Adding spectral-detection accuracy to the optimal scaling index suggests that the 

33% class-label precision with a 10% class representativeness threshold produced the best 

scaling result (OSI = 1.105), generating 13 scaled classes that were detected from multi-

spectral Landsat data with an accuracy of 70.7% (95% CI: 70.3% – 71.1%) (Tbl. 2.7).  The 

information retained for this solution was 80.3%, and the class-label count ratio was 1, 
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indicating that all classes derived for the Landsat-grid were represented in the random origin 

solutions (Fig. 2.9, Tbl. 2.7). 

Scaled community classes for the optimal solution of 33% class-label precision 

included three mixed classes and 10 monotypic input classes (Tbl. 2.8).  The community 

types of the original classes that were omitted in the scaled class labels were “Broadleaved 

Floating”, “Tree Hammock”, “Water”, and “Peat” (Tbls. 2.2 and 2.8).  These four classes, 

however, only accounted for 0.4% of cover in the original map (Tbl. 2).  The small class of 

“Tree Bayhead” was maintained as a monotypic class with the exact same cover percentage 

of 0.28% as the original map and a mean information retention of 82.5% (SD = 19.6).   The 

scaled map and its associated information retention by grid cell are presented in Figure 2.10, 

and the spectrally classified map with location-specific classifier confidence in Figure 2.11. 

DISCUSSION 

Ecological models of ecosystem responses to climate change, management practices 

and natural disturbance rely on spatially explicit and exhaustive datasets with adequate 

spatial and temporal resolutions.  Remotely sensed datasets that are integrated in these 

models are often acquired at different spatial resolutions.  This discrepancy in spatial 

resolutions requires upscaling of the high-resolution data or derived products to that of the 

low-resolution data.  Combining low-resolution datasets that have high temporal resolution 

with the up-scaled products of high spatial but low temporal resolution is more effective 

when information retention of the scaled product is maximized. 

The objective of my study was to evaluate the effects of class-label precision on 

class-label fidelity and information retention when scaling high-precision vegetation maps 

of real-world landscapes using the MDGP-scaling algorithm and to determine optimal class-
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label precision and class-representativeness thresholds.  The second objective was to 

evaluate the correlation of class-label precision and representativeness of scaled classes to 

their detectability from remotely sensed data, acquired at a lower spatial resolution than the 

original scaled map.  Results of the scaling analysis for two natural wetland landscapes 

indicated that optimizing class-label precision and representativeness is possible when 

implemented in a full factorial evaluation framework.  The analysis also demonstrated that 

precise and representative classes were detectable from low resolution remotely sensed data 

with acceptable accuracy, and that class-detection accuracy increased when compared to 

landscapes scaled with the standard majority-rule method. 

Differences in information retention for optimal scaling solutions were significantly 

higher than the trivial majority-rule solutions, regardless of landscape.  For both landscapes, 

intermediate class-label precisions of 33% were suitable solutions, negotiating information 

retention, class-label fidelity and class-detection accuracy.  While for both landscapes, 

information retention increased and class-label fidelity decreased with increasing class-label 

precision, the pattern was observed only for landscape representativeness thresholds below 

15 percent (Figs. 2.2 and 2.3). 

The trade-offs of information retention, class-label fidelity, and spectral detectability 

of scaled classes from multi-spectral data indicate that there no single-best solutions exist.  

Weighting these criteria when selecting the optimal solution is user- and application-

dependent.  Class-specific accuracy and classification scheme preferences can be used in 

the selection of the optimal parameter selection.  The presented method provides a 

framework that integrates the quantitative evaluation of scaling parameter selection and its 

effects on representativeness of classification systems, information retention at the local 
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(pixel) and at the landscape level, and the spectral-detection probabilities of the scaled 

classes.  Applying this method allows for user-specific and preference-optimized solutions 

where previously no weighting of effects was possible. 

The algorithm in the current version requires user-defined values for class-label 

precision and class-representativeness as a percentage of landscape cover.  To simplify 

parameter selection the user-defined minimum class representativeness thresholds could be 

implemented as a step-wise class-removal procedure.  The feedback of the step-wise 

removal could be the three criteria, IR, CLF and classification accuracy.  Successful 

implementation of a step-wise class-removal procedure depends on the correlation of 

location-specific (i.e., grid cell), class-specific, and landscape-level information retention to 

overall and class-specific classification accuracy, which still needs to be evaluated. 

The effects of scaling optimization and parameter selection on the accuracy of 

categorical vegetation-change detection using the Landsat archive of 30+ years and to 

evaluate and estimate gains in estimate precision and reduction of error and uncertainty 

when estimating biophysical response parameters (e.g., respiration, biomass, LAI) needs to 

be tested.  Interpreting biophysical response parameters over large regions using remote-

sensing techniques requires not only understanding of the relationship between the variable 

or parameter of interest in relation to the remotely sensed data, but also the land-cover 

compositions over the area for which response parameters are estimated.   Differences in 

relative abundance of each vegetation type affects the calibration and performance of 

models.  Biogeochemical models that simulate carbon and nitrogen fluxes between soil, 

vegetation and the atmosphere often use spatially low-resolution data with the advantage 

that they have much higher temporal resolution than the datasets that are used to generate 
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vegetation maps.  The availability of vegetation maps at high spatial resolutions that provide 

the spatial precision required to separate and distinguish borders of plant communities, 

assemblages or ecotones of interest can serve as model landscapes from which scale-

appropriate vegetation-classification systems can be derived by applying the MDGP-scaling 

algorithm.  Other scaling methods that only use input classes of the high-resolution cover 

maps do not account for class co-occurrence patterns at different spatial scales, and, 

therefore, reduce information content that can aid in the high-precision estimation of 

biophysical parameters. 

Spatially explicit and exhaustive ecosystem response models that use multi-spectral 

reflectance data at high temporal resolutions are limited by their low spatial resolution, 

integrating and interpreting reflectance patterns over large areas of a single response unit 

(pixel).  For instance, combining LAI or FPAR products derived from Moderate Resolution 

Imaging Spectroradiometer (MODIS) (Knyazikhin et al. 1999; Myneni, Knyazikhin, and 

Park 2015), which has have a high temporal resolution (i.e., daily) but low spatial resolution 

(i.e., 500 m), with vegetation maps that are the product of high-precision mapping requires 

downscaling of the vegetation maps.  Knowing the approximate relative abundance of 

vegetation cover types within each response unit (pixel, grid cell) of the lower-resolution 

data, allows for more precise modeling of response variables (i.e., LAI, FPAR).  Hence, 

scaling high-resolution land-cover maps to match low-resolution data layers of response 

variables with high scale factors using the MDGP-scaling algorithm generates classification 

schemes that retain more detailed ground cover information, which allows for estimates that 

are more precise.  This analysis demonstrated that detection of scaled classes from lower 

resolution spectral data was possible and that the evaluation framework facilitates parameter 
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selection that optimizes scaling results.  Quantifying class-specific and location-specific 

information retention for the scaled products also enables the estimation of spatially explicit 

confidence or error at the low-resolution grid cell level and thus error propagation to model 

results. 

Application of the MDGP-scaling algorithm for change detection of land cover can 

be performed for frequently co-occurring classes.  With the increasing availability of high-

resolution remotely sensed data, high-precision land-cover maps will become more 

common, but the detection of past changes requires robust and reliable aggregation methods 

of categorical data.  Only when scaling procedures produce representative, scale-appropriate 

low-resolution land-cover maps with scaled classes that can be detected from low-resolution 

spectral reflectance patterns will change-detection analysis deliver accurate change patterns 

with acceptable confidence. 
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TABLES 

Table 2.1. Classification scheme of high-resolution plant community map for WCA3A (Fig. 

2.2) and mapped class proportions for the study area. 

 
 

 

Table 2.2. Classification scheme of high-resolution plant community map for NESRS (Fig. 

2.3) and mapped class proportions for the study area. 

 
  

Region Class Abbr. Class Name Class Prop. (%)

aS Aquatic Submerged 1.81

aS-p-blF Aquatic Submerged  - Periphyton - Broadleaved Floating  28.16

blF-aS Broadleaved Floating - Aquatic Submerged 10.82

blFNy Broadleaved Floating Nymphaea 10.3

gM-blE Graminoid Marsh - Broadleaved Emergent 18.93

gMCl Graminoid Marsh Cladium 24.73

s-gM-blE Shrub - Graminoid Marsh - Broadleaved Emergent 4.49

s-t Shrub - Tree 0.77
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Region Class Abbr. Class Name Class Prop. (%)

bF Broadleaved Floating 0.02

gM-bE Graminoid Marsh - Broadleaved Emergent 2.92

gM_S Graminoid Marsh Sparse 7.99

gM_D Graminoid Marsh Dense 2.3

gMCl Graminoid Marsh Cladium 29.3

gMCl_D Graminoid Marsh Cladium  Dense 13.66

gMCl_S Graminoid Marsh Cladium  Sparse 35.46

gMTy Graminoid Marsh Typha 2.67

sB Shrub Bayhead 2.01

sSa Shrub Salix 3.02

tB Tree Bayhead 0.28

tH Tree Hammock 0.06

w Water 0.07

pt Peat 0.25

N
E

S
R

S
: 

 4
,1

9
1
.4

 h
a
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Table 2.3. WCA3A scaling results for varying class-label precisions (Parts) and landscape 

representativeness thresholds (Rpr.).  prbMn = mean probability of class recurrence across 

10 random origin iterations; prp1 = proportion of classes across 10 iterations with 

recurrence probability of 1; cls-Tot = total number of classes across 10 iterations; cls-Mix = 

number of mixed classes; cls-Mono = number of monotypic classes; clsMn-RO = mean 

number of classes for iterations; clsSD-RO = standard deviation of class numbers; irMn-LS 

= mean information retention across all 10 scaled landscapes;  irSD-LS = standard deviation 

of information retention across all 10 scaled landscapes; OSI = Optimal Scaling Index (i.e., 

credit for information retention greater than 60%).  Best two solutions are marked in dark 

grey.  

 
  

OSI

Region Parts Rpr. prbMn prp1
cls 

Tot

cls 

Mix

cls 

Mono

clsMn 

RO

clsSD 

RO

irMn 

LS

irSD 

LS
IR > 60%

1 1 1.00 1.00 7 0 7 7.0 0.00 57.3% 0.45% -0.392

1 5 0.89 0.71 7 0 7 6.2 0.63 58.0% 0.57% -0.205

1 10 0.80 0.71 7 0 7 5.6 0.70 58.6% 0.63% -0.147

1 15 0.80 0.71 7 0 7 5.6 0.70 58.6% 0.63% -0.147

1 20 0.80 0.71 7 0 7 5.6 0.70 58.6% 0.63% -0.147

2 1 0.89 0.79 19 12 7 17.0 1.15 74.8% 0.62% 0.613

2 5 0.80 0.53 15 8 7 12.0 0.67 72.0% 0.53% 0.426

2 10 0.76 0.40 10 3 7 7.6 0.97 70.0% 0.92% 0.399

2 15 0.72 0.30 10 3 7 7.2 1.14 69.5% 0.87% 0.285

2 20 0.67 0.30 10 3 7 6.7 0.95 67.8% 2.07% 0.233

3 1 0.89 0.82 34 29 5 30.1 1.20 80.5% 0.29% 0.497

3 5 0.67 0.37 19 14 5 12.8 0.63 76.8% 0.62% 0.327

3 10 0.61 0.29 14 9 5 8.5 0.71 74.9% 0.95% 0.304

3 15 0.78 0.44 9 4 5 7.0 0.67 73.5% 1.43% 0.664

3 20 0.66 0.22 9 4 5 5.9 0.57 70.5% 1.74% 0.259

4 1 0.78 0.58 52 48 4 40.3 1.16 83.4% 0.20% 0.260

4 5 0.67 0.35 20 16 4 13.4 1.26 79.7% 0.55% 0.345

4 10 0.72 0.45 11 7 4 7.9 0.74 77.7% 0.73% 0.732

4 15 0.57 0.18 11 7 4 6.3 0.67 75.9% 1.57% 0.263

4 20 0.54 0.22 9 5 4 4.9 0.32 71.6% 1.44% 0.287

5 1 0.61 0.36 78 75 3 47.8 1.62 85.2% 0.19% 0.116

5 5 0.48 0.14 29 26 3 13.8 1.14 80.6% 0.76% 0.098

5 10 0.57 0.07 14 11 3 8.0 0.82 77.6% 1.33% 0.090

5 15 0.46 0.08 12 9 3 5.5 0.53 74.4% 1.74% 0.100

5 20 0.58 0.13 8 5 3 4.6 0.52 72.8% 1.65% 0.199

W
C

A
3

A

Class Fidelity Information 
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Table 2.4. Scaling effects on spectral detection accuracies for WCA3A for varying class-label 

precisions (Parts) and landscape representativeness thresholds (Rpr.).  IR-RL = mean 

information retention across the landscape for the realized landscape (Landsat grid); clsLS = 

number of scaled classes; clsLS/clsRO = the ration of scaled classes for the realized 

landscape to the number of all classes identified across 10 random grid origins; cvOA = 

cross-validated overall classification accuracy; OA-CIL and OA-CIU = lower and upper 

confidence estimates of the overall accuracy; OSIa = Optimal Scaling Index for class-

detection accuracy. Best two solutions are marked in dark grey. 

 
 

  

Region Parts Rpr. IR-RL clsLS clsLS/clsRO cvOA OA-CIL OA-CIU OSIa

1 1 62.6% 7 1.00 66.6% 64.8% 68.5% 0.247

1 5 62.3% 6 0.86 67.1% 65.3% 68.9% 0.222

1 10 61.5% 5 0.71 70.0% 68.2% 71.8% 0.151

1 15 61.5% 5 0.71 69.6% 67.8% 71.4% 0.150

1 20 61.5% 5 0.71 70.4% 68.6% 72.2% 0.152

2 1 77.1% 16 0.84 68.3% 66.5% 70.1% 0.615

2 5 75.5% 12 0.80 70.4% 68.6% 72.2% 0.726

2 10 71.3% 7 0.70 72.3% 70.5% 74.0% 0.817

2 15 71.3% 7 0.70 71.8% 70.1% 73.6% 0.812

2 20 71.3% 7 0.70 72.1% 70.4% 73.9% 0.815

3 1 82.8% 29 0.85 69.2% 67.4% 71.0% 0.464

3 5 78.6% 12 0.63 71.5% 69.7% 73.3% 0.698

3 10 76.0% 9 0.64 72.1% 70.3% 73.8% 0.822

3 15 74.2% 8 0.89 73.9% 72.1% 75.6% 1.166

3 20 69.2% 6 0.67 72.9% 71.2% 74.6% 0.749

4 1 85.9% 40 0.77 69.5% 67.7% 71.3% 0.346

4 5 80.2% 14 0.70 72.5% 70.8% 74.3% 0.734

4 10 76.4% 8 0.73 75.3% 73.6% 77.0% 1.122

4 15 75.1% 7 0.64 76.1% 74.4% 77.7% 1.041

4 20 71.0% 5 0.56 74.8% 73.1% 76.5% 0.918

5 1 87.1% 47 0.60 69.8% 68.0% 71.6% 0.242

5 5 80.5% 13 0.45 73.2% 71.5% 75.0% 0.517

5 10 75.2% 8 0.57 78.0% 76.4% 79.7% 0.847

5 15 71.4% 5 0.42 78.2% 76.6% 79.8% 0.741

5 20 68.9% 4 0.50 77.5% 75.8% 79.1% 0.857

W
C

A
3

A
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Table 2.5. WCA3A class schema and class proportions (Class Prop.) for two good scaling 

solutions of a 3-part class-label precision with a landscape representativeness of 15% (top) 

and a 4-part class-label precision with a representativeness of 15% (bottom).  irMn = mean 

information retention;  irSD = standard deviation of information retention.

 
 

 

 

  

Class Prop. (%) irMn (%) irSD (%)

100 Aquatic Submerged  - Periphyton - Broadleaved Floating * 15.7 88.9 9.2

67 Aquatic Submerged  - Periphyton - Broadleaved Floating

33 Broadleaved Floating Nymphaea 

100 Broadleaved Floating - Aquatic Submerged * 9.7 65.6 19.2

33 Broadleaved Floating Nymphaea

33 Graminoid Marsh - Broadleaved Emergent

33 Graminoid Marsh Cladium

100 Graminoid Marsh - Broadleaved Emergent * 5.2 69.0 11.7

100 Graminoid Marsh Cladium* 6.6 89.5 7.2

67 Graminoid Marsh Cladium

33 Graminoid Marsh - Broadleaved Emergent

100 Shrub - Graminoid Marsh - Broadleaved Emergent * 2.6 63.2 17.6

Class Prop. (%) irMn (%) irSD (%)

100 Aquatic Submerged  - Periphyton - Broadleaved Floating * 13.0 89.3 16.6

25 Aquatic Submerged  - Periphyton - Broadleaved Floating

25 Broadleaved Floating - Aquatic Submerged

25 Broadleaved Floating Nymphaea

25 Graminoid Marsh - Broadleaved Emergent

25 Aquatic Submerged  - Periphyton - Broadleaved Floating

25 Broadleaved Floating - Aquatic Submerged

25 Graminoid Marsh - Broadleaved Emergent

25 Graminoid Marsh Cladium

75 Aquatic Submerged  - Periphyton - Broadleaved Floating

25 Broadleaved Floating Nymphaea

100 Broadleaved Floating - Aquatic Submerged* 7.0 74.0 14.5

50 Graminoid Marsh - Broadleaved Emergent

25 Broadleaved Floating Nymphaea

25 Graminoid Marsh Cladium

100 Graminoid Marsh Cladium* 5.0 92.4 5.1

67 Graminoid Marsh Cladium

33 Graminoid Marsh - Broadleaved Emergent
16.2 82.9 10.4

14.0 78.1 12.4

15.9 68.6 15.0

16.0 72.8 9.9

Class Name - 33% Precision 15% Representativeness

18.4 81.2 11.0

Class Name - 25% Precision 10% Representativeness

12.8 62.6 17.0

19.9

21.8

68.0 14.7

65.1 11.8
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Table 2.6. NESRS scaling results for varying class-label precisions (Parts) and landscape 

representativeness thresholds (LS-Rpr.).  prbMn = mean probability of class recurrence 

across 10 random origin iterations; prp1 = proportion of classes across 10 iterations with 

recurrence probability of 1; clsTot = total number of classes across 10 iterations; clsMix = 

number of mixed classes; clsMono = number of monotypic classes; clsMn-RO = mean 

number of classes for iterations; clsSD-RO = standard deviation of class numbers; irMn-LS 

= mean information retention across all 10 scaled landscapes;  irSD-LS = standard deviation 

of information retention across all 10 scaled landscapes; OSI = Optimal Scaling Index (i.e., 

credit for information retention greater than 60%).  Best two solutions are marked in dark 

grey.  

  
 

  

OSI

Region Parts Rpr. prbMn prp1
cls 

Tot

cls 

Mix

cls 

Mono

clsMn 

RO

clsSD 

RO

irMn 

LS

irSD 

LS
IR > 60%

1 1 1.00 1.00 11 0 11 11.0 0.00 66.4% 0.21% 0.582

1 5 1.00 1.00 11 0 11 11.0 0.00 66.4% 0.21% 0.582

1 10 1.00 1.00 11 0 11 11.0 0.00 66.4% 0.21% 0.582

1 15 1.00 1.00 11 0 11 11.0 0.00 66.5% 0.20% 0.587

1 20 1.00 1.00 11 0 11 11.0 0.00 66.5% 0.20% 0.587

2 1 0.91 0.78 23 12 11 20.9 0.57 77.3% 0.50% 0.588

2 5 0.95 0.79 14 3 11 13.3 0.67 74.2% 0.88% 0.794

2 10 0.95 0.77 13 2 11 12.3 0.67 72.2% 0.96% 0.722

2 15 0.94 0.83 12 1 11 11.3 0.67 70.2% 0.69% 0.710

2 20 0.94 0.83 12 1 11 11.3 0.67 70.2% 0.69% 0.710

3 1 0.85 0.67 30 20 10 25.4 1.17 81.2% 0.41% 0.471

3 5 0.90 0.65 17 7 10 15.3 0.82 78.1% 1.50% 0.690

3 10 0.92 0.62 13 3 10 12.0 0.94 74.1% 1.56% 0.667

3 15 0.94 0.75 12 2 10 11.3 0.82 72.7% 0.82% 0.793

3 20 0.93 0.67 12 2 10 11.2 0.79 72.5% 1.02% 0.696

4 1 0.78 0.62 42 32 10 32.7 0.95 83.9% 0.30% 0.353

4 5 0.84 0.65 20 10 10 16.8 1.03 81.5% 0.98% 0.699

4 10 0.80 0.53 15 5 10 12.0 0.82 76.5% 1.47% 0.587

4 15 0.73 0.50 14 4 10 10.2 1.32 73.0% 0.71% 0.465

4 20 0.69 0.43 14 4 10 9.7 1.49 72.0% 1.41% 0.367

5 1 0.63 0.48 61 52 9 38.5 1.08 85.7% 0.19% 0.200

5 5 0.60 0.36 28 19 9 16.8 1.03 82.5% 0.62% 0.287

5 10 0.69 0.38 16 7 9 11.1 1.20 76.7% 1.23% 0.391

5 15 0.69 0.36 14 5 9 9.7 0.67 73.7% 0.93% 0.349

5 20 0.67 0.36 14 5 9 9.4 0.70 73.2% 1.45% 0.336

Class Fidelity Information 

N
E

S
R

S
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Table 2.7. Scaling effects on spectral detection accuracies for NESRS for varying class-label 

precisions (Parts) and landscape representativeness thresholds (Rpr.).  IR-RL = mean 

information retention across the landscape for the realized landscape (Landsat grid); clsLS = 

number of scaled classes; clsLS/clsRO = the ration of scaled classes for the realized 

landscape to the number of all classes identified across 10 random grid origins; cvOA = 

cross-validated overall classification accuracy; OA-CIL and OA-CIU = lower and upper 

confidence estimates of the overall accuracy; OSIa = Optimal Scaling Index for class 

detection accuracy.  Best solution is marked in dark grey. 

 
  

Region Parts Rpr. IR-RL clsLS clsLS/clsRO cvOA OA-CIL OA-CIU OSIa

1 1 70.3% 11 1.00 69.4% 68.9% 69.8% 0.648

1 5 70.3% 11 1.00 69.4% 69.0% 69.8% 0.649

1 10 70.3% 11 1.00 69.5% 69.1% 70.0% 0.650

1 15 70.3% 11 1.00 69.4% 68.9% 69.8% 0.648

1 20 70.3% 11 1.00 69.3% 68.9% 69.8% 0.648

2 1 82.5% 21 0.91 70.2% 69.7% 70.6% 0.685

2 5 80.3% 13 0.93 70.8% 70.4% 71.2% 1.026

2 10 78.7% 12 0.92 71.0% 70.6% 71.4% 1.022

2 15 76.4% 11 0.92 71.1% 70.7% 71.5% 0.973

2 20 76.4% 11 0.92 71.1% 70.6% 71.5% 0.973

3 1 86.2% 26 0.87 69.7% 69.3% 70.1% 0.610

3 5 83.3% 16 0.94 70.1% 69.7% 70.5% 0.962

3 10 80.3% 13 1.00 70.7% 70.3% 71.1% 1.105

3 15 78.3% 12 1.00 70.5% 70.1% 70.9% 1.077

3 20 78.3% 12 1.00 70.5% 70.1% 70.9% 1.077

4 1 88.2% 33 0.79 69.6% 69.2% 70.0% 0.468

4 5 85.0% 18 0.90 70.6% 70.2% 71.0% 0.883

4 10 82.5% 14 0.93 70.3% 69.9% 70.8% 1.055

4 15 77.7% 11 0.79 71.4% 71.0% 71.8% 0.900

4 20 77.7% 11 0.79 71.3% 70.9% 71.7% 0.900

5 1 89.1% 37 0.61 69.4% 69.0% 69.8% 0.331

5 5 84.0% 15 0.54 72.1% 71.7% 72.5% 0.618

5 10 78.9% 10 0.63 72.6% 72.1% 73.0% 0.857

5 15 77.1% 8 0.57 73.2% 72.8% 73.6% 0.897

5 20 77.1% 8 0.57 73.1% 72.7% 73.5% 0.895

N
E

S
R

S
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Table 2.8. NESRS class schema and class proportions (Class Prop.) for an optimal scaling 

solution of a 3-part class-label precision with a landscape representativeness of 10%.  irMn = 

mean information retention;  irSD = standard deviation of information retention.

 
  

Class Prop. (%) irMn (%) irSD (%)

100 Graminoid Marsh - Broadleaved Emergent * 2.1 56.4 16.1

100 Graminoid Marsh Cladium * 8.5 89.8 7.6

67 Graminoid Marsh Cladium

33 Graminoid Marsh Cladium  Dense

67 Graminoid Marsh Cladium

33 Graminoid Marsh Cladium  Sparse

100 Graminoid Marsh Cladium  Dense * 9.6 74.5 16.6

100 Graminoid Marsh Cladium  Sparse * 18.0 90.3 8.1

67 Graminoid Marsh Cladium  Sparse

33 Graminoid Marsh Cladium

100 Graminoid Marsh Dense * 1.1 70.8 17.6

100 Graminoid Marsh Sparse * 5.5 60.1 17.7

100 Graminoid Marsh Typha * 2.0 74.1 19.9

100 Shrub Bayhead * 1.9 74.1 19.9

100 Shrub Salix * 3.3 74.1 20.2

100 Tree Bayhead * 0.3 82.5 19.6

12.1

14.9

20.7

76.1 14.8

82.8 12.9

54.8 16.3

Class Name - 33% Precision 10% Representativeness
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FIGURES 

 
 

Figure 2.1. Study areas in Water Conservation Area 3A (WCA3A) and Northeast Shark 

River Slough (NESRS) within the boundaries of Everglades National Park. 
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Figure 2.2. High-resolution plant communities for WCA3A. 
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Figure 2.3. High-resolution plant communities for NESRS. Brdlv. = Broadleaved; Float. = 

Floating; Emrg. = Emergent; Grm. = Graminoid, Mrsh. = Marsh; Dns. = Dense; Sprs. = 

Sparse.  
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Figure 2.4. Class-label fidelity and information retention for WCA3A.  Mean probability of 

class-label recurrence across all random-origin scaling results vs. mean landscape-level 

information retention.  Models are displayed by class-label precision (Parts) in color and 

scaled landscape representativeness threshold (Rep.) with shape.  Labels represent the mean 

number of classes generated for each model across the 10 random origins. 
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Figure 2.5. Cross-validated overall accuracy for WCA3A.  For the same class-label precision 

(Parts), as representativeness (Rep.) increases and small classes are removed, information 

retention decreases and classification accuracy increases.  Models are displayed by class-

label precision (Parts) in color and scaled landscape representativeness threshold (Rep.) with 

shape. 
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Figure 2.6.  Scaled plant communities for WCA3A (top) and location-specific information 

retention (IR) in percent for the assigned community class label when compared to the high-

resolution map (Fig. 2) (bottom).  Class label abbreviations: s = shrub, gMblE = Graminoid 

Marsh - Broadleaved Emergent; gMCl = Graminoid Marsh Cladium; blFaS = Broadleaved 

Floating - Aquatic Submerged; blFNy = Broadleaved Floating Nymphaea; aSpblF = Aquatic 

Submerged - Periphyton - Broadleaved Floating. 
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Figure 2.7.  Scaled plant-community classes predicted from Landsat spectral data (top) and 

location-specific classifier probability for class-label assignment (bottom) for WCA3A. Class 

label abbreviations: s = shrub, gMblE = Graminoid Marsh - Broadleaved Emergent; gMCl = 

Graminoid Marsh Cladium; blFaS = Broadleaved Floating - Aquatic Submerged; blFNy = 

Broadleaved Floating Nymphaea; aSpblF = Aquatic Submerged - Periphyton - Broadleaved 

Floating. 
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Figure 2.8.  Class-label fidelity and information retention for NESRS.  Mean probability of 

class-label recurrence across all random-origin scaling results vs. mean landscape-level 

information retention.  Models are displayed by class-label precision (Parts) in color and 

scaled landscape representativeness threshold (Rep.) with shape.  Labels represent the mean 

number of classes generated for each model across the 10 random origins. 
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Figure 2.9. Cross-validated overall accuracy for NESRS.  For the same class-label precision 

(Parts), as representativeness (Rep.) increases and small classes are removed, information 

retention decreases and classification accuracy increases.  Models are displayed by class-

label precision (Parts) in color and scaled landscape representativeness threshold (Rep.) with 

shape. 



 

117 

 

 
Figure 2.10. Scaled plant communities for NESRS (top) and location-specific information 

retention (IR) in percent for the assigned community class label when compared to the high-

resolution map (Fig. 3) (bottom).  Class label abbreviations: gMblE = Graminoid Marsh - 

Broadleaved Emergent; gMCl = Graminoid Marsh Cladium; gMClD = Graminoid Marsh 

Cladium Dense; gMClS = Graminoid Marsh Cladium Sparse; gMD = Graminoid Marsh 

Dense; gMS = Graminoid Marsh Sparse; sB = shrub Bayhead; sSa = shrub Salix; tB = tree 

Bayhead. 
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Figure 2.11. Scaled plant-community classes predicted from Landsat spectral data (top) and 

location-specific classifier probability for class-label assignment (bottom) for NESRS. Class 

label abbreviations: gMblE = Graminoid Marsh - Broadleaved Emergent; gMCl = 

Graminoid Marsh Cladium; gMClD = Graminoid Marsh Cladium Dense; gMClS = 

Graminoid Marsh Cladium Sparse; gMD = Graminoid Marsh Dense; gMS = Graminoid 

Marsh Sparse; sB = shrub Bayhead; sSa = shrub Salix; tB = tree Bayhead. 
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CHAPTER III  

EFFECTS OF SAMPLING INTENSITY, SEASONALITY AND CLASSIFIER 

SELECTION ON CLASSIFICATION ACCURACY, CONFIDENCE AND 

EFFICIENCY IN WETLAND VEGETATION MAPPING  

INTRODUCTION  

Categorical maps are models of landscapes that have errors and uncertainty 

associated with them (Lunetta et al. 1991).  Knowledge of class-specific and spatially 

explicit errors and uncertainties is crucial for evaluation of error and uncertainty propagation 

in spatially explicit models that incorporate such maps (Guisan and Zimmermann 2000; 

Heuvelink 2002; Kyriakidis and Dungan 2001; Langford et al. 2006; Wang et al. 2005;).  

The value of location-specific confidence estimation for quantitative estimates of geo-

statistical models has been demonstrated (Heuvelink 2002; Wang et al. 2005), but location-

specific uncertainty in the categorical information entering spatially explicit models is 

generally ignored, because it is not commonly available for categorical maps. 

Furthermore, maximization of classification accuracy is a primary goal of classifier 

development, and comparison of performance between methods is a powerful tool to 

develop and fine-tune specific classifiers for an application of interest.  However, to 

determine superiority of one classifier over another, comparing performance of two or more 

classifiers requires statistically sound proof of accuracy differences (Foody 2009).  

Commonly used metrics for map accuracy assessment in remote sensing are overall and 

class-specific map accuracies.  Efficacy of a classifier is assessed by statistical analysis of 

the error matrix, calculating overall and class-specific accuracies and errors of omission and 
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commission (Congalton and Green 1999); the error matrix is the cross-tabulation of random 

or stratified random samples (pixels or polygons) of a classified map vs. reference data 

consisting of class labels established from ground observation, aerial photography, or 

higher-resolution satellite images (Jensen 2015).  Just comparing two overall accuracy 

values of two maps, however, cannot provide a solid base for determining which classifier 

achieved higher accuracies or if the differences were statistically significant.  Comparing 

efficacy of two classifiers requires that accuracy estimates for two maps produced with 

different classifiers take into account sampling error and classifier consistency (Dietterich 

1998; Langford et al. 2006; Smits, Dellepiane, and Schowengerdt 1999).   Studies that 

compare classifiers often lack proof for a statistical difference of map accuracies between 

methods (Li et al. 2014; Mustapha, Lim, and Mat Jafri 2010; Szantoi et al. 2015), and studies 

that provide model-based accuracy with confidence estimates often use cross-validation 

methods with large overlapping sample sets in a re-sampling framework of non-randomly-

selected training samples (Huang, Davis, and Townshend 2002; Rogan et al. 2008), which 

produces a less-biased classifier assessment, but not an unbiased estimate of map accuracy 

differences.  In only a few cases has design-based statistical significance of classifier 

differences been established based on random samples (Pal 2005; Pal and Mather 2005). 

Providing proof of superiority of one method over another is important if decisions 

on resource allocation for large mapping or monitoring programs is based on performance 

differences, and it is even more important if map production costs of the different evaluated 

methods vary significantly.  In these cases, in addition to significant differences in accuracy, 

the increase in cost associated with an increase in accuracy needs to be considered in 

decision-making. 
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The growing need for thematically accurate vegetation maps with high spatial 

resolution is supported by the trend in remote-sensor technology to deliver data with ever 

increasing spatial, temporal, spectral and radiometric resolutions.  Increase in data 

resolutions, however, leads to an exponential per-area-unit increase in data storage and 

processing cost.  Despite a drastic decrease in cost of powerful computing environments, 

production cost of maps with high accuracy and precision is an important factor when 

evaluating the efficacy of a classification method and the feasibility of its application to 

mapping projects or monitoring programs, especially when these programs require analysis 

of multi-temporal remotely sensed datasets for large spatial extents over long periods. 

Optimizing classification methods (i.e., maximizing accuracy while reducing 

production costs) requires the evaluation of tradeoffs and interactions of process choices 

made when developing classification methods and classifiers.  Three major decisions related 

to production cost and map accuracy for supervised classification methods are (1) the choice 

of a statistical classifier or algorithm, (2) the number of training samples required for 

adequate class separation, and (3) feature-space selection and dimensionality.  

Classifiers 

In remote sensing, maximum likelihood classifiers were the gold standard for a long 

time, but in the past 20+ years the remote sensing community has increasingly embraced 

non-parametric classifiers and algorithms such as decision trees (Brown de Colstoun and 

Walthall 2006; Friedl and Brodley 1997), random forests (Belgiu and Drăguţ 2016; Breiman 

2001; Gislason, Benediktsson, and Sveinsson 2006; Ho 1998), support vector machines 

(Cortes and Vapnik 1995; Boser, Guyon, and Vapnik 1992; Bovolo, Camps-Valls, and 

Bruzzone 2010; Foody and Mathur 2004), and neural networks  (Atkinson and Tatnall 1997; 
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Jakomulska and Radomski 2002; Miller, Kaminsky, and Rana 1995).  Superiority of 

individual parametric or non-parametric classifiers or algorithms applied in remote sensing 

studies is not consistent across domains because of variability and interactions of 

classification schemes, sensor and data characteristics, and  the variability in environmental 

conditions and class phenologies across studies; thus the optimal choice of classifier needs 

to be evaluated in the context of study-specific circumstances (Huang, Davis, and 

Townshend 2002; Li et al. 2014; Ozesmi and Bauer 2002).  Ultimately, it is the multivariate 

variable space of class signatures that determines which classification algorithm is most 

efficient and accurate when compared to others under a specific set of circumstances. 

In the case of multimodal or skewed distributions of spectral reflectance patterns in 

multivariate space, non-parametric classifiers are theoretically expected to be less biased 

than parametric classifiers, because, by definition, assumptions of the parametric classifiers 

are violated.  However, machine learning algorithms are computationally more expensive 

than parametric statistical classifiers (e.g., maximum likelihood or naïve Bayes classifiers) 

when establishing a classifier from training sample data. 

Training Sample Size and Feature-Space Dimensionality 

The number of training samples required to construct an effective parametric 

classifier is estimated to be between 10 and 30 times the number of features in a dataset 

(Jensen 2005).  Van Niel et al. (2005) suggest that the number of required training samples 

depends on data-, site- and phenomenon-specific characteristics of the study, and that case-

specific evaluation of accuracy increase as a function of training sample size is required to 

determine the optimal sample size for classifier training (Foody, McCulloch, and Yates 

1995; Shao and Lunetta 2012).  As training sample size increases, calculation of class-
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specific multivariate mean and co-variance parameter estimates is computationally less 

expensive than multi-pass algorithms that search the dataset for optimal class boundaries or 

splits.  While an increase in training samples adds cost in reference data gathering, 

digitization, and time required to train a classifier, it does not increase classification time 

once the classifier is established and applied to the full dataset. 

With increasing sample size, processing time of classifier establishment is expected 

to increase exponentially, while accuracy is expected to increase according to the law of 

diminishing returns (Mitscherlich 1909).  Hence, knowing the percent increase in 

processing time and accuracies as the number of training samples per class increases is more 

valuable than calculating the minimum number of samples required for adequate classifier 

performance.  Even more useful is knowing the point at which adding samples does not 

significantly enhance classifier efficacy but keeps adding cost to the classification process.  

Estimating the maximum achievable accuracy, given a specific feature set, provides 

valuable information in the context of budget constraints. 

Accuracy and efficiency also varies with feature-space dimensionality (e.g., uni- vs. 

multi-temporal feature sets).  Increasing the feature space increases both the time required 

for classifier establishment and the classification time needed to assign a class to each 

sample (pixel).  Feature space can be expanded using multi-seasonal images and/or texture 

variables and indices derived from the reflectance bands of an image.  In many cases, 

including texture variables has increased classification accuracy (Rodriguez-Galiano et al. 

2012; Szantoi et al. 2015), but adding more sophisticated spatio-texture variables (Li et al. 

2014) into the feature space increased processing time and data storage requirements. 
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Using multi-seasonal data to capitalize on phenological differences among classes 

has also increased accuracy in differentiating and mapping tree species (Dymond, 

Mladenoff, and Radeloff 2002; Gao et al. 2015), tidal marsh vegetation (Gao and Zhang 

2006; Gilmore et al. 2008), and agricultural crops (Sakamoto et al. 2005).  Multi-seasonal 

data is expected to have greater information content than local texture if the phenotypic 

variability of classes and the associated spectral patterns that differentiate these classes are 

greater than the spatial variability of those spectral patterns at any given point in time.  

Including multi-seasonal data and local texture is justified if the class-specific accuracy is 

improved significantly. 

However, such inclusion increases the number of features, and as the dimensionality 

of the feature space increases, the minimum number of required training samples increases 

as well (Jain and Chandrasekaran 1982; Kanal and Chandrasekaran 1971).  Additional 

spectral reflectance patterns (i.e., multi-seasonal data) that capture phenological cycles of 

classes are expected to add greater information value to a classifier than adding training 

samples from a uni-seasonal dataset, and hence an increase in feature space could potentially 

allow for a reduction in the number of training samples while maintaining or even increasing 

map accuracy.  It is, therefore, of interest to evaluate the effects and interactions of feature 

set expansion, training sample size, and classification accuracy.  Understanding these 

interactions and trade-offs and their effects on class- and location-specific classifier 

accuracy and cost will allow optimization of case-specific classification methods. 

The above discussion has described current limitations and constraints when 

choosing a classifier for mapping using remotely sensed data: (1) the limitations of previous 

studies in unbiased evaluation of performance differences of supervised classification 
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methods; (2) the lack of spatially exhaustive, location-specific, confidence estimates of 

maps; and (3) the need to make informed decisions about resource allocation.  Given this, 

the objectives of this paper were to develop a framework that facilitates the evaluation of 

classification performance as a function of three major aspects of the classification process: 

(1) choice of classification algorithms; (2) the sizes of training sample sets; and (3) data 

volume and the number of variables used in the feature space.   

A framework to model the interactions of training sample intensity, feature space, 

and their effects on mapping accuracies and processing time was developed.  This 

framework was then used to develop and optimize a mapping method for wetland plant 

communities from high-resolution, multi-spectral, satellite data.  The Everglades in 

southern Florida, USA, was selected as a study site because large scale restoration efforts 

are being implemented in this wetland (National Research Council 2014; Sklar et al. 2001), 

and remote sensing technology can provide an effective way to monitor and evaluate 

restoration success.  Estimating monitoring cost and expected accuracies for alternative 

monitoring strategies is crucial for adequate budget allocation. 

Challenges wetlands present to using spectral remote sensing from single images are 

seasonally varying water levels and phenology of vegetation in response to water cycles and 

climatic conditions (Gann et al. 2015; Jones, Desmond, and Henkle 2012; Ozesmi and Bauer 

2002).  Fluctuating water levels lead to alternate submersion and exposure of vegetation and 

substrate.  Hence, depending on occurrence along a topographic gradient, a plant 

community type is expected to manifest a variety of spectral signatures.  In addition, 

seasonal occurrence of algae and cyanobacteria in the form of epiphytic periphyton attached 

to floating or emergent vegetation or of benthic periphyton mats adds to inter-seasonal and 
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inter-annual spectral variability for many vegetation communities (Gann et al. 2015; Jones 

2011; Kim et al. 2014).  This bi-seasonal phenological cycle, therefore, makes the 

Everglades wetland a good environment to explore the benefits and trade-offs of utilizing 

multi-seasonal datasets and to model classification performance that allows decision makers 

to develop a cost-effective monitoring strategy. 

METHODS 

Study Area 

The study was conducted in two 1-km2 plots located in the southwestern corner of 

Water Conservation Area 3A, part of the greater Florida Everglades ecosystem, USA (Fig. 

3.1).  This ridge and slough landscape is comprised of higher elevation ridges dominated by 

Cladium jamaicense (graminoid) interspersed with broadleaf species and island-forming 

shrub and tree species.  The ridges alternate with lower elevation sloughs that are dominated 

by the floating-leaved species Nymphaea odorata, Utricularia spp. and submerged aquatic 

species (Fig. 3.1); shallower sloughs and transitional areas are dominated by dense 

Eleocharis spp. and other short sedges, grasses, and broad-leaved emergent species. 

Classification Scheme 

Two morphological landscape classes were differentiated, (1) graminoid- and 

broadleaf-dominated ridges, interspersed with isolated shrub and tree-dominated 

communities, and (2) slough communities including submerged aquatic vegetation, 

floating-leaved and emergent broadleaf vegetation, and periphyton (Tbl. 3.1).  For each of 

the morphological classes, four lower-level plant community classes were established. 

In ridges a monotypic Cladium-dominated community was differentiated from a 

graminoid-broadleaf mixed marsh class that primarily included mixes of the graminoid 
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species (Eleocharis spp., and Panicum spp.), and emergent broadleaf species such as 

Peltandra virginica, Sagittaria lancifolia, Crinum americanum and Pontederia cordata.  

The shrub and tree component of the ridges was divided into a less-dense shrub community 

made up of Salix caroliniana, Myrica cerifera, Ilex cassine, Persea borbonia, and 

Chrysobalanus icaco, interspersed with several broadleaf and fern species, and a dense 

shrub-tree class that was dominated by dense shrubs and trees (Tbl. 3.1). 

The morphological slough class was also divided into four community classes (Tbl. 

3.1).  A submerged aquatic class was identified as mainly open water with submerged or 

floating non-broadleaf vegetation (mainly Potamogeton illinoensis, Chara spp., and 

Utricularia spp.).  This was differentiated from a submerged aquatic and mixed broadleaf 

class. A third class had the same mix but periphyton dominated.  The fourth class was a 

Nymphaea odorata-dominated class.  Short graminoid patches of Eleocharis, Rhynchospora 

or Panicum in sloughs have great inter-annual variability (Zweig and Kitchens 2009) and 

were not encountered densely enough during the time frame of the study to be 

acknowledged in our classification scheme.  In most cases, these short graminoid taxa were 

present at low densities within Nymphaea slough and dominant submerged aquatic species.  

A complete list of classes is provided in Table 3.1. 

Datasets 

Multi-spectral bi-seasonal satellite data were used for the spectral separability 

analysis and detection of vegetation types.  In situ sample data were gathered and used for 

confidence building in interpreting vegetation types from two sources of aerial photography, 

a very-high resolution (3-5 cm) aerial photography dataset acquired by an unmanned aerial 
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system and stereo- and ortho-photography were used for training set establishment and 

accuracy assessment (Fig. 3.1).   

Multi-spectral Multi-temporal Satellite Data 

Two WorldView-2 (WV-2; Satellite Imaging Corp., Houston, TX) datasets with a 

spatial resolution of 2 m and 8 spectral bands ranging from 400 nm to 1,040 nm were 

acquired on May 5th, 2011, and October 20th, 2012.  Images were geometrically co-

referenced to 1-ft ortho-photographs of 2012 (2012 Digital Orthophotos - Miami-Dade 

County, Tallahassee, FL) and atmospherically corrected using ENVI’s Fast Line-of-sight 

Atmospheric Analysis of Hypercubes (FLAASH) (Exelis Visual Information Solutions, 

Boulder, Colorado). 

Reference Data  

Training samples for each of the vegetation classes were collected in the field at the 

time of acquisition of the UAS aerial photography in September 2012 (Zweig et al. 2015).  

Primary reference information source for training set digitization and evaluation of random 

samples for accuracy assessment was the very-high resolution mosaic of the UAS aerial 

photography produced by the United States Army Corps of Engineers in collaboration with 

University of Florida (Zweig et al. 2015).  The photographs were taken in September 2012, 

just one month before the WV-2 dataset for the wet season was acquired.  The 10-megapixel 

Olympus® E-420™ (Olympus Corp., Shinjuku, Tokyo, Japan) digital single-lens reflex 

(dSLR) camera with a fixed focal length 25 mm Olympus® Zuiko Digital™ pancake lens 

was mounted on a Nova 2.1 (Altavian Inc., Gainesville, FL) fixed-wing unmanned aerial 

system (UAS) developed by the University of Florida Unmanned Aircraft Systems Research 

Program.  Two mosaics of approximately 1 km2 each were generated from the photographs 
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using Agisoft LLC PhotoScan software (Agisoft LLC, St. Petersburg, Russia).  The mosaics 

had a nominal spatial resolution of 5 cm, with raw data images providing even higher spatial 

resolutions of 1-3 cm. 

In addition to the high-resolution aerial mosaic, a stereo-photography set from 2011 

was used for height references to establish shrub and tree heights and to separate them from 

shorter woody and broadleaved vegetation.  The stereo aerial photography was acquired 

with an UltraCam X (Vexcel Imaging GmbH., Graz, Austria) frame-based digital camera 

as part of the Comprehensive Everglades Restoration Plan (CERP) Restoration 

Coordination and Verification (RECOVER) vegetation mapping project. 

Vegetation detection and interpretation from the high-resolution aerial photography 

was evaluated on the basis of two independent visual interpretations of 649 2x2 m grid cells 

interpreted by two field-trained interpreters. Class detection agreement for 19 species-level 

classes was 96.5% ± 3.2% (Mean ± SD).   Classes that were most consistently detected with 

an agreement ≥ 98% by both interpreters were broadleaved species Nymphaea odorata, 

Sagittaria lancifolia, and Pontederia cordata, graminoid species Cladium jamaicense and 

Panicum hemitomon, and all tree species (Gann and Richards 2013). 

Training and Accuracy Evaluation Dataset  

Training samples for each class for the spectral separability analysis from WV-2 

data were digitized from the high resolution UAS aerial photography and the stereo 

photography.  To estimate sampling error for classification results on the basis of random 

samples with varying sample numbers, the pool of training samples had to be large. A 

minimum of 1,000 samples (pixels) per class were digitized, for a total of 17,000 pixels.   
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For the design-based classifier accuracy evaluation a simple random sample of an 

additional 2,500 samples, or 0.5% of the population of pixels, was drawn within the study 

area (two 1-km2 areas of 250,000 pixels of 4 m2 each).  No random sample for accuracy 

assessment was a member of the training sample set.  A wet and dry season community 

class was assigned to each training sample and each accuracy assessment sample on the 

basis of a combined evaluation of the 3 cm resolution aerial mosaic, stereo-photography and 

spectral signature of the two WV-2 images. 

Model Definitions and Evaluation Framework 

A full factorial sampling and evaluation framework was developed that facilitated 

evaluating the effects of classifier algorithm choice, feature selection, and training sample 

intensity on accuracy and efficiency.  At the highest level of the evaluation framework, a 

wrapper method for feature selection was incorporated.  The feature selection wrapper 

provided meaningful feature subspaces to compare classification accuracy differences for 

datasets of single and multi-seasonal reflectance data only and in combination with local 

texture variables.  Feature subspaces of interest were the reflective bands of a single wet 

season (8 bands) vs. a single dry season (8 bands) vs. the combined wet and dry season 

feature space of both images (16 bands).  For the dry and wet season images, texture or local 

spectral variability in the form of data ranges within a 3x3 kernel was calculated for each of 

the eight original reflective bands of each image.  For each of the three datasets, a version 

with the local data range was included in the feature-space subsets, resulting in a total of six 

variable sets or feature subspaces (three with and three without texture) (Tbl. 3.2).  

Embedded, classifier-specific, feature selection procedures then searched for optimal 

feature subsets within those subspaces.  The local texture bands (eight per image) were 
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generated in R (R Core Team 2013) using the focal function in the “raster” package 

(Hijmans and van Etten 2010), resulting in a data cube with 32 layers (eight dry, eight wet, 

and their 16 texture layers). 

Each of the six described variable sets was evaluated for training sample sizes of 12, 

25, 50, 100, 200, and 300 samples per class.  For each of the six sample intensities, one 

parametric and one non-parametric classifier method was constructed and applied to the full 

dataset to generate classified maps and their spatially explicit, algorithm-determined class 

label probability maps.  The full factorial design yielded 72 models of interest (Tbl. 3.2).  

To account for sampling error in the model performance comparison and to establish 

classifier stability, each model was evaluated 10 times using bootstrap re-samples of the 

training sample pool of 1,000 samples per class for each of the training sample intensities.  

Each of the 60 sample sets (10 per sampling intensity) was evaluated for each of the six 

variable sets and by two classifiers for a total of 720 models (60x6x2). 

Random forest and naïve Bayes classifiers were selected to represent the non-

parametric and parametric methods, respectively.  Best practice tuning parameters for each 

of the classifiers were employed to ensure that model performance was optimized for each 

model individually.  For the random forest models, test runs for different samples sizes and 

variable sets concluded that 200 trees were a good threshold beyond which no significant 

increase in classification accuracy was observed, and therefore the number of trees was set 

to a constant 200.  The parameter for optimal number of random variables selected at each 

split (“mtry”) was established for each random forest model with a built-in tuning routine, 

considering all possible options from two to the maximum number of all features in the 

evaluated feature subset (Kuhn et al. 2016The naïve Bayes tuning parameters were optimal 
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feature selection using a backward feature selection algorithm and whether a kernel density 

or normal density estimator were used (Weihs et al. 2005).  For both classifiers, the count 

of optimal features was recorded for each model. 

Classifier Evaluation 

Performance of all classifier models was evaluated on the basis of (1) overall 

accuracy; (2) computational efficiency of the classifier, including training time and 

prediction time; (3) location-specific class confidence; and (4) class-specific user’s and 

producer’s accuracies.  Overall accuracy for each of the 720 models was estimated from 

confusion matrices that were constructed for the 2,500 random samples. Class labels that 

were assigned by the classifier were cross-tabulated with the analyst-assigned labels and 

accuracy calculated as a percentage of correctly classified samples of the 2,500 labeled 

random samples.  Confidence intervals of accuracy for all 72 models were estimated from 

the results of the 10 random sample training sets evaluated for each model. 

Computational efficiency of the classifiers was assessed for classifier training time 

and classifier prediction time.  Training time was then modeled as a function of training 

sample size, the number of variables in the model-specific feature subspace, and the number 

of classes.  Prediction time was modeled as a function of the optimal number of features 

selected from the feature subspace and the number of classes in the classification scheme.  

The number of optimal features could vary from 2 to the dimensionality of feature subspace 

of 8, 16 or 32 variables, and the number of classes varied between 8 for the single season 

models and 17 wet/dry season class combinations for the bi-seasonal models.  The 17 

combined wet/dry season classes were composed of the eight original ridge and slough 

classes and nine slough classes that had different vegetation class labels assigned for the 
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two seasons (e.g., submerged aquatic vegetation in the dry season that was dominated by 

periphyton or floating broadleaf species during the wet season). 

Model performance in terms of overall accuracy and efficiency differences between 

models were evaluated using Mann-Whitney tests, pooling accuracy and timing results for 

the 10 replicates of each model ( = 0.05).  Differences were assessed for classifier type, 

feature subspace, and sampling intensity by estimating the shift in median locations between 

models and their 95% confidence intervals (CI) using the Hodges-Lehmann estimator 

(Hodges and Lehmann 1963).  Median location shift estimates of accuracy and efficiency 

were used to determine whether the differences, when statistically significant, were also 

meaningful in the context of mapping vegetation classes, thus justifying more complex 

classifiers and more training samples (Foody 2009). 

The effects of increase in sampling intensities and feature subspace expansion on 

overall accuracy and processing time were evaluated by fitting regression models that aimed 

at estimating approximate increase in percent accuracy and processing times for percent 

increase in sampling intensity and feature space (Foody and Arora 1997).  Increase in overall 

accuracy was expected to follow the law of diminishing returns as sampling intensity 

increased with an upper limit bound on accuracy.  Asymptotes of accuracy as a function of 

sampling intensity for each variable set were estimated based on a nonlinear growth model 

(Equation 3.1). 

𝑜𝑎 = 𝛽1 ∗ 𝛼𝑒(−𝛽2∗𝑠𝑚𝑝𝐼𝑛𝑡)                Equation 3.1 

In equation 3.1 𝑜𝑎 is the overall accuracy, 𝑠𝑚𝑝𝐼𝑛𝑡 is the sampling intensity, and 𝛽1 the 

predicted accuracy boundary or asymptote.  Asymptote confidence intervals for overall 

accuracies for the different models were established using a bootstrap method with 999 re-
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samples (Baty et al. 2015).  Results of the overall accuracy and computational efficiency 

analysis informed the selection of classifier type for which location-specific and class-

specific assessments were performed. 

Location-specific classification consistency as an indicator of confidence was 

evaluated in a spatially explicit and exhaustive manner.  Location-specific confidence was 

defined as the proportion of the class most frequently assigned a pixel.  Spatially explicit 

classification confidence was calculated from the classified maps of each model’s 10 

replicates.  Significance of differences in location-specific confidence was tested with a one-

sided pairwise-paired Wilcoxon signed-rank test (Wilcoxon 1945) evaluated pairwise for 

each combination of sampling intensities within variable sets and between variable sets for 

equal sampling intensities.  The datasets were paired by pixel.  The null hypothesis was that 

pairs did not differ in confidence with sampling intensity and feature-space dimensionality, 

while the alternative hypothesis was that confidence increased with sampling intensity and 

feature-space dimensionality.  Test p-values were adjusted using the Bonferroni correction 

for multiple comparisons by multiplying p-values by the number of pairwise comparisons 

(15 variable sets and 15 sampling intensity combinations).  Location-specific confidence 

estimates were then aggregated across all pixels and the percent area of confidence of at 

least 90% was compared across all models. 

Class-specific user’s and producer’s accuracies (Congalton and Green 1999) were 

assessed from the confusion matrices of the models for the sampling intensity beyond which 

increase in overall accuracy and location-specific confidence increase were not justified 

(significant).  Significance in differences of class-specific user’s and producer’s accuracies 

was assessed for each class and for 7 selected combinations of variable sets (feature 
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subspaces) using Mann-Whitney tests.  Accuracy estimates for the 10 replicates of each 

model were pooled and shifts in median locations between models and their 95% confidence 

intervals (CI) were estimated using the Hodges-Lehmann estimator (Hodges and Lehmann 

1963).  Class-specific accuracies were evaluated for each of the original eight classes (four 

slough and four ridge classes) as they occurred in the wet and dry seasons, because I was 

interested in the gain of individual class map accuracy of each class and not in the combined 

wet-dry class combination detection accuracies. 

Computing Environment 

All data analyses were performed with R (Revolution R 7.4, Revolution Analytics, 

Mountain View, CA).  Classifications were performed in the unifying modeling framework 

of the ‘caret’ package ( et al. 2016), using the “rf” function for random forest and the naïve 

Bayes algorithm as implemented in the “klaR” package (Weihs et al. 2005).  In addition, 

packages “raster” (Hijmans and van Etten 2010), “rgdal” (Bivand, Keitt, and Rowlingson 

2013), “foreach” and “doParallel” (Revolution Analytics and Weston 2013) were 

extensively used.  All processing was performed on a desktop computer with six dedicated 

i7-4930K 3.4 GHz processors and 32 GB of dedicated RAM with all read and write 

operations executed to and from a local static-state disc.  No other processes or applications 

were allowed to run during the processing timeframe to ensure comparability of timing 

results. 

RESULTS 

Overall Accuracy  

For each of the 72 model types, random forest classifier models consistently had 

significantly higher overall accuracies compared to the corresponding naïve Bayes models 
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(p < 0.001; N = 10) (Fig. 3.2).  This was the case for all variable sets and sampling intensities 

except for 12 samples.  For 12 samples and the “Dry + texture” variable set, the 3% higher 

accuracy of the random forest classifier was insignificant (CI: -0.2% to 5.2%, p = 0.064), 

and for wet and bi-seasonal datasets with and without texture, p-values were between 0.001 

and 0.005 (Fig. 3.2, Tbl. 3.3).  Significant differences in accuracy between the naïve Bayes 

and random forest classifier ranged from 5.5% (CI: 3.2% to 7.6%) for “Dry” season models 

of 12 samples to 17.8% (CI: 16.2% to 19.0%) for wet season data and 300 training samples 

(Fig. 3.2, Tbl. 3.3). 

Overall accuracy for both classifiers was consistently higher for wet season than for 

dry season models, and differences were highest for bi-seasonal vs. dry season only data 

(Fig. 3.2, Tbl. 3.4 and 3.5).  Mean increase in median accuracy across all sampling 

intensities for wet season over dry season data was 8.9% (SD = ±0.9%, p < 0.001, pairwise 

t-test) for naïve Bayes and 12.1% (SD = ±1.1%, p < 0.001) for random forest (Tbl. 3.4 and 

3.5).  Combining data of both seasons increased accuracy on average by an additional 5.6% 

(SD = ±0.42%, p < 0.001) and 3.9% (SD = ±1%, p < 0.001) for naïve Bayes and random 

forest, respectively (Tbl. 3.4 and 3.5).  Adding texture had a significant positive effect only 

for dry season data and naïve Bayes models, increasing accuracies by 1% (SD = ±0.54%, p 

= 0.012).  In the case of random forest models, the use of texture variables did not have a 

significant effect for bi-seasonal and wet season data, but decreased accuracy on average by 

0.5% (SD = ±0.6%, p = 0.048) for the dry season (Tbl. 3.4 and 3.5). 

For the naïve Bayes algorithm, asymptotic accuracy as modeled with a non-linear 

growth model ranged from 61.2% (CI: 60.7 – 61.7%, bootstrapped n = 999) for dry season 

data to 77% (CI: 75.6 – 87.3%, bootstrapped n = 999) for the bi-seasonal reflective variable 
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set.  For random forest models, achievable accuracy for the same variable sets was estimated 

to be about 13% higher, with 74.5% (CI: 73.8 – 75.2%, bootstrapped n = 999) for the dry 

season and 90.6% for the bi-seasonal reflective variable set (CI: 89.6 – 91.4%, bootstrapped 

n = 999) (Fig. 3.2).  Linear-log regression models for overall accuracy as a function of 

sampling intensity by variable set indicated that, in the case of random forest models, 

doubling the sampling intensity increased overall accuracy by 2.5% (R2 = 0.86) for the dry 

season, by 3.1% (R2 = 0.76) for the wet season and by 2.5% (R2 = 0.78) for the combined 

seasons.  For the naïve Baye classifiers, the increase in accuracy ranged between only 0.8% 

and 1% when doubling training samples (R2 ranging from 0.21 to 0.4). 

Training and Prediction Time 

Training time for the two classifier methods as a function of number of training 

samples, number of variables, and number of classes indicated that for both classifiers, all 

three variables were significant (p < 0.001).  Classifier training times were significantly 

faster for all random forest models when compared to naïve Bayes models for equal 

sampling intensities and number of variables.  Average speed across all models was twice 

as fast for random forest models (0.51 ± 0.19) (Fig. 3.3).  For the naïve Bayes classifier, 

doubling the number of training samples increased average training time by 57% (Fig. 3.3), 

but adding another image or texture increased training time by 98%; doubling the number 

of classes increased it by 206% (R2 = 0.98; p < 0.001) (Fig 3.3).  For the random forest 

models, doubling the number of training samples increased training times on average by 

86%.  Doubling the feature space by adding an additional image or including texture for 

each spectral band increased training times by 89% (Fig. 3.3), and doubling the number of 
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classes increased it by 106% (R2 = 0.98; p < 0.001) when each of the other two variables 

was held constant (Fig 3.3). 

Prediction times were affected most for the naïve Bayes classifier when a kernel 

estimator was used during the tuning process (Fig. 3.4).  Prediction times for kernel 

estimator models were mostly affected by number of optimal features selected and number 

of classes, where doubling the number of features increased prediction time by 91% and 

doubling the number of classes increased prediction times on average by 85% (R2 = 0.99; p 

< 0.001) (Fig 3.4).  Naïve Bayes models that did not use kernel estimates saw an average 

increase in prediction time by 3.5% when the selected features increased by one and by 7% 

for doubling the number of classes (R2 = 0.95; p < 0.001) (Fig 3.4).  Random forest 

prediction times were not correlated with number of features selected during the feature 

selection process of the training process or with number of classes (R2 = 0.07; p < 0.001) 

(Fig. 3.4).  Since overall accuracy for random forests was consistently higher for all variable 

sets, and training and prediction times were less affected by feature space and sampling 

intensity, class-specific accuracy and location-specific confidence were evaluated for 

random forest models, only. 

Location-specific Confidence Estimates 

Aggregated area of confidence ≥ 90% increased with sampling intensity for all 

variable sets in the range of the evaluated sampling intensities (Fig. 3.5, Tbl. 3.6).  Similar 

to overall accuracy, confidence had a diminished return with increase in sampling intensity. 

Increasing sampling intensity from 200 to 300 samples reduced the gain in confidence to 

less than 3% and for wet and bi-seasonal data to less than 2% (Fig. 3.5, Tbl. 3.6).    
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Test results for one-sided pairwise-paired Wilcoxon signed-rank tests indicated that 

increasing sampling intensities and number of features in variable sets increased location-

specific confidence (p < 0.001).  The same was observed when using wet season vs. dry 

season data (p < 0.001).  The only exceptions were bi-seasonal vs. bi-seasonal + texture for 

sampling intensities of 12 and 50 samples, where the fewer features (no texture) had a 

significantly higher number of pixels with higher confidence (p < 0.001), which was also 

observed in the increased area of aggregated confidence ≥ 90% (Fig. 3.5, Tbl. 3.6). 

The pattern of local variability of location-specific confidence for the bi-seasonal + 

texture dataset and for three confidence thresholds (≥ 90%; 50 ≤ x < 90%; < 50%) showed 

that even at low sampling intensities of 12 samples, only 2.4% of the area had a confidence 

of less than 50%, but only 55% had a confidence of at least 90% (Fig. 3.6).  Increasing 

sampling intensity to 25 reduced the area with confidence ≤ 50% by 50% and increased the 

high confidence area ≥ 90% by 14% (Fig. 3.6, Tbl. 3.6).  Doubling sampling intensity for 

bi-seasonal data, the percent of area with location-specific confidence ≥ 90% increased by 

5.8 ± 0.83% (R2 = 0.95; p < 0.001); doubling sampling intensity for individual wet and dry 

season increased this area by 7.0 ± 1.1% (R2 = 0.95; p < 0.001) and 6.3 ± 0.86% (R2 = 0.96; 

p < 0.001), respectively.   

Overall, bi-seasonal data on average produced a 2.6% (SD = ±1.35%, p < 0.001) 

increase in area with spatial confidence ≥ 90% when compared to the wet season and a 

15.4% increase in area (SD = ±3.34%, p < 0.001) when compared to the dry season.  Overall 

accuracy and location-specific confidence analysis suggest that a sampling intensity of 200 

samples is a good cut-off point; beyond this sampling intensity, the increase in accuracy 

was reduced to 0.8% (SD = ±0.001%) and confidence to 1.9% (SD = ±0.59%).  Class-
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specific user’s and producer’s accuracies were therefore evaluated only for sampling 

intensity of 200 samples. 

Class-specific User’s and Producer’s Accuracy  

Class-specific user’s and producer’s accuracies for the six variable sets are presented 

in Table 3.7.  Mean accuracy for all classes and variable sets was 86.3% (SD = ±14%) for 

producer’s accuracy and 84.2% (SD = ±15.7%) for user’s accuracy.  Mean standard error 

was 0.8% (SD = ±0.4%) for both producer’s and user’s accuracies (Fig. 3.7 and 3.8, Tbl. 

3.7). 

Single season comparison 

A comparison of user’s accuracies indicated that there was a significant difference 

between wet and dry season data for all classes (Tbl. 3.8).  For two of the four slough classes 

(“Submerged Aquatic” and “Floating Broadleaf / Submerged Aquatic”) and one of the four 

ridge classes (“Shrub / Graminoid Marsh / Emergent Broadleaf”), the dry season had 

significantly higher accuracies, whereas the other five classes had higher accuracies for the 

wet season data (Tbl. 3.8; Figs. 3.7 and 3.8).  Dry season accuracies for these three classes 

were 30.4% (CI: 27.6 – 32%), 4.8% (CI: 2.3 – 7.3%), and 25.8% (CI: 21.6 – 29.1%) higher 

than for the wet season (Tbl. 3.8).   

Wet season data had a significantly greater user’s accuracy for the other 5 classes, 

ranging from 9.6% (CI: 7.1 – 13.1%) greater for “Nymphaea” to 59.2% (CI: 54.5 – 63.9%) 

greater for the “Shrub / Tree” class (Tbl. 3.8).  The “Shrub / Tree” class had the lowest 

user’s accuracy of the dry season with 34.6% (SE = ±0.8%), followed by “Graminoid Marsh 

/ Emergent Broadleaf” mix class with 43.7% (SE = ±0.9%) accuracy (Tbl. 3.7).  These 

classes were detected from wet season data at a mean accuracy of 93.7% (SE = ±1.7%) and 
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69.9% (SE = ±1.1%), respectively.  A similar overall pattern of variable set and class 

detectability was observed for producer’s accuracy except for the “Submerged Aquatic” 

class, which had a slightly higher accuracy for the wet season data (2.9% (CI: 1.3 – 4.2%), 

significant at α = 0.05) and the “Nymphaea” class, where differences were not statistically 

significant (Tbl. 3.9). 

Bi-seasonal data 

Combining wet and dry season signatures significantly increased user’s accuracies 

for predicting wet or dry class labels for all ridge classes when compared to wet or dry 

season signatures only (Tbl. 3.8, Fig. 3.7).  The largest increase of 64.1% (CI: 62.2 – 66.7%) 

was observed for the “Shrub / Tree” class when compared to dry season data, followed by 

42.3% (CI: 39.9 – 44.4%), 20.6% (CI: 18.6 – 21.9%) and 11.8% (CI: 10 – 13.7%) for the 

“Graminoid Marsh / Emergent Broadleaf”, “Cladium”, and the “Shrub / Graminoid Marsh 

/ Emergent Broadleaf” classes, respectively.  The class that benefitted most from the bi-

seasonal data when compared to wet season only was the “Shrub / Graminoid Marsh / 

Emergent Broadleaf”, which increased by 37.9% (Tbl. 3.8, Fig. 3.7). 

For the slough classes, when predicted from bi-seasonal data, the largest increase of 

18.8% (CI: 16.4 – 23.5%) was recorded for the dry season class label “Submerged Aquatic 

/ Periphyton / Floating Broadleaf” when compared to dry season data only (Tbl. 3.8, Fig. 

3.8).  However, accuracy of the same class was reduced by 0.7% (CI: 0.3 – 1%) when 

compared to the wet season data, a small but statistically significant reduction.  An even 

larger accuracy reduction was observed for the “Floating Broadleaf / Submerged Aquatic” 

class, where bi-seasonal data reduced accuracy by 4.7% (CI: 2.4 – 7%) (Tbl. 3.8, Fig. 3.8).  
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The “Nymphaea” class experienced an approximately 3% increase when predicting from bi-

seasonal vs. single wet or dry season data (Tbl. 3.8, Fig. 3.8). 

Producer’s accuracy increased significantly when using bi-seasonal vs. dry season 

data for all classes except the two slough classes “Submerged Aquatic” and “Floating 

Broadleaf / Submerged Aquatic”, for which the differences were insignificant (Tbl. 3.9).  

When compared to wet season data only, bi-seasonal data improved the “Shrub / Graminoid 

Marsh / Emergent Broadleaf” by 41.1% (CI: 38 -45.7%) (Tbl. 3.9, Fig. 3.7).  The other ridge 

class benefiting from the bi-seasonal signature was the “Cladium” class. The two slough 

classes for which the producer’s accuracies increased significantly with bi-seasonal data 

were “Submerged Aquatic / Periphyton / Floating Broadleaf” and “Floating Broadleaf / 

Submerged Aquatic” (Tbl. 3.9, Fig. 3.8).   

Texture 

Adding local texture variables for a single season did not affect user’s accuracies 

significantly (Tbl. 3.8, Figs. 3.7 and 3.8).  Only “Graminoid Marsh / Emergent Broadleaf” 

had a statistically significant increase of 1.9% (α = 0.05) for the dry season data.  For bi-

seasonal data, texture improved user’s accuracy for the ridge class “Graminoid Marsh / 

Emergent Broadleaf” by 2.2% (α = 0.05) (Tbl. 3.8, Fig. 3.7).  For the slough class “Floating 

Broadleaf / Submerged Aquatic”, adding texture produced a 3.7% (α = 0.001) increase for 

the wet season and a 2.3% (α = 0.01) reduction for the dry season (Tbl. 3.8, Fig. 3.8).  

Texture only affected producer’s accuracy for the ridge class “Graminoid Marsh / Emergent 

Broadleaf” for the wet season data, increasing it by 4.2% (α = 0.05) (Tbl. 3.9, Fig. 3.7).  For 

the slough class “Floating Broadleaf / Submerged Aquatic”, the reversed pattern to user’s 
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accuracy was observed: for the bi-seasonal data, as texture was added, accuracy dropped by 

1.9% (α = 0.01) and increased by 2.4% (α = 0.05) for the dry season (Tbl. 3.9, Fig. 3.8). 

DISCUSSION 

Maximizing map classification accuracy and confidence is the primary goal when 

mapping land-cover from remotely sensed data, and knowledge of class-specific as well as 

spatially explicit errors and uncertainties are essential for propagation of errors and 

uncertainties in subsequent models that incorporate these maps.  Evaluating and selecting 

mapping methods that promise high accuracies at high spatial resolution (precision) while 

keeping production costs low is especially important when mapping large spatial extents at 

multiple time-intervals.  Many monitoring programs rely on high-precision class detection 

and mapping products.  Results of this study show that the comparison of mapping methods 

on the basis of overall accuracy, confidence estimates, and classifier efficiency allows for 

optimization of mapping methods.  In this study, alternative models were evaluated in an 

integrated way using a framework that considered not only sampling intensities and variable 

sets but also their interactions and their effects on accuracy, confidence, and classifier 

efficiency.  Significance of performance differences was tested, and confidence intervals 

for difference estimates were established. 

Classifier Performance 

Classifier performance and efficiency depend on evaluation criteria and vary across 

different disciplines and subject domains, indicating that there is no inherently superior 

classification method that consistently minimizes variance and/or bias of accuracy estimates 

(Duda, Hart, and Stork 2001).  Evaluations of classification methods across different 

disciplines, however, suggests that parametric classifiers such as naïve Bayes can be more 
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efficient than machine learning algorithms (Xhemali, Hind, and Stone 2009).  The results 

of this study demonstrated that overall map accuracy was significantly higher for the random 

forest models and, therefore, out-performed naïve Bayes classifiers. 

Training times for random forest and naïve Bayes were affected by sampling 

intensity and class and feature numbers in different ways. While doubling training sample 

size had a greater impact on the percent increase in training time for random forest 

algorithms, random forest algorithms had faster absolute training times when compared to 

naïve Bayes classifiers for every model run across all sampling intensities.  Doubling the 

feature space and increasing class number affected training times for naïve-Bayes models 

more than random forest models.  However, these results could be an artifact of the 

implementation of the algorithms as they are implemented and programmed in the R 

packages that were used for this analysis.  Training times for either algorithm never 

exceeded 12 minutes even for 300 training samples per class and is, therefore, not a major 

concern for applications.  Prediction times, however, are of concern as the study area extent 

increases.  For the naïve-Bayes classifier, especially when kernel density estimators were 

used, prediction times increased rapidly and could become unfeasible for large mapping 

areas.  For example, classifying a 100 km2 study area using bi-seasonal WV-2 data with a 

spatial resolution of 2 m can be processed with the test computer in approximately 3.5 hours 

but could take more than 100 hours when using the naïve-Bayes classifier and months if 

using the tuning parameter and kernel density estimators.  This demonstrates that algorithm 

evaluation is crucial when selecting appropriate methods for large mapping projects or 

monitoring programs.  Both data processing time and accuracy need to be considered. 
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Since random forest classifier training and prediction times were virtually unaffected 

by number of features or classes, training sample digitization and data acquisition costs are 

the determining factors that should be considered for method evaluations when using 

random forest classifiers.  Increasing sampling intensity requires an increase in digitization 

time and often an increase in associated field visits, which are costly, as they require an 

increase in human work hours and transportation costs.  If the addition of a second image 

acquired at a different time increases accuracy, as shown in this study, it might be 

worthwhile to invest in more frequent data acquisition rather than increased sampling 

intensity.  

Bi-Seasonal Data 

In this study, overall accuracy significantly increased with bi-seasonal data for both 

classifiers and regardless of sampling intensities for naïve Bayes classifiers and random 

forest models. This can be explained by the differential spectral response of vegetation 

classes during the wet and dry seasons.  The seasonal variability is mainly due to the 

hydrological and plant specific phenological cycles.  These intra-annual variabilities 

contribute to confusion and can lead to misclassification of vegetation classes at a single 

time, but they can also assist in the identification of otherwise confounded vegetation types 

when multi-temporal data are used (Gilmore et al. 2008).  Vegetation phenology and 

hydrological cycles play a major role in selecting optimal multi-seasonal remotely sensed 

data (features) with the purpose to maximize phenological differences between vegetation 

types that otherwise are confused. In the case of wetlands, it has been demonstrated that 

detection of wetland communities and vegetation structure (Davranche, Lefebvre, and 

Poulin 2010; Poulin, Davranche, and Lefebvre 2010) and spectral distinction of species at 
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different times throughout a year (Gao and Zhang 2006; Gilmore et al. 2008) can increase 

with strategically chosen images that maximize the intra-annual, between-class spectral 

variability.  Intra-annual variability of wetland vegetation benefits from incorporating 

phenological cycles in the data selection process, especially for communities that include 

sub-canopy vegetation or seasonally shifting species dominance (e.g., shifts in grass-

dominated vs. sedge- or rush-dominated communities throughout the year) and growth 

densities, or as in the case of this study, floating and seasonally occurring slough vegetation 

components. 

The presented results also indicate that increase in sampling intensity boosts 

accuracies in a reasonably predictable fashion.  However, the addition of a second image 

acquired at a time when ground conditions and phenological differences in vegetation types 

are observed had a much higher impact on classification accuracy, increasing accuracy even 

at very low sampling intensities to levels that were never reached with a single season 

image.  If bi-seasonal data acquisition is not possible, knowing which timeframe maximizes 

single season imagery is crucial as the second-best option.  Wet-season data provided the 

second-best solution, but the analysis also showed that some classes benefitted more from 

dry-season data, which emphasizes the need to consult class-specific user’s and producer’s 

accuracies when specific classes are of higher priority than others. 

Vegetation that was consistent or stable between the two seasons (same class label) 

benefitted from the use of a bi-seasonal dataset.   For instance, utilizing the phenological 

cycles of the vegetation improved the separation of shrub and broadleaved mix classes, 

which were confused in single season imagery.  During the late dry season, the time when 

several shrub and tree species have new leaves, the abundance of the shrub/tree class was 
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over-predicted, while at the end of the wet season, when they shed their leaves, the models 

under-predicted this class and committed it to the broadleaf emergent and graminoid marsh 

classes.  The combined signature benefitted from the exposed understory signature of the 

tree and shrub classes during the late wet season.  If high seasonal variability in phenology 

across classes exists, using more than two images could further increase accuracies of some 

classes.  If those classes are common classes across the landscape, the effect on spatial 

accuracy distribution and location-specific confidence across the landscape will be affected 

as well.  Significance of such changes on class-specific accuracy and location-specific 

confidence needs to be investigated. 

For vegetation classes that exist in a highly variable and dynamic seasonal 

environment, multi-seasonal data not only allow for estimation of surface cover, taking 

advantage of capturing phenology, but also make it possible to estimate percent cover 

change of classes between dates.  Seasonal variability of slough communities, for instance, 

when estimated from bi-seasonal mapped classes showed that within this study area, 

periphyton areal cover was 12.6% (CI: 12.0 – 13.2%) for the dry season and 21.2% (CI: 

20.7 – 21.7%) for the wet season, with 10.8% (CI: 10.5 – 11.1%) of the study area covered 

by periphyton during both seasons on the days of data acquisition.  Using multiple images 

in the analysis allows for making spatially explicit maps of changes between dates with high 

accuracy and spatial precision.  Highly variable and dynamic classes, therefore, benefit from 

datasets acquired at multiple times throughout a year.  This is especially an important factor 

when attempting to derive dynamics of spatial patterns of phenomena with high intra- and 

inter-annual variability.  For instance, modeling nutrient gradients and hydrological changes 

and their impacts on the production and decomposition of periphyton could be possible, 
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because seasonal and inter-annual patterns of variability can be tracked using multi-

temporal remotely sensed data over large extents. 

Categorical maps are generally accompanied by metadata that provide only overall 

accuracy, and at the most, error matrices or class-specific user’s and producer’s accuracies, 

but not location-specific confidence estimates of class membership probability as 

determined by the classifier.  Location-specific confidence maps that accompany 

categorical maps can be incorporated into spatially explicit ecological models and, 

therefore, contribute to estimating model output confidence in a spatially explicit manner.  

Further study is needed to determine if location-specific confidence is correlated with class-

specific accuracy, and what factors determine spatial patterns of location-specific 

confidence.  Since a common method to derive categorical maps is by application of 

supervised classification methods to remotely sensed data, estimation of spatially explicit 

accuracy and confidence should become an integral part of the map production process. 

The integrated framework using a training data re-sampling method to determine 

sampling error was useful in establishing and comparing classifier consistency and 

modeling classifier accuracy and efficiency as a function of training sample size and feature 

space.  Since no single classification method maximizes overall and class-specific 

accuracies across all classes of interest, quantifying cost associated with alternative methods 

is crucial for the selection of the optimal classification method, and needs to be evaluated 

in the context of specific project goals.  The use of linear and non-linear regression models 

demonstrated that it was possible to estimate accuracy changes and predict upper accuracy 

limits as a function of sampling intensity and for different feature-space subsets.  These 

results indicate that a re-sampling framework is useful to model and predict expected overall 
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map accuracies for different resource allocation strategies – e.g., multi-seasonal analysis vs. 

increase in sampling intensities. The regression results show that the predictive power is 

very high with coefficients of determination for all models greater than 0.95 (p < 0.001).  

These types of models are useful for estimating mapping costs and accuracy return for 

alternative investments. 
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TABLES 

Table 3.1. Classification scheme for the high-resolution plant community maps of the ridge 

and slough landscape in Water Conservation Area 3A (Fig. 3.1). 

 
 

Table 3.2. The 72 model sets for each combination of a full factorial design of two classifiers, 

six variable sets and six sampling intensities (2 x 6 x 6). 

 
 

  

Morphological 

Class
Community Class Name

Submerged Aquatic

Submerged Aquatic / Periphyton / Floating Broadleaf

Floating Broafleaf / Submerged Aquatic

Floating Broadleaf Nymphaea

Graminoid Marsh / Emergent Broadleaf

Graminoid marsh Cladium

Shrub / Graminoid Marsh / Emergent Broadleaf

Shrub / Tree

Slough

Ridge

Classifier Variable Set Sampling Intensity

Dry 12

Dry + Texture 25

Wet 50

Wet + Texture 100

Wet & Dry 200

Wet & Dry + Texture 300

Random Forest

Naïve Bayes
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Table 3.3. Comparison of overall accuracy for naïve Bayes and random forest classifiers by 

variable set and sampling intensity. Var. = Variable; Samp. Int. = Sampling Intensity; Diff. 

Loc. = Estimated Median Location Difference; CI = Confidence Interval; Sign. = 

Significance, where -, *, ** and *** indicate not significant, significant at alpha < 0.05, 0.01 

and 0.001, respectively; Txt = Texture.

   

Var. 

Set

Samp. 

Int. Mdn.

CI - 

Lower

CI - 

Upper Mdn.

CI - 

Lower

CI - 

Upper

Diff. 

Loc.

CI - 

Lower

CI - 

Upper

p-

value Sign.

12 57.5% 53.4% 60.8% 62.8% 60.6% 65.4% -5.5% -7.6% -3.2% < 0.000  ***

25 59.8% 58.1% 62.6% 68.0% 62.8% 70.2% -7.9% -9.9% -5.4% < 0.000  ***

50 60.5% 59.5% 62.5% 70.6% 68.9% 71.7% -9.4% -10.5% -8.4% < 0.000  ***

100 60.3% 58.2% 61.4% 72.6% 71.1% 73.7% -12.3% -13.3% -11.5% < 0.000  ***

200 62.0% 60.8% 62.5% 74.7% 73.4% 75.4% -12.8% -13.4% -12.0% < 0.000  ***

300 61.7% 60.1% 62.7% 75.1% 73.5% 75.5% -13.3% -13.9% -12.1% < 0.000  ***

12 59.5% 53.9% 61.2% 61.2% 57.2% 64.8% -3.0% -5.2% 0.2% 0.064 -

25 61.9% 56.0% 64.1% 68.3% 65.0% 69.6% -6.3% -8.5% -4.6% < 0.000  ***

50 61.8% 59.2% 63.5% 69.8% 68.5% 71.3% -8.1% -9.8% -7.1% < 0.000  ***

100 61.9% 59.3% 62.7% 72.4% 71.2% 73.3% -10.7% -11.6% -9.8% < 0.000  ***

200 62.3% 61.9% 63.6% 73.6% 72.6% 74.6% -11.2% -11.8% -10.4% < 0.000  ***

300 62.0% 61.1% 62.8% 74.3% 73.9% 75.5% -12.4% -13.0% -11.8% < 0.000  ***

12 67.5% 64.2% 70.5% 74.3% 66.6% 79.2% -7.3% -11.2% -3.1% 0.001  **

25 67.2% 64.3% 72.5% 78.4% 73.7% 83.9% -10.2% -13.7% -7.1% < 0.000  ***

50 68.6% 64.6% 71.9% 82.2% 79.3% 84.6% -13.4% -16.2% -10.9% < 0.000  ***

100 70.1% 69.1% 71.9% 85.8% 83.4% 87.0% -15.4% -16.4% -14.1% < 0.000  ***

200 70.9% 66.9% 73.1% 87.1% 85.4% 88.7% -16.2% -18.2% -14.8% < 0.000  ***

300 70.5% 69.3% 72.6% 88.6% 87.0% 89.1% -17.5% -18.5% -16.5% < 0.000  ***

12 65.5% 62.4% 72.9% 73.9% 69.9% 79.8% -7.8% -11.0% -3.0% 0.004  **

25 67.2% 63.3% 70.3% 77.8% 73.2% 79.5% -10.0% -12.4% -7.6% < 0.000  ***

50 67.9% 64.9% 73.4% 82.1% 79.9% 83.5% -13.6% -16.4% -10.3% < 0.000  ***

100 70.7% 68.6% 73.4% 85.6% 83.6% 86.5% -14.2% -15.6% -12.9% < 0.000  ***

200 70.0% 68.4% 72.2% 87.1% 86.5% 88.7% -17.3% -18.4% -16.4% < 0.000  ***

300 69.9% 68.1% 71.9% 87.7% 87.1% 88.3% -17.8% -19.0% -16.2% < 0.000  ***

12 73.3% 68.2% 76.0% 80.4% 72.7% 83.1% -7.6% -10.2% -4.5% 0.003  **

25 74.9% 68.8% 78.0% 83.1% 78.9% 85.7% -9.2% -12.1% -5.9% < 0.000  ***

50 73.8% 72.0% 76.8% 86.9% 85.0% 88.8% -12.8% -14.5% -11.2% < 0.000  ***

100 75.6% 72.0% 77.2% 89.0% 88.0% 90.1% -13.7% -16.0% -12.4% < 0.000  ***

200 76.7% 74.2% 78.4% 90.6% 89.8% 91.3% -13.9% -15.0% -13.3% < 0.000  ***

300 76.7% 75.2% 77.7% 90.7% 89.9% 91.2% -14.0% -14.7% -13.4% < 0.000  ***

12 69.3% 63.8% 75.9% 77.0% 71.7% 84.3% -7.3% -12.4% -2.4% 0.001  **

25 72.1% 64.9% 75.6% 82.9% 80.3% 85.2% -11.4% -14.8% -8.4% < 0.000  ***

50 70.7% 68.8% 75.1% 86.0% 84.4% 87.6% -15.5% -16.9% -13.2% < 0.000  ***

100 73.6% 71.9% 75.0% 88.8% 87.7% 89.7% -15.1% -16.1% -14.2% < 0.000  ***

200 74.3% 72.1% 76.0% 89.9% 88.9% 91.1% -16.0% -17.4% -14.6% < 0.000  ***

300 74.5% 72.5% 76.4% 91.2% 90.3% 91.8% -16.5% -17.8% -15.6% < 0.000  ***

Random Forest Mann-Whitney Test
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Table 3.4. Comparison of overall accuracy differences for the naïve Bayes classifier when 

comparing variable sets by sampling intensity.  Var. = Variable; Smp. Int. = Sampling 

Intensity; Est. Diff. = Estimated Difference; Conf. = Confidence Interval; Sign. = 

Significance, where -, *, ** and *** indicate not significant, significant at alpha < 0.05, 0.01 

and 0.001, respectively; Txt = Texture. 

 
  

Var. Set 1 Var. Set 2 Smp. Int. Est. Diff. Sign.

Dry Wet 12 -9.74% -12.36% -7.24% ***

Dry Wet 25 -7.60% -10.32% -5.57% ***

Dry Wet 50 -8.04% -10.48% -5.40% ***

Dry Wet 100 -9.92% -11.16% -9.08% ***

Dry Wet 200 -9.06% -10.00% -7.80% ***

Dry Wet 300 -8.86% -10.08% -7.92% ***

Dry Dry + Txt 12 -1.16% -3.76% 1.36% -

Dry Dry + Txt 25 -1.74% -3.72% 0.64% -

Dry Dry + Txt 50 -1.03% -2.16% 0.64% -

Dry Dry + Txt 100 -1.55% -2.32% -0.48% **

Dry Dry + Txt 200 -0.52% -1.32% 0.00% *

Dry Dry + Txt 300 -0.38% -1.07% 0.20% -

Wet Wet + Txt 12 0.81% -3.44% 4.00% -

Wet Wet + Txt 25 0.48% -2.08% 3.72% -

Wet Wet + Txt 50 -0.16% -3.04% 3.00% -

Wet Wet + Txt 100 -0.80% -1.93% 0.52% -

Wet Wet + Txt 200 0.84% -1.48% 2.13% -

Wet Wet + Txt 300 0.70% -0.92% 1.96% -

Wet Wet & Dry 12 -5.60% -8.08% -2.60% **

Wet Wet & Dry 25 -5.94% -9.48% -2.52% **

Wet Wet & Dry 50 -5.52% -8.08% -3.00% ***

Wet Wet & Dry 100 -4.83% -6.24% -2.84% ***

Wet Wet & Dry 200 -5.66% -7.32% -4.44% ***

Wet Wet & Dry 300 -6.00% -6.92% -5.04% ***

Dry Wet & Dry 12 -15.20% -18.12% -12.40% ***

Dry Wet & Dry 25 -14.36% -16.80% -10.60% ***

Dry Wet & Dry 50 -13.12% -14.92% -11.72% ***

Dry Wet & Dry 100 -15.20% -16.43% -12.81% ***

Dry Wet & Dry 200 -14.72% -15.36% -13.68% ***

Dry Wet & Dry 300 -15.02% -15.76% -14.16% ***

Wet & Dry Wet & Dry + Txt 12 2.61% -1.55% 6.79% -

Wet & Dry Wet & Dry + Txt 25 2.91% -1.16% 6.00% -

Wet & Dry Wet & Dry + Txt 50 3.30% 1.24% 5.08% **

Wet & Dry Wet & Dry + Txt 100 1.57% -0.48% 2.88% -

Wet & Dry Wet & Dry + Txt 200 2.18% 1.00% 4.12% **

Wet & Dry Wet & Dry + Txt 300 2.08% 1.04% 3.35% **

95% Conf.
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Table 3.5. Comparison of overall accuracy differences for the random forest classifier when 

comparing variable sets by sampling intensity. Var. = Variable; Smp. Int. = Sampling 

Intensity; Est. Diff. = Estimated Difference; Conf. = Confidence Interval; Sign. = 

Significance, where -, *, ** and *** indicate not significant, significant at alpha < 0.05, 0.01 

and 0.001, respectively; Txt = Texture. 

  

Var. Set 1 Var. Set 2 Smp. Int. Est. Diff. Sign.

Dry Wet 12 -11.66% -15.32% -7.72% ***

Dry Wet 25 -10.46% -14.56% -7.76% ***

Dry Wet 50 -11.79% -13.27% -10.28% ***

Dry Wet 100 -12.98% -14.04% -12.04% ***

Dry Wet 200 -12.34% -13.60% -11.40% ***

Dry Wet 300 -13.45% -14.12% -12.52% ***

Dry Dry + Txt 12 1.40% -0.79% 4.03% -

Dry Dry + Txt 25 -0.33% -2.20% 1.56% -

Dry Dry + Txt 50 0.35% -0.79% 1.28% -

Dry Dry + Txt 100 0.23% -0.84% 1.12% -

Dry Dry + Txt 200 0.95% 0.24% 1.52% *

Dry Dry + Txt 300 0.44% -0.48% 1.17% -

Wet Wet + Txt 12 -0.36% -3.84% 4.52% -

Wet Wet + Txt 25 0.70% -1.88% 4.56% -

Wet Wet + Txt 50 0.12% -1.51% 1.56% -

Wet Wet + Txt 100 0.20% -0.77% 1.48% -

Wet Wet + Txt 200 -0.36% -1.48% 0.68% -

Wet Wet + Txt 300 0.53% -0.28% 1.28% -

Wet Wet & Dry 12 -4.88% -9.96% -1.52% **

Wet Wet & Dry 25 -4.62% -7.84% -0.92% *

Wet Wet & Dry 50 -4.80% -6.39% -3.04% ***

Wet Wet & Dry 100 -3.30% -4.36% -2.44% ***

Wet Wet & Dry 200 -3.66% -4.68% -2.44% ***

Wet Wet & Dry 300 -2.24% -3.31% -1.76% ***

Dry Wet & Dry 12 -17.38% -19.52% -14.84% ***

Dry Wet & Dry 25 -15.22% -17.56% -11.92% ***

Dry Wet & Dry 50 -16.39% -18.04% -15.48% ***

Dry Wet & Dry 100 -16.34% -17.40% -15.48% ***

Dry Wet & Dry 200 -15.92% -16.68% -15.36% ***

Dry Wet & Dry 300 -15.76% -16.76% -15.16% ***

Wet & Dry Wet & Dry + Txt 12 1.70% -2.48% 7.28% -

Wet & Dry Wet & Dry + Txt 25 0.00% -2.52% 2.72% -

Wet & Dry Wet & Dry + Txt 50 0.72% -0.64% 1.84% -

Wet & Dry Wet & Dry + Txt 100 0.23% -0.55% 0.92% -

Wet & Dry Wet & Dry + Txt 200 0.61% -0.07% 1.20% -

Wet & Dry Wet & Dry + Txt 300 -0.53% -1.05% -0.04% *

95% Conf.
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Table 3.6. Location-specific confidence ≥ 90% aggregated for all pixels across landscape by 

variable set and sampling intensity.  Increase in confidence diminishes with sampling 

intensity (bottom) (Fig. 3.5); Txt = Texture. 

 
  

Variable Set 12 25 50 100 200 300

Dry 38.6 46.1 59.9 64.4 70.1 72.3

Dry + Txt 50.3 54.2 62.6 67.3 73.9 76.8

Wet 52.9 64.6 73.1 79.1 83.5 84.8

Wet + Txt 58.8 66.8 74.5 80.0 83.5 85.5

Wet & Dry 61.2 68.5 79.2 82.0 84.5 85.9

Wet & Dry + Txt 54.9 69.2 75.7 82.5 85.7 87.3

Variable Set 12 25 50 100 200 300

Dry 7.5 13.9 4.5 5.6 2.3

Dry + Txt 3.8 8.5 4.7 6.6 2.9

Wet 11.7 8.5 6.0 4.4 1.3

Wet + Txt 8.0 7.7 5.5 3.6 2.0

Wet & Dry 7.3 10.7 2.8 2.4 1.5

Wet & Dry + Txt 14.4 6.4 6.8 3.2 1.6

Sampling Intensity

Increase in Confidence with Sampling Intensity

Aggregated Location-Specific Confidence in Percent 

Sampling Intensity
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Table 3.7. Class-specific mean and standard error (SE) estimates of producer’s and user’s 

accuracies in percent by variable set.  Parameters were estimated from the 10 model results 

for random forest classifier models for a sample size of 200.  Ridge classes in white (Fig. 3.7), 

slough classes in grey (Fig. 3.8). Var. Set = Variable set; Refl. = Reflective bands; Txt. = 

Texture variables; Bi = Bi-seasonal data; Dry = Dry season predicted class label; Wet = Wet 

season predicted class label.  

 
 

  

Mean SE Mean SE

Submerged Aquatic 96.5% 0.5% 98.6% 0.3%

Submerged Aquatic / Periphyton / Floating Broadleaf 82.7% 0.4% 72.4% 1.4%

Floating Broadleaf / Submerged Aquatic 89.6% 0.9% 93.6% 0.8%

Floating Broadleaf Nymphaea 85.2% 1.4% 78.7% 1.0%

Graminoid Marsh / Emergent Broadleaf 45.5% 1.5% 43.7% 0.9%

Graminoid marsh Cladium 62.7% 1.2% 73.1% 0.3%

Shrub / Graminoid Marsh / Emergent Broadleaf 65.3% 1.1% 84.6% 0.7%

Shrub / Tree 70.0% 2.1% 34.6% 0.8%

Submerged Aquatic 98.8% 0.8% 68.8% 1.4%

Submerged Aquatic / Periphyton / Floating Broadleaf 92.0% 0.7% 99.0% 0.1%

Floating Broadleaf / Submerged Aquatic 84.4% 1.0% 88.8% 0.8%

Floating Broadleaf Nymphaea 86.8% 0.8% 88.6% 0.9%

Graminoid Marsh / Emergent Broadleaf 83.5% 1.0% 69.9% 1.1%

Graminoid marsh Cladium 91.2% 0.5% 87.2% 0.4%

Shrub / Graminoid Marsh / Emergent Broadleaf 45.0% 1.3% 59.1% 1.4%

Shrub / Tree 99.1% 0.6% 93.7% 1.7%

Submerged Aquatic 97.7% 0.4% 98.0% 0.2%

Submerged Aquatic / Periphyton / Floating Broadleaf 92.9% 0.4% 91.6% 0.4%

Floating Broadleaf / Submerged Aquatic 89.3% 0.4% 97.0% 0.4%

Floating Broadleaf Nymphaea 92.8% 0.6% 81.9% 0.3%

Graminoid Marsh / Emergent Broadleaf 85.4% 0.9% 85.8% 0.7%

Graminoid marsh Cladium 94.4% 0.6% 93.4% 0.5%

Shrub / Graminoid Marsh / Emergent Broadleaf 86.0% 1.3% 96.5% 0.7%

Shrub / Tree 98.3% 1.3% 98.8% 0.6%

Submerged Aquatic 100.0% 0.0% 73.3% 1.6%

Submerged Aquatic / Periphyton / Floating Broadleaf 95.7% 0.3% 98.3% 0.1%

Floating Broadleaf / Submerged Aquatic 93.7% 0.3% 83.9% 0.7%

Floating Broadleaf Nymphaea 88.5% 0.8% 91.3% 0.9%

Graminoid Marsh / Emergent Broadleaf 85.4% 0.9% 85.8% 0.7%

Graminoid marsh Cladium 94.4% 0.6% 93.4% 0.5%

Shrub / Graminoid Marsh / Emergent Broadleaf 86.0% 1.3% 96.5% 0.7%

Shrub / Tree 98.3% 1.3% 98.8% 0.6%
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Table 3.7. Continued. 

    

Mean SE Mean SE

Submerged Aquatic 95.9% 0.8% 98.9% 0.3%

Submerged Aquatic / Periphyton / Floating Broadleaf 83.2% 0.6% 69.8% 0.8%

Floating Broadleaf / Submerged Aquatic 91.2% 0.9% 93.0% 0.9%

Floating Broadleaf Nymphaea 87.3% 1.5% 77.2% 1.6%

Graminoid Marsh / Emergent Broadleaf 45.9% 0.9% 45.4% 0.6%

Graminoid marsh Cladium 59.8% 1.1% 74.0% 0.6%

Shrub / Graminoid Marsh / Emergent Broadleaf 65.9% 1.5% 83.0% 0.7%

Shrub / Tree 66.1% 1.7% 32.6% 1.4%

Submerged Aquatic 100.0% 0.0% 66.5% 0.7%

Submerged Aquatic / Periphyton / Floating Broadleaf 91.3% 0.5% 99.2% 0.2%

Floating Broadleaf / Submerged Aquatic 82.3% 0.9% 88.2% 0.9%

Floating Broadleaf Nymphaea 86.5% 1.2% 85.8% 1.0%

Graminoid Marsh / Emergent Broadleaf 87.8% 1.1% 71.6% 1.2%

Graminoid marsh Cladium 90.3% 1.0% 88.1% 0.6%

Shrub / Graminoid Marsh / Emergent Broadleaf 47.1% 1.5% 59.8% 2.4%

Shrub / Tree 98.7% 0.9% 91.1% 1.7%

Submerged Aquatic 97.2% 0.3% 98.4% 0.3%

Submerged Aquatic / Periphyton / Floating Broadleaf 91.9% 0.3% 93.3% 0.3%

Floating Broadleaf / Submerged Aquatic 91.8% 0.6% 94.4% 0.7%

Floating Broadleaf Nymphaea 90.9% 1.0% 81.9% 1.0%

Graminoid Marsh / Emergent Broadleaf 87.5% 0.8% 88.2% 0.7%

Graminoid marsh Cladium 95.5% 0.4% 93.6% 0.4%

Shrub / Graminoid Marsh / Emergent Broadleaf 87.8% 0.5% 96.4% 0.4%

Shrub / Tree 99.6% 0.4% 98.0% 0.9%

Submerged Aquatic 100.0% 0.0% 75.0% 1.1%

Submerged Aquatic / Periphyton / Floating Broadleaf 95.6% 0.3% 98.0% 0.2%

Floating Broadleaf / Submerged Aquatic 91.8% 0.4% 87.7% 0.6%

Floating Broadleaf Nymphaea 89.3% 1.0% 88.4% 0.9%

Graminoid Marsh / Emergent Broadleaf 87.5% 0.8% 88.2% 0.7%

Graminoid marsh Cladium 95.5% 0.4% 93.6% 0.4%

Shrub / Graminoid Marsh / Emergent Broadleaf 87.8% 0.5% 96.4% 0.4%

Shrub / Tree 99.6% 0.4% 98.0% 0.9%
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Table 3.8. Class-specific user’s accuracy differences by variable set. Upper and lower 95% 

confidence estimates and median difference estimates (Hodges-Lehmann estimator).  Ridge 

classes in white (Fig. 3.7), slough classes in grey (Fig. 3.8). Var. = Variable; Est. Diff. = 

Estimated Difference; Conf. = Confidence Interval; Sign. = Significance, where -, *, ** and 

*** indicate not significant, significant at alpha < 0.05, 0.01 and 0.001, respectively. Txt. = 

Texture; Refl. = Reflective bands; Txt. = Texture variables; Bi = Bi-seasonal data; Dry = Dry 

season predicted class label; Wet = Wet season predicted class label. 

   

Submerged Aquatic 30.4% 27.6% 32.0% ***

Submerged Aquatic / Periphyton / Floating Broadleaf -26.0% -30.8% -24.9% ***

Floating Broadleaf / Submerged Aquatic 4.8% 2.3% 7.3% ***

Floating Broadleaf Nymphaea -9.6% -13.1% -7.1% ***

Graminoid Marsh / Emergent Broadleaf -26.2% -29.2% -23.4% ***

Graminoid marsh Cladium -14.1% -15.4% -13.1% ***

Shrub / Graminoid Marsh / Emergent Broadleaf 25.8% 21.6% 29.1% ***

Shrub / Tree -59.2% -63.9% -54.5% ***

Submerged Aquatic -0.3% -1.0% 0.3% -

Submerged Aquatic / Periphyton / Floating Broadleaf 2.8% -1.5% 6.5% -

Floating Broadleaf / Submerged Aquatic 0.4% -2.2% 3.2% -

Floating Broadleaf Nymphaea 2.4% -2.4% 5.9% -

Graminoid Marsh / Emergent Broadleaf -1.9% -3.7% -0.2% *

Graminoid marsh Cladium -0.8% -2.4% 0.3% -

Shrub / Graminoid Marsh / Emergent Broadleaf 1.7% -0.7% 4.3% -

Shrub / Tree 1.8% -1.4% 5.3% -

Submerged Aquatic 2.6% 0.0% 5.4% -

Submerged Aquatic / Periphyton / Floating Broadleaf -0.1% -0.6% 0.4% -

Floating Broadleaf / Submerged Aquatic 0.3% -2.3% 3.1% -

Floating Broadleaf Nymphaea 3.2% -0.3% 6.2% -

Graminoid Marsh / Emergent Broadleaf -2.2% -5.7% 1.4% -

Graminoid marsh Cladium -1.0% -2.7% 0.9% -

Shrub / Graminoid Marsh / Emergent Broadleaf -1.1% -7.5% 5.9% -

Shrub / Tree 3.4% -3.3% 8.0% -

Est. Diff. 95% Conf. Sign.
Var. 

Set
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Table 3.8. Continued. 

 
  

Submerged Aquatic 0.6% 0.0% 1.3% -

Submerged Aquatic / Periphyton / Floating Broadleaf -18.8% -23.5% -16.4% ***

Floating Broadleaf / Submerged Aquatic -3.5% -5.8% -1.1% **

Floating Broadleaf Nymphaea -3.1% -5.9% -0.1% *

Graminoid Marsh / Emergent Broadleaf -42.3% -44.4% -39.9% ***

Graminoid marsh Cladium -20.6% -21.9% -18.6% ***

Shrub / Graminoid Marsh / Emergent Broadleaf -11.8% -13.7% -10.0% ***

Shrub / Tree -64.1% -66.7% -62.2% ***

Submerged Aquatic -4.4% -9.3% 0.0% *

Submerged Aquatic / Periphyton / Floating Broadleaf 0.7% 0.3% 1.0% ***

Floating Broadleaf / Submerged Aquatic 4.7% 2.4% 7.0% ***

Floating Broadleaf Nymphaea -2.9% -5.4% -0.1% *

Graminoid Marsh / Emergent Broadleaf -16.2% -19.1% -13.1% ***

Graminoid marsh Cladium -6.2% -7.9% -4.6% ***

Shrub / Graminoid Marsh / Emergent Broadleaf -37.9% -41.2% -33.6% ***

Shrub / Tree -4.3% -8.0% 0.0% *

Submerged Aquatic -0.3% -1.2% 0.3% -

Submerged Aquatic / Periphyton / Floating Broadleaf -1.7% -2.7% -0.5% **

Floating Broadleaf / Submerged Aquatic 2.3% 1.6% 3.2% **

Floating Broadleaf Nymphaea 0.1% -2.0% 2.4% -

Graminoid Marsh / Emergent Broadleaf -2.2% -4.5% -0.2% *

Graminoid marsh Cladium 0.1% -1.8% 1.4% -

Shrub / Graminoid Marsh / Emergent Broadleaf 0.0% -1.1% 1.7% -

Shrub / Tree 0.0% 0.0% 4.2% -

Submerged Aquatic -3.1% -6.4% 3.4% -

Submerged Aquatic / Periphyton / Floating Broadleaf 0.4% -0.1% 0.8% -

Floating Broadleaf / Submerged Aquatic -3.7% -5.6% -1.8% ***

Floating Broadleaf Nymphaea 3.1% 0.4% 5.7% *

Graminoid Marsh / Emergent Broadleaf -2.2% -4.5% -0.2% *

Graminoid marsh Cladium 0.1% -1.8% 1.4% -

Shrub / Graminoid Marsh / Emergent Broadleaf 0.0% -1.1% 1.7% -

Shrub / Tree 0.0% 0.0% 4.2% -

Sign.Est. Diff. 95% Conf.
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Table 3.9. Class-specific producer's accuracy differences by variable set. Upper and lower 

95% confidence estimates and median difference estimates (Hodges-Lehmann estimator).  

Ridge classes in white (Fig. 3.7), slough classes in grey (Fig. 3.8). Var. = Variable; Est. Diff. = 

Estimated Difference; Conf. = Confidence Interval; Sign. = Significance, where -, *, ** and 

*** indicate not significant, significant at alpha < 0.05, 0.01 and 0.001, respectively. Txt. = 

Texture; Refl. = Reflective bands; Txt. = Texture variables; Bi = Bi-seasonal data; Dry = Dry 

season predicted class label; Wet = Wet season predicted class label. 

   

Submerged Aquatic -2.9% -4.2% -1.3% *

Submerged Aquatic / Periphyton / Floating Broadleaf -9.5% -11.3% -7.4% ***

Floating Broadleaf / Submerged Aquatic 5.0% 1.9% 8.4% **

Floating Broadleaf Nymphaea -1.7% -5.7% 2.4% -

Graminoid Marsh / Emergent Broadleaf -37.8% -42.6% -33.9% ***

Graminoid marsh Cladium -28.8% -30.6% -25.6% ***

Shrub / Graminoid Marsh / Emergent Broadleaf 19.8% 16.3% 24.8% ***

Shrub / Tree -30.4% -34.8% -26.1% ***

Submerged Aquatic 0.6% -1.6% 2.9% -

Submerged Aquatic / Periphyton / Floating Broadleaf -0.4% -1.8% 1.1% -

Floating Broadleaf / Submerged Aquatic -1.6% -4.4% 1.4% -

Floating Broadleaf Nymphaea -2.4% -6.6% 2.2% -

Graminoid Marsh / Emergent Broadleaf 0.3% -4.5% 4.2% -

Graminoid marsh Cladium 2.9% -0.8% 6.9% -

Shrub / Graminoid Marsh / Emergent Broadleaf -0.8% -5.4% 3.1% -

Shrub / Tree 4.4% -4.3% 8.7% -

Submerged Aquatic 0.0% 0.0% 0.0% -

Submerged Aquatic / Periphyton / Floating Broadleaf 1.0% -1.3% 3.0% -

Floating Broadleaf / Submerged Aquatic 2.3% -1.1% 5.3% -

Floating Broadleaf Nymphaea 0.1% -3.1% 3.6% -

Graminoid Marsh / Emergent Broadleaf -4.2% -7.3% -1.1% *

Graminoid marsh Cladium 0.2% -1.7% 4.5% -

Shrub / Graminoid Marsh / Emergent Broadleaf -1.6% -7.0% 1.6% -

Shrub / Tree 0.0% 0.0% 0.0% -

Est. Diff. 95% Conf. Sign.
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Table 3.9. Continued. 

  
 

  

Submerged Aquatic -1.3% -2.6% 0.3% -

Submerged Aquatic / Periphyton / Floating Broadleaf -10.5% -11.5% -8.9% ***

Floating Broadleaf / Submerged Aquatic -0.1% -2.0% 3.0% -

Floating Broadleaf Nymphaea -7.2% -11.1% -3.9% ***

Graminoid Marsh / Emergent Broadleaf -39.5% -44.0% -35.3% ***

Graminoid marsh Cladium -31.8% -34.2% -28.7% ***

Shrub / Graminoid Marsh / Emergent Broadleaf -20.9% -24.8% -17.1% ***

Shrub / Tree -30.4% -34.8% -21.7% ***

Submerged Aquatic 0.0% 0.0% 0.0% -

Submerged Aquatic / Periphyton / Floating Broadleaf -3.2% -5.4% -1.7% ***

Floating Broadleaf / Submerged Aquatic -9.8% -11.7% -6.4% ***

Floating Broadleaf Nymphaea -1.5% -4.1% 1.0% -

Graminoid Marsh / Emergent Broadleaf -2.0% -5.0% 1.4% -

Graminoid marsh Cladium -3.0% -5.0% -1.9% **

Shrub / Graminoid Marsh / Emergent Broadleaf -41.1% -45.7% -38.0% ***

Shrub / Tree 0.0% 0.0% 0.0% -

Submerged Aquatic 0.6% 0.0% 1.6% -

Submerged Aquatic / Periphyton / Floating Broadleaf 1.1% 0.0% 2.1% *

Floating Broadleaf / Submerged Aquatic -2.4% -4.1% -0.7% *

Floating Broadleaf Nymphaea 2.3% -1.1% 5.0% -

Graminoid Marsh / Emergent Broadleaf -1.8% -4.8% 0.8% -

Graminoid marsh Cladium -1.1% -2.8% 0.5% -

Shrub / Graminoid Marsh / Emergent Broadleaf -1.5% -3.9% 1.5% -

Shrub / Tree 0.0% 0.0% 0.0% -

Submerged Aquatic 0.0% 0.0% 0.0% -

Submerged Aquatic / Periphyton / Floating Broadleaf 0.1% -0.7% 0.7% -

Floating Broadleaf / Submerged Aquatic 1.9% 0.7% 3.0% **

Floating Broadleaf Nymphaea -1.0% -3.6% 2.0% -

Graminoid Marsh / Emergent Broadleaf -1.8% -4.8% 0.8% -

Graminoid marsh Cladium -1.1% -2.8% 0.5% -

Shrub / Graminoid Marsh / Emergent Broadleaf -1.5% -3.9% 1.5% -

Shrub / Tree 0.0% 0.0% 0.0% -

Est. Diff. 95% Conf. Sign.
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FIGURES 

 
Figure 3.1. Study area: Two 1 km2 areas (red, West and East) located in southern WCA3A 

(top left, overview top right) and three examples of ridge and slough vegetation types.  (A1 

& A2) Graminoid & Broadleaf Marsh, (B1 & B2) Nymphaea odorata, (C1 & C2) Shrub & 

Tree. Aerial photography (~ 1 cm resolution) was acquired by a fixed-wing Unmanned 

Aerial System in 2012. 
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Figure 3.2. Overall accuracy (%) by sampling intensity and variable set.  Diminished 

returns regression model for random forest classifier (left) and naïve Bayes classifier 

(right); shading shows 95% confidence intervals of model mean using Monte Carlo error 

propagation model for non-linear models. 
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Figure 3.3. Training time in seconds as a function of sampling intensity, number of features 

and number of classes for Naïve Bayes and Random Forest classifiers. 
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Figure 3.4. Prediction times for Naïve Bayes and Random Forest classifiers as a function of 

optimal number of selected features and number of classes.  Naïve Bayes classifier was 

divided into tuned parameter with and without Kernel Estimator (KE). 
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Figure 3.5. Percentage of map area for which location-specific confidence ≥ 90% (N = 10) 

(Tbl. 3.6); Txt = Texture. 
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Figure 3.6. Location-specific class membership confidence (N = 10) by sampling intensity 

for sub-region East (Fig. 3.1, top left). (A) Sampling intensity = 12; (B) Sampling intensity = 

50; (C) Sampling intensity = 200. (D) Cumulative distribution of class confidence 

aggregated across full region of interest (Fig. 3.1., top left, East and West).  For confidence 

brackets: GE = Greater Equal; LT = Less Than. Numbers inside bars are percent of total 

area for each confidence bracket; note very low percentage for LT 0.5 
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Figure 3.7. Class-specific user’s and producer’s accuracies and 95% confidence intervals 

for ridge classes; Bi = Biseasonal; Txt = Texture.  

 

 
Figure 3.8. Class-specific user’s and producer’s accuracies and 95% confidence intervals 

for slough classes; Bi = Biseasonal; Txt = Texture. 
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CONCLUSIONS 

When aggregating data, information is generalized and, therefore, information is 

lost.  Generalization of fine-scale data is often necessary to support coarser-scale 

modeling efforts, but the optimal degree of generalization is subjective.  Validity of 

generalized data is application-specific, and the scientific question posed by the 

researcher is ultimately the deciding factor in determining the data’s adequacy.  In the 

context of categorical data scaling, two thresholds are of interest: the minimum level of 

thematic class precision that is required to maintain enough information to answer the 

scientific question; and the threshold for a class’s representativeness, beyond which it is 

of no ecological interest at the aggregated scale.  The minimum level of class precision is 

the point beyond which generalization reduces the information content to levels where 

the question of interest can no longer be adequately addressed.  Both parameters, 

precision and representativeness, need to be determined with respect to ecological 

validity and significance.  The purpose of this study was to develop a new scaling 

algorithm that addresses the problem of uncontrolled information loss and allows the data 

analyst or modeler to conduct sensitivity analysis for the effects of precision and 

representativeness on modeling results. 

The MDGP-scaling algorithm proposed in Chapter 1 was developed in the 

context of landscape ecology and integrates concepts of community ecology and 

phytosociology, acknowledging variability in co-occurrence patterns of species or 

community classes as spatial scales change (i.e., cell size increases).  The algorithm 

overcomes the limitations of methods for quantitative grouping often employed in the 

fields of community ecology and phytosociology, such as cluster algorithms.  The 
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proposed criteria for evaluation of algorithm consistency were location-specific 

information retention integrated across the landscape, scaled class count consistency, and 

class-label fidelity.  An information-retention metric was introduced as an effective 

metric to compare agreement of categorical data vectors; this metric can be used to 

evaluate information loss and to classify samples to a quantitatively-defined classification 

system.  Information agreement is a true metric and, hence, is a valid evaluation 

parameter that facilitates direct comparison of scaling results between algorithms or 

between different parameter settings.  The results of this research strongly supports the 

application of the newly developed algorithm to scale categorical landscape 

representations to lower (coarser) spatial resolutions. 

The simulation study in Chapter 1 was conducted to establish confidence in the 

scaling properties of the algorithm and the applicability across a large range of landscape 

settings and categorical data scaling needs.  The algorithm was robust in consistently 

generating representative class labels while significantly increasing information retention 

for the scaled landscapes when compared to other commonly used algorithms.  Low 

variability in class-count ratios and class-label fidelity provide the foundation for 

confidence in reproducibility and reliability of the MDGP-scaling algorithm. 

Simulation results suggest that, especially when dealing with less aggregated, 

patchy landscapes, the MDGP-scaling algorithm was very successful in retaining 

information at a high level when other algorithms (i.e., majority and random rule) failed 

to do so.   Information loss for an aggregated spatial unit of a scaled map increased 

drastically with richness of the original landscape and with scale factor.  Implementing a 

scaling parameter that controlled class-label precision effectively reduced information 
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loss of scaled landscapes when class-label precision was increased.  Results were 

consistent for all evaluated landscapes and scale factors. 

The MDGP-scaling algorithm is the first algorithm that generates data-driven 

scale-appropriate classification schemes while conducting spatial data aggregation.  This 

study demonstrated that the algorithm consistently delivers representative class 

descriptors (labels), generating new, scale-specific classification systems.  To attain 

adequate precision in the thematic domain that supports the use of the aggregated product 

in subsequent ecological models, the algorithm provides a control parameter that allows 

for optimization of information retention and label fidelity in the thematic domain. 

The secondary objectives of this study were to (1) evaluate the effects of class-

label precision on class-label fidelity and information retention when scaling high-

precision vegetation maps of real-world landscapes using the MDGP-scaling algorithm, 

(2) to determine optimal class-label precision and class representativeness thresholds and 

(3) to evaluate the correlation of class-label precision and representativeness of scaled 

classes to their detectability from remotely sensed data of lower spatial resolution.  In 

Chapter 2, results of the scaling analysis for two natural wetlands landscapes indicate that 

optimizing class-precision parameters and representativeness is possible.  Differences in 

information retention for optimal scaling solutions were significantly higher than the 

trivial majority–rule solutions, regardless of landscape.  Precise and representative 

classes were detectable from lower resolution remotely sensed data with acceptable 

accuracy, and that accuracy increased when compared to the standard majority-rule 

method. 
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The trade-offs of information retention, label fidelity, and spectral detectability of 

scaled classes from multi-spectral data indicate that there is not a single best solution.  

Weighting these criteria when selecting the optimal solution is user- and application-

dependent.  Class-specific accuracy and classification scheme preferences can be used in 

the selection of the optimal parameter selection.  The method presented provides a 

framework that integrates the quantitative evaluation of scaling parameter selection and 

its effects on representativeness of classification systems, information retention at the 

local (pixel) and at the landscape level, and for the spectral detection probabilities of the 

scaled classes.  Applying this method allows for user-specific and preference optimized 

solutions where previously no weighting of effects was possible. 

Since scaling of high-resolution categorical maps relies on accurate 

representations of the landscape, the effects of classification methods on classification 

accuracy and method efficiency were assessed in Chapter 3.  Trade-offs exist for training 

sample size and feature-space dimensionality on overall accuracy, location-specific 

classification confidence, class-specific accuracies and classifier training and prediction 

times.  A framework to model the interactions of training sample intensity, feature space, 

and their effects on mapping accuracies and processing efficiency was developed.  This 

framework was then used to develop and optimize a mapping method for wetland plant 

communities from high resolution multi-spectral satellite data.  Evaluating and selecting 

mapping methods that promise high accuracies at high spatial resolution (precision) while 

keeping production costs low is especially important when mapping large spatial extents 

at multiple time-intervals.  Many monitoring programs rely on high precision class 

detection and mapping products.  Results of this study show that the comparison of 
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mapping methods on the basis of overall accuracy, confidence estimates, and classifier 

efficiency allows for optimization of mapping methods. 

The results from Chapter 3 indicate that increase in sampling intensity boosts 

accuracies in a reasonably predictable fashion.  However, the addition of a second image 

acquired at a time when ground conditions and phenological differences in vegetation 

types are observed had a much higher impact on classification accuracy, increasing 

accuracy even at very low sampling intensities to levels that were never reached with a 

single season image.  If bi-seasonal data acquisition is not possible, knowing which 

timeframe maximizes single season imagery is crucial as the second-best option.  In this 

study, wet-season data provided this second-best option, but the analysis also showed that 

some classes benefit more from dry-season and others from wet-season data, which 

emphasizes the need to consult class-specific user’s and producer’s accuracies when 

specific classes are of higher priority than others.  Selecting data on the basis of overall 

accuracy alone does not provide enough information in these cases.  Vegetation that was 

consistent or stable between the two seasons (same class label) benefitted from the use of 

a bi-seasonal dataset.  
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