17,830 research outputs found

    On best rank one approximation of tensors

    Get PDF
    In this paper we suggest a new algorithm for the computation of a best rank one approximation of tensors, called alternating singular value decomposition. This method is based on the computation of maximal singular values and the corresponding singular vectors of matrices. We also introduce a modification for this method and the alternating least squares method, which ensures that alternating iterations will always converge to a semi-maximal point. (A critical point in several vector variables is semi-maximal if it is maximal with respect to each vector variable, while other vector variables are kept fixed.) We present several numerical examples that illustrate the computational performance of the new method in comparison to the alternating least square method.Comment: 17 pages and 6 figure

    Convergence of Alternating Least Squares Optimisation for Rank-One Approximation to High Order Tensors

    Full text link
    The approximation of tensors has important applications in various disciplines, but it remains an extremely challenging task. It is well known that tensors of higher order can fail to have best low-rank approximations, but with an important exception that best rank-one approximations always exists. The most popular approach to low-rank approximation is the alternating least squares (ALS) method. The convergence of the alternating least squares algorithm for the rank-one approximation problem is analysed in this paper. In our analysis we are focusing on the global convergence and the rate of convergence of the ALS algorithm. It is shown that the ALS method can converge sublinearly, Q-linearly, and even Q-superlinearly. Our theoretical results are illustrated on explicit examples.Comment: tensor format, tensor representation, alternating least squares optimisation, orthogonal projection metho

    Towards a Vector Field Based Approach to the Proper Generalized Decomposition (PGD)

    Get PDF
    [EN] A novel algorithm called the Proper Generalized Decomposition (PGD) is widely used by the engineering community to compute the solution of high dimensional problems. However, it is well-known that the bottleneck of its practical implementation focuses on the computation of the so-called best rank-one approximation. Motivated by this fact, we are going to discuss some of the geometrical aspects of the best rank-one approximation procedure. More precisely, our main result is to construct explicitly a vector field over a low-dimensional vector space and to prove that we can identify its stationary points with the critical points of the best rank-one optimization problem. To obtain this result, we endow the set of tensors with fixed rank-one with an explicit geometric structureThis research was funded by the GVA/2019/124 grant from Generalitat Valenciana and by the RTI2018-093521-B-C32 grant from the Ministerio de Ciencia, Innovacion y Universidades. DocumentFalco, A.; Hilario Pérez, L.; Montés Sánchez, N.; Mora Aguilar, MC.; Nadal, E. (2021). Towards a Vector Field Based Approach to the Proper Generalized Decomposition (PGD). Mathematics. 9(1):1-14. https://doi.org/10.3390/math9010034S1149

    On orthogonal tensors and best rank-one approximation ratio

    Full text link
    As is well known, the smallest possible ratio between the spectral norm and the Frobenius norm of an m×nm \times n matrix with m≤nm \le n is 1/m1/\sqrt{m} and is (up to scalar scaling) attained only by matrices having pairwise orthonormal rows. In the present paper, the smallest possible ratio between spectral and Frobenius norms of n1×⋯×ndn_1 \times \dots \times n_d tensors of order dd, also called the best rank-one approximation ratio in the literature, is investigated. The exact value is not known for most configurations of n1≤⋯≤ndn_1 \le \dots \le n_d. Using a natural definition of orthogonal tensors over the real field (resp., unitary tensors over the complex field), it is shown that the obvious lower bound 1/n1⋯nd−11/\sqrt{n_1 \cdots n_{d-1}} is attained if and only if a tensor is orthogonal (resp., unitary) up to scaling. Whether or not orthogonal or unitary tensors exist depends on the dimensions n1,…,ndn_1,\dots,n_d and the field. A connection between the (non)existence of real orthogonal tensors of order three and the classical Hurwitz problem on composition algebras can be established: existence of orthogonal tensors of size ℓ×m×n\ell \times m \times n is equivalent to the admissibility of the triple [ℓ,m,n][\ell,m,n] to the Hurwitz problem. Some implications for higher-order tensors are then given. For instance, real orthogonal n×⋯×nn \times \dots \times n tensors of order d≥3d \ge 3 do exist, but only when n=1,2,4,8n = 1,2,4,8. In the complex case, the situation is more drastic: unitary tensors of size ℓ×m×n\ell \times m \times n with ℓ≤m≤n\ell \le m \le n exist only when ℓm≤n\ell m \le n. Finally, some numerical illustrations for spectral norm computation are presented

    Stable, Robust and Super Fast Reconstruction of Tensors Using Multi-Way Projections

    Get PDF
    In the framework of multidimensional Compressed Sensing (CS), we introduce an analytical reconstruction formula that allows one to recover an NNth-order (I1×I2×⋯×IN)(I_1\times I_2\times \cdots \times I_N) data tensor X‾\underline{\mathbf{X}} from a reduced set of multi-way compressive measurements by exploiting its low multilinear-rank structure. Moreover, we show that, an interesting property of multi-way measurements allows us to build the reconstruction based on compressive linear measurements taken only in two selected modes, independently of the tensor order NN. In addition, it is proved that, in the matrix case and in a particular case with 33rd-order tensors where the same 2D sensor operator is applied to all mode-3 slices, the proposed reconstruction X‾τ\underline{\mathbf{X}}_\tau is stable in the sense that the approximation error is comparable to the one provided by the best low-multilinear-rank approximation, where τ\tau is a threshold parameter that controls the approximation error. Through the analysis of the upper bound of the approximation error we show that, in the 2D case, an optimal value for the threshold parameter τ=τ0>0\tau=\tau_0 > 0 exists, which is confirmed by our simulation results. On the other hand, our experiments on 3D datasets show that very good reconstructions are obtained using τ=0\tau=0, which means that this parameter does not need to be tuned. Our extensive simulation results demonstrate the stability and robustness of the method when it is applied to real-world 2D and 3D signals. A comparison with state-of-the-arts sparsity based CS methods specialized for multidimensional signals is also included. A very attractive characteristic of the proposed method is that it provides a direct computation, i.e. it is non-iterative in contrast to all existing sparsity based CS algorithms, thus providing super fast computations, even for large datasets.Comment: Submitted to IEEE Transactions on Signal Processin
    • …
    corecore