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Abstract

In this paper we suggest a new algorithm for the computation of a best rank
one approximation of tensors, called alternating singular value decomposition.
This method is based on the computation of maximal singular values and the
corresponding singular vectors of matrices. We also introduce a modification
for this method and the alternating least squares method, which ensures that
alternating iterations will always converge to a semi-maximal point. Finally, we
introduce a new simple Newton-type method for speeding up the convergence of
alternating methods near the optimum. We present several numerical examples
that illustrate the computational performance of the new method in comparison
to the alternating least square method.
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1 Introduction

In this paper we consider the best rank one approximation to real d-mode tensors
T = [ti1,...,id ] ∈ Rm1×...×md , i. e., d-dimensional arrays with real entries.

As usual when studying tensors, it is necessary to introduce some notation.
Setting [m] = {1, . . . ,m} for a positive integer m, for two d-mode tensors T ,S ∈
Rm1×...×md we denote by

〈T ,S〉 :=
∑

ij∈[mj ],j∈[d]

ti1,...,idsi1,...,id

the standard inner product of T ,S, viewed as vectors in Rm1·m2·...·md . For an integer
p ≤ d and for xjr ∈ Rmjr , r ∈ [p] we use the notation ⊗jr,r∈[p]xjr := xj1 ⊗ . . .⊗ xjp .

For a subset P = {j1, . . . , jp} ⊆ [d] of cardinality p = |P |, consider a p-mode
tensor X = [xij1 ,...,ijp ] ∈ ⊗jr,r∈[p]Rmjr , where j1 < . . . < jp. Then we have that T ×
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X :=
∑

ijr∈[mjr ],r∈[p] ti1,...,idxij1 ,...,ijp is a (d−p)-mode tensor obtained by contraction

on the indices ij1 , . . . , ijp and hence for T ,S ∈ Rm1×...×md , we have 〈T ,S〉 = T ×S.
For x ∈ Rn we denote by ‖x‖ the Euclidian norm and for A ∈ Rm×n by ‖A‖ =

max‖x‖=1 ‖Ax‖ the associated operator norm. Then it is well-known, see e. g. [5],

that the best rank one approximation of A is given by σ1u1v
T
1 , where σ1 = ‖A‖ is

the largest singular value of A, and u1,v1 are the associated left and right singular
vectors. Since the singular vectors have Euclidian norm 1, we have that the spectral
norm of the best rank one approximation is equal to σ1 = ‖A‖.

To extend this property to tensors, let us for simplicity of exposition restrict
ourselves in this introduction to the case of 3-mode tensors T ∈ Rm×n×l. Denote
by Sm−1 := {x ∈ Rm, ‖x‖ = 1} the unit sphere in Rm, by S(m,n, l) the set
Sm−1×Sn−1×Sl−1, and introduce for (x,y, z) ∈ S(m,n, l) the function f(x,y, z) :=
〈T ,x⊗y⊗z〉. Then computing the best rank one approximation to T is equivalent
to finding

max
(x,y,z)∈S(m,n,l)

f(x,y, z) = f(x?,y?, z?). (1.1)

The tensor version of the singular value relationship takes the form, see [9],

T × (y ⊗ z) = λx, T × (x⊗ z) = λy, T × (x⊗ y) = λz, (1.2)

where ‖x‖ = ‖y‖ = ‖z‖ = 1 and λ is a singular value of T .
Let us introduce for p ∈ {1, 2} the concept of a p-semi-maximum of f restricted

to S(m,n, l). For p = 1, the p-semi-maximal points x∗,y∗, z∗ of f are the global
maxima for the three functions f(x,y∗, z∗), f(x∗,y, z∗), f(x∗,y∗, z) restricted to
Sm−1, Sn−1, Sl−1, respectively. For p = 2, the p-semi maximal points are the
pairs (y∗, z∗), (x∗, z∗), (x∗,y∗) that are global maxima of the functions f(x∗,y, z),
f(x,y∗, z), f(x,y, z∗) on Sn−1 × Sl−1, Sm−1 × Sl−1, Sm−1 × Sn−1, respectively. We
call (x∗,y∗, z∗) a semi-maximum if it is a p-semi-maximum for p = 1 or p = 2, and
it is clear how this concept of p-semi-maxima extends to arbitrary d-mode tensors
with p = 1, 2, . . . , d− 1.

Many approaches for finding the maximum in (1.1) have been studied in the
literature, see e. g. [8]. An important method, the standard alternating least square
(ALS) method, is an iterative procedure that starts with x0 ∈ Sm−1,y0 ∈ Sn−1, z0 ∈
Sl−1, where f(x0,y0, z0) 6= 0 and then defines the iterates xi,yi, zi via

xi =
T × (yi−1 ⊗ zi−1)

‖T × (yi−1 ⊗ zi−1)‖
, yi =

T × (xi ⊗ zi−1)

‖T × (xi ⊗ zi−1)‖
, zi =

T × (xi ⊗ yi)

‖T × (xi ⊗ yi)‖
, (1.3)

for i = 1, 2, . . . , .
Note that for all i ∈ N we have

f(xi−1,yi−1, zi−1) ≤ f(xi,yi−1, zi−1) ≤ f(xi,yi, zi−1) ≤ f(xi,yi, zi),

i. e., f(xi,yi, zi) is monotonically increasing and thus converges to a limit, since
f is bounded. Typically, (xi,yi, zi) will converge to a semi-maximum (x,y, z) that
satisfies (1.2), however this is not clear in general [8]. To overcome this deficiency
of the ALS and related methods is one of the results of this paper.

We first discuss an alternative to the ALS algorithm for finding the maximum
(1.1), where each time we fix only one variable and maximize on the other two.
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Such a maximization is equivalent to finding the maximal singular value and the
corresponding left and right singular vectors of a suitable matrix, which is a well-
established computational procedure, [5]. We call this method the alternating sin-
gular value decomposition (ASVD).

Then we introduce modifications of both ALS and ASVD, that are computation-
ally more expensive, but for which it is guaranteed that they will always converge
to a semi-maximum of f .

Finally, as alternative to the Newton method suggested in [12], we also suggest a
new Newton-type method for best rank one approximation that is based on a simple
observation mentioned in [3], that any triple of singular vectors (x,y, z) ∈ S(m,n, l)
corresponding to a nonzero singular value λ of a tensor T as in (1.2), can be easily
transferred to a fixed point of the map

F(u,v,w) := (T × (v ⊗w), T × (u⊗w), T × (u⊗ v)). (1.4)

from Rm × Rn × Rl to itself. Indeed, (1.2) is equivalent to

F(u,v,w)− (u,v,w) = 0, (1.5)

where (u,v,w) = 1
λ(x,y, z). (This observation holds for any d-tensor for d > 2 but

not for matrices!)
The content of the paper is as follows. In section 2 we recall some basic facts

about tensors and best rank one approximations. In section 3 we recall the ALS
method and introduce the ASVD procedure. The modification of these methods
to guarantee convergence to a semi-maximum is introduced in section 4 and the
modification of the Newton iteration in section 5. The performance of the new
methods is illustrated in section 6. We finish with some conclusions.

2 Basic facts on best rank one approximations of d-
mode tensors

In this section we present further notation and recall some known results about best
rank one approximations.

For a d-mode tensor T = [ti1,...,id ] ∈ Rm1×...×md , denote by ‖T ‖ :=
√
〈T , T 〉 the

Hilbert-Schmidt norm. Denote by S(m) the d-product of the sub-spheres Sm1−1 ×
. . . × Smd−1, let (x1, . . . ,xd) ∈ S(m) and associate with (x1, . . . ,xd) the d one
dimensional subspaces Ui = span(xi), i ∈ [d]. Note that

‖ ⊗i∈[d] xi‖ =
∏
i∈[d]

‖xi‖ = 1.

The projection P⊗i∈[d]Ui(T ) of T onto the one dimensional subspace U := ⊗i∈[d]Ui ⊂
⊗i∈[d]Rmi , is given by

f(x1, . . . ,xd)⊗i∈[d] xi, f(x1, . . . ,xd) := 〈T ,⊗i∈[d]xi〉, (x1, . . . ,xd) ∈ S(m). (2.1)

Denoting by P(⊗i∈[d]Ui)⊥(T ) the orthogonal projection of T onto the orthogonal
complement of ⊗i∈[d]Ui, the Pythagoras identity yields that

‖T ‖2 = ‖P⊗i∈[d]Ui
(T )‖2 + ‖P(⊗i∈[d]Ui)⊥(T )‖2. (2.2)
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With this notation, the best rank one approximation of T from S(m) is given by

min
(x1,...,xd)∈S(m)

min
a∈R
‖T − a⊗i∈[d] xi‖.

Observing that

min
a∈R
‖T − a⊗i∈[d] xi‖ = ‖T − P⊗i∈[d]Ui

(T )‖ = ‖P(⊗i∈[d]Ui)⊥(T )‖,

it follows that the best rank one approximation is obtained by the minimization of
‖P(⊗i∈[d]Ui)⊥(T )‖. In view of (2.2) we deduce that best rank one approximation is

obtained by the maximization of ‖P⊗i∈[d]Ui
(T )‖ and finally, using (2.1), it follows

that the best rank one approximation is given by

σ1(T ) := max
(x1,...,xd)∈S(m)

f(x1, . . . ,xd). (2.3)

Following the matrix case, in [6] σ1(T ) is called the spectral norm and it is also
shown that the computation of σ1(T ) in general is NP-hard for d > 2.

We will make use of the following result of [9], where we present the proof for
completeness.

Lemma 1 For T ∈ Rm1×...×md, the critical points of f |S(m), defined in (2.1),
satisfy the equations

T × (⊗j∈[d]\{i}xj) = λxi for all i ∈ [d], (x1, . . . ,xd) ∈ S(m). (2.4)

Proof. We need to find the critical points of 〈T ,⊗j∈[d]xj〉 where (x1, . . . ,xd) ∈
S(m). Using Lagrange multipliers we consider the auxiliary function

g(x1, . . . ,xd) := 〈T ,⊗j∈[d]xj〉 −
∑
j∈[d]

λjx
>
j xj .

The critical points of g then satisfy

T × (⊗j∈[d]\{i}xj) = λjxi, i ∈ [d],

and hence 〈T ,⊗j∈[d]xj〉 = λix
>
i xi = λi for all i ∈ [d] which implies (2.4). 2

Observe next that (x1, . . . ,xd) satisfies (2.4) iff the vectors (±x1, . . . ,±xd) satisfy
(2.4). In particular, we could choose the signs in (±x1, . . . ,±xd) such that each
corresponding λ is nonnegative and then these λ can be interpreted as the singular
values of T . The maximal singular value of T is denoted by σ1(T ) and is given by
(2.3). Note that to each nonnegative singular value there are at least 2d−1 singular
vectors of the form (±x1, . . . ,±xd). So it is more natural to view the singular vectors
as one dimensional subspaces Ui = span(xi), i ∈ [d].

As observed in [3] for tensors, i. e., for d > 2, there is a one-to-one correspondence
between the singular vectors corresponding to positive singular values of T and the
fixed points of an induced multilinear map of degree d− 1.
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Lemma 2 Let d > 2 and assume that T ∈ Rm1×...×md. Associate with T the
map F from R(m) := Rm1 × . . .× Rmd to itself, where

F := (F1, . . . , Fd), Fi(u1, . . . ,ud) := T × (⊗j∈[d]\{i}uj), i ∈ [d].

Then there is a one-to-one correspondence between the critical points of f |S(m) cor-
responding to positive singular values λ and the nonzero fixed points of

F(u) = u. (2.5)

Namely, each (x1, . . . ,xd) ∈ S(m) satisfying (2.4) with λ > 0 induces a fixed point
of F of the form

(u1, . . . ,ud) = λ
−1
d−2 (x1, . . . ,xd).

Conversely, any nonzero fixed point satisfying (2.5) induces a d-set of singular vec-
tors (x1, . . . ,xd) = 1

‖u1‖(u1, . . . ,ud) ∈ S(m) corresponding to λ = ‖u1‖−(d−2). In

particular, the spectral norm σ1(T ) corresponds to a nonzero fixed point of F closest
to the origin.

Proof. Assume that (2.4) holds for λ > 0. Dividing both sides of (2.4) by λ
d−1
d−2

we obtain that (u1, . . . ,ud) = λ
−1
d−2 (x1, . . . ,xd) is a nonzero fixed point of F.

For the converse, assume that (u1, . . . ,ud) is a nonzero fixed point of F. Clearly
u>i ui = 〈T ,×j∈[d]uj〉 for i ∈ [d]. Hence, ‖u1‖ = . . . = ‖ud‖ > 0 and (x1, . . . ,xd) =

1
‖u1‖(u1, . . . ,ud) ∈ S(m) satisfies (2.4) with λ = ‖u1‖−(d−2).

The largest positive singular value of T corresponds to the nonzero fixed point
(u1, . . . ,ud), where

∑
i∈[d] ‖ui‖2 = d‖u1‖2 is the smallest. 2

We also have that the trivial fixed point is isolated.

Proposition 3 The origin 0 ∈ R(m) is an isolated simple fixed point of F.

Proof. A fixed point of F satisfies

u− F(u) = 0 (2.6)

and clearly, u = 0 satisfies this system. Observe that the Jacobian matrix D(u −
F(u))(0) is the identity matrix. Hence the implicit function theorem yields that 0
is a simple isolated solution of (2.5). 2

It has been conjectured in [3] that for a generic tensor T ∈ Cm1×...×md the
corresponding map F has a finite number of fixed points. This conjecture is still
open. If true, it would imply that for a generic T ∈ Rm1×...×md the best rank one
approximation is unique.

3 The ALS and the ASVD method

In this section we briefly recall the alternating least squares (ALS) method and
suggest an analogous alternating singular value decomposition (ASVD) method.

Consider T ∈ Rm1×...×md \{0} and choose an initial point (x1,0, . . . ,xd,0) ∈ S(m)
such that f(x1,0, . . . ,xd,0) 6= 0. This can be done in different ways. One possibility is
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to choose (x1,0, . . . ,xd,0) ∈ S(m) at random. This will ensure that with probability
one we have f(x1,0, . . . ,xd,0) 6= 0. Another, more expensive way to obtain such an
initial point (x1,0, . . . ,xd,0) is to use the higher order singular value decomposition
(HOSVD) [1]. To choose xi,0 view T as an mi × m1×...×md

mi
matrix Ai, by unfolding

in direction i. Then xi is the left singular vector corresponding to σ1(Ai) for i ∈ [d].
The use of the HOSVD is expensive, but may result in a better choice of the initial
point.

Given (x1,p, . . . ,xd,p) ∈ S(m) for an integer p ≥ 0, the points xi,p+1 ∈ Smi−1 are
then computed recursively via

xi,p+1 =
1

‖T × (⊗i−1j=1xj,p+1 ⊗ (⊗dj=i+1xj,p))‖
T × ((⊗i−1j=1xj,p+1)⊗ (⊗dj=i+1xj,p)),

for i ∈ [d] and p ≥ 0. Clearly, we have the inequality

f(x1,p+1, . . . ,xi−1,p+1,xi,p, . . . ,xd,p) ≤ f(x1,p+1, . . . ,xi,p+1,xi+1,p, . . . ,xd,p),

for i ∈ [d] and p ≥ 0, and the sequence f(x1,p, . . . ,xd,p), p = 0, 1, . . . is a nondecreas-
ing sequence bounded by σ1(T ), and hence it converges.

Recall that a point (x1,∗, . . . ,xd,∗) ∈ S(m) is called a 1-semi maximum, if xi,∗ is a
maximum for the function f(x1,∗, . . . ,xi−1,∗,xi,xi+1,∗, . . . ,xd,∗) restricted to Smi−1

for each i ∈ [d]. Thus, clearly any 1-semi maximum point of f is a critical point of
f . In many cases the sequence (x1,p, . . . ,xd,p), p = 0, 1, . . . does converge to a 1-semi
maximum point of f , however, this is not always guaranteed [8].

An alternative to the ALS method is the alternating singular value decomposition
(ASVD). To introduce this method, denote for A ∈ Rm×` by u(A) ∈ Sm−1,v(A) ∈
S`−1 the left and the right singular vectors of A corresponding to the maximal
singular value σ1(A), i. e.,

u(A)>A = σ1(A)v(A)>, Av(A) = σ1(A)u(A).

Since for d = 2 the singular value decomposition directly gives the best rank one
approximation, we only consider the case d ≥ 3. Let T = [ti1,...,id ] ∈ Rm1×...×md and
X := (x1, . . . ,xd) ∈ S(m) be such that f(x1, . . . ,xd) 6= 0. Fix an index pair (i, j)
with 1 ≤ i < j ≤ d and denote by Xi,j the d− 2 tensor ⊗k∈[d]\{i,j}xk. Then T ×Xi,j
is an mi ×mj matrix.

The basic step in the ASVD method is the substitution

(xi,xj) 7→ (u(T × Xi,j),v(T × Xi,j)). (3.1)

For example, if d = 3 then the ASVD method is given by repeating iteratively the
substitution (3.1) in the order

(2, 3), (1, 3), (1, 2).

For d > 3, one goes consecutively through all
(
d
2

)
pairs in an ”evenly distributed

way”. For example, if d = 4 then one could choose the order

(1, 2), (3, 4), (1, 3), (2, 4), (1, 4), (2, 3).

The procedure to compute the largest singular value of a large scale matrix
is based on the Lanczos algorithm [5] implemented in the partial singular value
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decomposition. Despite the fact that this procedure is very efficient, for tensors
each iteration of ALS is still much cheaper to perform than one iteration of (3.1).
However, it is not really necessary to iterate the partial SVD algorithm to full
convergence of the largest singular value. Since the Lanczos algorithm converges
rapidly [5], a few steps (giving only a rough approximation) may be enough to get
an improvement in the outer iteration. In this case, the ASVD method may even
be faster than the ALS method, however, a complete analysis of such an inner-outer
iteration is an open problem. As in the ALS method, it may happen that a step
of the ASVD will not decrease the value of the function f but in many cases the
algorithm will converge to a semi-maximum of f . However, as in the case of the
ALS method, we do not have a complete understanding when this will happen. For
this reason, in the next section we suggest a modification of both ALS and ASVD
method, which will guarantee convergence.

4 Modified ALS and ASVD

The aim of this section is to introduce modified ALS and ASVD methods, abbre-
viated here as MALS and MASVD. These modified algorithms ensure that every
accumulation point of these algorithms is a semi-maximum point of f |S(m). For
simplicity of the exposition we describe the concept for the case d = 3, i. e., we
assume that we have a tensor T ∈ Rm×n×l.

We first discuss the MALS. For given (x,y, z) ∈ S(m,n, l) with f(x,y, z) 6= 0,
the procedure requires to compute the three values

f1(x,y, z) := f(
T × (y ⊗ z)

‖T × (y ⊗ z)‖
,y, z),

f2(x,y, z) := f(x,
T × (x⊗ z)

‖T × (x⊗ z)‖
, z),

f3(x,y, z) := f(x,y,
T × (x⊗ y)

‖T × (x⊗ y)‖
).

and to choose the maximum value. This needs 3 evaluations of f .
The modified ALS procedure then is as follows. Let (x0,y0, z0) ∈ S(m,n, l)

and f(x0,y0, z0) 6= 0. Consider the maximum value of fi(x0,y0, z0) for i = 1, 2, 3.

Assume for example that this value is achieved for i = 2. Let y1 := T ×(x0⊗z0)
‖T ×(x0⊗z0)‖ .

Then we replace the point (x0,y0, z0) with the new point (x0,y1, z0) and consider
the maximum value of fi(x0,y1, z0) for i = 1, 2, 3. This needs only two f evaluations,
since f2(x0,y0, z0) = f2(x0,y1, z0). Suppose that this maximum is achieved for
i = 1. We then replace the point in the triple (x0,y1, z0) with (x1,y1, z0) where

x1 = T ×(y1⊗z0)
‖T ×(y1⊗z0)‖ and then as the last step we optimize the missing mode, which is

in this example i = 3. In case that the convergence criterion is not yet satisfied, we
continue iteratively in the same manner. The cost of this algorithm is about twice
as much as of ALS.

For the modified ASVD we have a similar algorithm. For (x,y, z) ∈ S(m,n, l),
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f(x,y, z) 6= 0 let

g1(x,y, z) := f(x,u(T × x),v(T × x)),

g2(x,y, z) := f(u(T × y),y,v(T × y)),

g3(x,y, z) := f(u(T × z),v(T × z), z),

which requires three evaluations of f . Let (x0,y0, z0) ∈ S(m,n, l) and f(x0,y0, z0) 6=
0 and consider the maximal value of gi(x0,y0, z0) for i = 1, 2, 3. Assume for example
that this value is achieved for i = 2. Let x1 := u(T × y0), z1 := v(T × y0). Then
we replace the point (x0,y0, z0) with the new point (x1,y0, z1) and determine the
maximal value of gi(x1,y0, z1) for i = 1, 2, 3. Suppose that this maximum is achieved
for i = 1. We then replace the point in the triple (x1,y0, z1) with (x1,y1, z2) where
y1 = u(T × x1), z2 = v(T × x1) and if the convergence criterion is not met then
we continue in the same manner. This algorithm is about twice as expensive as the
ASVD method. For d = 3, we then have the following theorem.

Theorem 4 Let T ∈ Rm×n×l be a given tensor and consider the sequence

(xi,yi, zi) ∈ S(m,n, l) for i = 0, 1, . . . , (4.1)

generated either by MALS or MASVD, where f(x0,y0, z0) 6= 0. If (x∗,y∗, z∗) ∈
S(m,n, l) is an accumulation point of this sequence, then (x∗,y∗, z∗) ∈ S(m,n, l) is
a 1-semi maximum if (4.1) is given by MALS and a 2-semi maximum if (4.1) is
given by MASVD.

Proof. Let (x∗,y∗, z∗) ∈ S(m,n, l) be an accumulation point of the sequence
(4.1), i. e., there exists a subsequence 1 ≤ n1 < n2 < n3 < . . . such that
limj→∞(xnj ,ynj , znj ) = (x∗,y∗, z∗). Since the sequence f(xi,yi, zi) is nondecreas-
ing, we deduce that limi→∞ f(xi,yi, zi) = f(x∗,y∗, z∗) > 0. Assume first that the
sequence (4.1) is obtained by MALS. Clearly

max
x∈Sm−1

f(x,y∗, z∗) = f1(x∗,y∗, z∗) ≥ f(x∗,y∗, z∗).

For any ε > 0, since f1(x,y, z) is a continuous function on S(m,n, l), it follows that
for a sufficiently large integer j that f1(xnj ,ynj , znj ) > f1(x∗,y∗, z∗)− ε. Hence

f(x∗,y∗, z∗) ≥ f(xnj+1,ynj+1,ynj+1) ≥ f1(xnj ,ynj , znj ) ≥ f1(x∗,y∗, z∗)− ε.

Since ε > 0 can be chosen arbitrarily small, we deduce f1(x∗,y∗, z∗) = f(x∗,y∗, z∗).
Similarly we deduce that fk(x∗,y∗, z∗) = f(x∗,y∗, z∗) for k = 2, 3. Hence (x∗,y∗, z∗)
is 1-semi maximum.

Similar arguments show that if the sequence (4.1) is obtained by MASVD then
gk(x∗,y∗, z∗) = f(x∗,y∗, z∗) for k ∈ [3]. Hence (x∗,y∗, z∗) is a 2-semi maximum.

2

The following questions remain open. Suppose that the assumptions of Theo-
rem 4 hold. Assume further, that one accumulation point (x∗,y∗, z∗) of the sequence
(4.1) is an isolated critical point of f |S(m,n,l). Is it true that for the MALS method
that the sequence (4.1) converges to (x∗,y∗, z∗), where we identify −x∗,−y∗,−z∗
with x∗,y∗, z∗ respectively? Is the same claim true for the MASVD method assum-
ing the additional condition

σ1(T × x∗) > σ2(T × x∗), σ1(T × y∗) > σ2(T × y∗), σ1(T × z∗) > σ2(T × z∗)?

8



5 A Newton algorithm

To derive an associated Newton method, as in section 2, we replace the problem
of finding a solution to (1.2), with λ > 0 to the solution of (2.6). Considering
again the case d = 3 for ease of notation, if we had an approximation (x0,y0, z0)
to a solution of (1.2), we need to obtain an approximation of a solution of (2.6) by

considering (u0,v0,w0) = (f(x0,y0, z0))
− 1

2 (x0,y0, z0). System (2.6) can be written
as G(u,v,w) = 0, where

G(u,v,w) = (u− T × (v ⊗w),v − T × (u⊗w),w − T × (u⊗ v)).

Then DG(u,v,w) ∈ C(m+n+l)×(m+n+l), the Jacobian of G at (u,v,w), has the
form

DG(u,v,w) =

 Im −T ×w −T × v
−(T ×w)> In −(T × u)>

−(T × v)> −(T × u)> Il

 . (5.1)

Hence the Newton iteration is given by the formula

(ui+1,vi+1,wi+1) = (ui,vi,wi)− (DG(ui,vi,wi))
−1G(ui,vi,wi),

for i = 0, 1, . . . ,. Here we abuse notation by viewing (u,v,w) as a column vector
(u>,v>,w>)> ∈ Cm+n+l.

Numerically, to find (DG(ui,vi,wi))
−1G(ui,vi,wi) one solves the linear system

(DG(ui,vi,wi))(x,y, z) = G(ui,vi,wi).

The final vector (uj ,vj ,wj) of the above Newton iterations is followed by a scaling
to vectors of unit length xj =

uj

‖uj‖ ,yj =
vj

‖vj‖ , zj =
wj

‖wj‖ .

6 Numerical results

We have implemented a C++ library supporting the rank one tensor decomposition
using vmmlib [11], LAPACK and BLAS in order to test the performance of the
different best rank one approximation algorithms. The performance was measured
via the actual CPU-time (seconds) needed to compute the approximate best rank
one decomposition, by the number of optimization calls needed, and whether a
stationary point was found. All performance tests have been carried out on a 2.8
GHz Quad-Core Intel Xeon Macintosh computer with 16GB RAM.

The performance results are discussed for synthetic and real data sets of third-
order tensors. In particular, we worked with three different data sets: (1) a real
computer tomography (CT) data set called MELANIX (an Osirix data set), (2) a
symmetric random data set, where all indices are symmetric, and (3) a random data
set. The CT data set has a 16bit, the random data set an 8bit value range. All our
third-order tensor data sets are initially of size 512× 512× 512, which we gradually
reduced by a factor of 2, with the smallest data sets being of size 4 × 4 × 4. The
synthetic random data sets were generated for every resolution and in every run;
the real data set was averaged (subsampled) for every coarser resolution.

Our simulation results are averaged over different decomposition runs of the
various algorithms. In each decomposition run, we changed the initial guess, i. e., we
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generated new random start vectors. We always initialized the algorithms by random
start vectors, since this is cheaper than the initialization via HOSVD. Additionally,
we generated for each decomposition run new random data sets. The presented
timings are averages over 10 different runs of the algorithms.

All the best rank one approximation algorithms are alternating algorithms, and
based on the same convergence criterion, where convergence is achieved if one of
the two following conditions: iterations ≤ 10; fitchange < 0.0001 is met. The
number of optimization calls within one iteration is fixed for the ALS and ASVD
method. During one iteration, the ALS optimizes every mode once, while the ASVD
optimizes every mode twice. The number of optimization calls can vary widely
during each iteration of the modified algorithms. This results from the fact that
multiple optimizations are performed in parallel, while only the best one is kept and
the others are rejected.

The partial SVD is implemented by applying a symmetric eigenvalue decompo-
sition (LAPACK DSYEVX) to the product AAT (BLAS DGEMM) as suggested by
the ARPACK package.

The first observation regarding the average timings is that third-order tensors
(tensor3s) of size 643 or smaller took less than one second for the decomposition,
which represents a time range, where we do not need to optimize further. On the
contrary, the larger the third-order tensor gets, the more critical the differences in
the decomposition times are. As shown in Figure 1, the modified versions of the
algorithms took about twice as much CPU-time as the standard versions. For the
large data sets, the ALS and ASVD take generally less time than the MALS and
MASVD. The ASVD was fastest for large data sets, but compared to (M)ALS slow
for small data sets. For larger data sets, the timings of the basic and modified
algorithm versions came closer to each other.

We also compared the number of optimization calls needed for the algorithms
of ALS, ASVD, MALS, and MASVD, recalling that for the ALS and the MALS,
one mode is optimized per optimization call, while for ASVD and MASVD, two
modes are optimized per optimization call. Figure 2 demonstrates the relationships
of the four algorithms on three different data sets (color and marker encoded).
As can be seen, the ASVD has the smallest number of optimization calls followed
by the ALS, the MASVD and the MALS. One notices as well that the number
of optimization calls for the two random data sets are close to each other for the
respective algorithms. The real data set takes most optimization calls, even though
it probably profits from more potential correlations. However, the larger number of
optimization calls may also result from the different precision of one element of the
third-order tensor (16bit vs. 8bit values). Another explanation might be that it was
difficult to find good rank-one bases for a real data set (the error is approx. 70%
for the 5123 tensor). For random data, the error stays around 63%, probably due to
a good distribution of the random values. Otherwise, the number of optimization
calls followed the same relationships as already seen in the timings measured for the
rank-one approximation algorithm.

It is not only important to check how fast the different algorithms perform,
but also what quality they achieve. This was measured by checking the Frobenius
norm of the resulting decompositions, which serves as a measure for the quality of
the approximation. In general, we can say that the higher the Frobenius norm,
the more likely it is that we find a global maximum. Accordingly, we compared
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Figure 1: Average CPU times for best rank one approximations per algorithm and
per data set taken over 10 different initial random guesses.
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Figure 2: Average number of optimization calls needed per algorithm and per data
set taken over 10 different initial random guesses.

the Frobenius norms in order to say whether the different algorithms converged to
the same stationary point. In Table 1, we show the average Frobenius norm of the
input tensor3 and compare it to the Frobenius norms of the approximations by ALS,
ASVD, MALS, and MASVD. We observed that all the algorithms reach the same
stationary point for the smaller and medium data sets. The computed Frobenius
norms have the same value except for the ASVD result of the symmetric 4×4×4 data
set, where the final Frobenius norm is much higher. However, for the larger data
sets (≥ 1283) the stationary points differ slightly. We suspect that either the same
stationary point was not achieved, or the precision requirement of the convergence
criterion was too high. That means that the algorithms stopped earlier, since the
results are not changing that much anymore in the case that precision tolerance for
convergence is 0.0001.

The results of best rank one approximation for symmetric tensors using ALS,
MALS, ASVD and MASVD show that the best rank one approximation is also
symmetric, i. e. is of the form au⊗v⊗w, where u ≈ v ≈ w ∈ Sm−1. This confirms
an observation made by Paul Van Dooren, (private communication), and the main
result in [3], which claims that the best rank one approximation of a symmetric
tensor can be always chosen symmetric. The results of ASVD an MASVD give a
better symmetric rank one approximation, i. e. u−v,u−w in ASVD and MASVD
are smaller than in ALS and MALS.

12



Input ALS ASVD MALS MASVD

melanix-512 4038720 2845680 2839270 2845680 2840890
melanix-256 1416420 1006170 1004060 1006160 1004360
melanix-128 490619 355487 353809 355487 355360
melanix-64 167341 125566 125566 125566 125566
melanix-32 56415 44066 44066 44066 44066
melanix-16 18667 15393 15393 15393 15393
melanix-8 5925 5261 5261 5261 5261
melanix-4 1674 1619 1619 1619 1619

symmetric-512 1700600 1471290 1435540 1471290 1438110
symmetric-256 601363 520329 507681 520329 508588
symmetric-128 212602 183949 179476 183949 179797
symmetric-64 75077 64969 64969 64969 64969
symmetric-32 26619 23068 23068 23068 23068
symmetric-16 9417 8184 8184 8184 8184
symmetric-8 3198 2759 2759 2759 2759
symmetric-4 1133 876 945 880 945

random-512 1700610 1471340 1435570 1471370 1438140
random-256 601277 520217 507576 520218 508487
random-128 212581 183926 179459 183926 179783
random-64 75170 65056 65056 65056 65056
random-32 26608 23045 23045 23045 23045
random-16 9423 8173 8173 8173 8173
random-8 3330 2895 2895 2895 2895
random-4 1156 1017 1017 1017 1017

Table 1: Average Frobenius norms: Initial Frobenius norm vs. the Frobenius norm
of the approximations per algorithm and per data set (average taken over 10 different
initial random guesses).
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7 Conclusions

We have presented a new alternating algorithm for the computation of the best rank
one approximation to a d-mode tensor. In contrast to the alternating least squares
method, this method uses a singular value decomposition in each step. In order to
achieve guaranteed convergence to a semi-maximal point, we have modified both
algorithms and also presented a new Newton type method.

We have run extensive numerical tests to show the performance and convergence
behavior of the new methods.
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