42 research outputs found

    Expectation Propagation on the Maximum of Correlated Normal Variables

    Full text link
    Many inference problems involving questions of optimality ask for the maximum or the minimum of a finite set of unknown quantities. This technical report derives the first two posterior moments of the maximum of two correlated Gaussian variables and the first two posterior moments of the two generating variables (corresponding to Gaussian approximations minimizing relative entropy). It is shown how this can be used to build a heuristic approximation to the maximum relationship over a finite set of Gaussian variables, allowing approximate inference by Expectation Propagation on such quantities.Comment: 11 pages, 7 figure

    A tutorial on recursive models for analyzing and predicting path choice behavior

    Full text link
    The problem at the heart of this tutorial consists in modeling the path choice behavior of network users. This problem has been extensively studied in transportation science, where it is known as the route choice problem. In this literature, individuals' choice of paths are typically predicted using discrete choice models. This article is a tutorial on a specific category of discrete choice models called recursive, and it makes three main contributions: First, for the purpose of assisting future research on route choice, we provide a comprehensive background on the problem, linking it to different fields including inverse optimization and inverse reinforcement learning. Second, we formally introduce the problem and the recursive modeling idea along with an overview of existing models, their properties and applications. Third, we extensively analyze illustrative examples from different angles so that a novice reader can gain intuition on the problem and the advantages provided by recursive models in comparison to path-based ones

    A simple algorithm and min-max formula for the inverse arborescence problem

    Get PDF
    In 1998, Hu and Liu developed a strongly polynomial algorithm for solving the inverse arborescence problem that aims at minimally modifying a given cost-function on the edge-set of a digraph D so that an input spanning arborescence of D becomes a cheapest one. In this note, we develop a conceptually simpler algorithm along with a new min-max formula for the minimum modification of the cost-function. The approach is based on a link to a min-max theorem and a simple (two-phase greedy) algorithm by the first author from 1979 concerning the primal optimization problem of finding a cheapest subgraph of a digraph that covers an intersecting family along with the corresponding dual optimization problem, as well. (C) 2021 The Author(s). Published by Elsevier B.V

    A novel inverse DEA model with application to allocate the CO2 emissions quota to different regions in Chinese manufacturing industries

    Get PDF
    This paper aims to address the problem of allocating the CO2 emissions quota set by government goal in Chinese manufacturing industries to different Chinese regions. The CO2 emission reduction is conducted in a three-stage phases. The first stage is to obtain the total amount CO2 emission reduction from the Chinese government goal as our total CO2 emission quota to reduce. The second stage is to allocate the reduction quota to different two-digit level manufacturing industries in China. The third stage is to further allocate the reduction quota for each industry into different provinces. A new inverse data envelopment analysis (InvDEA) model is developed to achieve our goal to allocate CO2 emission quota under several assumptions. At last we obtain the empirical results based on the real data from Chinese manufacturing industries

    Inverse Optimization: Closed-form Solutions, Geometry and Goodness of fit

    Full text link
    In classical inverse linear optimization, one assumes a given solution is a candidate to be optimal. Real data is imperfect and noisy, so there is no guarantee this assumption is satisfied. Inspired by regression, this paper presents a unified framework for cost function estimation in linear optimization comprising a general inverse optimization model and a corresponding goodness-of-fit metric. Although our inverse optimization model is nonconvex, we derive a closed-form solution and present the geometric intuition. Our goodness-of-fit metric, ρ\rho, the coefficient of complementarity, has similar properties to R2R^2 from regression and is quasiconvex in the input data, leading to an intuitive geometric interpretation. While ρ\rho is computable in polynomial-time, we derive a lower bound that possesses the same properties, is tight for several important model variations, and is even easier to compute. We demonstrate the application of our framework for model estimation and evaluation in production planning and cancer therapy

    Inverse optimization.

    Get PDF
    "(Revised January 25, 1998)"--T.p. -- "February 1998."--Cover.Includes bibliographical references (p. 22-24).Supported by a grant from the United Parcel Service and a contract from the Office of Naval Research. ONR N00014-96-1-0051Ravindra K. Ahuja, James B. Orlin

    Combinatorial algorithms for inverse network flow problems

    Get PDF
    "(Revised January 25, 1998)"--T.p. -- "February 1998."--Cover.Includes bibliographical references (p. 23-25).Supported by a grant from the United Parcel Service and a contract from the Office of Naval Research. ONR N00014-96-1-0051Ravindra K. Ahuja, James B. Orlin

    Algorithms for Inverse Optimization Problems

    Get PDF
    We study inverse optimization problems, wherein the goal is to map given solutions to an underlying optimization problem to a cost vector for which the given solutions are the (unique) optimal solutions. Inverse optimization problems find diverse applications and have been widely studied. A prominent problem in this field is the inverse shortest path (ISP) problem [D. Burton and Ph.L. Toint, 1992; W. Ben-Ameur and E. Gourdin, 2004; A. Bley, 2007], which finds applications in shortest-path routing protocols used in telecommunications. Here we seek a cost vector that is positive, integral, induces a set of given paths as the unique shortest paths, and has minimum l_infty norm. Despite being extensively studied, very few algorithmic results are known for inverse optimization problems involving integrality constraints on the desired cost vector whose norm has to be minimized. Motivated by ISP, we initiate a systematic study of such integral inverse optimization problems from the perspective of designing polynomial time approximation algorithms. For ISP, our main result is an additive 1-approximation algorithm for multicommodity ISP with node-disjoint commodities, which we show is tight assuming P!=NP. We then consider the integral-cost inverse versions of various other fundamental combinatorial optimization problems, including min-cost flow, max/min-cost bipartite matching, and max/min-cost basis in a matroid, and obtain tight or nearly-tight approximation guarantees for these. Our guarantees for the first two problems are based on results for a broad generalization, namely integral inverse polyhedral optimization, for which we also give approximation guarantees. Our techniques also give similar results for variants, including l_p-norm minimization of the integral cost vector, and distance-minimization from an initial cost vector
    corecore